Putting Declarative Meta Control to Work

Apollo Hogan and Reinhard Stolle and Elizabeth Bradley*
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309-0430
{hogan,stolle,lizb}@cs.colorado.edu

December 20, 1998

University of Colorado Technical Report CU-CS-856-98
In review for publication in the
“IEEE Transactions on Systems, Man, and Cybernetics”

Abstract

We present a logic programming system that accomplishes three impor-
tant goals: equivalence of declarative and operational semantics, declarative
specification of control information, and smoothness of interaction with non-
logic-based programs. The language of the system is that of Generalized Horn
Clause Intuitionistic Logic with negation as inconsistency. Meta level predi-
cates are used to specify control information declaratively, compensating for
the absence of procedural constructs that usually facilitate formulation of effi-
cient programs. Knowledge that has been derived in the course of the current
inference process can at any time be passed to non-logic-based program mod-
ules. Traditional SLD inference engines maintain only the linear path to the
current state in the SLD search tree: formulae that have been proved on this
path are implicitly represented in a stack of recursive calls to the inference
engine, and formulae that have been proved on previous, unsuccessful paths
are lost altogether. In our system, previously proved formulae are maintained
explicitly and therefore can be passed to other reasoning modules. As an ap-
plication example, we show how this inference system acts as the knowledge
representation and reasoning framework of PRET—a program that automates
system identification.

Keywords: Automated reasoning, reasoning architectures, meta architectures,
meta control, meta programming, logic programming, declarative programming,
artificial intelligence.

*Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship
in Science and Engineering from the David and Lucile Packard Foundation.

1 Introduction

Many languages that are designed for the declarative representation of domain
knowledge—one of the core concepts of Artificial Intelligence—are variants of first-
order logic. One of the major advantages of logical representations is their clearly
defined semantics: the domain knowledge can be interpreted as a logical theory.
Logic programs can also be executed. Ideally, a logic program’s declarative seman-
tics (when interpreted as a logical theory) are equivalent to its operational semantics
(when executed with respect to queries).

In practice, the equivalence of declarative and operational semantics is often
sacrificed for various reasons. Purely procedural constructs like the PROLOG cut,
for example, are useful in the construction of efficient programs; however, their
semantics cannot be described declaratively. Furthermore, control information is
typically encoded implicitly in the static ordering of rules and goals. Finally, the
commonly used principle of negation as failure confuses existential with universal
quantification of non-ground goals.

This paper presents a logic system that accomplishes three important goals:

1. Declarative and operational semantics are equivalent.

2. Control information is represented explicitly, declaratively, and separately
from domain knowledge.

3. Interaction with other programs is facilitated by an explicit representation of
the theorem prover’s state.

The first two goals are achieved by implementation of concepts developed as part of
the “Risc” project (Reason Maintenance Based Inference System for Generalized
Horn Clause Logic) at the University of Erlangen [BST96, BT92]. The logic system
presented in this paper is the core of PRET, an automated modeling tool that finds
ordinary differential equations (ODEs) that model black-box dynamical systems
[BS96, SB98]. The achievement of the three goals listed above is crucial to the
success of this modeling task.

The contributions described here generalize well beyond this particular applica-
tion domain. The third goal, in particular, is significant for any automated reasoning
system that integrates several different reasoning modes. The various modules of
such a hybrid reasoner typically must be able to access knowledge that has been
generated before (either by themselves or by other modules). In our SLD-based
system, invocation of different modules is triggered by the evaluation of subgoals
of the currently active goal. Traditional SLD inference engines maintain only the
linear path to the current state in the SLD search tree [L1o87]. Formulae that have
been proved on this path are typically implicitly represented in a stack of recursive
calls to the inference engine, and formulae that have been proved on previous, un-
successful paths are lost altogether. In our system, previously proved formulae are
maintained explicitly and therefore can be passed to other reasoning modules.

2

The language of the logic system presented in this paper is that of Generalized
Horn Clause Intuitionistic Logic (GHCIL) [McC88a, McC88b]. The inference engine
can be briefly characterized as a GHCIL reasoner with declarative meta level control
and explicit representation of previously derived knowledge. The next three sections
describe the GHCIL language, the meta level control, and the explicit representa-
tion of previously derived formulae. As an application example, we show how this
inference system acts as PRET’s knowledge representation framework. We conclude
the paper with some pointers to related work.

2 The Language

GHCIL clauses are (implicitly) universally quantified implications of the following
form.

1. Every definite Horn clause is a GHCIL clause.’

2. If A is an atomic formula and By,...,B, are GHCIL clauses, then A «
By, ..., B, is a GHCIL clause.

That is, GHCIL clauses are generalizations of Horn clauses that also allow embedded
implications (other GHCIL clauses) in the body. For example,

dedicated(P) «— (working(P) <« assigned(W, P), unfinished(W))
is a GHCIL clause that is not a Horn clause. Informally, its meaning is:

For all people P: P is considered a dedicated person if P is working under
the assumption that there is some unfinished work W that is assigned
to P.

Thus, embedded implications can be seen as hypothetical statements. (For a more
detailed discussion of clausal intuitionistic logic, see [McC88a, McC88b].)

In our system, there are several distinguished predicates that may occur in GH-
CIL clauses. One of them is falsum: GHCIL clauses having falsum as their head
indicate contradictory situations. Negation as failure is not suitable for our pur-
poses because it destroys the equivalence of declarative and operational semantics.
Instead, our intuitionistic semantics uses negation as inconsistency [GS86| and inter-
prets not(p) as an abbreviation for falsum < p. For example, consider the following
rulebase:

o falsum — male(X), female(X).
male(john).

. female(betty).

male(pat).

O

'Recall that a definite Horn clause is a clause of the form A « By,..., B, (n > 0) where A
and B; are all atomic formulae.

The query ?not(male(X)) succeeds with X bound to betty, consistent with the in-
terpretation of the query: “is there an X such that X is not male?” With negation
as failure, on the other hand, this query would fail; the interpretation in that case
would be: “is it not the case that there is an X such that X is male,” or, in other
words, “is it the case that, for every X, X is not male?” This behavior would be
inconsistent with the usual existential quantification of free variables in queries.

