Soft Real-Time Application Execution with
Dynamic Quality of Service Assurance

Scott Brandt
Gary Nutt
Toby Berk

Marty Humphrey

CU-CS-850-98

jUniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

Soft Real-time Application Execution with Dynamic Quality of Service Assurance

Scott Brandt, Gary Nutt
University of Colorado at Boulder

Toby Berk
Florida International University

Marty Humphrey
University of Colorado at Denver

ABSTRACT: There is an emerging set of research operat-
ing systems that provide specialized support for continuous
media and other soft real-time applications. A number of
these systems provide QoS scheduling abstractions, some
of which may dynamically change the QoS allocations to
applications during application execution. The tools and
environments that allow application developers to take
advantage of these abstractions generally do not exist. This
paper describes a dynamic QoS resource manager (DQM)
middleware application that abstracts these new OS inter-
faces so that they are easily used in contemporary applica-
tion environments.

1. Introduction

Multimedia and other modern applications have cre-
ated a need for a new class of operating systems support,
often referred to as soft real-time support. Soft real-time is
based on the need for execution deadlines, though the
requirements differ substantially from the more traditional
(hard) real-time requirements: In a soft real-time applica-
tion, failure to meet a deadline is not necessarily considered
to be a failure of the application or system. The judgement
of acceptability of failure in the case of a missed deadline is
determined on a case-by-case basis by the application, not
by a simple static principle.

Quality of Service (QoS) techniques, originally devel-
oped in the context of network bandwidth utilization and
packet loss management, have been successfully applied to
the domain of soft real-time processing. A QoS system pro-
vides a guarantee that a certain amount (or quality) of
resources will be available when they are needed. In a soft
real-time environment, the application needs a reasonable
assurance that resources will be available on request, rather
than an absolute guarantee. In both QoS and hard real-time
environments, the system makes strict guarantees of ser-
vice, and requires that the application make a strict state-
ment of its resource needs. As a result, applications in these
environment must use worst case estimates of resource
need. In soft real-time systems, the application makes a
more optimistic estimate of its resource needs, expecting
that the operating system will generally be able to meet
those needs on demand and will inform the application
when it is unable to meet its service assurance.

Operating systems designers have been creating
designs and interfaces to support soft real-time operation.
These new OS interfaces allow a process to either a) negoti-
ate with the operating system for a specific amount of
resources as in RT Mach [16] and Rialto [10][11]; b) spec-

ify a range of resource allocations as in MMOSS [4]; or ¢)
specify a measure of application importance that can be
used to compute a fair resource allocation as in SMART
[18][19]. These systems all provide a mechanism that can
be used to reduce the resource allotment granted to the run-
ning applications. Since their average case resource
requirements may be significantly lower than the worst-
case estimates, resources can be allocated more aggres-
sively, allowing a greater number of soft real-time applica-
tions to perform at acceptable levels.

In creating resource management mechanisms, operat-
ing systems developers have assumed that it is possible for
applications to adjust their behavior according to the avail-
ability of resources, but without providing a general model
of application development for such an environment. In the
extreme, the applications may be forced to dynamically
adapt to a strategy in which the resource allocation is less
than that required for average-case execution. Mercer, et al.
suggest that a dynamic resource manager could be created
to deal with situation of processor overload [16]. In Rialto,
the researchers have used the mechanism to develop an
application repertoire (though there was apparently no
attempt to define a general model for its use).

This paper defines a specific framework in which appli-
cations can be constructed to take advantage of such mech-
anisms without having to participate in a detailed
negotiation protocol. The framework is based on the notion
of execution levels: each application program is constructed
using a set of strategies for achieving its goals where the
strategies are ordered by their relative resource usage and
the relative quality of their output. Higher quality strategies
have higher resource requirements, i.e., the order of solu-
tion quality and the order of resource requirements is the
same.

Within this framework, the Dynamic QoS Resource
Manager (DQM) is a policy-independent mechanism that
uses resource allocation information from the operating
system and execution level information from the commu-
nity of applications to balance the load, user benefit from
running the applications at various levels, and available
resources across the collection of applications. In the long
term, we see the DQM and execution levels as being a nat-
ural environment in which one can leverage the mecha-
nisms provided by systems such as RT Mach, Rialto, and
SMART. Our long term goal is to develop such mecha-
nisms -- ones that support soft real-time applications on
appropriate operating system facilities -- to complement
the OS work. The shorter term goal in this paper is to
extend our preliminary work [8] on execution levels to take

other factors besides the frequency of missed deadlines into
account, to flesh out the DQM mechanism, and to experi-
ment with this framework to understand the viability of the
approach under various policies. To focus on execution lev-
els and the DQM as a fundamental mechanism, our experi-
mentation is currently being conducted using the Solaris
operating system. This means that we have not yet
exploited the soft real-time aspects that are unique to the
target operating systems. Because of the lack of such mech-
anism in Solaris, our applications are written to be well-
behaved, rather than relying on the resource management
and enforcement mechanisms that exist in RT Mach,
Rialto, and SMART.

Our work demonstrates that it is feasible and perhaps
even natural to write multimedia applications with explicit
execution levels. The results of our experiments show that
given a set of level-based applications, it is possible to cre-
ate a DQM that dynamically adjusts application execution
levels, even in the absence of any underlying QoS or other
soft real-time scheduling mechanisms. We present several
different DQM decision algorithms that demonstrate the
range possibilities inherent in this model and begin to show
how level-based applications might work under the various
QoS based scheduling mechanisms provided in the
research operating systems mentioned above.

Section 2 presents a survey of related work in this area.
Section 3 introduces execution levels, and Section 4
- describes the DQM. Section 5 discusses a set of experi-
ments we have used to study execution our mechanism,
Section 6 presents results of these experiments, and Section
7 contains a summary of this work and the conclusions we
have drawn.

