A Posteriori Computation of the Singular Vectors in a
Preconditioned Jacobi SVD Algorithm *

Zlatko Drmac

CU-CS-846-98

JUnivelsity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* Department of Computer Science, Engineering Center ECOT 717, University of Colorado at Boulder, Boulder, CO 80309-0430,
(zlatko@cs.colorado.edu, http://www.cs.colorado.edu/-zlatko). The research of the authot was supported by National Science
Foundation grants ACS-9357812 and ACS-9625912, Department of Energy grant DE-FG03-94ER25215. Part of this work was done
while the author was visiting Department of Computer Science and Engineering at the Pennsylvania State University, University k
Park, PA.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A posteriori computation of the singular vectors in a preconditioned
Jacobi SVD algorithm

Zlatko Drmac*

March 13, 1998

Abstract

This paper describes a novel way to implement the Jacobi algorithm for the singular value decomposition
of full rank matrices. It is shown that the left and the right singular vectors can be computed without
explicit accumulation of Jacobi rotations. Instead, the accumulated product of Jacobi rotations is computed
a posteriori as the solution of a certain well-conditioned matrix equation. Theoretical analysis provides tools
to estimate, check and, if necessary, to improve the accuracy of the computed decomposition. Experimental
results show that the new technique performs very well in the practice.

1 Introduction

The singular value decomposition (SVD) of a rectangular matrix! 4 € R™*", m > n, is the decomposition

A=U [ﬂ VT, (1)
where U and V are orthogonal matrices and ¥ = diag(sy,...,0,) is diagonal matrix. The scalars oy, ...,0, are
the singular values of A, the columns of U and V are the left and the right singular vectors of A, respectively.
Applications of the SVD include the solution of least squares problems, eigenvalue computation, signal process-
ing, image compression, intelligent information retrieval from large databases, protein sub—state modeling and
identification, and computation of canonical angles between subspaces of Euclidean space.

The first numerically feasible algorithm for SVD computation was the Jacobi SVD algorithm [32], [33], [30].
The Jacobi SVD algorithm applies an infinite sequence of plane rotations Jg, k = 0,1,.. .,

A(k+1) = A(k)Jky k = 07 1927 M (‘A(O) = A)7 (2)

where each J; is designed so that, for pivot indices (pg,qr) = p(k), ((A(k“))TA(k“))pk o =0 Here p :
NU{0} = {(p,q) | 1 < p < ¢ < n} is a suitably chosen pivot strategy that ensures the)convergence of the
iterations (2). In the limit, there exist matrices Aoo = limg— oo ARy = [Treo Jk such that Ay, = AV has
mutually orthogonal columns and can be written as Ao = U, where ¥ is diagonal and U is orthonormal. If
we choose an orthonormal basis U~ for the orthogonal complement of the range of U , then U = [U', U 1],V and
Y satisfy (1). If necessary, the matrix U can be easily computed using the QR factorization of U.

*Department of Computer Science, Engineering Center ECOT 7-7, University of Colorado at Boulder, Boulder, CO 80309
0430, (zlatko@cs.colorado.edu, http://www.cs.colorado.edu/” zlatko) The research of the author was supported by National
Science Foundation grants ACS-9357812 and ASC-9625912, Department of Energy grant DE-FG03-94ER25215. Part of this work
was done while the author was visiting Department of Computer Science and Engineering at the Pennsylvania State University,
University Park, PA.

' For the sake of simplicity we consider only real m x n matrices with m > n.

2 Z. DRMAC

_ In floating-point computation, the iterations (2) are stopped at index ko for which the computed matrix
Ay, = A% gatisfies the stopping criterion '

max F1 ([cos A(fiooei,;looejﬂ) < tol, (3)
i#j

where F1(-) denotes floating-point computation, e; is the ith column of the identity matrix, and tol is up to
a factor of dimensionality of order of the machine precision u. The accumulated product of Jacobi rotations is
computed only if the right singular vectors are needed.

Another way to compute the SVD of A is to first bidiagonalize A using elementary orthogonal transforma-
tions,

A=W [lg] ST, W, S orthogonal, B bidiagonal,

and then to compute the SVD of B, B = UgXV], see [27, Section 8.6]. Then (1) holds with U = W(Ug®I,n—p),
V = 8SVp. The SVD of B is computed using fast algorithms such as the QR algorithm [26], [11], the differential
QD algorithm [23] or the divide and conquer SVD algorithm [28]. "The algorithms based on bidiagonalization
are considerably faster than the Jacobi SVD algorithm and are lmplemented as methods of choice in high
performance libraries such as LAPACK [2].

However, the Jacobi SVD algorithm is more accurate than any other algorithm that first bidiagonalizes
the matrix. This higher accuracy of the Jacobi algorithm was first reported by Rosanoff et al [41] and it
was explained by Demmel and Veselié¢ [13]. Briefly, bidiagonalization based methods approximate the singular
values of a full column rank A with small absolute error max; |do;|/ max; o; and with relative error max; |60, /0;]
which depends on k2(A) = max; 0,/ min; o;, while the relative error in the Jacobi SVD algorithm depends on
k5H(A) = minp=diag k2(AD). Also, the Jacobi SVD algorithm computes more accurate approximations of the
singular vectors of A. Hence, if an application of the SVD of A requires highly accurate approximations of the
singular values and singular vectors, and if k5(A4) < k2(A4), then the Jacobi SVD algorithm is the method of
choice.

The Jacobi SVD algorithm is also the core of highly accurate algorithms for spectral decomposition of
symmetric positive definite matrices (cf. [13]) and symmetric positive definite pencils H — AM, HM — \I (H
M symmetric (Hermitian) positive definite matrices), as well as for computation of various generalized singular
value decompositions (cf. [16], [21], [20], [17]). Therefore, it is of interest to develop an efficient implementation
of the algorithm to make its remarkable accuracy more affordable in applications.

An interesting feature of the Jacobi SVD algorithm is that it computes the left or the right singular vectors
very efficiently. For instance, since the limit matrix A in (2) is Ao = UZ] the left singular vectors are always
computed for free, i.e. without need to accumulate elementary orthogonal transformations. The right singular
vectors of A can be computed for free as the left singular vectors of A. However, for both the left and the right
singular vectors one needs the accumulated product of Jacobi rotations. This increases the complexity of the
algorithm and memory requirements since two dense matrices are updated in an iterative process.

In this paper, we pursue the idea of computing the right singular vectors of a matrix using the computed
singular values, the computed left singular vectors, and the initial matrix. In the case of the Jacobi SVD
algorithm, this means that we obtain both the left and the right singular vectors without accumulating the
product of Jacobi rotations. Instead, we compute the right singular vectors a posteriori as the solution of a
certain well-conditioned system of linear equations.

To illustrate, let A be an n X n triangular matrix that is well-conditioned with respect to inversion and let
A =UZV7 be the SVD of A. (If A is not triangular, we can use the QR factorization of A and compute the
SVD of its triangular factor.) In the floating—point Jacobi SVD algorithm we compute

A =US = (A+6A)V, (4)

where 0A is the backward error, U approximates the left singular vectors of A, & approximates the singular
values of A and V is exact product of certain exact Jacobi rotations. The right singular vectors of A are
approximated by the computed product V of floating—point Jacobi rotations. The question is whether or not
we can restore V or V a posteriori, using only the matrices A and Ao, and the fact that V = ATUS~! = A-1US.