3 Expressing Control Information

Traditionally, the control flow of a logic program is specified by the static order-
ing of rules and goals: the programmer expresses control knowledge implicitly by
taking advantage of the inference machine’s properties, e.g., its depth-first-left-right
strategy [SS86]. This approach conflicts with our goal of expressing all information
in a declarative way. A program that relies on a certain evaluation strategy of the
inference engine contains information—control information—that is not reflected by
a purely logical interpretation of the program.

Other common non-logical programming means of achieving efficient control of
the deduction process include the PROLOG cut or the “predicates” assert, retract,
and if-then-else. Such procedural constructs have declarative semantics—if any—
that are different from their operational semantics. They result in a more or less
imperative programming style and destroy the equivalence of procedural and declar-
ative semantics, which is one of the main reasons for logic programming in the first
place.

Meta control is a much better solution. It allows specification of control without
interfering with the declarative representation of knowledge. For example, suppose
we have the following declarative knowledge about a small initial segment of the
ordinal numbers:

1: ord(suce(X)) «— ord(X).
2: ord(0).
3: ord(w).

If we were to use this knowledge in a PROLOG system, we would have to reorder the
rules so that Rules 2 and 3 occurred before Rule 1 in order to avoid infinite loops for
existential queries such as Zord(succ(Z)). When adding new rules (e.g., ord(wy)),
a programmer must pay close attention to how they interact with the rest of the
rules—in this case ensuring that the new rule is added before Rule 1. That is, in
addition to the declarative knowledge that 0, w, and their successors are ordinals, we
must also keep in mind the correct order for the rules and the control strategy of the
inference engine. In other words, object-level information (in this case, knowledge
about the structure of ordinal numbers) is intertwined with information about how
to use object-level information (e.g., which rule should be used first). We call the
latter control-level information.

If, instead, we separate control-level information from object-level information,
we can specify the logical theory of ordinal numbers without worrying about the
operational interpretation, or execution, of the theory as a logic program. In a sepa-
rate set of meta control rules, we can then—again declaratively—specify the control
information. The set of control rules, together with the object rules, represents a
logical theory about the control of the logic program; we need only specify that
Rule 1 is examined after any other rules, or we might specify that ground clauses
are always to be preferred over non-ground clauses for the predicate ord/1.2

3.1 Static Control: Abstraction Levels

One method for specifying meta control in a declarative fashion is abstraction levels:
static numeric annotations that describe the order in which clauses are searched,
enforcing the preference of abstract proofs over less-abstract ones. These impose
static global constraints on the search. For example, suppose that there are only
two abstraction levels, low and high. Then any proof that uses only clauses with
high abstraction levels will be preferred to any proof that uses a clause with a low
abstraction level, even if the latter proof is much shorter.?

Abstraction levels are a crude form of meta control. They are static and, though
global, have a granularity at the clause level. Because of this, abstraction levels are
often not general enough. The next section presents an example where dynamic
meta control is needed.

3.2 Dynamic Control: Meta Rules

In PrROLOG, for example, control information interferes with logical statements in
order to achieve an efficient evaluation of huge sets of unit clauses [SS86]. Consider
the following example (from [BST96)).

grandparent(X,Y) « var(Y),!, parent(X, Z), parent(Z,Y).
grandparent(X,Y) « parent(Z,Y"), parent(X, 7).

This example shows how efficiency considerations that have nothing to do with the
declarative meaning of the logic program complicate the code. Expressing efficient
control strategies for logical theories that are more complex than grandparent re-
quires increasingly baroque and hard-to-understand coding.

In our system, this kind of implicit control information is not necessary. We
simply express the logical fact by the clause

grandparent(X,Y) <« parent(X, Z), parent(Z,Y).

2A predicate p of arity n is denoted p/n.
3However, the programmer will typically assign abstraction levels to the rules in such a way
that short proofs are also abstract proofs.

In order to ensure an efficient evaluation, we specify that the subgoal that con-
tains the ground argument must be evaluated before the subgoal that contains the
variable:

before(Ly, Ly) <« goal(Ly, parent(X,Y)),
goal(Ly, parent(Y, 7)),
ground(X), var(Z).

before(Ly, L1) <+ goal(Ly, parent(X,Y)),
goal(Ly, parent(Y, 7)),
ground(Z), var(X).

At first sight, the PROLOG formulation seems shorter and simpler. We argue that
the number of characters needed is not a good measure of complexity. The order of
clauses and goals and—more importantly—the cut in the PROLOG program implic-
itly contain critical, complex information that is made explicit in our meta program.
Furthermore, in our solution, the meta theory is conceptually and literally separated
from the object-level theory. Moreover, operational semantics of the program are
equivalent to the declarative semantics of the object-level theory.

The meta predicate before/2 allows us to specify control information in a clean
fashion, separately from the logical theory about parents and grandparents. Other
control predicates that our system makes available to the programmer are notready/1
and hot/1 for the selection of subgoals to be resolved and clauseorder/2 for the
selection of the resolving clause. When the inference engine chooses the next subgoal
to be resolved, it determines the minimal elements of the partial order defined by
before/2. Subgoals that are proved to be notready/1 may not be chosen; within
these constraints, hot/1 subgoals receive priority. The rule

clauseorder(H, [Ny, ..., N,|) < By, ..., B,.

states that clauses whose names belong to Ny, ..., N,, must be selected in that order
for the next inference step if the selected subgoal is an instance of H. The meta
predicates clause/2 and goal/2 establish names for clauses and currently active
subgoals.* If the meta rules do not completely specify the control decisions, the
default control is from left to right.

The semantics of all meta predicates follows that of [BST96]; we omit the details
of the declarative and procedural specification of the meta predicates.

4The meta predicates var/1 and ground/1 have the usual meaning. Since they have no first-
order declarative semantics, they can, in fact, destroy the equivalence of declarative and operational
semantics of the program if they appear outside the meta level and should therefore be used with
care. See the discussion in the Related Work section.

