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Abstract

Human motion sequences that are generated by computer algo-
rithms may contain abrupt transitions: places where consecutive
body positions would require physically impossible or stylistically
illegal moves. We use graph-theoretic methods to learn the “gram-
mar” of joint movements in a given corpus and then apply memory-
bounded A* search to the resulting transition graphs — using an
influence diagram that captures the topology of the human body
in order to reduce the search space — to find appropriate interpo-
lation sequences. The application that motivated the development
of these methods is an algorithm that uses the mathematical prop-
erties of chaos to generate variations on dance and martial arts
sequences. Chaos’s sensitive dependence on initial conditions in-
troduces abrupt transitions in these variations, and the goal of the
intelligent interpolation schemes described here is to smooth those
transitions in a kinesiologically and stylistically consistent manner.

1Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fel-
lowship in Science and Engineering from the David and Lucile Packard Foundation.






that links the movement progression and the attractor geometry, as shown
in figure 1. By definition, trajectories from different starting points® travel
along the same attractor but in a different order. This property lets us use the
mapping depicted in figure 1 (d) to create a variation: we simply follow a new
trajectory around the attractor and invert the symbolic mapping, “playing”
the body position for each cell the trajectory enters. Variations generated in
this manner, whether musical or choreographic, are both aesthetically pleasing
and strikingly reminiscent of the original sequences. The stretching and folding
of the dynamics guarantee that the ordering of the pitches or movements in
the variation is different from the original sequence; at the same time, the fixed
geometry of the attractor ensures that a chaotic variation of Bach’s Prelude
in C Major or of a short Balanchine ballet sequence are related to the original
plece in a sense reminiscent of the classic “variation on a theme.” Broadly
speaking, the chaotic variations resemble the originals with some shuffling of
coherent subsequences. This subsequence-reordering feature is the source of -
the stylistic originality of our chaotic variation scheme, but the transitions at
the subs'equence_bounda,ries can be quite jarring. Figure 2, for example, shows
a short section of a chaotically generated variation on a short ballet adagio.
Note the abrupt transition between the fifth and sixth moves of the variation.

The interpolation algorithms that are the topic of the following sections
of this paper are designed to smooth these kinds of transitions in a manner
that is both kinesiologically and stylistically consistent. These graph-theoretic
methods “learn” the grammar of joint movements in a given corpus and then
apply memory-bounded A* search — using an influence diagram that models
the relationships of the joints in the human body in order to reduce the search
space — to find an appropriate interpolation sequence that bridges the gap
between two body positions. The search is complicated by the fact that joint
positions cannot be interpolated in isolation: the movement patterns of the
ankle, for instance, are strongly influenced by whether or not the foot is on the
ground — information that is implicit in the positions of the pelvis, knees, etc.
This requires that the expansion of nodes in the search be context dependent
in a somewhat unusual way. These approaches, which were developed and
evaluated in close collaboration with several expert dancers, are quite effec-
tive at capturing and enforcing the dynamics of a given group of movement
sequences.

Swithin the basin of attraction, of course
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Figure 1: A chaotic mapping that links a short ballet adagio and the chaotic
Rossler attractor. A Voronoi diagram algorithm is used to divide the region
covered by the trajectory shown in part (a) into cells, yielding the tiling shown
in part (b). The order in which the original trajectory traverses those cells
defines the temporal order of the cell itinerary that corresponds to that tra-
jectory. Successive body positions from the predefined movement sequence (¢)
are mapped to successive cells in that itinerary, linking the structure of the
movement sequence and the attractor geometry. A small section of the overall

mapping as shown in part (d). 4



Figure 2: Part of a variation on a short ballet sequence, generated using
the chaotic shuffling procedure diagrammed in the previous figure. Note the
abrupt transition between the fifth and sixth frames. The goal of the inter-
polation schemes described in this paper is to smooth such transitions in a
kinesiologically and stylistically consistent fashion.

