
Aladdin: A Tool for Architecture-Level Dependence Analysis
of Software Systems

Judith A. Stafford†, Debra J. Richardson‡, and Alexander L. Wolf †

†Department of Computer Science ‡Dept. of Information and Computer Science
University of Colorado University of California

Boulder, CO 80309 USA Irvine, CA 92697 USA
{judys,alw}@cs.colorado.edu djr@ics.uci.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-858-98 April 1998

c© 1998 Judith A. Stafford, Debra J. Richardson, and Alexander L. Wolf

ABSTRACT

The emergence of formal architecture description languages provides an opportunity
to perform analyses at high levels of abstraction, as well as early in the development
process. Previous research has primarily focused on developing techniques such as al-
gebraic and transition-system analysis to detect component mismatches or global behav-
ioral incorrectness. In this paper, we present Aladdin, a tool that implements chaining, a
static dependence analysis technique for use with architectural descriptions. Dependence
analysis has been used widely at the implementation level to aid program optimization,
anomaly checking, program understanding, testing, and debugging. We investigate the
definition and application of dependence analysis at the architectural level. We illustrate
the utility of chaining, through the use of Aladdin, by showing how the technique can be
used to answer various questions one might pose of a Rapide architecture specification.

This work was supported in part by the National Science Foundation under grant CCR-97-10078 and by the Air
Force Material Command, Rome Laboratory, and the Defense Advanced Research Projects Agency under Contract
Number F30602-94-C-0253. The content of the information does not necessarily reflect the position or the policy of
the U.S. Government and no official endorsement should be inferred.

1 Introduction

Software architecture descriptions are intended as models of systems at high levels of abstrac-
tion. They capture information about a system’s components and how those components are
interconnected. Some software architectures also capture information about the possible states of
components and about the component behaviors that involve component interaction; behaviors and
data manipulations internal to a component are typically not considered at the architectural level.

Formal software architecture description languages (ADLs) allow one to reason about the cor-
rectness of software systems at a correspondingly high level of abstraction. Techniques have been
developed for architecture analysis that can reveal such problems as potential deadlock and com-
ponent mismatches [3, 15, 18, 20]

In general, there are many kinds of questions one might want to ask at an architectural level
for purposes as varied as specification error detection, reuse, reengineering, reverse engineering,
fault localization, impact analysis, regression testing, and workspace management. For example,
one might want to find out which components of a system could receive notification of a particular
event generated by some component. Or, one might want to minimize the number of components
that must be examined in order to find the source of a system failure. Or, one might like to anticipate
which components of a system would need to be retested when one component is replaced by a new
one.

These kinds of questions are similar to those currently asked at the implementation level and
answered through static dependence analysis techniques applied to program code. It seems reason-
able, therefore, to apply similar techniques at the architectural level, either because the program
code may not exist at the time the question is being asked or because answering the question at
the architectural level is more tractable than at the implementation level.

The traditional view of dependence analysis is based on control and data flow relationships
associated with functions and variables (e.g., [13, 21, 30]). This type of analysis was originally
applied to program optimization [2] in order to determine safe code restructuring. The development
of efficient and precise dependence analysis algorithms continues as an active area of research among
compiler designers (e.g., [4, 9]). The application of dependence analysis techniques to aid program
understanding and impact analysis has also been widely studied (e.g., [19, 22, 24]).

Our research takes a broader view of dependence relationships that is more appropriate to
the concerns of architectures and their attention to component interactions. In particular, both
the structural and the behavioral relationships among components expressed in current-day formal
ADLs, such as Rapide [16] and Wright [3], are considered. We are developing an architecture-
level dependence analysis technique, called chaining, and implementing the technique in a tool
called Aladdin. Aladdin is similar in concept to ProDAG [25], which is an implementation-level
dependence analysis tool for Ada and C++ programs. Dependence analysis is performed by both
ProDAG and Aladdin in a two-step process. First, an intermediate representation is created,
and then language-independent analysis is performed over this representation. In Aladdin, the
representation consists of a set of cells, where each cell represents the set of relationships that could
exist between a given pair of architectural elements. This set is queried in order to construct chains
of dependent elements.