2. Background

QoS and soft real-time have generally evolved from
traditional real-time systems. Rigorous QoS guarantees
require that an application specify its worst-case resource
requirements before being admitted to the system; admis-
sion is based upon whether or not the resources can be
guaranteed. We rely on applications to be able to produce
acceptable, but reduced, performance at various levels of
resource allocation. Given adequate OS support, such
applications could dynamically adjust their processing
based on resource availability. Several research programs
have looked at various ways to soften QoS requirements.

Compton and Tennenhouse describe a system in which
applications are shed when resource availability reduces
below an acceptable point[3]. They argue that applications
should cooperatively, dynamically reduce resource require-
ments. Their approach is to be explicitly guided by the user
in selecting which application to eliminate.

Research in imprecise computation at the University of
Illinois[5][7] examined the idea of having two parts to each
task: a required part and an optional part where the optional
part refines the computation performed in the required part,
reducing the computational error. A modified task sched-
uler was used to allocate extra CPU capacity towards the

optional parts in such a way as to reduce overall computa-
tional error.

Massalin and Pu developed the notion of software feed-
back, wherein scheduling parameters are modified based on
application specific metrics such as input queue length[15].
This technique has also been applied to application execu-
tion[2] such that an application may dynamically modify
its processing based upon its performance. The application
execution model they describe is strictly best-effort and
decentralized, and does not incorporate the notion of any
actual QoS guarantees in the operating system environ-
ment.

Fan investigates an architecture similar to ours in
which applications request a continuous range of QoS com-
mitment[4]. Based upon the current state of the system, the
QoS Manager may increase or decrease an application’s
current resource allocation within this prenegotiated range.
Such a system suffers from instability due to the fact that
the ranges are continuous and continuously being adjusted,
and it lacks a strong mechanism for deciding which appli-
cations’ allocations to modify and when. It also assumes
that any application can be written in such a way as to work
reasonably with any resource allocation within a particular
range. This assumption is not consistent with the design of
the majority of real-time applications.

Nieh and Lam have developed another system based on
the Fair Share scheduling algorithm[13] in which applica-
tions are allotted a portion of the CPU based upon their rel-
ative importance as measured against the other currently
executing applications[18][19]. This allotment changes
dynamically depending upon the current requirements of
all of the currently executing processes and their relative
importances. Like Fan’s system, Nieh and Lam have based
their system on the assumption that soft real-time applica-
tions can provide reasonable performance with any
resource allocation that the operating system decides to
give them.

Our goals and approach are most closely related to
Rialto [10][11]. A major goal of Rialto was to investigate
programming abstractions that allow multiple, independent
real-time applications to dynamically co-exist and share

‘resources on a hardware platform. They intended to have a

system resource planner reason about and participate in
overall resource allocations between applications. The
major difference between Rialto and this work is in how we
deal with system overload. Rialto has a QoS-based sched-
uler that dynamically allocates system resources (in partic-
ular, the CPU) based on prenegotiated QoS guarantees.
These guarantees may be renegotiated, and are explicitly
enforced by the scheduler. Furthermore, it is up to the
applications to decide how to execute in such a way as to
effectively utilize the resources that they have been granted.
Our work differs from this in two ways. First, the scheduler
used for our studies is a general-purpose UNIX scheduler
that does not support any notion of deadlines or QoS guar-
antees, so our DQM relies solely on application-determined
missed deadlines to inform it whether or not the system is

‘overloaded, demonstrating the feasibility of such a scheme

on a general-purpose operating system. Second, our appli-
cations provide the DQM with explicit sets of execution

levels with corresponding resource requirements and
expected benefit, thus allowing the DQM to make resource
decisions that more closely reflect the actual operation and
associated resource needs of the applications.

Another body of work that is very relevant to this one is
Processor Capacity Reserves [16]. Processor Capacity
Reserves can be used by applications to reserve a particular
portion of the CPU. Applications are free to increase their
portion of the CPU, given available capacity. Real-time
processes and non-real-time processes are treated uni-
formly, because applications merely request their desired
CPU portion.

Jensen’s work in Benefit-Based scheduling [9] is also
relevant to this project. Jensen proposed soft real-time
scheduling based on application benefit. Applications
would specify a benefit curve that indicates the relative
benefit to be obtained by scheduling the application at vari-
ous times with respect to its deadlines. Jensen’s goal was to
schedule the applications so as to maximize overall system
benefit.

In addition, much of the recent research on RT Mach
[12] is important for this project. At CMU, efforts are
directed at providing end-to-end reservation services [14].
The Keio-Multimedia Platform at the Japan Advanced
Institute of Science and Technology (JAIST) is extending
RT Mach to support QoS for continuous media
streams[17]. Our overall project approaches operating sys-
tem support for multimedia applications from a different
perspective than these projects---rather than determining
how to map QoS parameters (such as frame rate for video
and sample rate for audio) into operating system mecha-
nisms, we attempt to create an architecture in which there
can be mediation between applications, enforcement of
applications’ registered resource usage, and high resource
utilization.

3. Execution Levels

A common assumption in soft real-time scheduling is
that real-time applications can be softened simply by miss-
ing some or all deadlines -- either by completing the execu-
tion late or by aborting the execution entirely when the
deadline would be missed. However, this is not the ideal
model for all applications. Consider a simple soft real-time
multimedia example: desktop video playback. If the video
frames are being read from a local disk, then it is a simple
matter to delay the read of subsequent frames to account
for the delay in displaying previous frames. However, con-
sider the display of a video stream that is being received
from a remote system or a physical device such as a cam-
era. In this case, the video source may not support dynami-
cally changing frame rates. Without special operating
system support or detailed resource awareness by the appli-
cations, displaying frames at less then the incoming frame
rate will eventually result in frame buffer overflow or
related problems. While this it not a catastrophic failure, it
is a failure that goes beyond simply delaying or missing
deadlines. A better solution would allow the application
itself to respond to the changing resource availability by

modifying its algorithm and/or period so as to adapt to the
current resource availability.

