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ABSTRACT

The discipline of software architecture has traditionally been concerned with high-level
design. In particular, a variety of architecture description languages have been devel-
oped that are used to precisely capture a design. Additionally, analysis tools have been
constructed that are used to verify particular properties of a design. However, today’s
trend towards the development of component-based software seems to suggest a new use
of software architecture. Because an architecture captures components and the connec-
tions among them, it could potentially be used as an organizing abstraction for many
of the activities in the software life cycle. In this paper we present an initial investiga-
tion into the feasibility of such use. In particular, we closely examine the role system
modeling plays in the fields of configuration management and software deployment, and
relate this role to the system modeling capabilities of architecture description languages.
The outcome of this investigation is twofold. First, we conclude that, for the specific
cases of configuration management and software deployment, the use of software archi-
tecture brings opportunities to significantly extend the provided functionality. Second,
we present requirements for a number of extensions to typical architecture description
languages that are needed to make our approach viable.

This work was supported in part by the Air Force Materiel Command, Rome Laboratory, and the Defense Advanced
Research Projects Agency under Contract Numbers F30602-94-C-0253 and F30602-98-2-0163. The content of the
information does not necessarily reflect the position or the policy of the Government and no official endorsement
should be inferred.





1 INTRODUCTION

Perhaps the most ubiquitous trend in today’s software market is the move to component-based
software development. Middleware technologies, new journals solely dedicated to the topic, an
increased attention by researchers, and a growing market for standard software components are
just a few of the examples that illustrate this trend.

Software architecture is an emerging discipline that is concerned with component-based software
development. In particular, the discipline has developed a number of architecture description
languages (ADLs) in which the high-level design of a system can be precisely captured as a set
of components and interconnections. A large variety of languages have been created, and each
language has its particular strengths and weaknesses. Besides being able to model the components
and interconnections of a system, some languages allow, for example, the modeling of the interaction
behavior among components [1, 6]. Others permit the modeling of constraints [17].

Additional research in the discipline of software architecture has been concerned with the ver-
ification of particular properties of an architecture once it has been created. Methods exist that,
for example, can verify whether an architecture is free of deadlock [1] or whether an architecture
eventually reaches a certain desired state [4]. Other ADLs lend themselves to the detection of
inconsistencies among components that have been put together in an architecture. Architectural
mismatches, such as competing threads of control, have been uncovered this way [6].

As we can see from this brief discussion, the focus of the discipline of software architecture
has mainly been on the issues that arise during the design of component-based software systems.
But, because an architecture precisely captures a design and, in addition, supports analyses of
the design, it seems to offer a unique opportunity to serve as the basis for constructing tools and
environments that support a component-based software development process. In particular, we
envision a software development process such as the one that is illustrated in Figure 1. Shown are
five typical phases in the software life cycle, as well as the artifacts that are normally created in
each phase. However, as opposed to each phase operating in a different abstraction, we believe that
a component-based process requires the use of a single abstraction across the life cycle. Moreover,
it is our belief that, as shown in the figure, software architecture is a potential candidate to be this
abstraction.1

Before committing to this approach and creating architecture-based software development tools
and environments—a rather large undertaking—, it is necessary to first investigate the feasibility of
the approach. In this paper we present this investigation. In particular, we examine the candidacy
of software architecture by comparing the modeling capabilities that it provides to the required
modeling capabilities of two activities in the software life cycle, namely configuration management
and software deployment. Based on this comparison, we answer the following two questions:

• Can software architecture be used as an organizing abstraction for activities in the software
life cycle and, if so, what are some of the benefits that arise?

• Is software architecture by itself sufficient to support activities in the software life cycle, or
do its modeling capabilities need to be enhanced?

Although the answers to these questions are only valid for the specific activities of configuration
management and software deployment, we believe that they generalize to other activities in the
software life cycle as well. Certainly, more research is required to confirm this belief. However,

1Notice that in the analysis phase the architecture of a system is not necessarily available yet, hence the lighter
shading.
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Figure 1: Software Architecture as an Organizing Abstraction.

the results presented in this paper should give us an indication as to whether a component-based
software development process that is centered around the notion of software architecture is at all
possible, as well as what kind of effort will be required to adapt current architecture description
languages for this purpose.