We begin our presentation of chaining and Aladdin with a brief review of questions that might
reasonably be asked at the architectural level and answered in part by dependence analysis. These
questions further motivate the need for architecture-level dependence analysis. We then describe the
concept of chaining and the architectural relationships that underlie the concept. This is followed
by a description of how chains are created and used by Aladdin. The current version of Aladdin

1

works on specifications written in the Rapide ADL, and thus the examples given below are cast in
terms of that particular language. We then review related work and conclude with a discussion of
our future plans, which include the adaptation of Aladdin to specifications written in Acme [8] and
extension to other ADLs.

2 Motivating Questions

There are a variety of questions that should be answerable by an examination of a formal
architecture description. Here we list a small number of those questions as motivation for the
study of architecture-level dependence analysis.

1. Are there any components of the system that are never needed by any other components of
the system?

2. If this component is to be reused in another system, which other components of the system
are also required?

3. Which components of the system contribute to this piece of functionality?

4. What are the potential effects of dynamically replacing this component?

5. If this component is communicating through a shared repository, with what other components
does it communicate?

6. If the source specification for a component is checked out into a workspace for modification,
which other source specifications should also be checked out into that workspace?

7. If a change is made to this component, what other components might be affected?

8. If a change is made to this component, what is the minimal set of test cases that must be
rerun?

9. If a failure of the system occurs, what is the minimal set of components of the system that
must be inspected during the debugging process?

These questions share the common theme of identifying the components of a system that either
affect or are affected by a particular component in some way. They involve issues of correctness,
impact of change, and traceability.

The first seven are questions answerable through analysis of a formal description of a system’s
architecture. Questions 8 and 9 are actually questions about the implementation, but ones that
can better be answered with the aid of architecture-level analysis. Thus, the last two questions
depend on a mapping between elements of the current version of the implementation and elements
of the current version of the architecture, as illustrated in Figure 1. Architectural specifications and
system implementations tend to drift apart if not carefully managed. Two approaches intended to
support precise mappings are code generation [29, 31] and architecture recovery [6, 19].

3 Chaining

Chaining is a dependence analysis technique we propose for use at the architectural level.
The individual chain links within a chain associate architectural elements that are directly related,

2

Fault Failure

Architecture Level

Implementation Level

Figure 1: Architecture-Assisted Fault Localization.

Affected−by

Affects

Affected−by Chain

Affects Chain

Component
of Interest

Related−to Chain

Figure 2: Types of Chains Relevant to a Component.

while a chain of dependencies includes associations among architectural elements that are indirectly
related. Chaining is the process of applying dependence algorithms to architectural descriptions in
order to create these sets of related elements.

We consider four kinds of elements in a software architecture.

• Data elements: contain the data to be transformed, communicated, or otherwise used by
components.

• Processing (or behavioral) elements: provide the means for components to transform data.

• Connecting elements: provide the means for components to interact. These elements are also
called ports.

• State elements: contain the (current) state of components in terms of both data and process-
ing.

From the perspective of a component C, we find it useful to describe three types of chains (see
Figure 2).

• Affected-by chains: consist of the set of components and/or their elements that could poten-
tially affect an element of C. These are the elements that C is affected by.

3

 ��

Figure 3: Intercomponent View of Gas Station Dependencies.

• Affects chains: consist of the set of components and/or their elements that could be affect by
C. These are the elements that C affects.

• Related-to chains: consist of the set of components and/or their elements that may affect or
be affected by an element of C. This chain is the combination of the affected-by and the
affects chains for elements of C.

Different types of chains are created to answer different kinds of questions. For example, question 2
in Section 2 could be answered by constructing an affected-by chain based on certain structural
relationships. As other examples, one could answer questions 5 and 9 by building affected-by chains,
question 8 by building affects chains, and question 6 by building related-to chains. Depending on
the type of change being made, question 7 could be answered by building any one of the chains.

Traditional approaches to architecture specification focus on the basic interconnection struc-
ture of components. By itself, the interconnection structure offers only a gross understanding of
architectural dependencies. This is illustrated in Figure 3, which shows the four components of an
example architecture and the dependencies among those components based on the specified con-
nections among named ports. The example is the familiar gas station problem,1 which we discuss
in detail in Section 4.