2 Corpus-based interpolation algorithms for
movement sequences

The interpolation schemes described in this section use corpora of human
movement -— one composed of ten Balanchine ballets, for instance, if one is
working with dances of that particular genre* — to select a movement sequence
that would naturally occur between any two positions. The basic algorithms
involved are fairly straightforward, but the application requires some unusual
tactics and variations. We first examine the corpus, capturing typical pro-
gressions of joint positions in a set of transition graphs. Then, given a pair of
body positions, we use a variant of the A* algorithm (and a somewhat-unusual
“scoring function that reflects the topology of the body) to search these graphs
for interpolation subsequences. A typical interpolation sequence might, for
instance, first move the shoulder from its position in the fifth frame of figure 2
to its position in the sixth frame according to the rules for shoulder movement
that are implicit in the corpus, then repeat for the elbow, and so on. Such se-
quences can be inserted in order to “smooth” abrupt transitions. Our original
approach[3] was much more coarse-grained; the atomic unit was a full body
position — a representation that does not scale well with corpus size because
the number of unique body positions is so large. The methods described in this
paper construct the body positions in the interpolation sequence in a joint-

4The composition of the corpus will, of course, affect the nature of the interpolation;
smoothing abrupt transitions in ballet pieces using an interpolation scheme that is mathe-
matically rooted in a karate corpus will negate the very aesthetic resemblance that the core
of the algorithm is designed to preserve. On the other hand, this might be an interesting
source of innovation, whereby one could mathematically mix two or more styles.
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wise manner on the fly; this approach is finer grained and avoids the storage
problems of the previous approach. ‘

2.1 Posture Representation

We represent a human body posture by specifying the position of each of
the 23 main joints with a quaternion, a standard representation in rigid-body
mechanics that dates back to Hamilton[10]. A quaternion ¢ — (r,4) consists
of an axis of rotation @ and a scalar r that specifies the angle of rotation
about 4. Thus, a body-position symbol is quite complicated: 23 descriptors
(pelvis, right-wrist, etc.), 92 numbers (four for each joint), and a variety
of information about the position and orientation of the center of mass.

Joint orientations are, in reality, continuous variables, but computational
complexity requires they be discretized in our algorithms. Specifically, each
joint A can take on a finite number M* of allowed orientations®. Formally,
we define Q* as the set of allowed orientations for joint A and then replace
the actual orientation of the joint with the closest quaternion in Q*. We
can express a body position b as a discretized vector § by setting each com-
ponent quaternion s, equal to the quaternion in Q% that is closest to by:
sy = r such that [[by — 7| < [[by — ¢ for all ¢;r € Q> where e — gl is
the Euclidean distance® between the quaternions z and y. We can find r in
log(M*) time using K-D trees[9] to represent the Q* sets. This procedure is
analogous to “snapping” objects to a grid in computer drawing applications.

2.2 Representation of a movement corpus
2.2.1 Joint orientation graphs

A transition graph is a weighted-directed graph that captures the transition
probabilities in a symbol sequence. In general, each vertex v in such a graph
represents a symbol and each weighted edge (v, u) reflects the probability that
the symbol associated with vertex u follows the symbol associated with vertex
v. For the purposes of analyzing a human movement corpus, we build one

°In practice, M* < 400; discretization issues are addressed in more detail in section 3.
®0One of the main features of quaternions is that they can be treated as 4-vectors in the
standard norm and transformation operations.



transition graph for each joint, using the corpus to identify orentations that
the joint assumes and to estimate the corresponding transition probabilities.
Vertices in this kind of graph represent particular discretized joint orientations,
and edges correspond to the movement of the joint from one orientation to
another.

The transition graph construction procedure is fairly straightforward. We
first transform every body position in the corpus to a discretized position, as
described in the previous section, so that a consecutive pair of body positions
(@, l;), each consisting of 23 continuous-valued quaternions, becomes the dis-
cretized pair (5,1) (where 8, ¢ consist of 23 discretized quaternions). We then
build a transition graph G* for each joint A that contains M* vertices, each of
which corresponds to exactly one quaternion in Q*. For convenience, we will
refer to vertices in G* by the corresponding quaternions in Q™. Recalling that
each component in sy and ¢, is a quaternion in Q* and therefore corresponds
to a unique vertex in G*, we record the fact that joint A is allowed to move
from @y to by by introducing an edge in G* from vertex s, to vertex ¢,. We
assign a weight to this edge that models the “unlikeliness” with which such
a transition occurs in the corpus. This measure of unlikeliness is related to
P(q — r), the probability that joint A moves from the quaternion ¢ € Q*
to quaternion r € Q*, per the following expression for the weight of edge
(4,7) € G

wy, = —log(P(q —r)) = —log(P(rlg))

~ log(C(q)) — log(C(q,r)) |

where C(q) is the number of times joint A assumed an orientation approx-
imated by ¢ and C(q,r) is a conditional count: given that A assumed an
orientation approximated by ¢, C(q¢,r) is the number of times the joint moved
to an orientation approximated by r. Larger weights correspond to transitions
that are less likely to occur”.