4 Explicit Representation

If an inference engine is integrated in a multi-modal reasoning system, other—mon-
logic-based—reasoning modules must have access to previously derived knowledge:
everything that has been successfully inferred so far, even if it is not part of the
current proof tree (the current path of the search tree). Many problem solvers use
some kind of caching of inferences in order to avoid duplication of effort, to generate
explanations, and to guide backtracking or control [FAK93]. This approach becomes
particularly important when—as in the application example in Section 6 of this
paper—the derivations of some formulae require the invocation of other reasoning
modules and are therefore very expensive.

In this section, we describe, in some detail, the form of caching used in our logic
system and the explicit representation that is necessary to achieve it.> Since our
approach can be viewed as a very simplified form of truth maintenance, we briefly
discuss the similarities and differences between this approach and traditional truth
maintenance systems (TMSs) and what motivated our choices. Finally, we describe
how caching and explicit representation of the inference state are integrated with
abstraction levels and dynamic meta control.

4.1 Implementation

The system described in this paper is implemented in SCHEME. The state of the
inference engine is encapsulated in a stack. The elements of this inference stack are
either “choice points” or inference stacks themselves. A choice point is any place in
the search tree where a decision must be made. For example, assume we are trying
to prove the subgoal p(X). Furthermore, assume the following two clauses in the
database are the only ones whose heads unify with p(X).

Then the system will create a choice point for the goal p(X') that contains the match-
ing clauses 1 and 2. Choice points also keep track of the corresponding bindings.
The typical (and elegant) way of programming a resolution inference engine is
to call the engine recursively to resolve the subgoals of the current goal. However,
if we were to actually do a recursive SCHEME call, the explicit representation of the
inference engine state would be lost, as it would be embedded in the SCHEME call
stack. Instead, to keep the state explicit, we do a “pseudo-recursive” call by pushing
a new inference stack onto the old one and then using only the new inference stack
until this simulated recursive call succeeds or fails. In the latter case, we throw away

°A graphical user interface (GUI) also takes advantage of the explicit internal state of the
inference engine: The engine is easily interrupted and restarted and the GUI allows for examination
of the current state of the search.

the new stack; if the simulated recursive call succeeds, we keep the new inference
stack on the old one so we can backtrack into the call if necessary. We then continue
the inference process, using the old inference stack and pushing new choice points
(or inference stacks) above the other inference stack.®

The inference engine handles normal clauses in a straightforward PROLOG fash-
ion. To handle embedded implications, we do a pseudo-recursive call to the inference
engine, adding the formulae in the body of the embedded implication to the current
assumptions and setting the current goal to be the head of the embedded implica-
tion.

Since the state of the inference engine is encapsulated in a single explicit data
structure, it is trivial to interrupt and resume the inference task: if the inference
engine is interrupted, it simply returns the inference stack. To restart, it is only
necessary to call the inference engine and pass the inference stack back in.

4.2 Sample Inference

A flow chart of the inference process is shown in Fig. 1. Circles @, @, @, @,
and) are the important internal states of the inference engine.

To illustrate how the inference engine operates, we step through the inference
process for a simple query. Let the database of clauses be given by

A— (B« 0),D.
A— X

B+ F.

B+~ X

D~ E.

E.

F— C.

N O Ot s W N

Suppose the query is ?A. The initial conditions of the inference engine are shown in
Fig. 2. The top of the stack, S, is empty and the goal set G contains only the query
formula: { A}. The engine starts in State @. In this state, the meta control” for
the engine selects A (the only choice in this case) as the next goal to prove. A choice
point (written c.p. in the figure) is created from all clauses in the database and all

6There are other methods for handling the need for recursive calls. Another embedding of
PROLOG into SCHEME [Hay87] used the fact that SCHEME has first-class continuations to enable
backtracking through recursive calls, and used continuations for non-blind backtracking or “lateral”
control transfers. We avoided using continuations because, although they do provide a handle into
the SCHEME control stack, they are still not explicit enough—continuations are opaque. Our
approach of reifying the control explicitly also allows for non-blind backtracking, though we did
not implement it in our system.

"The meta control module selects goals and clauses according to the programmer’s meta control
rules, which are described in Section 3.2 of this paper.

i
=
—

Meta-control No
invoked here . .
Set G to goal continuation
Set Sto parent stack
Select formulafrom G ‘

’ Find unifying clauses L

Push new c.p.on S

i
>@é:

No Yes

I

Yes If S has no parent stack

Implication?

V

V
§ SUCCESS
Determine clause order If no unifying clauses

Create new stack

Push stack on S

Save assumptions, goal continuation
Set Sto new stack

Set G to new goal

Is S empty?

i

Pop c.p. from S

Select clause from c.p.
Push remainder of c.p. on S

(if non-empty)

i

’ Set Sto parent stack ‘

|

Merge G with clause body

]

If Shas no parent stack

FAILURE

Figure 1: Flow-chart of the inference engine.

G={A}

I

Figure 2: Initial conditions of the inference engine.

«S

A:-(B:-C)D.
A - X. G=(}

Figure 3: Inference engine, state=2)

assumptions in the current assumption set that unify with the selected formula, A,
and this choice point is pushed onto S. The state becomes @).

In Fig. 3 the inference engine is in State), so a choice point is popped off the
stack and a clause is selected to try (again, the meta control makes this decision).
In this case, the chosen clause is A « (B « C'), D; the remainder of the choices are
pushed back onto S, the state is changed back to @), and the goal set G becomes
{(B «— C), D}. Again, the meta control selects a formula from the goal set, namely
B — (. Since this is an embedded implication, the engine proceeds to State @).

In State @), a new stack is pushed onto the old stack. The old goal set (called
“goal continuation” in the figure), { D}, and a pointer to the old stack top are
saved. The head of the embedded implication becomes the (only) goal in the new
goal set G, and the formulae in the body of the implication (called “assumptions”
in the figure) are temporarily added to the rule base. Finally S is set to the top of
the new stack and the state becomes (@).

Next (Fig. 5), the (only) formula from the goal set is selected, a choice point is
pushed and the current state becomes @). Notice that this choice point is pushed
onto the inner stack that was created in State @) above.

In Figures 6-8, the inference engine progresses through States @), @), and @
until G becomes empty (Fig. 9). Then, the inference engine proceeds to State).
(This means that the subgoal B < C, which caused the creation of the second inner
stack, was successful.) Then S is set back to the parent stack and G is reset to the
old goal continuation { D }. The current state becomes @ as shown in Fig. 10.