We propose an application execution model where
applications are written with multiple explicit execution
levels. Each execution level executes a distinct algorithm to
carry out the work of the application. Each application is
characterized by two numbers, the maximum CPU usage
and the maximum benefit. The maximum CPU usage is the
fraction of the CPU required to execute the application at
its most intensive resource level. This number is obtained
by dividing the cycles/second required by the algorithm by
the cycles/second provided by the CPU. In some cases this
number may be greater than 1 if the timely execution of the
algorithm would take more cycles than the CPU can pro-
vide. Similarly, the maximum benefit of the application is a
user-specified indication of the benefit provided by execut-
ing the application when running at its highest performance
level -- analogous to application priority, importance, or
utility in other systems. Each execution level is also charac-
terized by two numbers, CPU usage and benefit, where
CPU usage specifies the fraction of the maximum CPU
usage required by the execution level and benefit specifies
the fraction of the maximum benefit provided by the execu-
tion level. Relative values are specified because the maxi-
mum CPU usage number depends on the system on which
the application is being executed and the maximum benefit
will be user-specified, but the relationship between the lev-
els is expected to be constant in most cases and specifiable
at application development time.

Thus, each application implements a set of algorithms
represented by

{<Level, Resource, Benefit>}
where

Level; > Level; => Resource; > Resource; AND Benefit; > Benefit;

Implicitly we assume that while all of the algorithms
correctly implement the desired application, the benefit of
the result degrades with a decrease in execution level. An
application can be executed at any of the levels, using cor-
responding resources with corresponding benefit. The rate
at which the benefit degrades is an application specifica-
tion.

Execution levels represent natural functionality steps in
the application. Multimedia applications commonly use
execution levels as a matter of standard practice, although
operating systems do not normally provide any support for
doing so. In effect, execution levels separate soft real-time
mechanism from soft real-time policy. Levels and the soft-
ware to dynamically select among them is the soft real-time
mechanism. The details of how the application developer
chooses to implement each level is entirely application-spe-
cific. In particular, the application developer can choose to
implement the levels so as to support a spectrum of soft
real-time policies. The soft real-time systems cited above
have some of the mechanism for supporting this approach,
but they do not provide the part of the mechanism to per-
form an analysis and then select execution levels based on
that analysis. The DQM mechanism performs that function.

. . Frames/ | Msecs/ | % of Max
Rendering | Lights | Polygons Second | Frame CPU
Usage
Smooth On 2X 3.19 313.5 100.0
Flat On 2X 3.34 299.4 95.5
Wireframe On 2X 4.45 224.7 71.7
Smooth Off 2X 4.76 210.1 67.0
Flat On 2X 5.15 194.2 619
Smooth On 1X 5.87 170.4 54.3
Flat On 1X 6.09 164.2 524
Wireframe Off 2X 7.7 129.9 414
Smooth Off 1X 7.97 125.5 40.0
Flat Off 1X 8.63 115.9 37.0
Wireframe On 1X 8.94 1119 357
Wireframe Off 1X 12.74 78.5 25.0

Figure 1: CPU Requirements for the VPR application

As an example, consider an analysis of execution levels
in our prototype distributed virtual environment, the Virtual
Planning Room (VPR) [20][21]. The VPR supports syn-
chronous and asynchronous distributed collaboration, thus
it provides an example of a complex multimedia-based
application exhibiting natural execution levels. Figure 1
shows the CPU requirements for rendering in a VPR appli-
cation using different rendering parameters. The table illus-
trates how an application (a simple moving object in the
VPR) can easily change its required processing time over a
4:1 range in 12 levels by varying only 3 parameters: render-
ing mode (wireframe, flat shading or smooth shading),
number of specific light sources (0 or 1), and number of
polygons (those marked 2X used twice as many polygons
as those marked 1X). The table shows frames per second
generated, time per frame, and CPU usage as a fraction of
the CPU usage of the highest level. If we were to add bene-
fit to this table, it would reflect the relative quality of the
rendered objects at each level

In benchmarking OpenGL applications, the OpenGL
Performance Characterization Organization
(www.specbench.org/gpc/opc.static/) shows applications
that exhibit 10 performance levels with CPU requirements
varying by as much as a factor of 10.

Contemporary applications need general flexibility in
determining how real-time constraints should be softened.
Besides graphic rendering, the application writer may wish
to extend the period of an application, implicitly acknowl-
edging the softness of the deadlines themselves. In the
video example at the beginning of this section, we assumed
that it is not possible to modify the rate at which video
frames are entering the system; the application developer
might instead choose to display every other frame. This has
the effect of doubling the period of the soft real-time appli-
cation (by ignoring half of the incoming frame data). This
solution imposes a discrete step in the execution level
resource usage, an important aspect of levels and a motivat-

ing factor in their development. In particular, any resource
allocation between the one required by the full frame rate
level and the half frame rate level would result in wasted
resources inasmuch as they are reserved for this application
but unused. The execution level application model tells the
resource allocator exactly what resources are required for
each level so that only the required amounts will be
reserved, leaving unusable resource available for other
applications. :

However, if there is a reason to keep the period the
same, e.g. a desire to keep the frame rate constant in the
above example, then the execution level model allows the
application developer to soften other parameters. For exam-
ple, the application developer may instead choose to reduce
the processing time required during each period by chang-
ing the algorithm being used. This has the desired result of
reducing the average resource usage of the application
while maintaining the desired period. In the video playback
example this could be accomplished by subsampling and
displaying a smaller image, reducing the color depth of the
image, etc. In a graphics application this could be imple-
mented by changing the Level of Display (LOD). Different
LODs can dramatically change the amount of resources
required to render an image by changing lighting, resolu-
tion, shading, rendering mode etc.

These examples demonstrate that, with relatively few
parameters, it is possible to modify a multimedia applica-
tion using levels such that its resource requirements (CPU,
in this case) can vary significantly while still maintaining a
satisfactory, although reduced, level of performance. We
believe that these examples are representative of a large
class of soft real-time multimedia applications that can,
with relatively little effort, be written with execution levels.
Given an infrastructure that can select among these levels,
the applications will operate correctly and provide the best
performance they can with the resources they are granted.