The remainder of this paper is organized as follows. We first discuss, in Section 2, an example
system that is used throughout the remainder of this paper as the canonical system to be modeled.
In Section 3 we introduce the dimensions along which we carry out the comparison. Sections 4, 5,
and 6 discuss, in terms of the example system and comparison dimensions, the modeling capabilities
of the disciplines of software architecture, configuration management, and software deployment. In
Section 7 we draw our conclusions from the comparison and present the answers to the above
questions. We end in Section 8 with an outlook at the future work that remains to be done.

2 EXAMPLE

Figure 2 presents a simplified version of an existing system that is currently in use to carry out
research in the field of numerical analysis [3]. The purpose of the system is to globally optimize a
mathematical function, i.e., to find the point in the domain of the function that yields the absolute
lowest function value. The system consists of about 15,000 lines of Fortran and C code, and is
modularized into a set of components. In the figure, each solid box represents such a component
and each solid line indicates the existence of interaction between two components. For example,
each Optimizer component interacts with a single ComplexFunction component. The dashed
lines indicate a different kind of relationship among components, instantiation. As illustrated by
the dashed boxes, the Scheduler component instantiates new Optimizer and ComplexFunction

components in pairs.
In the system, the GlobalOptimization component manages the computation that takes place.

It uses the Scheduler to create new Optimizer and ComplexFunction components, and allocates a
particular interval of the domain to each Optimizer component. The Optimizer component carries
out an optimization algorithm on the interval it has been allocated, and uses its ComplexFunction
component to evaluate the function at the particular points that the algorithm requires. The net
effect is that the function is optimized by optimizing multiple intervals in parallel.

Throughout its lifetime, the system has been highly variable. Initially, the ComplexFunction

component consisted of about 3,000 lines of Fortran code that were created at the local site, but it
has since been replaced with a separate system, CHARMM, that was created at an external site.
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Figure 2: Example System.

Also, alternative Optimization components exist that each exhibit unique characteristics with
respect to the encapsulated optimization algorithm; some are fast but produce less precise results,
whereas others are slow but very accurate. Finally, new versions of the GlobalOptimization

component are created on a regular basis as new approaches are being tried to find better results.

3 COMPARISON DIMENSIONS

To compare the modeling capabilities that are provided by the discipline of software architecture
to those that are required by the disciplines of configuration management and software deployment,
we need a set of comparison dimensions. As the source of this set, we introduce the notion of a
system model, which is an abstraction that describes the structure of a system in terms of its
components and the relationships among them. All three disciplines employ the notion of a system
model. In software architecture, system models are created that capture the design of systems,
whereas in configuration management and software deployment system models are created to drive
the respective configuration and deployment activities. It is from these existing system models that
we draw our comparison dimensions.

The dimensions that we have chosen are practical in nature; we focus on expressive capabilities
as opposed to more general requirements such as maintainability, reusability, and evolutionary
support. In fact, such abstract capabilities are often a direct result of the use of the more expressive
capabilities we selected. The following dimensions are used in our comparison.

• Composition. What modeling facilities are available to model a system as a set of intercon-
nected components?

• Consistency. What modeling facilities are available to enforce consistency when components
are combined to form a system?

• Construction. What modeling facilities are available to support the construction of an exe-
cutable system out of its components?

• Versioning. What modeling facilities are available to model the existence of, and relationships
among, multiple versions of components?
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Software Configuration Software
Architecture Management Deployment

Composition • • • • ••
Consistency • • • •• •
Construction • • • •

Versioning • • • • ••
Selection •• ••

Dynamism ••

Table 1: System Model Capability Comparison Matrix.

• Selection. What modeling facilities are available to support the selection of components from
the set of available components?