Figure 3 shows an example: a transition graph for the pelvis that was
constructed from a corpus of 38 short ballet sequences. This corpus included
919 positions, and the patterns in their progressions, as represented by the
topology of the graph, are obviously quite complex. In the interests of clarity,
edge weights and isolated vertices have been omitted from this figure.

“Given this formulation, saying that two vertices are disconnected is synonymous with
saying that two are connected by an edge with infinite weight.
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Figure 3: This transition graph represents the movement patterns of the pelvis
in a small corpus of 38 short ballet sequences. The numbers in each state
identify the discretized position of the joint.
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2.2.2 Coordinating joint movements

Joint transition graphs represent the behavior of individual joints independent
of one another. This information alone cannot capture the physical constraints
that govern the interrelationships of the joints in the body. For example, if
the shoulder is in its resting position with the palm facing the thigh, the elbow
can bend nearly 180 degrees, but if the shoulder is turned 90 degrees on its
long axis (until the palm faces backwards), the elbow can only bend about
five degrees before the hand collides with the leg. Joints are not influenced by
every other joint; the position of the wrist, for instance, strongly affects the
position of the fingers but has little effect on the toes. Briefly put, we need a
simple and efficient model of human joint coordination in ordet to construct
sensible interpolation sequences.

In order to reduce the search space, we use a simplified model that explicitly
represents the relationships of the joints to one another — a type of influence
diagram(12] that reflects the structure and physics of the human body. As
shown in figure 4 (b), the nodes (joints) in the tree only affect their immediate
children. The pelvis is the root of this tree; three branches lead from this root

Figure 4: An influence diagram that explicitly represents the coordination of
Joints of the human body. Part (a) depicts the body and part (b) shows the
inter-joint dependencies induced by gravity and topology: for instance, the
position of the pelvis influences the positions of both hips %, and h; and the
lumbar spine [, but the right and left ankles k, and %; do not directly influence
one another.



‘to nodes corresponding to the right thigh/hip joint, the left thigh/hip joint,
and a joint representing the lower spine®. Fach hip joint is the parent node to
a knee, and so on. We assign a conditional probability distribution, estimated
from the corpus, to every (parent,child) pair in the tree. For every combination
of states that a parent A and its child u can assume, the distributions estimate
the probability that joint 4 is in orientation r given that joint ) is in orientation
g, for every pair of discretized of quaternions ¢ € Q*,r € Q*.

2.3 Joint position interpolation algorithms

Given a pair of discretized body postures (§',z?) and a set of joint orientation
transition graphs constructed from a corpus of movement as described in the
previous section, we can use a memory-bounded A* search strategy[14] to find
an interpolation subsequence that moves smoothly between §and ¢. In general,
A* finds a path from an initial state to a goal state by progressively generating
successors of the current state in the search. The algorithm places successor
states on a priority queue, sorted according to a score that estimates the cost
of finding a goal state. In the next iteration, the state with the best score is
drawn from the priority queue, its successor states are computed and added
to the queue, and the procedure is repeated until a goal state is found or until
the queue is empty.

The states in this search space are body states — 23-vectors of discretized
quaternions that represent full body positions. To generate successors of a
body-state 5, we first use the transition graphs to find successors for each
Jjoint-state s) independently, and then take all combinations across the joints
(cross-product) to obtain the list of body-state successors. The successors of
the joint-state, s) are those vertices in G* that are connected to s, by an edge
directed away from s,.