The meta control selects a goal from G and a new choice point is pushed onto
S. Note that the current stack is now the original, outer-most one (Fig. 11). The
inference engine continues this process until either State @ or State &) is reached
(failure or success, respectively), with S pointing to the original outer-most stack.

The explicit representation of embedded call stacks described and illustrated
in this section is important for two reasons. First, it allows previously derived

=8

G={(B - C), D}

Figure 4: Inference engine, state=Q1)

10

-

Parent stack
Assumptions={ C}

Goal continuation={ D}

A - X.

Figure 5: Inference engi

s |

G={B}

ne, state=Q)

B:-F.
B :- X.

Parent stack
Assumptions={ C}

Goal continuation={ D}

G={}

A - X.

Figure 6: Inference engi

ne, state=Q2)

B:- X.

Parent stack
Assumptions={ C}
Goal continuation={ D}

G={F}

A - X.

Figure 7: Inference engi

ne, state=Q1)

< —

B:- X.

Parent stack
Assumptions={ C}

Goal continuation={ D}

G={}

A - X.

Figure 8: Inference engi

11

ne, state=Q2)

B:- X.

Parent stack
Assumptions={ C}

Goa continuation={ D}

A:-X.

G=(}

Figure 9: Inference engine, state=Q2)

B:-X.

Parent stack
Assumptions={ C}

Goal continuation={ D}

A :-X.

G={D}

Figure 10: Inference engine, state=Q)

B:- X.

Parent stack
Assumptions={ C}

Goal continuation={ D}

A - X.

12

G={}

Figure 11: Inference engine, state=2)

knowledge to be reused and passed around to other (possibly non-logical) reasoning
modules. Second, the graphical user interface has access to the complete search tree.
These two features are of crucial importance for a multi-modal reasoning system,
an example of which we describe in Section 6 of this paper.® The traditional scheme
of recursively calling the inference engine would hide the current proof tree in the
interpreter’s implicit call stack.

In the next section we describe how available knowledge is reused in the inference
process and how it is passed to non-logical reasoning modules.

4.3 Making Derived Knowledge Explicit

We maintain previously derived knowledge for two reasons. First, we want to be
able to pass knowledge explicitly to other reasoning modules. Second, we want to
avoid duplication of effort. Formulae that have been proved are stored in a database
for reuse in later proofs or subproofs. The second reason is particularly important
where the proof of a formula involves calls to other modules; these calls are typically
expensive and should not be done more often than necessary.

In order to attain both of these goals, we maintain a database (implemented as
a hash table) of previously derived formulae. This database contains formulae that
have been proved in the current inference process, even if these formulae are not in
the current proof tree, i.e., even if they are on a branch of the search tree that failed.
However, because it is impractical to store everything that has been proved, we only
cache relevant predicates: those predicates in which other modules are interested
and those that are expensive to evaluate. Relevant predicates are declared as such
using the meta predicate relevant/1 [BT92].

Every time the proof of a relevant formula is completed, the database is updated.
If there are no active assumptions, the proven relevant (atomic) formula is simply
added to the database as is. If, however, we are currently in the middle of the proof
of an embedded implication (which means that the set of current assumptions is
not empty), the proven formula might be true only relative to some of the active
assumptions. Therefore, we collect the assumptions that have been used since the
start of the inference process for the relevant goal. If this set of used assumptions is
empty, the relevant formula is stored as an atomic formula in the database. If the set
of used assumptions is non-empty, we store a non-atomic formula—an implication—
built from the relevant formula and the used assumptions.

These cached formulae are then used to speed up calls to the same subgoals in
later proof attempts. They are used as if they were program clauses whenever a
resolving clause must be chosen for a given subgoal (State @)). They are added at

8A third advantage of an explicit representation is that the meta control can choose between
all subgoals in the call stack as opposed to just the subgoals of the inner-most stack. In this case,
nested implications are not necessarily evaluated before the goal in which they are embedded.
However, our implementation does not take advantage of this possibility. Currently, the reasoner
always finishes embedded subgoals before returning to the embedding goal.

13

the front of the rule base, i.e., they receive priority unless the meta control decides
otherwise.

In the database, we store only the most-general forms proved so far: if we prove
A and B and Af = B for some substitution #, then we store only A. This amounts
to f-subsumption [vdL95] in the case of atomic formulae. In the case of embedded
goals (implications) this is only a crude form of caching; handling full #-subsumption
in this general case is NP-complete [GJ79]. However, our (seemingly ad-hoc) form
of caching does exactly the right thing: since calls to expensive modules typically
appear (statically) in only a few rules, rarely is an expensive call subsumed by
previous calls but not detected by a purely syntactic check for generalization or
specialization. A full subsumption check would add much complexity with little
gain.

A similar complexity trade-off is also the reason why we decided against the use
of a full truth maintenance system [FdK93, dK86]. In many problem solvers, TMSs
provide an elegant solution to reasoning using beliefs, assumptions, and contexts.
Maintaining labels (minimal sets of sufficient assumptions, in the case of an ATMS)
brings complexity that is unnecessary for our purposes; our system maintains just
enough information to be able to pass all relevant current knowledge to other mod-
ules and to avoid duplicating work in evaluating time-intensive predicates.

The following example illustrates how the “caching technique” described in this
section facilitates efficient interaction with non-logical reasoning modules. Consider
the following program fragment from the domain of ODE theory.

falsum «— time_series(T), chaotic(T'), periodic(T).
falsum «— time_series(T'), chaotic(T), linear(T).
chaotic(T') «— time_series(T), expensive_test(T, chaotic).
periodic(T) « time_series(T), expensive_test(T, periodic).
linear(T) <« time_series(T'), expensive_test(T, linear).

time_series(ts).

Suppose that tsis an experimental time series that happens to be chaotic (hence non-
periodic). Consider the query falsum <« linear(ts) whose interpretation is: “is the
time-series non-linear?”? If we assume a depth-first-left-right strategy, the system
evaluates the formulae in the following order:

9The formula linear(ts) represents the fact that all data points of the time series ts lie on a line
(modulo some specified resolution). The ODE rule used in this example is: a linear behavior is
neither a periodic behavior nor a chaotic behavior. This ODE rule is much narrower and much
more limited than the more general rule that a linear ODE system (represented by the formula
linear-system(current-model)) cannot be chaotic.