The depiction in Figure 3 resembles the box and arrow diagrams traditionally used to describe
software architectures. Only a very coarse-grained, conservative analysis can be performed when
considering just this intercomponent view of an architecture, resulting in the capture of false de-
pendencies. These false dependencies are due to the lack of information about how the interface
behaviors of the components refine intercomponent interactions. In Figure 4 we show a more pre-
cise view of dependencies enhanced by an analysis of intracomponent behaviors. For example, the
analysis reveals that an output through component C1’s port Pre Pay implies an input through its
port Start and not through its port Okay, a fact not discernable from Figure 3. There are also a
number of critical anomalies evident only from the analysis result depicted in Figure 4. We discuss

1It could be argued that the gas station problem is not representative of software architecture specifications,
although it is widely used in the architecture literature (e.g. [17, 20]). It has the advantage of being well known and
compact, and does in fact exhibit features that would appear in a “real” architecture specification. In general, there
appears to be a dearth of good architecture specification examples, both large and small.

4

 ��

Figure 4: Enhanced View of Gas Station Dependencies.

these anomalies in Section 4. The ability to specify intracomponent interface behavior is a key
distinguishing feature of modern-day ADLs.

Underlying a chain are, of course, specific dependence relationships. Traditionally, we think
of dependence relationships at the level of program code, where control and data flow are the
most prominent aspects to study. Dependence relationships at the architectural level arise from
the connections among components and the constraints on their interactions. These relationships
may involve some form of control or data flow, but more generally they involve source structure
and behavior. Source structure (or structure, for short) has to do with static source specification
dependencies, while behavior has to do with dynamic interaction dependencies. Below we give
some examples.

Structural Relationships

• Textual Inclusion—The specification for a component may be created from numerous source
modules that are textually combined.

• Import/Export—The specification for a component may describe the information exported
and imported between source modules (e.g., with a module interconnection language).

• Inheritance—The specification for a component may be created through inheritance from
other source modules.

Behavioral Relationships

• Causal—The behavior of one component implies the behavior of another component.

• Input/Output—A component requires/provides information from/to a second component.

• Temporal—The behavior of one component is specified to precede or follow the behavior of
another component.

• State-based—A component cannot be in a particular state unless a second component is in
a particular state.

5

 ��

Figure 5: Aladdin Architecture.

Both structural and behavioral dependencies are important to capture and understand when ana-
lyzing an architecture. The structural dependencies allow one to locate source specifications that
contribute to the description of some state or interaction, while the behavioral dependencies allow
one to relate specific states or interactions to other states or interactions.

The particular kinds of dependencies that can be established among components are heavily
influenced by the primitive features of the ADL. For instance, in CHAM [14], only behavioral
relationships are modeled, and those relationships are based on synchronous input and output
ports through which data flow.2 As mentioned in Section 1, Rapide specifications can involve both
structural and behavioral relationships and typically involve event-based interactions.

4 Aladdin

Aladdin is a prototype tool for performing architecture-level dependence analysis. As shown in
Figure 5, it takes as input an architectural specification and produces chains representing depen-
dence relationships. Aladdin also provides a set of queries over the chains (through both a graphical
and a textual user interface) that aid in answering questions such as those listed in Section 2. Cur-
rently Aladdin works only on Rapide specifications, but it has been carefully designed to separate
language-specific processing tasks from language-independent analysis tasks. The boundary is at
the so-called table builder, which translates an abstract syntax tree representation of an architec-
tural specification into a common dependence table representation. In fact, the portion of Aladdin
above the table builder in the figure was obtained from the Rapide research group at Stanford and
directly incorporated into Aladdin. In the future, we expect to obtain other such ADL front ends
for use with Aladdin.

The cells of the table built from the abstract syntax tree represent the set of relationships that
exist between pairs of elements in the architecture. In general, for a given ADL, it is necessary to
understand the various ways in which any two architectural elements can be related so that the
dependence table can be constructed. This tabular representation could alternatively be viewed as
a dependence graph, where multiple edges between node pairs represent the sets of relationships
between row and column labels.

2Connectors can be introduced to model other kinds of behavioral relationships, but these are still based on, or
built from, the primitive concept of the synchronous port.

6

Once the relationships are recorded in the table, a transitive closure over specific (but not neces-
sarily homogeneous) dependencies for a particular element can be performed in order to construct a
chain. For instance, in the gas station architecture mentioned above, chaining over the table allows
the discovery of unused ports, specification coding errors, and investigation of how the replacement
of a component would affect the rest of the system. Below, we detail our use of Aladdin in analyzing
the Rapide specification for this architecture, which is shown in Figure 6. A close variant of this
specification is available in the Rapide 1.0 Toolset distribution.