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS 3

Jessup and Sorensen [34] report that in the divide and conquer SVD algorithm the formula V = ATUS~! does
not give satisfactory results. On the other hand, we show that the formula V = A~'UY performs surprisingly
well. More precisely, if V is the floating-point approximation of A™'A.,, then V = (I + A~'AA)V, where
A7YAA is small if || [A7Y - |4] |2 is moderate. (Here the matrix absolute value is defined element—wise and
|| - |l2 is the spectral matrix norm:) An important feature of the derived bound is that it is invariant under row
scalings of A because of a special structure of the perturbation matrices A and AA.

This technique is very attractive in combination with the implicit Rutishauser’s LR algorithm as precon-
ditioner for the Jacobi SVD algorithm. The preconditioner, introduced by Veseli¢ and Hari [45], uses the QR
factorization with column pivoting of A to compute the upper triangular matrix R4 and the Jacobi SVD al-
gorithm is applied to R7,. Fernando and Parlett [24] suggest that the preconditioning step should be repeated
using the QR factorization with column pivoting of R’ etc. Our algorithm uses two preconditioning steps with
the efficient BLAS 3 based implementation of the QR factorization with column pivoting due to Quintana—Orti,
Sun and Bischof [39)].

The gain is manifold. The computation is reduced to the dimension n X n (important if m > n) and the
convergence. of the Jacobi algorithm is faster due to the nontrivial diagonalizing effect of the LR algorithm.
Further, a suitable pivot strategy can exploit triangular structure at the beginning of the algorithm. Moreover,
the triangular matrix obtained in the preconditioning phase is well-conditioned for a posteriori computation of
the accumulated product of the Jacobi rotations. This means that the computationally intense Jacobi iterations
reduce to transforming the columns of a single n x n array which simplifies the memory traffic and opens more
space for efficient use of fast cache memory.

The savings in the number of floating—point operations (flops) needed to approximate the right singular
vectors are considerable. One full sweep (cycle) of the Jacobi algorithm consists of n(n — 1)/2 rotations and the
algorithm converges usually after 46 sweeps if the matrix is preconditioned. Since a single fast rotation requires
4n flops, the accumulated product of one sweep of fast rotations requires 2n® — 2n2 flops. On the other hand,
the triangular matrix equation can be solved in n® flops using optimized BLAS 3 library (xTRSM(), PxTRSM(Q)
in [15], (7).

We also discuss other techniques for improving convergence speed of the Jacobi SVD algorithm, as well as
possibilities for better use of fast levels of computer memory. We believe that some of the presented techniques
will be useful in other SVD algorithms as well. ,

The paper is organized as follows. In § 2, we first review some well-known techniques for improving the
efficiency of the Jacobi SVD algorithm. We also analyze the diagonalizing effect and numerical stability of
the preconditioning based on the QR factorization. In § 3, we show that the accumulated product of Jacobi
rotations can be computed as the solution of a certain well-conditioned matrix equation. We also discuss the
possibility of improving the accuracy of the SVD computed by algorithms faster and possibly less accurate than
the Jacobi SVD algorithm. In § 4, we present the results of numerical experiments that show that the new
technique works as predicted by the theory. In § 5 we give concluding remarks and we discuss a few interesting
open questions related to a high performance implementation of the Jacobi SVD algorithm.

2 Accelerated Jacobi SVD algorithm

There are several ways to speed up the Jacobi SVD algorithm. If m > n, we can first compute the QR
factorization of A and then apply the Jacobi SVD algorithm to the computed n x n upper triangular factor of
A. In this way, Jacobi rotations transform vectors in an n—dimensional space instead of an m—dimensional one.

To improve the performance of Jacobi rotations, we use the fast rotations of Anda and Park [1]. We use a
combination of the Four Way Branch algorithm and the Two Way Branch algorithm (we replace slow rotation
in the Four Way Branch with the Two Way Branch algorithm). This ensures that the scalings factors always
remain close to one. ‘

The effect of fast rotations becomes smaller as the matrix dimensions increase because the time needed to
transfer data between main memory and high-speed cache memory and to transfer operands in and out of
floating—point unit becomes the limiting factor in the overall efficiency. To improve memory access, we need
new block implementations (cf. [4]) of the algorithm and more advanced software engineering.

4 » Z. DRMAC

Another way to speed up the Jacobi algorithm is to improve the convergence using a preconditioner. This
is achieved in a rather elegant way in the following variant of the Jacobi algorithm due to Veseli¢ and Hari [45].
Let A € R™*"™ be of full column rank, let

APy =Qa [}EA} ' (5)

be the QR factorization with column pivoting of A and let R}; = Ug,XVg, be the SVD of R7;, where Vg, is
the accumulated (infinite) product of Jacobi rotations and Ug, ¥ is the limit matrix. Then

a=aa Ve G| [5] o ©)

is the SVD of A. It is well known that the QR factorization with column pivoting is an excellent preconditioner
for the Jacobi SVD algorithm. Nontrivial convergence speedup is due to an implicitly performed step of
Rutishauser’s LR method. (The matrix R4 R’ is “more diagonal” than R R4, see [42, Section 12.6], [45], [37],
[24].) Another important thing to notice is that there is no need to accumulate Jacobi rotations if the left
singular vectors are not needed and that the right singular vectors are always obtained for free. This feature
of the algorithm is especially attractive in applications to symmetric positive definite eigenvalue problems, see
[45]. Let now

, RyPy = Qp,Rr, (7)
be the QR factorization with column pivoting of R’ and let R} . = Urg, A ZVI%{) be the SVD of R}, where
Vrz, B is the accumulated product of Jacobi rotations. Then

PUg: 0][%
A= [0" 1] [0] (PQra Vg,) (®)
is the SVD of A. In this case, the rotations are accumulated only if the right singular vectors are needed, and
the left singular vectors are computed in factored form, where U Ry, is obtained for free. If we compute the

SVD of the matrix Rr, (cf. (7)), Rry = Urp, EVRR , then the SVD of A is

A=Qa [P2VORRA ?] [%](HQRAURRA)’, (9)

and the right singular vector matrix Vg, of Rr, is a factor in the left singular vector matrix of A.

It is worth mentioning that repeated use of the LR preconditioning steps might further improve the conver-
gence of the Jacobi SVD algorithm. Fernando and Parlett [24] call these repeated steps of the LR algorithm
the implicit Cholesky SVD algorithm and give an interesting discussion about its use in preconditioning or even
replacing the Jacobi SVD algorithm. Convergence results for the repeated QR factorizations (the block QR
algorithm for the SVD) in the case of well separated singular values are given by Mathias and Stewart [37].

2.1 Exploiting the triangular form

The triangular structure of the initial matrix in the Jacobi SVD algorithm is destroyed after the first sweep of
n(n —1)/2 rotations. However, with a suitable pivot strategy we can exploit that structure and implement the
first sweep very efficiently. For simplicity, we illustrate only the lower triangular case. Let L = R} or L = R},
and let n = ny + ny. Consider the following block partition of L:

L= [éi L(iz} , Ly € R™X™, Loy € R™X"™, (10)

OQur first observation is that the Jacobi rotations that transform the last ny columns of L are identical to
the Jacobi rotations constructed for and applied to the columns of the ny X ny matrix L. Hence, it seems
reasonable to start Jacobi iterations on L by applying one sweep (say) of the Jacobi SVD algorithm to the

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS ‘ 5

smaller matrix Lgo. In this way, we improve the orthogonality of the last ny columns of L and we avoid
unnecessary computation with the ny x na zero block in L. The cost of ny(ng — 1)/2 Jacobi rotations on vectors
in n—dimensional space (including the dot products needed to compute the rotation angles) is 3nn3 + O(n3)
flops, while the cost of the same number of rotations in a ny-dimensional space is 3nj+O(n3) flops. Iif ny ~n/2,
then the cost of one sweep on the last ny columns of L is reduced by a factor of two.