14

not(linear(ts))

falsum «— linear(ts)

falsum

chaotic(ts)

expensive_test(ts, chaotic)
periodic(ts)

expensive_test(ts, periodic) fails
falsum

chaotic(ts)

expensive_test(ts, chaotic)
linear(ts) succeeds

The system does not do the numeric test for linearity because we are assuming
linear(ts) in the query. Notice that the numeric test for chaoticity is evaluated twice,
even though it only needs to be done once. For efficiency, we need to cache the result
of this evaluation after the first call so that on the second call the inference system
can simply report failure or success without actually doing the expensive numeric
test a second time.

Caching intermediate results is crucial in order to avoid duplication of effort if
a formula appears multiple times in a search tree. The overhead of the cache is
negligible compared to the saved computation time. Storing or retrieving a formula
from a hash table takes a fraction of a second, but the computation that establishes
such a formula (e.g., an expensive numerical test) may take several seconds or even
minutes.

This mechanism is critical to the efficiency of the program in which we have
tested this inference system. The PRET program, which constructs ODE models
of physical systems, incorporates a large variety of heterogeneous reasoning modes:
symbolic reasoning, geometric reasoning, qualitative simulation, parameter estima-
tion, and numerical simulation. Geometric reasoning and qualitative simulation are
orders of magnitude more expensive than simple symbolic checks, and parameter
estimation and numerical simulation are even more expensive. Therefore, the term
“caching” may be misleading for the inference engine’s technique of storing and
reusing previously derived formulae. The caching mechanism is not merely a matter
of making the program more efficient by a small percentage. It makes heterogeneous
reasoning feasuble.

4.4 Integration of the Three Goals

The previous section explains how our implementation maintains derived knowledge,
thereby allowing that knowledge to be passed to other modules. In this section,
we describe where and how the solutions that achieve the other goals of the work
described in this paper—equivalence of declarative and operational semantics, and
declarative representation of control information—fit into this picture.

Relevant formulae are handled by the inference engine in the same way as embed-

15

ded implications are. Conceptually, a new incarnation of an inference process tries
to finish a proof of the relevant subgoal before other subgoals receive attention.!?
In State @ of Figure 1, for example, if the selected formula is deemed relevant, the
inference engine passes to a State (3% (similar to State @)), where a new stack is
pushed onto the old stack. The new goal set contains only the relevant formula, and
the engine goes back to State @. Later, when State) or @ is reached (success or
failure in proving the relevant formula, respectively), the engine will, before resum-
ing the inference, store the result of the pseudo-recursion, as described in Section
4.1. This means that declaration of relevance takes priority over control decisions
that are specified by meta rules. The advantage of this approach is that it is easy
to keep track of when a relevant formula has been proved.

The inference engine handles the abstraction levels by iterating from the most-
abstract level to less-abstract levels. Abstraction levels are identified by the pro-
grammer, who assigns a natural number (an “abstraction level number”) to each
clause. First, only the clauses on the most-abstract level are considered. If this proof
attempt fails, the clauses from the next abstraction level are added, and so on, until
the proof succeeds or all levels are exhausted. Maintaining the database of derived
knowledge reduces duplication of effort that would occur when knowledge has to be
rederived in later iterations. Avoiding duplication of effort is, in general, crucial to
all inference tasks that involve expensive proofs or repeated calls to time-consuming
reasoning modules.

The meta level control is integrated into the inference engine at two points: when
a subgoal is selected to be resolved (in State @) and when a resolving clause is
selected (in State @)). These two points are marked “Meta-control invoked here” in
the inference engine flow-chart (Figure 1). In order to select a subgoal, the inference
engine is called recursively!! to evaluate all notready-, before-, and hot-rules (see
Section 3.2) that apply to the current situation. We call the facts that are proved
by these evaluations of meta rules the current control facts. From the current goal,
the meta control chooses a subgoal that meets all constraints imposed by the current
control facts. In order to select a clause, the meta control is only consulted the first
time the inference engine reaches this choice point. Again, the meta control evaluates
all clauseorder-rules that apply to the current situation in order to derive the current
control facts. The meta control then determines an ordering of all matching clauses
that meets all constraints that are expressed by the current control facts. The first
clause in this ordering is chosen to resolve the current subgoal of the object-level
proof. If the same choice point is reached again later via backtracking, the other
clauses can be used in the already-determined order; meta control need not be
invoked again. (Consult [BST96] for a formal description of the semantics of the
control predicates.)

10Gallaire and Lasserre [GL82] achieve a similar effect using the predicate finish.
LA recursive call to the inference engine allows the full generality of the theorem prover to be
used for meta control in a simple and elegant fashion.

16

5 Correctness and Completeness

Generalized Horn Clause Logic is intuitionistically equivalent to a certain subset
of McCarty’s Clausal Intuitionistic Logic [McC88a, McC88b|. According to Tober-
mann |[Tob94], the calculus of generalized Horn clauses upon which our theorem
prover is based is logically sound and complete. Since the prover performs depth-
first search, it is combinatorially incomplete in the same way as PROLOG is: it
cannot effectively find a proof for a logical consequence of the theory represented by
the program if its derivation is hidden by an infinite path in the search tree. The
introduction of control rules into generalized Horn clause logic does not affect the
soundness of the proof procedure. Control rules cannot “generate” new solutions
that are not logical consequences of the logic program.

Control rules for the selection of subgoals preserve not only correctness but also
completeness. Tobermann [Tob94] has shown that the selection function for a Risc-
type prover may perform arbitrary computations. The only condition the selection
function has to meet in order to preserve completeness is that it must be a total
function that selects one of the current subgoals. Ordering of clauses does not af-
fect the logical completeness. It does, however, affect combinatorial completeness; a
different order may make the prover follow an infinite path before it finds some log-
ical consequence of the program. One of the intended usages of the meta predicate
clauseorder/2 is—in addition to efficiency considerations—to (dynamically) deter-
mine a combinatorially complete clause order. Given the meta control predicates
described in Section 3.2, this can be effected by the programmer in an easy and
intuitive way. However, it does remain the responsibility of the programmer.