We conclude that it is possible to write soft real-time
multimedia applications in such a way as to at least make it
possible to operate in a flexible QoS-based environment.
The remaining challenge is to show that these levels can be
used by a resource management subsystem in a meaningful
way to improve application performance without requiring
a specialized real-time QoS based operating system.

4. DQM: A Dynamic QoS Resource Manager -

In order to examine the execution level model, we have
built a prototype consisting of a middleware application
called a Dynamic QoS Resource Manager (DQM) and a
library of DQM interface and soft real-time support func-
tions called the Soft Real-Time Resource Library (SRL).
This prototype system has.allowed us to experiment with
different policies (algorithms) for dynamically adjusting
levels among a set of running applications with varying
numbers of levels with varying resource requirements. Like
the flexible QoS systems cited above, the current imple-
mentation of our DQM works solely with the CPU
resource. We believe that the concepts described in this
paper can be extended to encompass other resources such
as network bandwidth and memory.

The SRL allows an application to specify maximum
CPU requirements, maximum benefit, and a set of triples

<Level, Resource usage, Benefit>

As with priority specifications in many systems, level 1
- represents the highest level and provides the maximum
benefit using the maximum amount of resources, and lower
execution levels are represented with larger numbers. For
example, an application might provide information such as
is show in Figure 2.

Max Benefit: 6
Max CPU Usage: 0.75
Num Levels: 6

Figure 2 indicates
that the maximum
amount of CPU that the

application will require Level CPU Benefit
is 75% of the CPU, when 1 1.00 1.00
running at its maximum 2 0.80 090
level, and that at this 3 0.65 0.80
level it will provide a 4 040 025
user-specified benefit of 5 025 010

6. The table further 6 0.00 0.00
shows that the applica-
tion can run with rela-
tively high benefit
(80%) with 65% of its
maximum resource allocation, but that if the level of alloca-
tion is reduced to 40%, the quality of the result will be sub-
stantially less (25%). The SRL also provides the
application the ability to specify its period and, while run-
ning, to determine when deadlines have been missed and
notify the DQM of such an event. Finally, the SRL dynami-
cally receives information from the DQM about what level
the application should be executing and sets a local execu-
tion level variable that the application uses to select the
algorithm to execute during each period. .

Figure 2: Execution Levels with
CPU Usage and Benefit

The DQM dynamically determines a level for the run-
ning applications based on the available resources and ben-
efit. Resource availability can be determined in a few
different ways. CPU overload is determined by the inci-
dence of deadline misses in the running applications. The
SRL linked into each application notifies the DQM each
time an application misses a deadline. CPU underutiliza-
tion is determined by examine at CPU idle time. In the pro-
totype this is done by reading the CPU usage of a low
priority application. In situations of CPU overload (and
consequently missed deadlines), levels are selected so as to
reduce overall CPU usage while maintaining adequate per-
formance over the set of running applications. Similarly, in
situations of CPU underutilization, levels are selected so as
to increase overall CPU usage.

The DQM also reads application execution statistics
including CPU usage in order to determine if application
estimates are correct. Currently, this information is simply
recorded for later analysis, but subsequent implementations
of the DQM will use this information as well.

A major issue in the design of the DQM is determining
the policy for selecting the execution level for each applica-
tion. Currently the DQM implements four algorithms: Dis-
tributed, Fair, Optimal, and Hybrid, a variant of the
Optimal algorithm. The algorithms all determine what lev-
els will be selected for each application given the current

system resources. These algorithms were selected either
because they appear to be obvious solutions to the problem
or because they model the solutions provided in other sys-
tems.

The Distributed algorithm is the simplest policy and is
primarily intended to serve as a baseline against which to
compare the other algorithms. When an application misses
a deadline, it autonomously selects the next lower level. A
variation of this algorithm allows applications to raise their
level when they have successfully met N consecutive dead-
lines, where N is application-specific. This algorithm is
completely decentralized and does not use the DQM at all.
This algorithm could be used in conjunction with the RT
Mach reserves scheduling system inasmuch as it does not
assume any centralized decision-making or level manage-
ment but simply allows each application to adjust to the
resources that it has available. Were this algorithm to make
any sense in an RT Mach system, the admission criteria
would have to be changed to include a negotiation whereby
an application’s execution level is determined before it
enters the system. Similarly, this algorithm could be used
by applications in the MMOSS [4] and SMART systems to
dynamically adjust to the resources that they have been
granted.

The Fair algorithm is the simplest centralized algo-
rithm that we have implemented. It has two options. In the
event of a deadline miss, the even option simply reduces the
level of the application that is currently using the most
CPU. It assumes that all applications are equally important
and therefore attempts to distribute the CPU resource fairly
among the running applications. In the event of underuti-
lization, this algorithm raises the level of the application
that is currently using the least CPU time. The proportional
option uses the benefit parameter and raises or lowers the
level of the application with the highest or lowest benefit/
CPU ratio. In effect, this algorithms changes the execution
level of the application that is furthest from its fair propor-
tional percentage of the CPU. This algorithm approximates
the scheduling used in the SMART system.

The Optimal algorithm is based loosely on Jensen et
al.’s benefit-based scheduling idea[9]. Whereas Jensen et
al. attempted to maximize the user benefit by using applica-
tion deadline benefit curves to maximize benefit for each
scheduling decision, Optimal uses each application’s user-
specified benefit (i.e. importance, utility, or priority) and
application-specified maximum CPU usage, as well as the
relative CPU usage and benefit information specified for
each level to determine a QoS allocation of CPU resources
that maximizes overall user benefit. The current implemen-
tation uses a brute force exponential-time calculation for
determining the optimal allocation. Our experimental
results show that the computation time resulting from this
approach is trivial for the number of applications and levels
we have used. However, should the computation time
become significant, it can be reduced using standard
dynamic programming techniques.