We can proceed with one sweep of ny(n; — 1)/2 rotations of the first n; columns of L and complete the first
full sweep of n(n — 1)/2 rotations by rotating with pivot indices (¢,7), 1 <4 < nj, n; +1 <j < n. Again, we
can use the triangular and block triangular structures to save computation with zero entries.

The benefit of this modification of the row—cyclic strategy is not only in saving unnecessary computation
with zero blocks and in better possibility to use fast memory but also in contributing to faster convergence
of the algorithm. Namely, it is a well-known fact that in the symmetric Jacobi algorithm the off-diagonal
elements closer to the diagonal converge to zero slower than the elements far from the diagonal. In the language
of the SVD variant of the algorithm, this means that decoupling the linear spans of the first n; and the last no
columns of the iterates L), k = 0,1,2,..., (cf. (2)) converges faster than computing the orthonormal bases
in decoupled subspaces. (Moreover, if the preconditioning steps perform well, the block Ly is small in norm,
which means that the subspace of the first n; columns of the matrix L is fairly well decoupled from the subspace
of the last ny columns.) Hence, it is reasonable to rotate more often inside those subspaces. This technique of
quasi-cyclic pivoting is well-known in the convergence theory of Jacobi methods, see [40].

Since L1y and Loy are lower triangular, we can apply this efficient quasi-cyclic pivoting recursively. We set
ny = ni1 + Ni2, Ng = Na1 + Noz, and define partitions

i o 0

L 0] |:L11 0:| L2t 122
Lii = 11 , Loy = 22 , L= 11 11 , 11
o= gl e[A o Lo)

21 22
L22 L22

where L1l € R™M1*™it [22 ¢ Rz [l ¢ R[22 ¢ R™22X722 - Ag before, we can replace one sweep
of rotations on Ly with one sweep on L23 followed by one sweep on the first ng; columns of Lag, etc. In this
way we can take advantage of all zero blocks shown in the partition of L in relation (11). ‘

Further, quasi-cyclic pivoting ensures asymptotic cubic convergence of Jacobi iterations (cf. [40]) and it also
opens more possibilities for efficient use of fast cache memory during the first sweep of rotations.

2.2 Effects of preconditioning by the QR factorization with column pivoting

In this section we analyze the diagonalizing and rank revealing properties of the QR factorization with column
pivoting (5). These properties are crucial for the preconditioning steps (5), (7). For ease of notation, we drop the
subscripts in relation (5) and write P = P;, Q = Q4 and R = R4. The singular values of R are o7 > --- > o.,.
We use oppin(-) and omax(+) to denote the minimal and the maximal singular value of a matrix.

Let the pivoting in (5) be the one of Golub [25]. In that case

J
RZ>SN"RY, 1<i<j<n, (12)
k=1 ‘

and the QR factorization has the rank revealing property, i.e. the smallest singular value o,, is revealed by the
smallest diagonal element of R, R,,. More precisely, we have the following proposition.

Proposition 2.1 Let R be a nonsingular upper triangular matriz and let (12) hold. Let R = ARR,, where Ap
is the diagonal matriz of the Euclidean lengths of the rows of R. Then

R en2 < ‘—R;“—"t < ||R; 2. (13)

n

6 7. DRMAC

Proof: (See also [5], {13].) The Courant—Fischer’s theorem for singular values implies

o = in B2 L NARRzle o ARyl
S P A P s N TS
Owin(Ar) __|[Rnnl
I Vs PR P

where the minimal singular value of AR, omin(AR), equals |R,,| because of (12). Taking y = e, in the relation
above we obtain : ‘

< HARenHZ _ IRnn!

TR Menlla IR enll2’

and the proof is completed. Q.E.D.
We can generalize the result of Proposition 2.1 to all singular values of R.

Theorem 2.1 Let R be partitioned as in Figure 1. Let RS}') = A;lR“), Tc(i) = T(i)Diwl have unit rows and
columns, respectively. (D; and A; are diagonal scaling matrices.) Then

RO 1 R® emri™i
T(/L) c R(n—i+1)x(n—i+l)
R = (T@)1; = (RD)y; = Ry,
(%)

Figure 1: Overlapping (i,n — ¢ + 1) partition of R.

max{ﬁHRg)_lez‘Hza s }s'R“*snR@’luz, 1<i<n, (14)
2 701 = |

Proof: (Cf. [22], [35], [16].) Let p(li) > > pgi) and "rl(i) > > Tff_)_iH be the singular values of R,
R®
o

nonzero singular values of 7 and [0, T®].) From Cauchy’s interlacing inequalities we have

T | respectively. (Note that R and have the same nonzero singular values; the same holds for the

o= p™ > pl") > pnD > s 0 = o (RO).

. N1 o 1
Using this and Proposition 2.1 applied to R, we conclude that |1R§z) eillzon < |Ryl| < ||R,(f) ||l20;. Further,
from the Cauchy’s interlacing inequalities

g = Tz‘(l) < Ti(f)l <--- < Tl(i)7

and from y . ; '
i = 17D < T2l Dill2 = | Rall T

we conclude that o; < |Ry| [|Tc(1)|[2, and the proof is completed. , Q.E.D.

Remark 2.1 Note that from relation (14) it follows that in the case of diagonal R® and T it holds |R;;| = o3,
independent of the rest of the matrix R.

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS 7

From relation (14) we can also estimate the gaps between the singular values,

g 1 |Riil o Q) .
<"f>nR@‘llbuTé%h<|le<<)1l 1< < "

From (13) we see that in the case of a well-conditioned matrix B, (0min(R;) not too small), small ,, is revealed
by small |R,,|. If o, 0n-1 are extremely small (6,2 > w > 0,1 > 0p, w small tolerance) then a well-
_1)

.. R,_1,
conditioned Ri" ensures small | R,y »,—1], and, because |Rp—1 n—1] > || [;% Ln } |l2, we can detect two small
nn

singular values. Generally, for detecting p small singular values (01 > -+ > 0p_p > W > 0p_pp1 > -+ > Op, W
small tolerance) a well-conditioned R"PHY s sufficient. Note that the matrices Rr> are not submatrices of
R, = Rﬁn), and that they are nearly optimally scaled in the sense that KQ(RS» Y < Vi i MiNp=diag nz(DR(i)), see

[44]. The following proposition from [16] estimates the condition numbers of R, and RW i=1,...,n-1

Proposition 2.2 Let R, and Agr be as in Proposition 2.1, and let R = R.Dg, Dg = diag(||Re;|l2). Let R
be the leading i x i submatriz of R,.. Then

RS e S Vi max (280 R=1 — diag(B2Y) 2

- (DRr)ii

< f(1+ma;<!|RZZ!| I 1R:* -~ diag(RZ) 1), (16)
1Rl < VAl IR I | an
m(RY) < Vik(®RD), (18)

where the matrir absolute value is defined element-wise.

Proof: Using the inequalities

IR7 My = DR R Arly = (H RSy < VA= T TR (19)
fora111§i<j§n,and

IR-Yu<vVn—i+1, 1<i<n,

together with the monotonicity of the spectral norm we easily conclude (16) and (17). The inequality (18) is a
consequence of the nearly optimal row scaling of Rg), see [44]. Q.E.D.