The calculus that results from adding the abstraction level mechanism is also
correct and complete. First, consider correctness. More-abstract reasoning only
takes away solutions of the program; it never adds new solutions. Thus, the resulting
calculus is correct. Now consider completeness. Relying on the completeness of the
underlying inference engine, the reasoning process is complete relative to the set
of rules that are in use. However, reasoning performed at a more-abstract level
is typically incomplete with respect to a less-abstract level. This is exactly our
intention: to mask out logical consequences of the program that lead to too-detailed
reasoning too early. Since queries ultimately fail only after the inference engine has
considered all rules at all abstraction levels, the overall process is complete.

Both correctness and completeness are also preserved by the caching mechanism.
A formula is only stored if it has been proved. Since the knowledge base does not
change during the evaluation of a query, a stored formula remains true for the whole
evaluation process and can thus be reused. A formula that is true only with respect
to an extended context (that is, a set of assumptions) is stored as an implication
whose body consists of those assumptions. These conditional formulae are also valid
and do not affect correctness. Likewise, completeness remains unaffected since no
rules are removed from the logic program; rather, the cache is added in front of the
logic program. Solutions may be found in a different order, however; currently they

17

are also found multiple times if the theorem prover first uses cached results and
later also uses the corresponding original rules. This only poses a problem if the
user asks for several proofs of a query, or if excessive backtracking occurs within a
proof. A version of the cache manager that avoids even these duplication problems
is currently under construction. The underlying idea of that improved version is
that every cached formula can keep a pointer to the rules from which it was derived
and some other book-keeping information.

In the application example described in the next section, the inference engine’s
task is to find the first proof of the query falsum.

6 An Example

The logic system presented in this paper has successfully been used as a knowledge
representation and reasoning framework in the domain of ODE theory. The program
PRrRET [BS96, SB98| automates system identification [Lju87]: given hypotheses, ob-
servations, and specifications, it constructs an ODE model of a black-box dynamical
system. PRET uses the given hypotheses to construct a sequence of candidate mod-
els and checks each candidate against the observations. The first candidate that
passes this check is returned as the answer. In this section we describe how PRET
employs our logic system to perform this model check.

PRET’s knowledge base encodes ODE theory in GHCIL clauses. The person
who implements or maintains this knowledge base will presumably be an expert
in engineering—not logic programming—so the declarative representation of knowl-
edge without the use of “hack type” efficiency side effects is crucial. The concept of
negation as inconsistency is ideal for this application: the candidate model checker
combines the observations about the target system, the observations about the can-
didate model, and the ODE theory into one set of clauses and then checks that
set for conmsistency, i.e., tries to derive falsum from it. This instantiates PRET’s
opportunistic paradigm: a candidate that provides no reason for an inconsistency is
considered a good model.

The model checker makes use of several non-logic-based modules, e.g., the com-
mercial symbolic algebra package Maple [CGGT91], a simple qualitative envisioning
module, a nonlinear numerical parameter estimator [BOR98|, and a geometric rea-
soner for intelligent data analysis [BE98|. Calls to these modules require knowledge
to be passed to them explicitly. This knowledge is made available by the inference
engine by declaring the necessary predicates as relevant.

Different reasoning techniques vary considerably in their cost. Symbolic tech-
niques are usually quick and cheap; the order of an ODE, for example, can be
established within a fraction of a second. Semi-numeric and numeric techniques
take much longer. The time taken by a call to PRET’s parameter estimation module
NPER [BOR9S], for example, ranges between a couple of seconds and several min-
utes. What lets PRET manage the complexity of its task (finding an ODE model

18

for a given dynamic system) is its ability to dynamically orchestrate application of
its ODE rules and the various reasoning modes that are triggered by the resulting
evaluations. The three techniques described in this paper—abstraction levels, dy-
namic meta control, and reuse of previously derived formulae—achieve exactly this
intelligent orchestration of reasoning modes.

We use the concept of abstraction levels (see Section 3.1) to direct the search for
an inconsistency toward a quick, abstract proof. For example, qualitative reasoning
rules are assigned a more-abstract level than rules that encode numerical reasoning.
As a result, PRET tries to discard models by purely qualitative means before re-
sorting to numerical techniques. In other qualitative reasoning systems that reason
at various abstraction levels (e.g., [YZ96, MB97]), the levels are implicitly defined
by the system’s architecture and data structures. In PRET, every rule is explicitly
assigned an abstraction level number. Similarly, the logic engine’s dynamic control
is used in PRET to guide the search toward a cheap and quick proof of falsum. Rules
that are likely to lead to a contradiction are chosen before other rules, and subgoals
that are likely to fail quickly are evaluated before other subgoals. As an example,
consider the following (simplified) program.

stable <« linear, all_roots_in_left_half_plane.
stable <« non_linear, stable_in_all_basins.
hot(L) <« linear, goal(L, stable).

In this example, the control rule specifies that reasoning about the system’s sta-
bility should be done early on if that reasoning is known to be cheap, e.g., if the
system is known to be linear. Stability reasoning does not get priority, however, in
the nonlinear—expensive—case. The domain-specific reasoning behind this control
flow is as follows: A linear dynamical system has a unique equilibrium point, and
the stability of that point—and therefore of the system as a whole—can be deter-
mined by examining the system’s eigenvalues, a simple symbolic manipulation of the
coefficients of the equation. Nonlinear systems can have arbitrary numbers of equi-
librium sets. These attractors are expensive to find and evaluate. Thus, if a system
is known to be linear, its overall stability is easy to establish, whereas evaluating
the stability of a nonlinear system is far more complicated and expensive. PRET’s
meta theory allows the inference system to take advantage of such dynamic depen-
dencies. The major advantage of this approach is that PRET’s control knowledge
is separated from the ODE theory and does not interfere with the ODE theory’s
declarative semantics.

Even though the computational complexity of PRET’s model checker has not
yet been formally analyzed, experiments show that it performs well on engineering
textbook problems. The recursive call of the inference engine that evaluates the
bodies of control rules may be viewed as a potential source of complexity, or even
infinite loops. In practice, however, the proofs of control rules bottom out quickly.
The only use of embedded implication so far was the interpretation of not/I1 as
negation as inconsistency.

