A Framework for Workflow Architectures

Kwang-Hoon Kim
Clarence A. Ellis

CU-CS-847-97

JUniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

A Framework for Workflow Architectures

Kwang-Hoon Kim Clarence A. Ellis

CU-CS-847-97 OCTOBER 1997

University of Colorado at Boulder

Technical Report CU-CS-847-97
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309-0430

A Framework for Workflow Architectures

Kwang-Hoon Kim Clarence A. Ellis

October 1997

Abstract

This paper defines a multiple-level framework for the description of workflow management systems
focusing on their software architectural aspects. The framework, consisting of generic-level, conceptual-
level and implementation-level, provides common architectural principles for designing a workflow
management system. Based on the framework, we suggest a new conceptual taxonomy for workflow
management systems.

The taxonomy is formed by considering possibilities for centralization or distribution of data, control, and
execution; along with considering how the major components of a workflow system, such as activities,
roles, actors, and workcases, are represented and manipulated.

We believe that this framework and taxonomy are a significant contribution because they add clarity,
completeness, and “global perspective” to workflow architectural discussions. The vocabulary suggested
here includes workflow levels and aspects, allowing very different architectures to be discussed, compared,
and contrasted. Added clarity is obtained because similar architectures from different vendors that used
different terminology and techniques can now be seen to be identical at the higher levels. Much of the
complexity can be removed by thinking of workflow systems in terms of the dimensions introduced here.
The framework categorizes existing architectures and suggests a plethora of new architectures. As an
example, we introduce the “Dispersed Actor-Oriented Workflow Architecture” as a promising new
architectural structure suggested by our taxonomy.

The framework and taxonomy can be used for sorting out gems and stones amongst the architectures
possibly generated. Thus, it might be a guideline not only for characterizing the existing workflow
management systems, but also for solving long-term and short-term architectural research issues, such as
dynamic changes in workflow, transactional workflow, dynamically evolving workflow, large-scale
workflow, etc., that have been proposed in the literature.

Key words: Workflow Management Systems, Workflow Enactment Engines, Workflow Management
Architectures, Architectural Framework, Software Architecture

1. Introduction

The design and implementation of workflow management systems is typically a large and complex task.
Decisions need to be made about the hardware and software platform, the data structures and algorithms,
and the interconnection of various modules used by various users and administrators. These design
decisions are further complicated by requirements such as scalability, robustness, speed, and usability. In
this document, we describe an architectural framework conceived to be helpful in the design and
implementation of workflow, and in the understanding of the spectrum of possibilities for workflow
architecture.

The framework developed herein is primarily concerned with workflow enactment engines, and with their
software architecture. However, the PhD thesis being completed in this area [31] generalizes the notions
that we present here, and in fact, the low-level architecture which we define in a later section is concerned
with hardware and communication architecture as well as software. In general, the main reason that the
concept of software architecture has started emerging in the software literature is that the software design
problem goes beyond the algorithms and data structures of the computation as the size and complexity of
software systems increases. In other words, the software architecture level of design in system
development processes has become an important step when designing complex systems. So far, there have
been several well-defined terms and notations to characterize architectural structures in the software
development field.[13] ‘

In the meantime, there has been an implicit body of work on the software architecture of workflow
management systems. Usually, a particular notation is used to describe a particular workflow management
system. So, not much progress has been made in developing a systemically well-defined terminology,
notation and classification to characterize architectural structures in the workflow literature. Qur concern
in this paper is restricted to the workflow enactment part of a workflow management system, which-
typically has capabilities to create, manage and execute workflow procedure’s workcases [14][16][301.
Many of the workflow architecture descriptions in the open literature represent only the implementation
level details. [1][4]1[51[10][18] Others are simply documented at the conceptual level.[19][24][28]

This paper tries to systematically formulate a way (framework) to describe and design workflow
management architectures, and suggests a conceptual-level taxonomy of workflow management
architectures to grasp many kinds of architectures for workflow management systems including current
existing systems as well as future systems. The purpose is to illustrate the current state of the workflow
architecture work, and to examine ways in which architectural design can impact future workflow
management systems. Future architectures will need to support highly advanced workflow features, like
dynamic changes, transactional workflow management, and large scale workflow management. Our
presentation is especially aimed toward showing possible future architectures that may be useful to support
some of these advanced workflow features.

In the following sections, we define an architectural framework, consisting of generic-level, conceptual-
level and implementation-level, to systematically form a workflow management system, and provide some
architectural considerations that should be described on each level. Next, we suggest a conceptual-level
workflow architectural taxonomy. Finally, a promising new architecture called “Dispersed Actor-Oriented
Workflow” is presented in the end of the paper.

2. An Architectural Framework

This section introduces an architectural framework and principles, useful when designing a workflow
management system. It suggests three levels of architectural description: Generic-level, Conceptual-level
and Implementation-level. We specify what contents or criteria should be covered in each level as shown
in Figure 1.

It is manifest that the development of an efficient workflow management system requires common
architectural principles because of the following reasons:

e Common paradigms are quite important so that high-level relationships among different workflow
systems can be understood and so that new systems can be more clearly distinguished from old
systems.

High-Level Architecture
i Generic Considerations
» Overall Architectural Components

Middie-Level Architecture

. Conceptual Considerations
*» Component Configuration

* Scheduling Mechanism

* Data Management Strafegy

. Low-Level Architecture

“ Implementation Considerations
* Network Configuration

* Communication Mechanism

» Data Placement Strategies

* Distributed Resource Management

Figure 1. Architectural Framework for Workflow Management Systems

e A workflow management system is complex. So, a well-defined as well as a well-leveled architectural
system description is essential to analyze important properties of a workflow management system. -

e Detailed grasping of multiple-level workflow management architectures enables principled choices
among design alternatives, and paves the path for accurate workflow comparison and benchmarking.

e Getting the right architecture is often crucial to the success of a workflow management system
design; An incompatible architecture can cause significant problems.