Remark 2.2 From relations (16) and (19) we see that the bigger the gaps between the diagonal entries of R,
the smaller the value of || |R}| |l2. This effect is also described in [45], [13]. The numerical evidence from [13]
suggests that in practice one can expect ka(R,) < ka(R.). (It is an interesting fact that the condition number
k2(R,) is bounded by a function of n, independent of the matrix A.) We also note that the estimate of Theorem
2.1 can be used in relation to the gap revealing property of the QR factorization with column pivoting described
in [43]. For similar results see [36].

2.3 Backward stability of two steps of QR preconditioning

Let R4 = R4 and éfz,, ~ Rp, be the computed triangular factors in the QR factorizations (5), (7). In an
algorithm that uses these factorizations as a preconditioner, the SVD of the matrix A is computed using the
SVD of Ry, . Hence, it is of interest to know if the transition from A to Ry, is backward stable.

For simplicity of notation, let us assume that the columns of A are so permuted that in the QR factorization
(5) P, = I. There exist a backward error 64 and an orthonormal matrix Q4 such that

A+5A=QARA. . (20)

8 7. DRMAC

Consider now the QR factorization of]?EQ. For the purposes of this analysis, we generalize the pivoting in
relation (7) by introducing a row permutation Pj, i.e., we replace R} with P;R7, and then compute the QR
factorization with column pivoting (PsR%)P» = Qgr, Rr,. If only column pivoting is used, then P3 = I. There
exist a backward error 6R4 and an orthogonal matrix Q 7, such that

(Po(Ra+ (GRAY)) Po = Qg Rr, | (21)
An easy calculation shows that relations (20) and (21) imply
A+ AA= (QaP)RY, (QF, P3), where AA=35A+QadR4 (22)

In the classical analysis, ||0A[2/[|All2 < 1, ||5~’?A|f2/HRA“2 < 1, ||Rallz = || All2 and, ﬂius, 1AAl/11Allz < 1,
which means backward stability. The SVD of R}{A yields the SVD of A + AA with small ||AA||2/ || All2.
More detailed analysis reveals considerably sharper bounds for §A and 6R4. The matrix §A satisfies (ct.
[16], [31, Lemma 18.3])
[0 Aei|2

1<i<n ||Aeglls —

p(m,n)u, (23)'

where p(m, n) is a modest polynomial. Hence, the transition from A to R is backward stable with column—wise
small backward error.

To obtain a satisfactory column-wise bound for §R 4, let us assume that the permutation P is chosen to sort
the rows of Rz by decreasing £, norms and that the QR factorization of P3RQ is computed with Golub’s column
pivoting. In that case, we can use the result of Cox and Higham [8] which states that the QR factorization (21)
has the same backward error bound as the QR factorization with the complete pivoting of Powell and Reid [38].
Hence, we conclude that '

6 Raeil2 <

- < h(n)iu, 1<i<n, (24)
| Raesll2

where h(n) is a modest polynomial and fi; is a pivot growth factor. Powell and Reid and Cox and Higham
suggest that [i; is usually of order one, although the theoretical upper bound is exponential,

_ maXigihen [(PsRY)Py) P, ‘ i1 4 o
;= <Vn—i+11+V2)"L 1<i<n, 25
g maxi<j<n |(P3R}) Palij () 28

where ((P3R7)P»)® is the matrix obtained in the kth step of the exact Householder QR factorization of
(P3R7)P,. (The growth factors fi; are defined using the computed (inexact) matrices.)
Combining relations (22), (23) and (24) we conclude

IR0 < (oom,m) + W1 + plom,mpn, 1< i<, (29
which shows that the backward error in small columns of A is correspondingly small. Relation (26) and the
theory of Demmel and Veselié [13] imply that the relative difference between the singular values of A and the
corresponding singular values of RRA is determined by the condition number minp=giag k2(AD), and not by
r2(A) which is the relevant condition number in the case of norm-wise small AA (JJAA|2 < || All2).

Since row sorting is relatively inexpensive and since it provides higher accuracy, it should be included in
both QR factorizations (5) and (7), especially if it is not known whether or not minp=diag k2(AD) is moderate.

It is interesting that the backward error bound (26) is satisfactory even without the row pivoting, i.e. with
P = I in relation (21). More precisely, we show that the pivot growth factors u; in the QR factorization (7)
can be bounded independent of the column scaling of the matrix R4 and that the theoretical upper bound is
similar to the one in relation (25).

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS : 9

Theorem 2.2 Let Y = R", where R is the upper triangular matrix computed using the QR factorization with
Golub’s column pivoting, i.e. let R satisfy relation (12). Let YW = YTI, where II is the permutation matriz
such that no column interchanges are necessary in the QR factorization with Golub’s column piwoting of Y (V).
Let Y®) denote the matriz at the start of the kth step of the Householder QR factorization of YV, Let

;= max |[Y®|,

1<1<n
1<j,k<n R

and let, for 1 = 2,...,n, ¥ € (0,7/2] denote the angle between the lth column of R and the linear span of the
first 1 — 1 columns of R. Then o, < (1 ++/2)""! maxi<j<n |Yn;| and

o < Vn—i+1 (1+f) max }YUImax{l né%xcotwg} 1<i<n—-1,
where L; = {l e{i+1,...,n} : fmax, |Rji| > 112?%<i|Rj¢\}.
Further, if RW s the leading | x | submatriz of R, then
1 1)
cot iy < 3 rglin KQ(R(”(S 7)) < 3 mDin keo(RD), 2<I<n, (27)

Y

where S is arbitrary (I — 1) x (I — 1) nonsingular matriz, v is arbitrary nonzero scalar and D is arbitrary n x n
diagonal matriz.

Proof: We follow the strategy of the proof by Cox and Higham [8]. Due to the zero pattern of the matrices .
Y®, it holds that
o = max |Y())”, 1<i<n-—1,

1<j<n
1<k<i+1

and for all | =k + 1,k +2,...,n, it holds that (cf. [8])

max |[Y*HD | < (142) max |y<k>|l (28)
k<ji<n .

Further, the column pivoting and the zero pattern of ¥ (i+1) imply

n 1/2
G+ _ (i+1) O Y e @y,
Jpex. Ve Joax [Y lij (,2: Y hz) <vn-i+1 Dax Y, (29)
=i
and using relation (28) for [=i,i+1,...nand k=14 —1,i—2,...,1, we obtain
o <Vn—i+1(1+V2)! max]Yl()] =vn—i+1(1+v2)""! max |RT;l- (30)
<5<
z<l<n 7,1<l<7lb

Now we use the fact that R is the upper triangular matrix computed using the QR factorization with column
pivoting. In particular, since |Ry| > |Rul, @ < | < n, we need to analyze only the indices [> i for which
maxi<j<i [R]lt > maxi<ji<i tRﬂ! Let for [> 2, Pl (i;i thl)l/z. Then‘ Cot¢l = pg/tRll‘, maxi<t<l ‘Rtll <
iRu] COt iy and

S| < . < g .
%i;g |Rji| < max {;gg_;; | Bsil, max | Ryl cot w:} < max |Rjil maX{l, max cot wt} (31)
(AN

To prove relation (27), we recall an estimate of Demmel [14] and conclude that for any nonsingular (I—1) x (I—1)
matrix S and any nonzero scalar v it holds that cot(1;/2) < rko(RW(S @ v)). (Note that the angle ¢ can be
defined using R instead of R.) Since cot 1)y < 0.5cot(1/;/2), the proof is completed. QE.D.

The result of Theorem 2.2 is satisfactory if RD is well-conditioned for some diagonal scaling D. It is also
possible to derive backward error bounds that are independent of certain row and column scalings of R in
Theorem 2.2. We omit the details for the sake of brevity and refer the reader to [19)].