19

Recently, there has been an interesting discussion in the Al community about
the need for domain-dependent control information in any application. Theoreti-
cally, there is no need for domain-dependent control because control knowledge can
be factorized into domain-independent control information and domain-dependent
modal information [Men64] that encodes the structure of the search space [GGI1].
While this elegant result is true for logic programming in general, the PRET project
(and others projects as well, e.g., [Min96]) is a prime example of an application that
requires a different approach. Having to think about control in terms of the struc-
ture of the search space is exactly what we want to avoid. The implementer of the
knowledge base should instead approach it from the viewpoint of his/her domain:
which rules are more abstract than others, which rules or goals trigger expensive
calls to other packages, and so on.

PRET’s graphical user interface (GUI) also takes advantage of the explicit state
representation of the inference engine. For example, the GUI allows the user to
interrupt the inference engine at any time. Having interrupted the computation,
the user is able to examine the inference engine’s state, restart the computation,
or even save the computation in progress and start a new computation. The GUI
displays the knowledge that has been derived so far, proof trees for this derived
knowledge, and the proof tree in progress. Whereas in traditional logic systems
proof trees are usually built by meta interpreters, in PRET this task is trivially
implemented using the explicit state representation.

7 Related Work

Throughout the body of this paper we have discussed a variety of related papers;
those citations shall not be repeated here. We mention here only the most closely
related publications from the large body of literature on meta level systems and
control.

Some of the earliest work on meta control includes [Dav80, DFN86, DL84]. Meta
language constructs whose semantics are similar to the constructs in our system were
suggested by Gallaire and Lasserre [GL82, GL79]; however, their specification of the
semantics was vague. Declaration of relevancy has a similar effect as Gallaire and
Lasserre’s finish predicate. The idea of establishing a relationship between clauses
and their names also stems from [GL82]. Our notready/1 predicate is also similar
to NU-PROLOG’s wait [Nai85] and GODEL’s delay [HL94]. Amalgamated meta level
inference for SLDNF resolution was presented by [BK82, Yal91].

Unlike [BST96], our system provides no guards to express directionality. If
guards were available, meta predicates like var/1 and ground/1 could be used to
choose appropriate clauses without interfering with the declarative semantics of the
clauses. In our system, however, such meta predicates appear in the body of the
clause and must therefore be used with care. Also, as discussed in this paper, we
do not make use of a full ATMS. In the bodies of meta rules we allow the full GH-

20

CIL language instead of restricting the meta language to Horn clauses. To evaluate
meta level control clauses, the GHCIL inference engine simply calls itself pseudo-
recursively instead of switching to an Earley theorem prover [Ear70, BK91]. We also
added the notion of abstraction levels, as described in previous sections.

A terminology for meta level systems was suggested by van Harmelen [vHI1].
Similar to [BST96], our system is—according to that classification—a bilingual
object-level inference system with a ground representation of object-level goals and
clauses on the meta level.

In the Foreword to [HL94], Robinson calls the difference between pure logic pro-
gramming and applied logic programming “a gap that has plagued the relational
logic programming community since the birth of PROLOG in the early 1970s.” In
a perfect world, “programs are first-order theories, and computations are deduc-
tions from them.” Recently, several papers (for example, [Lin97]) have assigned
declarative semantics to procedural constructs like the cut or negation as failure by
stratifying programs or restricting program models. Our solution to this problem is
to disallow procedural constructs and to restrict negation syntactically to negation
as inconsistency with intuitionistic semantics.

The continuing attempts of the logic programming community to make applied
logic programs more declarative and thus more readable and comprehensible has
a strikingly similar counterpart in the database community. Relational query lan-
guages [UlI88] allow the desired data to be specified declaratively. Query optimizers,
however, are typically programmed in procedural terms. One might argue that query
optimizers in databases correspond to control components in logic programs. Cher-
niack has developed a system that expresses the information as to how queries are
optimized declaratively as well, namely as declarative rewrite rules [CZ98]. In a
sense, the concept of declarativeness is moving down the food chain. Naturally, this
has to stop somewhere: Cherniack’s system specifies the information “which rewrite
rule should be applied when” in procedural terms. Similarly, our system executes
the bodies of control rules from left to right, i.e., procedurally.

8 Conclusion

We have presented an implemented logic system whose language is that of gener-
alized Horn clause intuitionistic logic with negation as inconsistency. The system
achieves three important goals: equivalence of declarative and operational semantics,
explicit and declarative representation of control information, and smooth interac-
tion among various heterogeneous reasoning modes.

These goals have been accomplished by integrating and implementing several
techniques: Static abstraction levels and dynamic meta control rules explicitly spec-
ify the deduction strategy of the inference engine, thereby allowing the reasoner to
intelligently navigate in the search tree. An explicit representation of the theorem
prover’s state allows information to be passed to non-logical reasoning modules that

21

are orchestrated through the specified control information. Furthermore, an intelli-
gent caching mechanism stores relevant formulae and makes them available for reuse
in later proof attempts. Typical examples of such relevant formulae are intermediate
results of expensive calls to various reasoning modules.

We have shown an application example of our system in the domain of the theory
of ordinary differential equations. Our program PRET is an implemented automated
system identification tool that uses the logic system described in this paper as its
reasoning core.

Acknowledgements

Matt Easley and Tom Wrensch contributed ideas and code to this project. Much of
the work described in this paper is built on concepts developed by Clemens Beckstein
and Gerhard Tobermann. The second author, in particular, wishes to thank them
for many helpful discussions and continuing support.

References

[BE9S| E. Bradley and M. Easley. Reasoning about sensor data for automated
system identification. Intelligent Data Analysis, 2(2), 1998. Also in
Second International Symposium on Intelligent Data Analysis (IDA-97).

[BK8&2] K. A. Bowen and R. A. Kowalski. Amalgamating language and metalan-
guage in logic programming. In K. L. Clark and S. A. Térnlund, editors,
Logic Programming, pages 153-172. Academic Press, London, 1982.

[BK91] C. Beckstein and M. Kim. Generalized Earley deduction and its correct-
ness. In Thomas Christaller, editor, GWAI-91: 15th German Workshop
on Artificial Intelligence, volume 285 of Informatik-Fachberichte, pages
1-10. Springer, Berlin, Heidelberg, 1991.