As expected, this algorithm performs extremely well
for initial QoS allocations, but we were surprised to dis-
cover that it reacts very poorly to changing resource avail-
ability. In particular, the QoS allocations change

dramatically with a small change in resource availability.
As a consequence, this algorithm can result in wildly-fluc-
tuating execution levels for all applications in the system.
As a result of these observations, a second option was
implemented for this algorithm that restricts the change in
level for each application to at most 1, optimizing within
this narrow band of application change. While this option
will not produce optimal results, we hypothesize that the
results will be close to optimal and will result in greater
overall user satisfaction as a consequence of the greater
application stability.

The final algorithm, Hybrid, uses the Optimal algo-
rithm to specify the initial QoS allocations, and then uses
different algorithms to decide which levels to modify
dynamically as resource availability changes. The two
options we have implemented use absolute benefit and ben-
efit density (benefit/incremental CPU usage) to determine
level changes. This algorithm uses a greedy approach in the
decision-making, which is hoped will be near-optimal for
small changes in resource availability.

For all of the algorithms it is possible to specify a skip
value. A skip value of n changes the sensitivity of the algo-
rithms so that, rather than responding to every missed dead-

line, they respond to every n'" missed deadline. With a skip
value of 0, there is a tendency to overcorrect as a conse-
quence of several missed deadlines occurring at or near the
same time. A skip value of 2 or 3 appears to help the algo-
rithms considerably inasmuch as it gives the DQM time to
react to the CPU overload situation.

5. Experiment Design

The DQM prototype assumes that the applications
know their resource requirements and cooperate to the
extent that the execution level information that they present
to the DQM is accurate and the applications actually run at
the specified level. Under this set of assumptions, we
believe that the results of our experiments can be general-
ized to systems that enforce QoS allocations inasmuch as
we have trusted applications that run with exactly the allo-
cation that would be imposed on them in such a system.

We used synthetic applications to ensure that they are
well-behaved and to generate the data presented in this
paper. The synthetic applications consume CPU cycles and
attempt to meet deadlines in accordance with their speci-
fied execution levels, without performing useful work.
When the DQM recommends a level of execution to an
application, we are certain that the application will run at
the specified level.

A separate tool, called Create Apps, is used to randomly
generate sets of applications, each one exhibiting random
total QoS requirement, absolute benefit, number of execu-
tion levels, and relative QoS requirements and benefit for
each level. The applications generated with this tool exhibit
a constant period of 0.1 second. While this does not reflect
the complete variability of real applications, it simplifies
the analysis of the resulting data. In all other respects we
believe that these applications simulate the functioning of

real level-based applications. Later versions of the system
will include simulated applications with varying period.

For a given set of applications, data were generated by
running the applications and the DQM and recording 100 -
samples of the current level, expected CPU usage and
actual CPU usage for each application, as well as the total
CPU usage, total benefit over all applications, and current
system idle time. The applications ran for a total of 10 sec-
onds or 100 periods. Our results indicate that this is ade-
quate for observing the performance of the algorithms in a
steady state situation.

Additional insight is gained from a separate simulation
tool called the Decider; this tool takes the execution level
data for a set of applications and determines all of the level
changes that would occur with a given decision aigorithm
in a system with no available resources. This tool simulates
starting the applications assuming 100% resource availabil-
ity, then sequentially adjusting application levels to lower
the overall CPU usage until all applications have stopped
running. The Decider is used to examine the types of deci-
sions that can be expected from each algorithm in actual
situations of changing resource availability. In particular,
this tool gives interesting insight into the stability of each
algorithm, where stability is defined to be the distance in
level space from one decision to the next. Algorithms that
result in a smoother Decider output have greater stability.
We believe that stability will prove to be an important mea-
sure when we start running real applications, as it reflects
the changes in application fidelity over time under situa-
tions of changing resource availability that the user will see
when running the applications under this model of applica-
tion execution.

The experiments described in this paper were executed
on a 200 Mhz Pentium Pro system running Solaris 2.6.
While Solaris does provide some real-time scheduling
classes using preemptive fixed priority scheduling, all
applications and middleware were executed using the stan-
dard UNIX scheduling classes.

The tools described in this paper work with 1-9 appli-
cations each having between 2 and 9 levels. For the pur-
poses of generating the data presented in the next section a
single representative set of synthetic applications was used.
This simplifies comparisons of the results of the different
algorithms, but should in no way reflect on the generality of
the system described. The application set used for the
experiments is shown in Figure 3. This set has 4 applica-
tions, each having between 4 and 9 levels with associated
benefit and CPU usage numbers. While these applications
and levels do not correspond exactly to any real applica-
tions, we believe that the ranges of CPU usage and benefit
values used adequately test the execution level model and
probably vary at least as much as one would find in most
real applications.

6. Results

Figure 4 shows the execution levels that result for the
given application set when running the DQM with the Dis-
tributed algorithm with a skip value of 0. A skip value of 0