In this section, we begin by briefly reviewing the Rapide language so that our example can be
understood. We then describe the general method for constructing the tabular representation, and
follow this by describing the method for using the table to produce chains.

4.1 Overview of Rapide

Rapide is a powerful and complex language. For purposes of this paper, we present only a
brief overview of the language, and restrict ourselves to the features used in our example. A full
description of the language is available in the Rapide language manuals [27].

Components are defined in terms of their interfaces. Three types of components are described in
Figure 6: a pump, a customer, and an operator. Interfaces are structured into separate sections that
specify different aspects of the component’s behavior and its interactions with other components.
Two sections are of relevance here.

An action section contains the declaration of in and out actions, which specify the component’s
ability to observe or emit particular events. Implicitly declared actions represent events generated
in the environment of the system that are emitted by or watched for in an interface. The event
start in the first transition rule of the customer interface in Figure 6 is an example of an implicitly
declared action.

A behavior section, which may contain local declarations, describes the computation performed
by the component, including how the component reacts to in actions and generates out actions.
Computations are defined in an event pattern language [28]. Patterns are sets of events together
with their partial ordering, which is represented by a so-called poset. Posets are the basis for
the dynamic analyses, such as simulation, provided with the Rapide tool set. Thus, they nicely
complement the static analyses provided by Aladdin.

Component types are instantiated and then connected to form architectures. The architecture
declaration at the bottom of Figure 6 instantiates one operator, one pump, and two customers. The
semantics of connections between architectural elements are specified through rules. Connection
rules have a trigger, an operator, and a body. Rapide uses four kinds of connections in connection
rules. The only one of concern for our example here is the agent connection (written syntacti-
cally as “||>”). In an agent connection, the observation of the pattern described in the trigger
asynchronously generates the events in the body.

In our restricted use of Rapide, connections in an architecture may be made only between
pattern lists and connection sets, where a pattern list is a list of one or more patterns to be
observed and a connection set is either an expression or a pattern. Furthermore, the gas station
example makes use of only the agent connection.

The behavior section contains state transition rules that are similar in structure to connection
rules. Thus, a transition rule is composed of a trigger, an operator, and a body. The agents
described above are also used as operators in the transition rules. The trigger may be a pattern or
a boolean expression. The body may be a state assignment or it may generate a poset. Patterns
of events may be watched for in the computation. When a pattern is observed, it triggers the

7

events in the body of the rule. In the gas station example, the body of behaviors are either state
assignments or the generation of a single event.

Rapide provides placeholders for use in patterns and expressions. These are designated with a
“?”. Placeholders are used in comparisons, dynamic generation of components, as iterators, or to
bind the values of parameters. In the case of dynamic creation of components, a placeholder serves
as a universal quantifier. For instance, in the gas station example

(?C : Customer; ?X : Dollars) ?C.Pre Pay(?X) ||> O.Request(?X);

is interpreted as meaning “for each customer, there is to be an agent connection between the
customer’s Pre Pay action and the operator’s Request action, where the number of Dollars in the
Request action is bound to the number of dollars in the Pre Pay action”.

4.2 Construction of the Dependence Table

As mentioned above, Aladdin uses a table to represent the dependence relationships of an
architecture. The relationships associated with connection and transition rule operators induce
these dependence relationships. Figure 7 represents the dependence relationships of the gas station
example. Notice that it captures in tabular form the relationships depicted in Figure 4.

A dependence table has m rows and n columns, where m is the number of communication ports
in the architecture plus any implicitly declared interactions with the environment (e.g., the action
start), and n is the number of communication ports in the architecture plus any emissions to the
environment. The cells of the table contain the set of possible relationships between the pairs of
architectural elements that define the column and row in which the cell resides. The columns in
the table represent the dependent in the relationship and the rows represent the source (or object)
of the dependence. For instance, if a is dependent on b, then the cell at column a and row b details
that relationship. The cell may, for example, reflect the existence of a direct connection, it may
indicate sharing of data, it may indicate interaction by means of event notification and subscription,
or it may contain a combination of relationships between the source and dependent elements.