• Dynamism. What modeling facilities are available to model the dynamic changes of a system
once it has been deployed?

Below we use these dimensions to compare system models in each of the fields of software archi-
tecture, configuration management, and software deployment. It should be noted that we do not
choose a single, representative system model of each discipline as the system model that is com-
pared, but instead match capabilities from multiple system models against the dimensions listed
above. Although it is therefore possible that no single system model supports all capabilities listed
in the discussion of a discipline, this choice results in a more accurate overview of the contributions
of a discipline.

As a guide to the rest of this section, Table 1 provides a summary of the discussion that
follows. The table ranks the relative support that is provided by the various system models of a
discipline for each of the comparison dimensions. The larger the number of bullets that is listed
in a category, the better the support that is provided by the system models of a discipline for
that particular capability. It should be noted, though, that the relative number of bullets for a
comparison dimension does not necessarily imply that the functionality of one discipline subsumes
the functionality of another; the presence of one bullet could indicate the availability of a particular
modeling capability that is not provided by another discipline that is ranked with three bullets.

In the following sections we substantiate the chosen rankings by illustrating the system models
that have been developed by each discipline and evaluating their support for each of the comparison
dimensions.

4 SOFTWARE ARCHITECTURE

System models in software architecture are captured in architecture description languages
(ADLs). At the heart of all ADLs is the ability to model a system out of multiple components.
In particular, ADLs partition a system into individual components, describe the behavior of each
component, and model the interconnections among the components. Figure 3 illustrates this focus
of ADLs with an example architecture that is modeled in the Rapide [17] architecture description
language. Shown are two components of the example system discussed in Section 2, a component
that evaluates the function at a particular point in its domain, ComplexFunction, and a component
that performs an optimization algorithm, Optimizer. Each component is modeled with an interface
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that specifies both the functionality that is provided by the component and the functionality that
is expected to be provided by the other components. In Rapide, these functionalities are specified
with events. For example, the ComplexFunction component is capable of receiving a Compute event
and producing a Result event.

At the architectural level, the components are connected by binding the provided functionality
of one component to the required functionality of another component. In our example, the required
Evaluate functionality of the Optimizer component is attached to the Compute functionality pro-
vided by the ComplexFunction component. This implies that when the Optimizer component
generates an Evaluate event, it is received as a Compute event by the ComplexFunction compo-
nent. Such explicit modeling of the interconnections among components is one of the distinguishing
characteristics of ADLs as compared to other system modeling languages.

Another unique aspect of ADLs is their ability to model the interaction behavior of a compo-
nent. In Rapide, this is done by specifying the relationships among the events that a component
receives and the events that it produces. The behavior of the ComplexFunction component, for
example, is one where each Compute event that is received results in a single Result event that is
produced. Understanding the interaction behavior of a component is an important capability for
ADLs. Combined with the architecture-level connections among components, the specification of
the interaction behavior of all components results in a completely specified system on which im-
portant analyses can be carried out. For example, the Rapide tool set contains tools that simulate
an architecture to uncover such architectural faults as deadlock [16].

We now turn our attention to the comparison dimensions that we described in Section 3 and
the rankings given to software architecture in Table 1. From the discussion of the Rapide example,
it should be clear that Rapide is focused on the composition dimension. This focus is shared by
other ADLs, which is illustrated by a recent survey of existing ADLs [20]. The survey uses several
key characteristics of components, connectors,2 and configurations as its comparison dimensions.
The characteristics chosen by the survey, such as interface, type, and constraint, are all directly
geared towards the composition of a system out of its components, and demonstrate the belief of
the architecture community that these characteristics are the important ones for system modeling.
Further proof of the importance of composition in ADLs is presented by ACME [11], an architecture
description language that has been proposed to unify existing ADLs. ACME is centered around the
notion of components, connectors, and configurations, which are all system modeling constructs
that are used to model the composition of a system.