Application 1

Max Benefit: 8

Max CPU Usage: 0.42
Num Levels: 9

Application 2

Max Benefit: 4

Max CPU Usage: 0.77
Num Levels: 6

Level CPU Benefit level CPU Benefit
1 1.00 1.00 1 1.00 1.00

2 0.51 0.69 2 0.59 0.64

3 0.35 040 3 0.53 0.55

4 0.27 030 4 045 047

5 022 024 5 022 024

6 0.15 0.16 6 0.00 0.00

7 0.16 0.10

8 0.05 0.05

9 0.00 0.00

Application 4

Max Benefit: 2

Max CPU Usage: 0.62
Num Levels: 4

Application 3

Max Benefit: 5

Max CPU Usage: 0.22
Num Levels: 8

Level CPU Benefit Level CPU Benefit
1 1.00 1.00 1 1.00 1.00

2 074 092 2 0.35 0.31

3 0.60 0.39 3 0.21 0.20

4 0.55 034 4 0.00 0.00

5 027 023

6 0.12 0.11

7 0.05 0.06

8 0.00 0.00

Figure 3: Application set with execution levels

means that the level adjustments will be very sensitive to
any missed deadlines, changing levels each time a deadline
is missed. The execution levels can be seen to change rap-
idly at the beginning, because we are starting the system in
a state of CPU overload, i.e. the combined QoS require-
ment for the complete set of applications running at the
highest level (level 1) is approximately 200% of the CPU.
By the 10th sample, the applications have stabilized at lev-
els that can operate within the available CPU resources.
There is an additional level adjustment of application 2 at
the 38th sample due to an additional missed deadline prob-
ably resulting from transient CPU load generated by some
non-QoS application. The skip value of O means that the
application reacts instantly in lowering its level, regardless
of the transient nature of the overload situation. The lack of
changes at the very beginning and the wild fluctuations at
the end of each graph are a result of the start-up and termi-
nation of the applications at the beginning and end of each
experiment combined with a slightly longer than 1/10 sec-
ond sample interval. In other words, we begin sampling
before the applications have started executing, and continue
sampling until after they have finished executing.

Figure 5 shows the CPU usage for the applications in
the same experiment. Here we see that the total CPU usage
(designated Sum) starts out at approximately twice the
available CPU, and then drops down to 1 as the applica-
tions are adjusted to stable levels. Note also the same
adjustment at sample 38, lowering the total CPU usage to
approximately
80%.

0 1 T T T 1 1 T i 1
1 o CE B RIS TR .
PRI i
] 3L L 4
=.
= 4 - by | -
8 4
FE ‘ T
(o]
Il 6 | Application 1 — - -
Application 2 ~----
7rF Application 3 ----- B
Application 4 -
8 | 4
9 1 L L i 1 i i 1 1
0 10 20 30 40 50 60 70 80 90 100
Sample (1/10 second interval)
Figure 4: Execution Levels with Distributed (skip=0)
25 T T H T T ¥ T T L
Application 1 ——
Application 2 -----
2 By Application 3 ------ B
4 Application 4 -
o i Sum -~
o t.
(@] 1.5 | E
kS i,
5 i
= | i
S \
i
i
-
; i
O i 1 1 i 1 1] i 1 \ \

] 10 20 30 40 50 60 70 80 90 100
Sample (1/10 second interval)

Figure 5: CPU Usage with Distributed (skip=0)

Figure 6 shows the CPU usage for the Distributed algo-
rithm, this time when executed with a skip value of 2.
Using a larger skip value desensitizes the algorithm to
deadline misses such that a level adjustment is only made

for every 3 deadline miss, rather than for each one. This
can result in a longer initial period before stability is
reached, but will result in less overshoot as it gives the
applications time to stabilize after level adjustments. As we
see, stability isn’t reached until about sample 16, and there
are two small adjustments at samples 24 and 49. However,
the overall CPU usage stays very close to 100% for the
duration of the experiment with essentially no overshoot as
is observed in Figure 5 during the level adjustment at sam-

ple 38.
2.5 T T T T T T T T T
Application 1 ——
Application 2 -----
2 FroTT) Application 3 ----- ~
i Application 4 -
2 | Sum -
o 15 | 4
k] i
€ |
o b, S
§ 1k -
L \ i
..................... 5 i
05 L | !‘.‘ 4
A \ |
0 1 1 H i 1 1 H 1 1 ‘l‘-“

0 10 20 30 40 50 60 70 80 90 100
Sample (1/10 second interval)

Figure 6: CPU Usage with Distributed (skip=2)

The results of running the applications with the Fair
algorithm using the even option are not shown. This cen-

tralized algorithm makes decisions in an attempt to give all
applications an equal share of the CPU. This algorithm
generally produces results nearly identical to the Distrib-
uted algorithm, as it did with this set of applications.
Figure 7 shows the results of running the applications with
the Fair algorithm using the proportional option. This ver-
sion of the algorithm attempts to distribute shares of the
available CPU cycles to each application proportional to
that application’s benefit. Using the previous algorithms the
CPU percentage used by all applications was approxi-
mately the same. With this algorithm, the cpu_usage/bene-
fit ratio is approximately the same for all applications. In
fact, the ratio is as close to equal as can be reached given
the Execution Levels defined for each applications.

20 I ' T T T T T T T
* Application1 —
Application 2 ----
g Application 3 ----~ |
‘i Application 4 -
; Sum ---
1.5 | x\ —

2
o
O
k) !
o
2
°
o
W

.......

0 1 1 | 1 1 1 1 1 1 1 “ ‘\\
0 10 20 30 40 50 60 70 80 90 100
Sample (1/10 second interval)

Figure 7: CPU Usage with Fair (proportional)

Figure 8 shows the CPU usage for the applications run-
ning with the Optimal algorithm. This algorithm reaches
steady state operation immediately, as the applications
enter the system at a level that uses no more than the avail-
able CPU cycles. This algorithm optimizes the CPU alloca-
tion so as to maximize the total benefit for the set of
applications, producing an overall benefit number of 14.88
as compared with 13.02 for the other algorithms. Note also
that because this algorithm optimizes for benefit and not
necessarily for utilization as in the other algorithms shown,
it can result in a more stable steady state, yielding no addi-
tional deadline misses and requiring no corrections. How-
ever, as we shall see, this algorithm is the least stable given
changing CPU resources (such as those caused by other
applications entering or leaving the system).

25 1 T T T T T T T 1
Application 1 —
! Application 2 ----
2 Application 3 ----- -
Application 4 -
=] Sum —--
o
[¢] 15 4
k]
o
S
g‘ 1 i "
U i
i
0.5 B
1
0 | I I 1 1 i ! i W1

0 10 20 30 40 50 60 70 80 90 100
Sample (1/10 second interval)

Figure 8: CPU Usage with Optimal

Simulation experiments using the Decider tool give us
some insight into the stability of the various algorithms in
the presence of changing CPU resources in the system. A
Decider output with monotonically decreasing levels indi-
cates smooth transitions from one CPU availability to
another. By contrast, Decider output with wildly varying
lines indicates an algorithm that will result in unstable
application performance over time in the presence of
changing CPU availability.