A table builder for a specific ADL must map the relationships that can be modeled in the
language to the relationships described in Section 3 and recognized by the Aladdin chain builder.
For example, the initial version of Aladdin maps dependencies induced by the agent connection to
the causal relationship. In the case of the gas station architecture of Figure 6, there is an agent
connection between the Turn On action for each customer and the On action of the pump, where the
On action is the body, and thus the dependent. Therefore, this connection is mapped to a causal
relationship and is recorded in the table cells (C1.T On,P.On) and (C2.T On,P.On) in Figure 7.

While composite event patterns in triggers and bodies of rules can be complex, they do not
need to add complexity to the tabular representation. This is because, in general, there is no way
to statically determine which of the actions in the trigger will be the cause of a given triggering.
Thus, all are recorded as sources for the relationship. This is a conservative approach and we are
investigating methods for reducing the generation of such false dependencies.

The local declaration of variables and actions in the behavior section of a component interface
specification may be involved in the eventual connection of an incoming port to an outgoing port.
This internally generated behavior is below the level of abstraction that is of interest to us for
building chains, although it is necessary for Rapide’s other, dynamic analyses. Aladdin applies a
summarization algorithm in order to safely abstract away these behaviors. For instance, in the gas
station example, the pump has several local declarations. Aladdin summarizes the effects of their
inclusion, thus producing the intra-component behavioral connections shown in Figure 4.

8

type Dollars is integer; -- enum 0, 1, 2, 3 end enum;

type Gallons is integer; -- enum 0, 1, 2, 3 end enum;

type Pump is interface

action in O(), Off(), Activate(Cost : Dollars);

out Report(Amount : Gallons, Cost : Dollars);

behavior

Free : var Boolean := True;

Reading, Limit : var Dollars := 0;

action In Use(), Done();

begin

(?X : Dollars)(On ∼ Activate(?X)) where $Free ||>

Free := False;

Limit := ?X;

In Use;;

In Use ||> Reading := $Limit; Done;;

Off or Done ||> Free := True; Report($Reading);;

end Pump;

type Customer is interface

action in Okay(), Change(Cost : Dollars);

out Pre Pay(Cost : Dollars)Okay(),

Turn On(), Walk(), Turn Off();

behavior

D : Dollars is 10;

begin

start ||> Pre Pay(D);;

Okay ||> Walk;;

Walk ||> Turn On;;

end Customer;

type Operator is interface

action in Request(Cost : Dollars),

Result(Cost : Dollars);

out Schedule(Cost : Dollars),

Remit(Change : Dollars);

behavior

Payment : var Dollars := 0;

begin

(?X : Dollars)Request(?X) ||> Payment := ?X;

Schedule(?X);;

(?X : Dollars)Result(?X) ||> Remit($Payment - ?X);;

end;

architecture gas station() return root

is

O : Operator;

P : Pump;

C1, C2 : Customer;

connect

(?C : Customer; ?X : Dollars) ?C.Pre Pay(?X) ||>

O.Request(?X);

(?X : Dollars) O.Schedule(?X) ||> P.Activate(?X);

(?X : Dollars) O.Schedule(?X) ||> C1.Okay;

(?C : Customer) ?C.Turn On ||> P.On;

(?C : Customer) ?C.Turn Off ||> P.Off;

(?X : Gallons; ?Y : Dollars)P.Report(?X, ?Y) ||>

O.Result(?Y);

end gas station;

Figure 6: Rapide Specification of the Gas Station Architecture.

9

O P C1 C2
OUT IN OUT IN OUT IN OUT IN

Sch(D) Rem(D) Req(D) Res(D) Rep(G,D) On Off Act(D) PP(D) T On Walk T Off Okay Chg(D) PP(D) T On Walk T Off Okay Chg(D)

O

OUT

Sch(D) cau cau

Rem(D)

IN

Req(D) cau

Res(D) cau

P

OUT

Rep(G,D) cau

IN

On cau

Off cau

Act(D) cau

C1

OUT

PP(D) cau

T On cau

Walk cau

T Off cau

IN

Okay cau

Chg(D)

start cau

C2

OUT

PP(D) cau

T On cau

Walk cau

T Off cau

IN

Okay cau

Chg(D)

start cau

Figure 7: Gas Station Dependence Table.