Consistency is enforced by most ADLs through their strong support for composition. Because
components and connections are typed, type checking at system composition time ensures a cer-
tain level of consistency. A stronger, behavioral type of consistency is achieved by Wright [1] and
CHAM [6]. Both ADLs formally define architectures. Inconsistencies in an architecture are uncov-
ered by carrying out analyses on its formal definition. Architectural mismatches, such as competing
threads of control, have been uncovered this way in, for example, CHAM.

The support for the other comparison dimensions besides composition and consistency is rather
limited in current ADLs. Version control and the selection of components that constitute a config-
uration mostly have to be carried out by hand without any guidance from an architectural system
model. UniCon [24] is an exception. Although it does not allow for versions of the actual compo-
sitional constructs (such as, for example, components, interfaces, or types), its system model does
support variant implementations of components.

Construction has received some attention from the architecture community. One approach,

2A connector is a formalized notion of a connection that has its own language constructs in some ADLs.
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type ComplexFunction is interface
action in Compute(Point: Float);

out Result(Value: Float);

behavior
NewValue : var Float;

begin
(?x in Float) Compute(?x) => Result($NewValue);;

end ComplexFunction;

type Optimizer is interface
action in FuncValue(Value: Float);

out Evaluate(Value: Float);

behavior
Minimum : var Float := 100000.0;

StartPoint : var Float := 0.0;

begin
Start => Evaluate($StartPoint);;

(?x in Float) FuncValue(?x) => ...

end Optimizer;

architecture GlobalOptimization() return root is
O : Optimizer;

F : ComplexFunction;

connect
(?x in Float) O.Evaluate(?x) => F.Compute(?x);

(?y in Float) F.Result(?y) => O.FuncValue(?y);

end GlobalOptimization;

Figure 3: Example of an Architectural System Model in Rapide.
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GenVoca [2], is generative in nature: based on an architectural description, a system implementation
is generated. Because this approach limits itself to domain-specific applications, it is very powerful.
However, because of its domain specificity, it would be rather difficult to use it to support the generic
purposes of configuration management and software deployment. The other approach, pioneered
by UniCon, is based on the existence of a mapping between an architecture and its implementation.
Currently, the mapping is limited because a single component is assumed to be implemented by a
single source file.

Our last comparison dimension, dynamism, exists in two forms: external and internal. External
dynamism is the ability to dynamically reconfigure a system through some external support envi-
ronment. Internal dynamism, on the other hand, is the ability to create and destroy components
from within the system model. Both external and internal dynamism are present in ADLs. Most
notably, C2 supports external dynamism through its ArchShell [19] environment, whereas internal
dynamism is supported by Rapide [17] and CHAM [14]. In either case, though, support is limited
because the system model itself provides no constructs to support the architectural changes with
guidelines and constraints. It is not possible, for example, to specify in the system model what
particular topology needs to be maintained while an architecture is being modified. The graph
grammar approach developed by Le Métayer [21] addresses this problem and provides a means
for constraining the topology of a system. As an inherent part of a system architecture, a coor-
dination component is modeled. Through the use of graph-checking algorithms, this coordination
component controls the dynamic evolution of a system.

5 CONFIGURATION MANAGEMENT

In the past, a variety of system models have been devised in the configuration management
discipline. Some of these focus on the construction of a system out of a set of individual source
files [5, 10]. Others are concerned with the management of versions and configurations of source
files [15, 18]. Only recently, the two have been combined into unified system models that not only
address versioning and construction, but also raise the level of abstraction from source files to
system-level components [9, 29].