The score assigned to a body-state @ has two parts: (1) the cost of the
path from the initial state §to @ and (2) an estimate of the distance between
i and the goal state . The cost of the path starting at § and ending at @ is
simply the sum of the costs of the transitions taken in the path. Furthermore,
since each body movement is composed of a group of joint movements, we can
compute the cost of one body-state transition by summing the weights over the

8The sacrum and the five lumbar vertebrae are lumped together. This compromise
sacrifices back suppleness for lowered complexity.
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edges traversed by the joints. To make this concrete, suppose we are trying to
find an interpolating path between the body states § and £. At some point in
the search, we reach the body-state @ and must assign the path from 5to @ a
score. If we write the path from 5'to @ as 54 = (§ = 2", 27, [ 7°71, 7 = 7%),

we can express the cost of such a path as
z—1
— — /\
o5 ) = 3w
i=1 A ATTA

The heuristic part of the score, h(@), estimates how far @ is from the goal state
t. h(i) is calculated by summing the weights of the shortest paths from u, to
tx, ur,ty € G* over all the joints. We obtain these shortest path weights using
Dijkstra’s single-source shortest path algorithml[8], implemented as described
in [5]. The final score assigned to body-state @ is then f(5~t) = g(5wi)+h(1).

At the time of this writing, we have only tested a greedy search strategy
that ignores the cost of paths and scores nodes in the search based solely on
the estimated distance between them and the goal (i.e., f(§~ @) = h(%@)). In
the following section, we describe the implications of this strategy and sug-
gest how different A* scoring functions are likely to affect the interpolation
sequences. We are working on incorporating more information about the posi-
tion, velocity, and acceleration of the center of mass, so the momentum of the
body is conserved as it passes through the interpolated sections of the move-
ment. Finally, we are also in the process of testing how different influence
diagram topologies affect the interpolation algorithm’s ability to select good
postures during the search. (For example, to model the symmetry of the body,
we could combine left and right counterparts into one node.)

3 Results and evaluation

Figure 5 shows the results of applying the learning and search algorithms in
the previous section — with a greedy search strategy: an A* score f(5~ @) =
h(i) that only factors in the distance to the goal — to smooth the abrupt
transition between the fifth and sixth frames of figure 2. The starting and
ending body postures (top left and top right in figure 5) are quite different; note
the facing of the dancer and the weight distribution on the feet, for example.
The eight-move interpolation sequence shown linking these two positions fills
the gap in a very natural way. Its first move, for instance, is to lower the

11
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Figure 5: An interpolation sequence computed by the corpus-based techniques
described in the previous section. The starting and ending positions passed as
input to the interpolation procedure — the fifth and sixth frames of figure 2
— are shown at the top left and top right, respectively; the eight frames in
the semicircle below them were computed by the interpolator.
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left leg, a natural strategy if one is going to change one’s facing and end up
on two feet. The following move is a simple weight shift (fourth and fifth |
frames), in preparation for a lift of the right leg. This lift, which is not strictly
necessary to move from the fifth frame to the tenth, is an innovation that the
program inserted because of the observed patterns in the corpus: rarely do
ballet dancers spin with both feet on the ground. Perhaps the most interesting
thing about this interpolation sequence, from a balletic standpoint, is the
relévé?® that the interpolation procedure inserted between frames seven and ten.
There are many relévés in the corpus, but none whose associated upper body
positions even remotely resemble the one in this sequence; our interpolation
algorithm has invented a physically and stylistically appropriate way to move
the dancer between the specified positions. This sequence contains a variety
of other stylistically consistent innovations; consider, for example, the uplifted
chest and chin in the second and ninth frames — posture elements that are
quintessential ballet style. Again, recall that these postures were not simply
pasted in verbatim from the corpus; they were synthesized piece by piece by
the transition graphs via influence-diagram directed A* search, and their fit
to the genre is strong evidence of the success of the methods described in the
previous section.

The greedy search strategy of the algorithms is reflected by several “inef-
ficiencies” in this sequence — places where the dancer appears to be headed
towards the goal state, but then moves away. For example, one of the interpo-
lation goals is to change the facing almost 180 degrees. By the fourth frame,
the dancer has turned to the right, but in the fifth frame s /he turns back to
the left again, which is part of what necessitates the relévé sequence discussed
in the previous paragraph. We are in the process of testing different search
strategies and analyzing the results; instead of choosing the state that is clos-
est to the goal, for instance, we are incorporating the path weights up to the
current point in the solution as part of the scoring function. This should allow
the search algorithm to find shorter, more-direct sequences. F inally, note that
some search strategies — e.g., always taking the highest-probability branch —
can be a significant source of cliché.