4.3 Using Aladdin

Figure 7 is the result of the Aladdin table builder processing the Rapide specification for the
gas station example. Once this representation is available, chains can be built so that the Aladdin
user can perform queries to examine properties of the specification. Affects chains involve creating
links by beginning at the row labels and locating the related column label, whereas affected-by
chains are constructed by linking from column to row labels.

Consider a query to uncover the cause of the P.Activate event in the gas station example.
The transitive closure that constructs an affected-by chain of events begins at the columns and
looks to the related events in the rows. The O.Schedule event is the only possible source of the
P.Activate event. These relationships are transitive and, as mentioned above, we are assuming
that all possible prior events occurred, so we repeat the process for each of the related events. In
this case, only the O.Schedule event is directly caused by O.Request, which is generated by any
one or both of the C1.Pre Pay or C2.Pre Pay events, which in turn may only be preceded by the
start event of the Customer interface.

Construction of an affects chain that has the O.Schedule action as its first link begins by
checking the cells that have entries in the O.Schedule row. The P.Activate and C1.Okay are the
only columns that have entries for this row. These relationships are also transitive, so the chain is
constructed in a similar, though reversed manner, to the affected-by chain.

The Aladdin user interface can be used to access the following information about the various
ports3 appearing in a Rapide specification:

3Recall that “port” is used in this paper as a general term to refer to any means through which a component can
communicate with other components in the system or with the environment of the system.

10

 ��

Figure 8: Gas Station Anomalies.

• ports with no destination;

• ports with no source;

• ports directly related to a particular port;

• ports indirectly affected by a particular port;

• ports indirectly affecting on a particular port;

• ports indirectly related to a particular port; and

• cycles involving a particular port.

Figure 8 shows the results of running the first two kinds of queries against the gas station speci-
fication. The circles in the figure indicate the anomalies that were revealed by these analyses. Of
course, only the engineer can determine whether these anomalies are actual faults in the specifica-
tion. For instance, it is possible that an unused event has been included in an interface because it
is expected to be needed in the future, not because it is a misconnection.

The architectural description for the gas station contains a serious error. In particular, it is never
possible for the second customer to pump gas. The first customer does not suffer this problem. The
engineer would use Aladdin to query for the events that could lead to the P.On event. The resulting
chain is shown in Figure 9 by highlighting the relevant dependence relationships. The actual output
from Aladdin is shown in Figure 10. The chain shows that when the second customer pays for gas,
the first customer is given credit and could pump again if still in the gas station, while the second
customer is never given the okay to pump. That is, the chain back through the C2.Okay event does
not lead to a legal start state for the system. Additionally, by comparing the two sub-chains, we
can see that the C1.Okay event is generated no matter who paid for the gas.

With this information in hand, the engineer can examine the architectural specification in
Figure 6, look at the connections involving the scheduling of customers, and find that C1 is the only
customer that receives the Schedule event from the operator. The information tells the engineer
that there is a fault in the connection based on the O.Schedule action in the architecture.

11

 ��

Figure 9: Gas Station Fault Localization.

DEPENDENCE CHAIN

P.ON

C1.TURN_ON

Causes

C2.TURN_ON

Causes

C1.WALK

Causes

C1.OKAY

Causes

O.SCHEDULE

Causes

O.REQUEST

Causes

C1.PRE_PAY

Causes

C2.PRE_PAY

Causes

C1.START

Causes

C2.START

Causes

C2.WALK

Causes

C2.OKAY

Causes

Figure 10: Aladdin-Generated Affected-By Chain.

This simple example already demonstrates the leverage that architecture-level dependence anal-
ysis can give to an engineer. The analysis can be performed early in the life cycle and help reveal
significant faults in a system. One would expect additional errors to be introduced as the system
is refined and implemented. But the early detection and correction of errors during the first stages
of development produce overall savings in development costs.

12

5 Related Research

This work builds on prior work in three primary areas: traditional dependence analysis, novel
approaches to slicing, and applications of static concurrency analysis tools to architecture descrip-
tions.

Structural dependencies are investigated at the implementation level for use in tools such as
makedepend, which examines program source code to automatically derive the file dependencies
used in Make files (e.g., #include in the C environment). Murphy and Notkin [19] use structural
information, as well as call graphs, to extract a source model of a system. Our approach applies
this concept to architecture description languages and combines the information with behavioral
dependencies.