To illustrate the strengths and weaknesses of a typical system model developed by the config-
uration management discipline, Figure 4 presents a revised version of our optimization example
that is modeled in the PCL system modeling language [29]. Compared to the previous version
in Figure 3, one additional component (or family in PCL terminology) has been introduced: the
FastOptimizer component carries out an optimization in less time than the regular Optimizer

component, but sacrifices precision to gain the time benefit. Modeling such variability and providing
mechanisms to select an appropriate subset out of the available components are the central foci of
system models in the configuration management discipline. In PCL, attributes are used to support
the versioning and selection process. Attributes specify key characteristics of a component, and can
be used in both a descriptive and a selective manner. In our example, the attributes precision

and complexity are used to precisely describe the difference between the FastOptimizer and
Optimizer components. These attributes have no further influence on the actual composition of
the system. The attribute fast, on the other hand, is used as a selection criterion between the
FastOptimizer and Optimizer components. Depending on its value, the parts that constitute
the GlobalOptimization component differ. Modeled here is the version fast-version of our sys-
tem, for which the attribute fast is selected to be true. Consequently, the FastOptimizer and
ComplexFunction components are selected by the GlobalOptimization component to be included
in the system.
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family ComplexFunction

...

end

family FastOptimizer

attributes
precision : string = ‘‘0.01’’;
complexity : string = ‘‘n squared’’;

end
physical

fastoptimizer => (‘‘fast.c’’, ‘‘optimizer.h’’);

end
end

family Optimizer

attributes
precision : string = ‘‘0.00001’’;
complexity : string = ‘‘n cubed’’;

end
physical

optimizer => (‘‘precise.c’’, ‘‘optimizer.h’’);

end
end

family GlobalOptimization

attributes
created-by : string = ‘‘Andre van der Hoek’’;

created : string = ‘‘97/11/06’’;

fast : boolean default false;

end
parts

O => if fast then FastOptimizer

else Optimizer

endif;
F => ComplexFunction;

end
physical

main => (‘‘main.c’’);

exe => ‘‘calc.exe’’ classifications
status := standard.derived;

end;
end

end

version fast-version of GlobalOptimization

attributes
fast := true;

end
end

Figure 4: Example of a Configuration Management System Model in PCL.
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Not only does Figure 4 illustrate the versioning and selection capabilities of PCL, it also demon-
strates the integrated support for the construction of an executable system. To this extent, a
mapping is maintained within a PCL system model between its components and their implemen-
tation. The FastOptimizer component, for example, is implemented by the files fast.c and
optimizer.h. The selection rules are used to determine the set of source files that are needed to
construct a particular system version, and the executable system is compiled from this set of source
files.3

To evaluate the capabilities of the system models that have been developed by the discipline of
configuration management, we now extend the discussion to include other system models besides
PCL. Typical in all these system models is the rather limited support for the first two comparison
dimensions, composition and consistency. Although the hierarchical composition of a component
out of multiple parts is supported by most system models, it is only one of the capabilities that
is needed. Two key concepts that are missing are explicitly modeled connections and behavioral
specifications.

Consistency is only guaranteed for frozen configurations, i.e., versions of systems that have
been deemed correct by a user and are permanently labeled as non-modifiable. However, when
arbitrary components are selected to be combined in a new configuration, potential inconsistencies
are not revealed by the information that is modeled. The typing mechanism of Adele [9] and
the interface specifications introduced by Perry [23] provide some improvement, but behavioral
consistency cannot be achieved since both are static in nature.

The next three comparison dimensions, construction, versioning, and selection, are at the heart
of configuration management. Advanced techniques and modeling capabilities have been developed
over the years [7] of which the example has highlighted the essential contributions. However, two
additional concepts deserve special mention.

• Variants and revisions. Our example contains two versions of an optimization algorithm:
the Optimizer component and the FastOptimizer component. Although different, these
components provide the same functionality and they are therefore termed variants. A different
relationship exists when a new version of a component represents a change over time. If, for
example, a new version of the FastOptimizer component is developed that fixes a problem in
the existing version, the new version would be called a revision of the existing one. Both the
variant and revision relationship are explicitly modeled; typically, the variants and revisions
of a component are organized in a version tree.

• Change sets. A rather different approach to modeling system configurations is the change-set
approach [25]. As opposed to managing versions of components, change sets model changes
as first-class entities. Changes can be simple modifications to a single component, but can
also be complex modifications having a system-wide impact. Using change sets, a particular
system configuration is selected as a baseline and a set of desired changes. The desired
system is then constructed by applying the changes to the baseline. Although the change-set
approach is elegant and easily understood by its users, it has the problem that it depends on
merging, which makes it inherently inconsistent.