Figure 9 shows the Decider output for the Fair algo-
rithm using option 2 (proportional). For this algorithm, the
degradation shown is relatively graceful. As CPU resources
change the level of each application changes slowly and
evenly. Contrast this with the results of executing the
Decider tool with the Optimal algorithm, as shown in
Figure 10. In this case, while the sum moves smoothly
from 1 to 0, the levels of the individual applications fluctu-
ate wildly as the available CPU resources decrease. Appli-
cation 2 gets the worst treatment, starting and stopping 3
times, while the other applications do a little better but still
move up and down unacceptably.

2 . . : ‘
181 Application 1 — |
. Application 2 ----
i Application 3 ----- N
X ' Application 4 -
D 1.4 on 4 - A
o
S 12]
c 1]
S
‘g 08 | i
- 0.6]
0.4 |
0.2 |
0
0 10 15 20 ol
Sample (1/10 second interval)
Figure 9: Decider output with Fair (proportional)
2 T . : l
B Application 1 —
e Application 2 ----
1.6 | Application 3 ------
Application 4 -
5 i Sum ~-- b
a.
S 12f]
c 1]
S .
‘g 0.8]
v 0.6]
0.4]
02k o i |
° 20 25

10 15
Sample (1/10 second interval)

Figure 10: Decider output with Optimal

Figure 11 shows the plots for application 2 with 4 dif-
ferent algorithmic options. This graph summarizes the dif-
ferences between the various algorithms. The Optimal
algorithm selects a feasible value immediately and so the
level of the application is unchanged for the duration of the
experiment. The Distributed and Fair (even) algorithms
reach steady state at the same value, although they take dif-
ferent amounts of time to reach that state, the Distributed
algorithm taking slightly longer. The Fair (proportional)

algorithm reaches steady state at about the same time as the
Distributed and Fair algorithms, although its allocation is
slightly less in this case.

1 ¥ 1 i | 1 T 1 ! 1

Distributed —-
Fair (even) -----
0.8 | Fair (proportional) ----- -
Optimal -~
o
o
S 0.6 .
k]
<
2 LA
§ 0.4 Tv \ 7
5 I
i
0.2 e i
i
i
0 1) L 3 1 1 ! I Pt

0 10 20 30 40 50 60 70 80 90 100
Sample (1/10 second interval)

Figure 11: Application 2 with four algorithms (skip=2)

Figure 12 shows the summed CPU usage for the same
four algorithms shown in Figure 11. This graph gives an
indication of the time required for all applications to reach
steady state, along with the CPU utilization resulting from
the allocations

25 T T T T T T T T T

Distributed —

Fair (even) -----

Fair (proportional) -----
Optimal -

Fraction of CPU

—

0 10 20 30 40 50 60 70 80 90 100
Sample (1/10 second intervai)

Figure 12: Sum with four algorithms (skip=2)

7. Conclusion

Soft real-time applications are an important, emerging
class of applications and there is a class of operating sys-
tems evolving to support these applications. A basic
premise of this work is that application writers should be
prepared to participate in selecting an appropriate strategy
for managing resources in the face of oversubscription. The
DQM provides a link between the OS mechanism and
applications with execution levels. The programmer need
only provide a table of levels with resource requirements
and benefit, then the DQM uses that information to opti-
mize resource allocation based on cost-benefit analyses.

Flexible QoS systems are also being developed that
change the resource allocations given to the applications,
either autonomously, as is the case with the SMART sched-
uler, as a result of negotiation between the OS and the
applications, as is the case with Rialto, or as the result of an
explicit request by the applications, as is the case with Pro-
cessor Capacity Reserves in RT Mach. These systems
implicitly assume that applications can work properly in an

environment where resource applications are dynamic (and
perhaps even changing over some continuous range).

We have shown that it is possible to write soft real-time
multimedia applications so as to work with varying levels
of resource availability. In particular, we provided a spe-
cific example from our VPR application, a distributed vir-
tual environment for collaboration that shows how CPU
usage for rendering applications can vary by a factor of 4
over a range of 12 execution levels.

We have also developed a prototype middleware QoS
resource manager that uses execution level information and
dynamically-obtained system and application state infor-
mation to adjust application execution levels on-the-fly.
The DQM demonstrates the feasibility of dynamically
adjusting application levels, even in operating systems pro-
viding no QoS-based scheduling features.

Several algorithms were examined and results pre-
sented showing the performance of these algorithms on a
representative set of applications. These results suggest that
the algorithm selection is important and may depend on the
results desired. The Distributed algorithm is very efficient
and performs reasonably well, reaching steady state
quickly and resulting in allocations that are fairly uniform
across the applications. The Fair algorithm with the even
option produces results very similar to the Distributed algo-
rithm. With the proportional algorithm, application benefit
information is used to provide each application with its
proportional share of the available CPU resources. Finally,
the Optimal algorithm produces results that do no have to
hunt for steady state.

Additional results were presented that show the deci-
sions the various algorithms would make as available
resources change. These results indicate that while the
Optimal algorithm does maximize the benefit number, it
suffers from instability when resources change. By con-
trast, the Fair algorithm with the proportional option was
shown to exhibit reasonable performance in situations of
changing resource availability.

Having provided some examples of multimedia appli-
cations that can be written with explicit execution levels,
our results show that it is possible to create a middleware
QoS resource manager that can manage the resource usage
of such applications. The DQM and level-based applica-
tions provide a mechanism for implementing soft real-time
execution on a generic operating system providing no QoS
based scheduling primitives. The soft real-time policy
implemented is application specific and will depend on the
details of the algorithms developed for each execution level
of an application.