Considerable work has been done in the study and use of dependence relationships among
variables and statements at the implementation level. For example, Ferrante, Ottenstein, and
Warren [7] introduced the program dependence graph (PDG) for use in compiler optimization.
Harrold and Soffa [11] have studied alias and interprocedural analysis of C and C++ programs.

Representation schemes for program/system dependencies that are similar to our tabular rep-
resentation have been used in program optimization and for system requirements analysis. Aho,
Sethi, and Ullman [1] describe a program representation where bit vectors are used to compactly
represent “gen” and “kill” sets for each statement in the program. Logical operations are performed
on these bit sets to determine statement dependencies. Grady [10] uses an N-square representation
to examine system coupling when assigning functionalities to components during initial system
decomposition. Pomakis and Atlee [23] use a tabular notation similar to the one found in SCR [12]
to specify feature behaviors. This is used in conjunction with a graphical representation to study
possible feature interactions. While all of these methods use a representation similar to our tab-
ular representation, the analyses applied to the representations are different and are for different
purposes.

Our notion of chaining is intended to support a range of analysis applications, including what
would amount to an architectural slice. Program slicing was originally introduced by Weiser [30]
as an aid to program debugging. Sloane and Holdsworth [26] suggest generalizing the concept of
program slicing and show the potential in syntax-based slicing of non-imperative programs. We
agree with the spirit of this work and are pursuing a similar goal, but in the particular context of
software architectures.

Chang and Richardson [5] introduced techniques for creating dynamic specification slices. This
approach uses traditional slicing criteria, whereas our work involves exploring relationships at the
architectural level, where additional criteria are defined.

Zhao [32] is investigating the use of a system dependence net to slice architectural descriptions
written in the Wright ADL. The work described in this initial paper is similar in nature to our work
on chaining, but is preliminary and the details of the method for determining related components
are unstated.

Naumovich et al. [20] apply INCA and FLAVERS, two static concurrency analysis tools used for
proving behavioral properties of concurrent programs, to an Ada translation of a description of the
gas station problem that was written in the Wright ADL. Their approach is to create a concurrent
program that can simulate the intended concurrent behavior of the system. Our work is aimed at
developing general dependence analysis techniques that may contribute to the enhancement of the
analyses already provided by these tools.

13

6 Conclusion

The main contribution of this paper is the introduction of architecture-level dependence analysis
for both the structural and behavioral aspects of a system.

Future plans for Aladdin include improving the precision of the analysis by improving the
intra-component behavior summarizations. We intend to incorporate more features of the Rapide
language, to extend our definition of chaining to other languages (including CHAM [14], Acme [8],
and Wright [3]), and to test our approach against more complex architectures.

Historically, testing has concentrated on the implementation of the system, which has meant
that it is considered fairly late in the development process. Eventually, we intend to incorporate
chaining into a complete life cycle software analysis and testing environment, such as the TAOS
environment [24]. TAOS provides dependence analysis and testing at the implementation level,
with some support for specification-based test case generation and result checking. Integrating
architecture analysis techniques such as chaining would round out the life cycle support for analysis
and testing.

14

REFERENCES

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers principles, techniques, and tools. Addison-Wesley,
Reading, MA, 1986.

[2] F.E. Allen. Control Flow Analysis. SIGPLAN Notices, pages 1–19, July 1970.

[3] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3):213–249, July 1997.

[4] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for High-Performance Comput-
ing. ACM Computing Surveys, 26(4):345–420, December 1994.

[5] J. Chang and D. J. Richardson. Static and Dynamic Specification Slicing. In Proceedings of the Fourth
Irvine Software Symposium, Irvine, CA, April 1994.

[6] J.R. Cordy and K.A. Schneider. Architectural Design Recovery Using Source Transformations. In
CASE’95: Workshop on Software Architecture, Toronto, Canada, July 1995.

[7] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Dependence Graph and Its Use in Opti-
mization. ACM Transactions on Programming Languages and Systems, 9(3):319–349, July 1987.

[8] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Interchange Language. In
Proceedings of CASCON ’97, pages 169–183. IBM Center for Advanced Studies, November 1997.

[9] D.W. Goodwin. Interprocedural Dataflow Analysis in an Executable Optimizer. In Proceedings of the
ACM SIGPLAN ’97 Conference on Programming Language Design and Implementation, pages 122–133,
Las Vegas, Nevada, June 1997.