10 ‘ Z. DRMAC

3 A posteriori computati‘on of the right singular vectors

The analysis in Section 2 shows that the SVD of the matrix A can be accurately computed by an application
of the Jacobi SVD algorithm to any matrix X € {Ra, R}, Rr,, R, }. In this section, we discuss which choice
yields the most efficient algorithm.

Consider the SVD computation of an n X n nonsingular matrix X. Let

XOOEXVX:UXEXa ZX:diag(o-l"“7o'n)7

be the SVD of X, where Vy is the accumulated product of Jacobi rotations. Since Vx = X ~'Ux T x, the matrix
Vx can be a posteriori computed from the initial matrix X and the limit matrix UxX x. In finite prec181on
computation, the computed matrix Xo, ~ X, satisfies

Xeo = (X +0X)Vx, (32)

where Vy is an orthogonal matrix (the exact product of certain exact Jacobi rotations) and (cf. [31, Lemma
18.8))
(6 X) ez

1 .
< < G, G=—ee = T 33
max e D8 S fnu, OX] < JmnulXIG, G = see, e=[L1. LT (3

where the matrix absolute values and the inequality are understood element—wise. The function f(n) is a
moderate polynomial which depends on the details of computation. For instance, if we use the classical row—
cyclic pivot strategy, then after s sweeps it holds that f(n) < O(sn). (In the row—cyclic pivot strategy.Jacobi
rotations are grouped in sweeps, where each sweep consists of n(n—1)/2 rotations with pivot indices respectively
(1,2),(1,3), ..., (1,n), (2,3), ..., (2,n), ..., (n—1,n). For matrices preconditioned using the QR factorization
with column pivoting s is usually 4 — 6.)

The matrix X'OO satisfies up to small element-wise rounding errors XOO ~ U X)i x, Where U X, by x are
computed approximations of Ux, Y x, respectively. The stopping criterion (3) ensures that (7'}}(3' x =1+ &y,
\Euli; < O(nu).

From relations (32), (33) it follows that

| X 'Xpo =T+ X7 15X)Vx, |X7X|< fn)nulX7Y-|X|G, (34)

where the size of £ = X 715X can be estimated in the matrix £y, norm by [|Z||o < f(n)null | XY - |X] ||co, or
in the spectral and the Frobenius (]| - ||#) norms by

1Bl < [EllF < f)ullX 7Y - [XeeT|r = f(n)v/null [X7 - |Xell2;
IEl2 < |ElF < 1X7 DR OX NP < f(n)viu| X2,

where X = DxX,, Dx = diag(]| X7e;|2). Hence, the departure from orthogonality of the matrix X !X is
invariant under row scalings of X. It is governed by the condition numbers || X 1|2 or

x2(X) =1 XY - 1 X] 2. (35)

In floating—point computation, the matrix f/)’(= X~1X,, is not known exactly, and we need an estimate of the

error in the computed approximation Vx ~ V)’(For this, we assume that X is triangular and we use back or
forward substitution to compute Vx as the floating—point solution of the matrix equation

XV =X,. (36)

Proposition 3.1 Let X be a nonsingular lower or upper triangular matriz and let Vx be the computed solution
of the matric equation (36), where X satasﬁes (82), (33). If V’ = X"1X, then

nu

Vx = Vil Se-(I—elX7H - 1X)7 XY |X] - [Vk], 0<e< (37)

1—nu’

provided that € < 1. Further, if exa(X) < 1, then max;, ; |V§Vx — I < 2ex2(X) + 2/Z]2 + O(u?).

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS 11

Proof: Using [31, Theorem 8.5], we conclude that the computed matrix Vy satisfies

nu

XVx = Xoo = &v, |Ev]<elX|-|[Vx|, 0<e< (38)

~1-nu’
where we assume that € < 1. The upper bound for & can be as small as O(u) +O(nu?) if we use double precision
accumulation of the dot product in the row oriented triangular solver. Using the relation Vy = VX +X1gy
and the inequality .

Ev] < el X|- Vx| +elX]- | X7 |ev], (39)

we conclude that , , X
(I —el X7 IXD) - XY - (v < el XY X Vx| (40)

and, since I — ¢|X 71| .|X| is an M-matrix, that -
(XY fevl S e (T—elX 71X XTI Vk . (41)

Relation (37) follows from the triangle inequality |Vx — V§| < | X ~!|-|Ey|. Further, from the triangle inequality
\Vx — Vx| < [Vx — V| + |V — Vx| and relations (37), (34), it follows that

ex2(X)

Ve = Vxedls < 722 2 (4 [2)) + =]

where we assume that XQ(X) < 1/e. Since Vx is orthogonal, the columns of Vy are mutually orthogonal up to
2ex2(X) + 2|2 + O(u?). | QED.
From Proposition 3.1, it follows that Vy is almost orthogonal and a close approximation of Vy if x2(X) is
moderate. If Vi is close to the true singular vector matrix Vx, then the triangle inequality implies that Vy is
a good approximation of Vx. It holds that 1Vx — Vxlla < IVx = Vxlla + IVx — Vx||2, where the upper bound
for HVX — VX||2 depends on the condition number x2(X) and the bound for ||VX — Vx|l2 depends on x2(X)
and on the relative separation of the singular values of X (cf. [13]). Thus, one can expect that |[Vy — Vx||2 is
not larger than ||Vx — Vx l|l2. (Note that we can explicitly normalize the columns of Vi so that the error in the
computed singular vectors is purely angular.) :
Consider the decompos1t10n X~ Ux3 XV . It is of interest to know if there exists a small backward error
AX such that X + AX = UxSx VX Equlvalently, —AX represents the residual X — Ux % Xf/‘ The residual
error is introduced only in computing Vx, independent of the accuracy of U XZ x. For simplicity, we can identify
Xoo = UxSx. From relation (38) it follows that X = UXZXVX + EVVX and we can define

AX = —&y V!, where |AX|<e|X|-|Vx| |V, : (42)

and || |[Vx|- V¢! |2 is bounded by || [Vx| [l2(1 + O(|Vx — Vx|l2)). Hence, the decomposition X =~ Ux¥xVy
is backward stable. Its usefulness as an approximate SVD or as a rank revealing decomposition (cf. [10]) is
determined by the value of x2(X) which is the condition number for the departure from orthogonality of the
matrix VX,

The key observation is that x2(X) is always moderate if X is triangular matrix computed using the QR
factorization with column pivoting of a full column rank matrix A with moderate minp—giag k2(AD). Let
X = Ra,or X = Rg,,or X = Ry, where R4 and Rp, are defined in (5), (7), and the column pivoting is the
one of Golub [25]. In that case || [R;!|- |Ra| ||s is bounded by O(2"), independent of A. Using the column
pivoting of Gu and Eisenstat [29], this bound reduces to the order of the Wilkinson’s O(1+(1/4)log: n) hound
for the pivot growth in the Gaussian elimination (cf. [46]).

In the practice, xoo(Ra) = || |R3'|-|Ra| |00 is usually of the order of n. Note that xa(-) and xoo(-) are
invariant under matrix row scalings. Therefore, the value of x2(R4), for example, is essentially determined by
the size of the inverse of (Ra), = diag(||Rye;ll2) " Ra, where || [(Ra); Y |l2 < 7l [(Ra)7Y |2 and (Ra). =
Radiag(||[Raeill2)*. (Cf. Proposition 2.2.) As a conclusion, we expect that x2(R,) is moderate condition
number which can be bounded by minp—_giag £2(AD) (up to a polynomial factor of the dimension n) or by

12 7. DRMAC

an O(n!t(1/9log2m) hound, independent of A. Hence, we can expect that the second QR factorization with
pivoting computes even better conditioned Rg,. (Cf. the convergence results of the block QR SVD algorithm
by Mathias and Stewart [37].)