The algorithms explored in this paper are not intended
to be a complete set, but were selected because of their sim-
plicity or their similarity to algorithms employed in soft
real-time schedulers in some of the other systems that we
examined. At this time it is not possible to determine which
algorithm is the best, but our experiments show that differ-
ent algorithms have different properties, some, such as uti-
lization and benefit maximization, are obviously desirable
while others, such as instability, are obviously not. Further

study is required to determine a set of appropriate metrics
to apply to the algorithms. In addition, the research
described in this paper was done using only a single
resource, CPU usage. While this is clearly the most impor-
tant resource with respect to soft real-time application exe-
cution (and the only one examined in most other QoS
scheduling research), it is not the only important resource.
In particular, it is clear that memory and bus or network
bandwidth allocations can greatly impact the CPU usage of
various algorithms. In many cases, decreased memory or
communication bandwidth results in increased CPU usage
and vice versa. While the experiments described in this
paper do not address these issues, we believe that the DQM
can deal with them directly via appropriate application-
specified execution levels.

Our work on DQM policies and additional operating
system support continues. In the future we will expand our
application repertoire so that we can experiment with a
wider class of applications. Next we will design and imple-
ment more decision policies within the DQM and experi-
ment with ways that applications can use execution levels
to achieve acceptable soft real-time execution. At that point
we expect to determine other support that might be pro-
vided by the operating system to enable a broader class of
policies to be implemented in the DQM.

Acknowledgments

Scott Brandt and Gary Nutt were partially supported by
NSF grant number IRI-9307619. Jim Mankovich designed
and implemented our main driving application, the VPR,
and generated the data shown in Figure 1.

References

[1]1 A. Burns. Scheduling Hard Real-Time Systems: A Review.
Software Engineering Journal, May 1991.

[2] S. Cen, C. Pu, R. Stachli, C. Cowan, and J. Walpole. A Dis-
tributed Real-Time MPEG Video Audio Player. Proceedings
of the Fifth International Workshop on Network and Operat-
ing System Support of Digital Audio and Video (NOSS-
DAV’95). April 18-21, 1995.

[3] C. Compton and D. Tennenhouse. Collaborative Load Shed-
ding. Proceedings of the Workshop on the Role of Real-Time

in Multimedia/Interactive Computing Systems, December
1993.

[4] C. Fan. Realizing a Soft Real-Time Framework for Supporting
‘Distributed Multimedia Applications. Proceedings of the 5th
IEEE Workshop on the Future Trends of Distributed Com-
puting Systems, pp. 128-134, August 1995.

{51 W. Feng and J. Liu. Algorithms for Scheduling Real-Time
Tasks with Input Error and End-to-End Deadlines. IEEE
Transactions on Software Engineering, Vol. 20, No. 2, Feb.
1997.

[6] H. Fujita, T. Nakajima and H. Tezuka. A Processor Reserva-
tion System Supporting Dynamic QoS Control. 2nd Interna-
tional Workshop on Real-Time Computing Systems and
Applications, October 1995.

[7] D. Hull, W. Feng, and J. Liu. Operating System Support for
Imprecise Computation. AAAI Fall Symposium on Flexible
Computation, Nov. 1996.

[8] M. Humphrey, T. Berk, S. Brandt, G. Nutt. The DOM Archi-
tecture: Middleware for Application-centered QoS Resource
Management. IEEE Workshop on Middleware for Distrib-
uted Real-Time Systems and Services, Dec. 1997.

[9]1 E. Jensen and C. Locke and H. Tokuda. A Time-Driven Sched-
uling Model for Real-Time Operating Systems. Proceedings
of the IEEE Real-Time Systems Symposium, pp. 112-122,
1985.

[10] M. Jones, J. Barbera III, and A. Forin. An Overview of the
Rialto Real-Time Architecture. Proceedings of the Seventh
ACM SIGOPS European Workshop, pp. 249-256, September
1996.

[11] M. Jones, D. Rosu, M. Rosu. CPU Reservations & Time
Constraints: Efficient Predictable Scheduling of Independent
Activities. Proceedings of the 16th ACM Symposium on
Operating Systems Principles, October 1997.

~ [12] K. Kawachiya, M. Ogata, N. Nishio and H. Tokuda. Evalua-

tion of QoS-Control Servers on Real-Time Mach. Proceed-
ings of the 5th International Workshop on Network and
Operating System Support for Digital Audio and Video, pp.
123-126, April 1995.

[13] J. Kay and P. Lauder. A Fair Share Scheduler. Communica-
tions of the ACM, 31(1):44-55, January 1988.

[14] C. Lee, R. Rajkumar and C. Mercer. Experience with Pro-
cessor reservation and Dynamic QoS in Real-Time Mach.
Proceedings of Multimedia Japan, March 1996.

[15] H. Massalin, and C. Pu. Fine-Grain Adaptive Scheduling
using Feedback. Computing Systems, 3(1):139-173, Winter
1990.

[16] C. Mercer, S. Savage and H. Tokuda. Processor Capacity
Reserves: Operating System Support for Multimedia Appli-
cations. Proceedings of the International Conference on Mul-
timedia Computing and Systems, pp. 90-99, May 1994.

[17] T. Nakajima and H. Tezuka. A Continuous Media Applica-
tion Supporting Dynamic QoS Control on Real-Time Mach.
Proceedings of the Second ACM International Conference on
Multimedia, pp. 289-297, 1994.

[18]J. Nieh and M. Lam. The Design, Implementation and Eval-
uation of SMART: A Scheduler for Multimedia Applica-
tions.Proceedings of the 16th ACM Symposium on
Operating Systems Principles, October 1997.

[19] J. Nieh and M. Lam. Integrated Processor Scheduling for
Multimedia. Proceedings of the Fifth International Workshop
on Network and Operating System Support for Digital Audio
and Video, April 1995.

' [20] G. Nutt. Model-Based Virtual Environments for Collabora-

tion. Technical Report CU-CD-799-95, Department of Com-
puter Science, University of Colorado at Boulder, December
1995.

[21] G. Nutt, T. Berk, S. Brandt, M. Humphrey, and S. Siewert.
Resource Management of a Virtual Planning Room. Proceed-
ings of the Third International Workshop on Multimedia
Information Systems, September 1997.