[10] J.O. Grady. System Requirements Analysis. McGraw-Hill, Inc., 1993.

[11] M.J. Harrold and M.L. Soffa. Efficient Computation of Interprocedural Definition - Use Chains. ACM
Transactions on Programming Languages and Systems, 16(2):175–204, March 1994.

[12] K. Heninger. Specifying Software Requirements for Complex Systems: New Techniques and Their
Applications. IEEE Transactions on Software Engineering, 6(1):2–12, January 1980.

[13] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using Dependence Graphs. ACM Trans-
actions on Programming Languages and Systems, 22(1):26–60, January 1990.

[14] P. Inverardi and A.L. Wolf. Formal Specification and Analysis of Software Architectures using the
Chemical Abstract Machine Model. IEEE Transactions on Software Engineering, 21(4):373–386, April
1995.

[15] P. Inverardi, A.L. Wolf, and D. Yankelevich. Checking Assumptions in Component Dynamics at the
Architectural Level. In Proceedings of the Second International Conference on Coordination Models
and Languages, number 1282 in Lecture Notes in Computer Science, pages 46–63. Springer-Verlag,
September 1997.

[16] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software Engineering, 21(4):336–
355, April 1995.

[17] N. Madhav. Testing Ada 95 Programs for Conformance to Rapide Architectures. In Proceedings of
Ada-Europe ’96, number 1088 in Lecture Notes in Computer Science, pages 123–134. Springer-Verlag,
June 1996.

[18] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Distributed Software Architectures. In Proceedings
of the Fifth European Software Engineering Conference, number 989 in Lecture Notes in Computer
Science, pages 137–153. Springer-Verlag, September 1995.

[19] G.C. Murhpy and D.N. Notkin. Lightweight Lexical Source Model Extraction. TOSEM, 5(3):262–292,
July 1996.

15

[20] G. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil. Applying Static Analysis to Software
Architectures. In Proceedings of the Sixth European Software Engineering Conference, number 1301 in
Lecture Notes in Computer Science, pages 77–93. Springer-Verlag, 1997.

[21] H. Pande, W. Landi, and B. Ryder. Interprocedural Def-Use Associations for C Systems with Single
Level Pointers. IEEE Transactions on Software Engineering, 20(5):385–403, May 1994.

[22] A. Podgurski and L.A. Clarke. A Formal Model of Program Dependencies and its Implications for Soft-
ware Testing, Debugging, and Maintenance. IEEE Transactions on Software Engineering, 16(9):965–
979, September 1990.

[23] K.P. Pomakis and J.M. Atlee. Reachability Analysis of Feature Interactions: A Progress Report. In
Proceedings of the 1996 International Symposium on Software Testing and Analysis (ISSTA ’96), pages
216–223. ACM SIGSOFT, January 1996.

[24] D.J. Richardson. TAOS: Testing with Analysis and Oracle Support. In Proceedings of the 1994 Inter-
national Symposium on Software Testing and Analysis (ISSTA ’94), pages 138–153. ACM SIGSOFT,
August 1994.

[25] D.J. Richardson, T.O. O’Malley, C.T. Moore, and S.L. Aha. Developing and Integrating ProDAG in the
Arcadia Environment. In SIGSOFT ’92: Proceedings of the Fifth Symposium on Software Development
Environments, pages 109–119. ACM SIGSOFT, December 1992.

[26] A.M. Sloane and J. Holdsworth. Beyond Traditional Program Slicing. In Proceedings of the 1996 Inter-
national Symposium on Software Testing and Analysis (ISSTA ’96), pages 180–186. ACM SIGSOFT,
January 1996.

[27] RAPIDE Design Team. Draft: Guide to the Rapide 1.0 Language Reference Manuals. July 1997.

[28] RAPIDE Design Team. Draft: Rapide 1.0 Pattern Language Reference Manual. July 1997.

[29] S. Vestal. MetaH Programmer’s Manual. Honeywell, Inc., Minneapolis, MN, 1996.

[30] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, 10(4):352–357, July 1984.

[31] G. Zelesnik. Unicon Reference Manual. Technical Report CMU-CS-97-TBD, Carnagie Mellon Uni-
veristy, 1997.

[32] J. Zhao. Using Dependence Analysis to Support Software Architecture Understanding. New Technolo-
gies on Computer Software, pages 135–142, September 1997.

16