Taking X = R4 guarantees moderate x2(X), but it does not take advantage of the QR preconditioning.
(Taking X = R7, improves the convergence of the Jacobi SVD algorithm, but the departure from orthogonality
of the matrix Vy is governed by sa((Ra).).) On the other hand, taking X = Rg, or X = R}, ensures improved
convergence of the Jacobi SVD algorithm and moderate x2(X). With this choice of X we also have satisfactory
column-wise bounds for the residual XVyx — UxSx. More precisely, the column—wise relative residuals
NE G)

Gilltill2
satisfy
o elIXT Xl exe(XTY)
PETS IX X T 1 enX)

(This bound for p; follows from relations (38), (39). Note that taking X = Rp, or X = R, also ensures
moderate y2(X 1)) ' ,

(44)

3.1 Backward stability

The choice X = R}, implies a nice backward stability result. Let Ri~ Ry and R &, =~ Rr, be the computed
triangular factors in the QR factorizations (5) and (7). Then there exist an orthogonal matrix Qp , and a
backward error 6 R4 such that '

W+ (ORA) = Qi Rp,, 10Ra| < q(n)ulRA|G, (45)

where ¢(n) is modest polynomial and G is as in relation (33). Using relation (32) with X = R%A and X =

UxSx we obtain

UxYx = (Ra+ARA)(Qp, Vx), ARa=06Rs+ 5XCA2}3A, (46)
where
[ARAl < q(m)ulRalG + f(n)nulRal - 1Qs, |- G 1Q%, | + F()a(nynu?|Ral - G - Q5,1 - G - Q7|

Il

Ral(a()G + f()n|Q, |-G - Q| + uf(m)a(mnGlQs, |- C 1@, -
(Note that max; ;(|Qz,| - G- |Q;~2A|)ij < 1.) A similar relation holds with Vx in place of Vy:
OUxSx = (Ra+ ARa)Qp, Vx): ANRa=0Ra+AXQT | (47)
where AX is as in relation (42) and
|AX]-1QF, | < elRal(I + a(n)uG)(1Qg, | - Vx| - [V - 1QF, |- (48)

Hence, starting with Ry4, the computation of Ux, ©x, Vx with X = R;}A is backward stable, the backward

error in Ry is invariant under row scalings, and the condition number that determines the accuracy of the
computed singular values is || |R;"| - |Ral |2-

3.2 Iterative refinement

The orthogonality of Vx can be checked and, if necessary, improved. We can use the decomposition X ~
Ux¥xVy ! as a starting point for an iterative refinement. The goals of the iterative refinement are: (i) to
improve the orthogonality of Vix; (%) to improve the accuracy of Ux and Xx. Since UxXxVy L= X + AKX,

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS 13

where AX is the small backward error introduced in solving linear system (cf. relation (42)), this iterative
refinement may also be useful if the matrices Uy, Sx are computed by an algorithm less accurate than the
Jacobi SVD algorithm.

The method is to consider the SVD of UXE XVX as the generalized SVD of the pair (Ux, VXE) We
can apply the Jacobi SVD algorithm to VxS 3! Y and simultaneously apply the Jacobi rotations to the matrix
Ux. Since Uy is orthogonal up to O(nu), the generalized singular values of (Ux, VXE 1Y will be computed to
relative accuracy determined by minp—giag lig(VxD> In the Jacobi SVD algorithm, Vy is almost orthogonal
and, thus, KQ(V)() is moderate. The error analysis is omitted for the sake of brevity. (It is an interesting problem
to analyze the iterative refinement if Uy, $x are computed by fast SVD algorithms such as the divide and
conquer algorithm.)

3.3 Using the left singular vectors
From the SVD X = Ux¥x V5 it follows that

Vy = X 'WUxEx = XTUxEy

which means that we may also try to compute Vy by normalizing the columns of X7Ux. Since Uy is nearly
orthogonal, this might seem better than using the inverse of X. Surprisingly, it is less satisfactory from the
numerical point of view. Numerical evidence of the failure of this approach is reported by Jessup and Sorensen
[34] in connection with the SVD computation of bidiagonal matrices, and a Lanczos correction process is
proposed by Arbenz and Golub [3]. It can be shown that the departure from orthogonality of X TUXE Lis
controlled by k2(X), the condition number we successfully avoided throughout the previous analyses. Assume
for simplicity that we can multlply X Ux exactly. From UT Ux = I + &y, it follows that Ux = U I+ &y)
and

XTUX =X"(X+ (SX)_TVXE)((I + gU) = ,(] -+ X—15X)—TVsz(I + 5(]). (49)

Since &y is full and symmetric, we see that in the case of large lﬁ)g(i x) mutual orthogonality of the columns of
XT7Ux cannot be guaranteed. This is more apparent if we analyze the matrix

XUxS =T+ X716X) " Vx(+ ExEuERY) = Vi (ExULUx SR, (50)

Note that the multiplicative error factors (I + leSU i;{l) and Y¥xU% U Xi)‘{l are not necessarily close to identity
because (ixé'yi‘l) = (SU)H 53- and (EXU)Q(?xi“l)ij = (U)T(Ux)ij-‘.{f& can be large if k(X)) is large.
ij

Relations (32) and (50) illustrate a subtle difference between computation of the matrix Vy using the for-
mula Vy ~ X"Ux S5 % and using the matrix equation (32). Namely, in relation (50), the computed matrix Uy
must perform well as an approximation of the right singular vector matrix of X7, while in equation (32) the
floating—point inverse of the initial data matrix X must filter X + §X from the product (X + X)VX in order
to approximate the exactly orthogonal matrix Vx.

4 Numerical examples

In this section we use numerical examples to illustrate the ideas and the theoretical estimates from the previous
section. Our goal is to demonstrate that the proposed modification of the Jacobi SVD algorithm improves its
efficiency. Our machine is a DEC Alpha Server 2100 4/275. The test is run in single precision (u ~ 5.96-1078%)
on a single DECchip 21064 processor, running at 275 MHz and with 16 Kb I-cache, 16 Kb D-cache, and 4Mb
module-level backup cache (B—cache). We use LAPACK 2.0 and BLAS from the Digital Extended Math Library
(DXML) V3.2 (dxml). _
Our new algorithm is implemented as follows: we use two preconditioning steps (cf. (5), (7)), where the
QR factorizations with column pivoting of A and R are computed using the SGEQP3() procedure from [39].
We compute the SVD of A using our new implementation of the Jacobi SVD algorithm applied to X = R},

14 ' 7. DRMAC

m = 500, n = 400

i i L L L L L
[o] 200 400 600 800 1000 1200 1400 1600 1800
Maximal departure from orthogonality = 8.686e-05

»>oOO
T
1

w
T
i

N
¥

t_Jacobi/t_SGESVD

-

=]

: 1 - i3 L
0 200 400 600 800 1000 1200 1400 1600 1800
Mean value of t_Jacobi/t_SGESVD = 1.223 .

Figure 2: Test results in Example 4.1 with m = 500, n = 400.

and then we use relation (8). In our present software implementation, the computed right singular vectors of
X = Rpg, are explicitly scaled to have unit Euclidean norm, and the iterative refinement is not used. Jacobi
rotations are implemented as described in § 2 (cf. [1], [18]), and the pivot strategy is a variation of the row—
cyclic strategy with column pivoting of de Rijk [9]. More precisely, in the first sweep of de Rijk’s strategy we
transform for each i = 1,...,n — 1 only column pairs with pivot indices (4,7), j =4+ 1,...,min{i + n/10,n}.
The motivation for this modification is given in the discussion in Section 2.1.