The last comparison dimension, dynamism, has not been addressed by the configuration man-
agement community as of yet. None of the system models are capable of modeling internal dy-

3PCL includes a set of standard, extensible derivation rules that are part of its system modeling capabilities. For
brevity, these rules are not presented here.
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namism, nor do they provide support for external dynamism; the system models that have been
developed are all static in nature.

6 SOFTWARE DEPLOYMENT

In contrast to the disciplines of software architecture and configuration management, systems
models in the field of software deployment tend to be declarative in nature; a schema is used to
describe deployment information about a software system [8, 13, 27]. Based on the information in
the schema, activities such as release, install, configure, update, and deinstall are supported by a
deployment tool.

One of the more advanced system models that has been developed to support software de-
ployment is incorporated in the Software Dock framework [12]. Figure 5 illustrates a part of our
global optimization example as it would be described in a Software Dock schema. Modeled are two
components, the Optimizer component and the ComplexFunction component.

The description of the global optimization system is partitioned into five sections, namely its
properties, its composition, its assertions, its dependencies, and its constituting artifacts.4 In
the first part of the description, system properties are declared. In particular, we model the
abstract components, Optimizer and ComplexFunction, as well as the specific instances of these
components, namely Fast, Precise, CHARMM, and OurOwnFunction, as properties. Additionally,
the version of the overall system is defined to be a property. The values of all these properties are
not specified in this section. Instead, they are resolved when a deployment activity attempts to
satisfy the constraints stated in the remainder of the specification with the user preferences that it
takes as input.

The second part, which describes the composition of the global optimization system out of its
components, demonstrates the use of constraints. In the first two rules, it is stated that the global
optimization system has two parts to be deployed, namely the Optimizer and ComplexFunction

components. The next two rules specify that, although each of these abstract parts is instantiated
by two variant implementations, only one variant of each can be deployed at the time. The last
two rules indicate some constraints between properties; the Fast component is not compatible with
the CHARMM component, and the CHARMM component can only be deployed to the Solaris operating
system.

In the next two parts, requirements for the system to be properly deployed are specified. Asser-
tions state requirements that simply have to be true and can only be verified (e.g., the operating
system has to be Solaris or SGI-MIPS). Dependencies, on the other hand, specify requirements
that can be resolved. In particular, the dependency that is specified states that if the CHARMM

component is to be part of the system, but its version 4.5 is not installed yet, this version can
obtained by activating the deployment process at the given URL.

The final part of the specification is the target of the selection process that is governed by
the rules and properties in the previous four sections. It provides a mapping from the abstract
properties to the artifacts that actually constitute the system. Depending on the desired version
of the global optimization system, on the target operating system, and on the target hardware
platform, different executables—each stemming from a different source location at the producer
site—are deployed to a target directory at the consumer site.

Abstracting away from the specifics of the Software Dock schema, we now evaluate the capa-

4In reality, a sixth part is used to describe the specifics of deployment activities that are not conform the standard
processes supported. For brevity, this part is omitted from the discussion.
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RegFamily:
GlobalOptimization

RegId:
Name: GlobalOptimization

Producer: University of Colorado

Properties:
P1: Optimizer[boolean]

P2: Fast[boolean]

P3: Precise[boolean]

P4: ComplexFunction[boolean]

P5: CHARMM[boolean]

P6: OurOwnFunction[boolean]

P7: Version[string]

Composition:
C1: true includes Optimizer

C2: true includes ComplexFunction

C3: Optimizer oneof(Fast, Precise)

C4: ComplexFunction oneof(CHARMM, OurOwnFunction)

C5: Fast excludes CHARMM

C6: (OS != "Solaris") excludes CHARMM

Assertions:
A1: (Arch == "sparc") || (Arch == "i86pc")

A2: (OS == "Solaris") || (OS == "SGI-MIPS")