[BOR98| E. Bradley, A. O’Gallagher, and J. Rogers. Global solutions for non-
linear systems using qualitative reasoning. Annals of Mathematics and
Artificial Intelligence, 1998. To appear. Also in FEleventh International
Workshop on Qualitative Reasoning (QR-97).

[BS96] E. Bradley and R. Stolle. Automatic construction of accurate models
of physical systems. Annals of Mathematics and Artificial Intelligence,
17:1-28, 1996.

[BST96] C. Beckstein, R. Stolle, and G. Tobermann. Meta-programming for gen-
eralized horn clause logic. In Fifth International Workshop on Metapro-
gramming and Metareasoning in Logic (META-96), pages 27-42, 1996.
Bonn, Germany.

22

[BT92]

[CGGH91]

[CZ98]

[Dav80)

[DFNS6]

[AKS6]

[DL84]

[Ear70]

[FAK93]

[GGI1]

[GJT79]

(GL79]

C. Beckstein and G. Tobermann. Evolutionary logic programming with
RISC. In Fourth International Workshop on Logic Programming Enuvi-
ronments, pages 16-21, November 1992. Washington, D.C. Technical
Report TR 92-143, Center for Automation and Intelligent Systems Re-
search at Case Western Reserve University.

B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan,
and S. M. Watt. Maple V Language Reference Manual. Springer, New
York, 1991.

M. Cherniack and S. Zdonik. Changing the rules: Transformations for
rule-based optimizers. In ACM SIGMOD International Conference on
Management of Data, June 1998. Seattle, WA.

R. Davis. Meta-rules: Reasoning about control. Artificial Intelligence,
15(3), 1980.

P. Devanbu, M. Freeland, and S. A. Naqvi. A procedural approach
to search control in PROLOG. In FEuropean Conference on Artificial
Intelligence (ECAI-86), pages 53-57, 1986.

J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127—
162, 1986.

M. Dincbas and J. P. Le Pape. Metacontrol of logic programs in MET-
ALOG. In International Conference on Fifth Generation Computing
Systems, pages 361-370, 1984.

J. Earley. An efficient context-free parsing algorithm. Communications
of the ACM, 13(2):94-102, 1970.

K. D. Forbus and J. de Kleer. Building Problem Solvers. MIT Press,
Cambridge, MA, 1993.

M. Ginsberg and D. Geddis. Is there any need for domain-dependent
control information? In Ninth National Conference on Artificial Intelli-
gence (AAAI-91), pages 452-457, 1991.

M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New
York, 1979.

H. Gallaire and C. Lasserre. Controlling knowledge deduction in a declar-
ative approach. In International Joint Conference on Artificial Intelli-
gence (IJCAI-79), pages S1-S6, 1979.

23

[GL82]

[GSS6

[Hay87]

[HL94]

[Lin97]

[Lju87]

[L1087]

IMBO7]

[McC88al

[McC88b]

[Men64]

[Min96]

[Naig5)

[SBYS]

H. Gallaire and C. Lasserre. Metalevel control for logic programs. In
K. L. Clark and S. A. Tarnlund, editors, Logic Programming. Academic
Press, London, 1982.

D. M. Gabbay and M. J. Sergot. Negation as inconsistency [. The
Journal of Logic Programming, 3(1):1-36, April 1986.

C. T. Haynes. Logic continuations. The Journal of Logic Programming,
4:157-176, 1987.

P. Hill and J. W. Lloyd. The Gdédel Programming Language. MIT Press,
Cambridge, MA, 1994.

F. Lin. Applications of the situation calculus to formalizing control
and strategic information: The Prolog cut operator. In Fifteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-97), pages
1412-1418, August 1997. Nagoya, Japan.

L. Ljung, editor. System Identification; Theory for the User. Prentice-
Hall, Englewood Cliffs, N.J., 1987.

J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2nd
extended edition, 1987.

P. J. Mosterman and G. Biswas. Formal specifications for hybrid dynam-

ical systems. In Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97), pages 568-573, August 1997. Nagoya, Japan.

L. T. McCarty. Clausal intuitionistic logic I. Fixed-point semantics. The
Journal of Logic Programming, 5:1-31, 1988.

L. T. McCarty. Clausal intuitionistic logic II. Tableau proof procedures.
The Journal of Logic Programming, 5:93-132, 1988.

E. Mendelson. Introduction to mathematical logic. Van Nostrand, Prince-
ton, NJ, 1964.

S. Minton. Is there any need for domain-dependent control information?
A reply. In Thirteenth National Conference on Artificial Intelligence
(AAAI-96), pages 855-862, 1996.

L. Naish. Negation and Control in PROLOG, volume 238 of Lecture
Notes in Computer Sciences. Springer, Berlin, 1985.

R. Stolle and E. Bradley. Multimodal reasoning for automatic model
construction. In Fifteenth National Conference on Artificial Intelligence
(AAAI-98), 1998. Madison, Wisconsin.

24

S586]

[Tob94]

[U1188]

[vdL95]

[VHI1]

[Yal91]

[YZ96]

L. Sterling and E. Shapiro. The Art of PROLOG. MIT Press, Cambridge,
MA, 1986.

G. Tobermann. Verallgemeinerte Hornklausellogik: vom logischen Kalkuil
zum Logik-Programmiersystem. — PhD thesis, Universitat Erlangen-
Niirnberg, 1994.

J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-
ume I. Computer Science Press, Rockville, Maryland, 1988.

P. van der Laag. An Analysis of Refinement Operators in Inductive Logic
Programming, volume 102 of Tinbergen Institute Research Series. Thesis
Publishers, Amsterdam, 1995.

F. van Harmelen. Meta-level Inference Systems. Morgan Kaufmann,
1991.

L. U. Yalcinalp. Meta-Programming for Knowledge Based Systems in
PROLOG. PhD thesis, Case Western Reserve University, 1991. Tech.
Rep. TR 91-141.

K. Yip and F. Zhao. Spatial aggregation: Theory and applications.
Journal of Artificial Intelligence Research, 5:1-26, 1996.

25