Example 4.1 In this example, we set m = 500, n = 400 and we generate a sequence of test matrices as follows:
Each test matrix is of the form A = A.D4, where A, has equilibrated columns and D4 is diagonal. We let
k2(Ac) have the values 10,10%,...,107. For each fixed ry(A.) we generate a set of matrices with different
k2(D4), where ko(Dga) takes the values 10%,108,101,10%,10%7,10%°,10%3. For each of 49 generated pairs
ka(Ac), ka(Da) we generate 36 test matrices by letting the singular values of A., D4 independently have the
six distributions described by the parameter MODE in [12]. This gives the total of 1764 test matrices. We compute
the singular values, the right singular vectors and the 400 corresponding left singular vector. For each computed
SVD we use the computed right singular vector matrix V and double precision dot product accumulation to
compute

max VTV — I|;;.
2,7

We also record the time “t_Jacobi” needed for computation using the new algorithm. The unit time is chosen
to be the time “¢_SGESVD” of the SGESVD() procedure from LAPACK 2.0. The results given in Figure 2 show
that the computed right singular vectors are orthogonal up to O(nu) and that in most cases the time of the
Jacobi SVD algorithm was below 1.5 times the time of SGESVD().

Example 4.2 In this example, the test matrices are generated as in Example 4.1, but we restrict the parameter
MODE to the set {3,4,5,6}. In this way, we avoid test matrices with large clusters of singular values. The results
are given in Figure 3.

Example 4.3 In this example, the test matrices are generated as in Example 4.2 with the difference that
k2(D 4) takes the values 104,106,108, ...,10%4,10'6. In the first run we set m = 500, n = 300, and in the second
m = 500, n = 250. The results are given in Figure 4 and Figure 5. In this case, the efficiency of the Jacobi
SVD algorithm is also due to the efficient implementation of the QR factorization preconditioner which reduces
the SVD computation to the dimensions of 300 and 250, respectively.

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS

2.5

N

m = 500, n = 400

s 1 t

L L
100 200 300 400 500

800 700 800
Maximal departure from orthogonality = 6.034e-06

-
tn

t_Jacobi/t_SGESVD

YL
LA B
o

LA

“o

3 PR T T Rrres) g A p - =
r“"'“"“ﬂrl""-""“'zf'}""”'”"-"'“‘*"‘"“:e-““’-"'-‘*?‘"‘-""-"\“'5'
0.5

TeTaretn letel tas e,
1 L i 1) I

100 200 300 400 500

600 700 800
Mean value of t_Jacobi /t_SGESVD = 1.146

Figure 3: Test results in Example 4.2 with m = 500, n = 400.

‘m = 500, n = 300

L L)

2.5

200 300 400 500 600
Maximal departure from orthogonality = 5.629e-06

N

-
0

t_Jacobi/t SGESVD

st it

XL L

te : - - .
: BRI N e e, .
23" A SR e Ty e o VT ey B

°
o

SR

L
100

bt JLFRTEIS

P

e g
N R T AN N e
IRUPI AR I T Gt LT

S
B I E S L YIRS

: 1 i

[¢]

1 i
200 300 400 500 600 700 800
Mean value of t_Jacobi / {_SGESVD = 0.9582

Figure 4: Test results in Example 4.3 with m = 500, n = 300.

107

max_j | VArv-|
5

L ! L

L L L

25

200 300 400 500 600 700 800
Maximal departure from orthogonality = 4.836e-06

N

by
o

t_Jacobi/t_SGESVD

N3

o
]

[¢]

PRI S
..;-uh...oan’u’.\

o

L
100

A (22
ol Yo}

xFIa3a NI Vin s iramar

1 i i \ |

L
200 300 400 500 . 600

700 800
Mean value of t_Jacobi / t_SGESVD = 0.9245

Figure 5: Test results Example 4.3 with m = 500, n = 250.

15

16 ' 7. DRMAC

spy(P_1) spy(P2)

100
200‘
300}

400}, .

500'. N -

600 — i :
0 200 400 600 0 200 400 600
nz = 600 nz = 600

Figure 6: The permutation matrices P; and P, in the QR factorizations (5) and (7) with a random 700 x 600
matrix A.

5 Concluding remarks and future work

In this work, we have presented a new idea that is an attractive alternative to the standard implementation of
the Jacobi SVD algorithm. We have shown that the accumulated product of Jacobi rotations can be a posteriori
computed as the solution of a certain well-conditioned system of linear equations, and we have provided tools
to estimate, check and, if necessary, to improve the accuracy of the computed matrix.

The new implementation in many cases reaches the efficiency of the bidiagonalization based SVD algorithm
from machine optimized library LAPACK 2.0.

We conclude with a few interesting questions related to the ideas presented in this paper.

Can we improve the performance of the second QR factorization with column pivoting (7) by using local
instead of the global pivot search? Local pivoting increases data locality and the results of Bischof [6] suggest
that better performance can be obtained on both serial and parallel machines, and that the rank revealing
property can be monitored using the incremental condition estimator. How these ideas apply to the second QR
factorization in the preconditioning of the Jacobi SVD algorithm? To illustrate, we use MATLAB to compute
the QR factorizations (5), (7) of a random 700 x 600 matrix A and in Figure 6 we plot the zero patterns of
the permutation matrices P; and P5. The band structure of P, indicates that the second QR factorization can
be computed with local pivot search and with possible utilization of the triangular structure. What if we use
Py =17

The preconditioning and the computation of the right singular vectors are based on BLAS 3 operations in
our implementation, while the Jacobi rotations are applied column—wise to a single square array using BLAS
1 operations. Can we develop an efficient block implementation of the Jacobi rotation (based on BLAS 2 or
BLAS 3) and combine it with the a posteriori computation of the right singular vectors? What kind of accuracy
can we expect?

In our current implementation we do not use the quasi—cyclic strategy described in Section 2.1. Can that or
some other strategy lead to a better use of memory hierarchy with a more efficient implementation of the first
sweep of rotations and with faster convergence in the rest of the computation?

We believe that positive answers to these questions will make our approach a solid basis for a high performance
implementation of the Jacobi SVD algorithm.

Acknowledgments

I would like to thank J. Barlow (State College), J. Demmel (Berkeley), V. Hari (Zagreb), E. Jessup (Boulder),
I. Slapnicar (Split), K. Veseli¢ (Hagen) for many useful discussions and comments.

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS . 17

References

[1]

2]

A. A. Anda and H. Park. Fast plane rotations with dynamic scaling. SIAM J. Matriz Anal. Appl.,
15(1):162-174, 1994.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenny, S. Ostrouchov, and D. Sorensen. LAPACK users’ guide, second edition. SIAM, Phlladelphla
PA, 1992.

P. Arbenz and G. H. Golub. On the spectral decomposition of Hermitian matrices modified by low rank
perturbations with applications, SIAM J. Matrix. Anal. Appl., 9(1):40-58, 1988.

P. Arbenz and M. Oettli. Block implementations of the symmetric QR and Jacobi algorithms. Research
report 178, Department Informatik, ETH Ziirich, June 1992.

J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. STAM
J. Num. Anal., 27(3):762-791, 1990.

C. H. Bischof. A parallel QR factorization algorithm with controlled local pivoting. SIAM J. Sci. Stat.
Comput., 12(1):36-57, 1991.