A3: (OS == "SGI-MIPS") => (Memory >= 24)

A4: (OS == "Solaris") => (Memory >= 48)

Dependencies:
D1: (CHARMM && !installed("CHARMM", 4.5))

solve("http://www.charmm.com/dist/agent")

Artifacts:
A1: (Version == "1.0") => A1.1, A1.2, A1.3

A1.1:(Arch == "sparc" && OS == "Solaris") =>

/v1.0/sparc/go -> ./bin

A1.2:(Arch == "i86pc" && OS == "Solaris") =>

/v1.0/i86pc/go -> ./bin

A1.3:(Arch == "i86pc" && OS == "SGI-MIPS") =>

/v1.0/sgi/go.exe -> ./sgi-bin

A2: (Version == "1.2") => A2.1, A2.2, A2.3

A2.1:(Arch == "sparc" && OS == "Solaris") =>

/v1.2/sparc/go1.2 -> ./bin

A2.2:(Arch == "i86pc" && OS == "Solaris") =>

/v1.2/i86pc/go1.2 -> ./bin

A2.3:(Arch == "i86pc" && OS == "SGI-MIPS") =>

/v1.2/sgi/go1.2.exe -> ./sgi-bin

A3: (Fast) => fast.lib -> ./lib

A4: (Precise) => precise.lib -> ./lib

A5: (OurOwnFunction) => eval.lib -> ./lib

Figure 5: Example of a Software Deployment System Model in the Software Dock.
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bilities of system models in the field of software deployment against the comparison dimensions
listed in Section 3. A characteristic of all these system models is a focus on composition. Although
the explicit modeling of connections and behavioral specifications is lacking, other compositional
constructs are unique to the discipline of software deployment. In particular, it is possible to model
a system out of multiple systems, possibly located at multiple geographical sites [28]. Another
important feature is the the optionality of components. Instead of modeling a system as a single
monolithic entity, it is possible for the system to be described as a set of core components and a
number of optional components that may or may not be included when the system is deployed.

Similar to the discipline of configuration management, consistency in the field of software de-
ployment is only supported via frozen configurations. If arbitrary components are selected to be
jointly deployed, no mechanism is in place to verify the consistency of the overall system.

Construction of a system is not supported at all. The system models assume an approach in
which binaries are shipped from a producer to a consumer site. Consequently, no constructs are
available to model the building of a system out of its sources.

Versioning and selection are at the center of software deployment. Specific versions of compo-
nents are selected to be deployed out of the pool of available versions. As compared to configuration
management, the modeling capabilities are rather similar. The only difference is that software de-
ployment does not have an explicit notion of a change set in its modeling capabilities. Although
sophisticated delta mechanisms are available for efficient software updates [22], these mechanisms
lack the expressiveness of change sets.

Support for the final dimension, dynamism, is not available in current software deployment
systems. Despite the fact that it has been recognized as a problem and is an integral part of the
software deployment life cycle [30], no solutions have been devised as of yet.

7 LESSONS TO BE LEARNED

Based on the comparison carried out in the previous three sections, we now attempt to answer
the questions posed in the introduction. We first answer the question of whether architecture
could be used as an organizing abstraction for configuration management and software deployment
activities, and then present some requirements for extensions to software architecture that we
believe are needed to make the approach a success.

7.1 Software Architecture as an Abstraction

The first question posed was whether software architecture can be used as an organizing ab-
straction for activities in the software life cycle, and if so, what some of the benefits that arise
would be. For the specific cases of configuration management and software deployment, we offer
the following observations.

• The use of software architecture would support the development of new capabilities. Both
the discipline of configuration management and the discipline of software deployment would
benefit from the provided modeling capabilities for connections and interaction behaviors.
Connections can be used to reduce architectural erosion, whereas interaction behaviors can
be used to verify the consistency of selections of components [31]. Both of these are important
capabilities that are currently not available.