The original ballet sequence from which this snapshot is drawn contained
68 frames, and the chaotic shuffling scheme introduced eight abrupt transitions
into the variation. In all eight cases, our interpolation scheme was successful in

A relévé consists of lifting up on one’s toes before transferring one’s weight, and it is a
stylistically required component of a direction shift.
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smoothing these gaps. The interpolating subsequences so constructed, which
range in length from two to 60 frames, include a variety of stylistically con-
sistent and often innovative sequences; among other things, the interpolation
routine used relévés, pliés and fifth-position rests in highly appropriate ways —
and all with no hard coding. Many of the longer interpolation sequences were
somewhat stilted: in one, for example, the dancer spent 304 frames perform-
ing small arm movements. This is almost certainly a side effect of the small
size of the corpus. In a large, rich corpus, the search algorithms would have
more leeway; in the existing corpora, however, the paucity of edges constrains
them to very narrow (and long) search paths that translate to idiosyncratic
sequences like arm-waving. :

The whole procedure is quite rapid; the 60-frame interpolation sequence,
for instance, required!® 30 seconds on an HP9000/735 workstation running HP- ‘
UX v10.20. The chaotic shuffling procedure is also fast: for a 1000-position
movement sequence, the chaotic shuffling procedure required 18 seconds on
the same workstation, while a 9000-move sequence required 156 seconds.

Deriving a successful discretization of joint states was unexpectedly diffi-
cult. Simply discretizing the quaternion variable values — that is. classifying
all positions between, say, (right-wrist, 1, 1, 0, 1) and (right-wrist,
1, 1, 0.2, 1) as an equivalence class and representing them in the algo-
rithms as a single posture — produced visibly awkward animations. The
human visual perception system appears to be very sensitive to small vari-
ations in quaternion coefficients: any change in a single coefficient seems to
violate the “motif” of the motion. The same problem arose when we attempted
a physically more-realistic discretization by transforming quaternion data to
Luler angles and then discretizing 6, ¢, and t instead. The solution on which
we eventually settled uses a discretization library that was created by hand by
an expert dancer.

4 Conclusion

By applying techniques from graph theory, artificial mntelligence, and statistics
to a corpus of movement sequences from a particular genre, the interpolation
methods described here — which were developed in close cooperation with

10T his will obviously depend on the positions involved.
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several dancers — smooth awkward body posture transitions in a phs sically
and stylistically coherent fashion. Evaluation of these results is necessarily
somewhat subjective. We have shown animations of these results to hundreds
of people, including dozens of dancers and martial artists. The consensus

is that the variations not only resemble the original pieces, but also are in
some sense pleasing to the eye. They are both different from the originals and -
faithful to the dynamics of the genre; there are no jarring transitions or out-

of-character moves. This is a non-trivial accomplishment. A previous attempt
to use mathematics to generate choreographic variations — a subsequence
randomization scheme introduced by the now well-known chor eographer Merce
Cunningham in the 1960s — met with a strongly negative reception in the
dance world, primarily because of the awkwardness at the transition points'!,

Many of the techniques used here, as well as others on which we are cur-
rently working, were inspired by solutions to similar problems that arise in
molecular biology (e.g., DNA sequence analysis) and computational linguis-
tics (e.g., learning a grammar from a corpus and then using it to construct
meaningful sentences). For example, one can view the transition graphs in
section 2.2.1 and figure 3 as first-order Markov chains, where a single chain
represents the probabilistic behavior of each joint in the body. These ideas and
techniques presented in this paper can be extended to other domains where
the genre of sequence is important, such as text'?. Finally, the implementation
allows for arbitrary body topologies, so this scheme is by no means limited to
human motion sequences — though one would, of course, have to adapt the
quaternion-based symbol set and the influence dlaﬂlam to the topology of the
limbs and joints that are involved.

Acknowledgements: Stephen Schroeder discretized each Jomt s position by
hand, and Eric Schell and Meenakshy Chakravorty helped set up the website and
write the associated animation code. The authors would like to thank David Capps
and Nadia Rojasadame of the University of Colorado Department of Theater and
Dance and Dan Jurafsky of the University of Colorado Department of Linguistics
for helpful conversations, Margo Seltzer of Harvard University for suggesting and
demonstrating the karate sequences, and Diana Dabby of and Apollo Hogan for
numerous fruitful and thought-provoking suggestions.

"Since that time, aleatory choreography — wherein randomization schemes are used to
shuffle sequences — “has by now become one of the important currencies of dance compo-
sition approaches.” [2] :

YFor instance, we ran our code on a collection of Shakespearean sonnets, with some
interesting results that will be covered in a forthcoming paper.
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