J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley. A proposal for a set of
parallel basic linear algebra subprograms. Technical report, 1995. Technical report CS-95-292, Department
of Computer Science, University of Tennessee, Knoxville (LAPACK working note 100).

A.J. Cox and N. J. Higham. Stability of Householder QR factorization for weighted least squares problems.
Technical report, Manchester Centre for Computational Mathematics, University of Manchester, England,
July 1997. Numerical Analysis Report No. 301, to appear in Numerical Analysis 1997, Proceedings of the
17th Dundee Conference, D. F. Griffiths, D. J. Higham and G. A. Watson, eds.

P. P. M. de Rijk. A one-sided Jacobi algorithm for computing the singular value decomposition on a vector
computer. SIAM J. Sci. Stat. Comp., 10(2):359-371, 1989.

J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, K. Veseli¢, and Z. Drmac¢. Computing the singular value
decomposition with high relative accuracy. Technical report CS-97-348, Department of Computer Science,
University of Tennessee, Knoxville (LAPACK Working Note 119), Submitted to Lin. Alg. Appl., 1997.

J. Demmel and W. Kahan. Accurate singlilar values of bidiagonal matrices. SIAM J. Sci. Stat. Comp.,
11(5):873-912, 1990. -

J. Demmel and A. McKenney. A test matrix generation suite. LAPACK Working Note 9, Courant Institute,
New York, March 1989.

J. Demmel and K. Veseli¢. Jacobi’s method is more accurate than QR. SIAM J. Matriz Anal. Appl.,
13(4):1204-1245, 1992.

J. W. Demmel. The condition number of equivalence transformations that block diagonalize matrix pencils.
In Matriz Pencils, Lecture Notes in Mathematics 973. Springer Verlag, 1983.

J. J. Dongarra, J. J. Du Croz, I. Duff, and S. Hammarling. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., pages 1-17, 1990.

Z. Drma¢. Computing the Singular and the Generalized Singular Values. PhD the51s, Lehrgebiet Mathe-
matische PhySIk Fernuniversitat Hagen, 1994.

Z. Drma¢. Fast and accurate algorithms for canonical correlations, weighted least squares and related
generalized eigenvalue and singular value decompositions. Department of Computer Science, University of
Colorado at Boulder, Technical report CU-CS-833-97, March 1997.

18 , 7. DRMAC

[18] Z. Drma¢. Implementation of Jacobi rotations for accurate singular value computation in floating point
arithmetic. STAM J. Sci. Comp., pages 1200-1222, 1997.

[19] Z. Drma¢. On principal angles between subspaces of Euclidean space. Department of Computer Science,
University of Colorado at Boulder, Technical report CU-CS-838-97. submitted to SIAM J. Matrix Anal.
Appl., March 1997.

[20] Z. Drmag¢. Accurate computation of the product induced singular value decomposition with applications.
SIAM J. Numer. Anal., to appear., 1998.

[21] Z. Drmaé¢. A tangent algorithm for computing the generalized singular value decomposition. SIAM J.
Numer. Anal., to appear., 1998.

[22] D. K. Faddeev, V. N. Kublanovskaya, and V. N. Faddeeva. Sur les systemes linearies algebriques de
matrices rectangularies et mal-conditionnees. In Programmation en Mathematiques Numerigues, Editions
Centre Nat. Rechemhe Sci., Paris, VII, pages 161-170, 1968.

[23] K. V. Fernando and B. N. Parlett. Accurate smgular values and differential QD algorithms. Numer. Math
67:191-229, 1994.

[24] K. V. Fernando and B. N. Parlett. Implicit Cholesky algorithms for singular values and vectors of triangular
matrices. Numerical Linear Algebra with Applications, 2(6):507-531, 1995.

[25] G. H. Golub. Numerical methods for solving linear least squares problems. Numer. Math., 7:206-216, 1965.

[26] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. SIAM J.
Numer. Anal., 2(2):205-224, 1965.

[27] G. H. Golub and C. F. Van Loan. Matriz Computations, third edition. The Johns Hopkins University
Press, 1996.

[28] M. Gu and S. Eisenstat. A divide-and—conquer algorithm for the bidiagonal SVD. SIAM J. Matriz Anal.
Appl., 16:79-92, 1995.

[29] M. Gu and S. Eisenstat. An efficient algorithm for computing a strong rank-revealing QR factorization.
SIAM J. Sci. Comput., 17(4):848 — 869, 1996.

[30] M. R. Hestenes. Inversion of matrices by biorthogonalization and related results. J. SIAM, 6(1):51-90,
1958. ‘

[31] N. J. Higham. Accuracy and Stability of Numerical Algorithms. STAM, 1996.

[32] C. G. J. Jacobi. Uber eine neue Aufléungsart der bei der Methode der kleinsten Quadrate vorkommenden
lineéren Gleichungen. Astronomische Nachrichten, 22:297-306, 1845,

[33] C. G. J. Jacobi. Uber ein leichtes Verfahren die in der Theorie der Sécularstérungen vorkommenden
Gleichungen numerisch aufzulosen. Crelle’s Journal fir reine und angew. Math., 30:51-95, 1846.

[34] E. R. Jessup and D. C. Sorensen. A parallel algorithm for computing the singular value decomposition of
a matrix. STAM J. Matriz Anal. Appl., 15(2):530-548, 1994.

[35] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice—Hall Inc., Englewood Cliffs, N.
J., 1974. ‘

[36] R. Mathias. Fast accurate eigenvalue methods for graded positive definite matrices. Numer. Math., 74:85—
103, 1996.

[37] R. Mathias and G. W. Stewart. A block QR algorithm for singular value decomposition. Linear Algebra
Appl., 182:91-100, 1993.

A POSTERIORI COMPUTATION OF THE SINGULAR VECTORS . 19

(38]

39]

[40]

[41]

42]

M. J. D. Powell and J. K. Reid. On applying Householder transformations to linear least squares prob-
lems. In Information Processing 68, Proc. International Federation of Information Processing Congress,
Edinburgh, 1968, pages 122-126. North Holland, Amsterdam, 1969.

G. Quintana-Orti, X. Sun, and C. H. Bischof. A BLAS 3 version of the QR factorizatioh‘with column
pivoting. Argonne Preprint MCS-P551-1295 and PRISM Working note § 26, Argonne National Laboratory,
1990.

N. H. Rhee and V. Hari. On the global and cubic convergence of a quasi—cyclic Jacobi method. Numer.
Math., 66:97-122, 1993. ‘

R. A. Rosanoff, J. F. Gloudeman, and S. Levy. Numerical conditions of stiffness matrix formulations for
frame structures. In Proc.of the Second Conference on Matriz Methods in Structural Mechanics, WPAFB
Dayton, Ohio, 1968.

H. Rutishauser. Vorlesungen tber numerische Mathematik, Band 2., Differentialgleichungen und Eigen-
wertprobleme. Birkh&user Verlag, Basel und Stuttgart, 1976. Lehrbiicher und Monographien aus dem
Gebiete der exakten Wissenschaften, Math. Reihe, Band 57.

G. W. Stewart. A gap-revealing matrix decomposition. Technical Report TR~3771, Department of Com-
puter Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD
20742, 1997.

A. van der Sluis. Condition numbers and equilibration of matrices. Numer. Math., 14:14-23, 1969.
K. Veseli¢ and V. Hari. A note on a one-sided Jacobi algorithm. Numer. Math., 56:627-633, 1989.

J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J. Assoc. Comput. Mach., 8:281-330,
1962. ,