• The use of software architecture would reduce the context switch between configuration man-
agement and software deployment. Currently, once a system has been developed and needs to
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be deployed, a complete new system model has to be devised. This system model has to be
created in a new modeling language that uses different modeling constructs. As a result, the
context switch between configuration management and software deployment is rather large.
If, instead, software architecture was used as an organizing abstraction for both activities,
the context switch would be reduced because both activities would operate within a common
abstraction.

• The use of software architecture would reduce modeling effort. At present, a system is modeled
three times, once as an architectural model, once as a configuration management model, and
once as a software deployment schema. Consequently, some capabilities, such as, for example,
composition, that are needed in all three models have to be modeled three times. If software
architecture would be used as an organizing abstraction, this redundancy would disappear be-
cause the common objects in the configuration management and software deployment system
models can be automatically generated from the software architecture.

Based on these observations, there certainly is a desire to use software architecture as a common
abstraction. With respect to the feasibility of this, we believe the answer is also positive. As we
can see from Table 1, the modeling constructs provided by software architecture complement the
ones provided by the other disciplines. Moreover, as we can see from the previous sections, common
constructs, such as components, interfaces, and configurations, serve the same role in each discipline
and can therefore be subsumed by the constructs provided by architecture description languages.

7.2 Extending Software Architecture

The second question to answer is whether software architecture by itself is sufficient to serve
as the abstraction. To this question, our answer is negative. For the approach to be a success,
software architecture needs to be enhanced with the following two modeling capabilities.

• Versioning and selection. Versioning and selection should be added to the abstraction for a
variety of reasons. First, although an architecture is meant to be relatively stable, it does
evolve as a system evolves. Second, different variants of a system could require different ar-
chitectures. Finally, as we saw in the examples, the activities of configuration management
and software deployment both require a system model that incorporates versioning and se-
lection. For all of these, the versioning and selection capabilities that are needed are based
on the same principles. Moreover, they all version and select the same construct, namely
components. Therefore, it is desirable to put a single versioning and selection mechanism in
the abstraction.

• Optionality. The ADLs developed to date all assume that a single software architecture exists
that describes the components that are present in a single system configuration. As we have
seen in the software deployment example, this assumption is not necessarily always true.
Systems exist in which multiple configurations all adhere to the same architecture, but in
which different sets of optional components are present beyond the set of core components.
This optionality should be added to the abstraction because it is a property that needs to
be managed in each of the areas of software architecture, configuration management, and
software deployment.

If these two capabilities were to be added to software architecture and the resulting abstraction
would be used to support activities in the software life cycle, it is our belief that this abstraction
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is rather complete and that the specific modeling capabilities needed for each activity reduce to
rather simple extensions to the central abstraction. The configuration management and software
deployment activities provide two examples of this. The extra modeling required in the config-
uration management discipline would reduce to the modeling of the build process, whereas the
extra modeling needed in the software deployment discipline would reduce to the modeling of the
constraints among component as well as the modeling of the source and destination locations of
the artifacts to be deployed.

8 CONCLUSIONS

In this paper we have started to investigate how software architecture could serve as a basis for
a component-based software development process. In particular, we have concluded that software
architecture, extended with versioning and optionality, can and should be used as an organizing
abstraction that supports configuration management and software deployment. We believe that
this conclusion extends to other activities in the software life cycle, which is already demonstrated
by initial work in architectural-based testing [26].

To realize this vision, much work remains to be done and difficult problems remain to be solved.
We name:

• Creating new ADLs that incorporate modeling capabilities for versioning and optionality.

• Implementing new configuration management and software deployment environments that
are centered around software architecture.

• Mapping architectural components to source files and executables.

Each one of these represents a complex problem that will require a significant amount of research.
As such, this paper raises more questions than that it answers. However, it does answer one impor-
tant question with respect to the candidacy of software architecture as an organizing abstraction
for activities in the software life cycle. We believe that architecture provides the right modeling
capabilities to be this abstraction, and strongly advocate it be taken out of its focus on high-level
design and into a focus that centers around its role as a key element in a component-based software
development process.
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