In Figure 1, some considerations that should be taken inio account on each level of the framework are
introduced. Of course, important considerations other than the specified on each level may be worth
deliberation. But, the specified considerations are essential points to be duly considered for the design and
implementation of a workflow management system. Especially, the creation of a conceptual-level
architecture is a most important phase, because the architecture created on this level is the representative
architecture for the workflow management system.

3. Generic-level Considerations

At this level, a common high-level framework from which to view the architectural styles of workflow
management systems is defined. The framework allows us to view an architecture of a specific workflow
management system as a collection of generic components - or simply dimensions. Then, an architecture
defined in this level represents a family of systems, each member of the family being defined differently at
the middle and low levels.

More specifically, a generic architecture is defined by specifying its control, script, and data components
as each being centralized, decentralized, or dispersed. Thus each of the boxes in the 3X3X3 cube of
FIGURE 2 represents a different generic architecture. In other words, the generic functionality of a
workflow management system consists of three dimensions and a structural pattern on each of them:

e a pattern of control structure; Who makes the control of decisions or schedule for workflow
enactment? Who keeps the control information?

e qa pattern of data structure: Where keeps the application data? Who works on them?
o a pattern of execution structure: Where are workflow scripts stored? Who executes them?

As illustrated in FIGURE 2, the structural pattern of each dimension can be: Centralized, Decentralized or
Fully dispersed.

SCRIP CUTION

Fully
Centralized Decentralized pispersed

CONTROL

Centralized .

DATA

.« Centralized

Decentralized 4.
Decentralized

Fully Dispersed .

Fully Dispersed

Figure 2. Dimensions for Generic Architectures
e Centralized: Data, control and execution are kept on a single site.
e Decentralized: Data, control and execution are kept on a fixed number of sites that are pre-determined.

e Fully Dispersed: Data, control and execution are (dynamically) kept on several sites and by active
components,

Many hybrid mixes of the above structural components on each dimension are possible.

3.1 Typical Generic Architectures

Ficure 3 shows a set of generic architectures that are appropriate for the design of a workflow
management system. When we consider the current workflow management products, almost all fall into
one of three of these generic architectural categories: mainframe (centralized in all aspects), client-single
server (decentralized script execution; centralized control and decentralized application data), and client-
multiple servers (decentralized script execution, decentralized control and decentralized application data).

SCRIPTS(EXECUTION)

Cenftralized Decentralized Fully Dispersed

CONTROL

Centralized

DATA

» Centralized

Decentralized

Fully Dispersed Decentralized

. Fully Dispersed

* Mainframe: Centralized Control/Execution/Data
* NEW: New paracigm for Workfow Management
¢ Client/SVR: Single Server Mechanism

* Client/SVRs: Multiple Server Mechanism

» UnIMP: Possible, but Unirmplemented

* Process: Process/Thread or Decision Agent

Figure 3. Typical Generic Architectures

Highly related work is the standard proposed by the Workflow Management Coalition [30]. This work is
primarily concerned with defining interfaces between the workflow enactment engine and other external
entities of clients, invoked applications, administration, monitoring tools, definition tools, and other
workflow systems. This work defines workflow terminology, but is not directly concerned with the space
of workflow enactment architectures.

4. Conceptual-level Considerations

As presented in the Figure 1, the conceptual level is more detailed than the generic level, but is not
concerned with concrete low level details (e.g. nodes and network connectivity) of the implementation
level. This level presents a detailed conceptual picture of how scheduling and data storage and access
work. An architecture defined at this architectural level is a specialized description of an instance of a
generic architecture. Therefore, the conceptual distinctions among workflow management architecture
details are specified on this level.

Each box in Figure 4 represents a different conceptual architectural possibility. At the conceptual level
architecture, the following considerations should be basically considered to characterize and classify each
of the different architectures:

a pattern of control for enactment schedules or decisions
major components in the workflow model

a type of process structure for each of the model components to be concretized in a conceptual
architecture.

COMPONENTS
Workg;oseA vty
C.';:;'.VI Role
CONIROL ;o # AT pROCESS
STRUCTURE
Cenralized ‘
Vertically Distributed : : s Active

Horizontally Distributed
Fully Distributed .

Figure 4. Dimensions for Conceptual Architectures

The first dimension of the conceptual model is the control dimension. The pattern of control consists of
four possibilities in terms of the type of distribution: Centralized, Horizontally Distributed, Vertically
Distributed and Fully Distributed control of workflow enactment. The vertically distributed control pattern
means that multiple copies of an architectural component, of which take the control functionality in
charge, exist on a conceptual architecture. The horizontally distributed control pattern means that the
functionality of control is putting in charge of multiple architectural components on a conceptual
architecture. The fully distributed control pattern is the combined pattern of both of the previous patterns.

The second dimension of the conceptual model is the components dimension. We advocate an open ended
list of possible components. The list is something that may expand in the future as workflow systems
encompass social and organizational aspects more comprchensively. A list of components could, for
example, include a temporal component, an information component, a social component, a resource
component, and others. In this paper, we consider only major components identified by the Workflow
Management Coalition, and defined in standard workflow definitions [30]. Thus, the major components in
our conceptual workflow model that are able to be either active or passive are workcases, activities, roles
and actors.

The third dimension is the process structure. The type of process structure consists of an active process
structure type and a passive process structure type. Some of the workflow model components are active if
they are embodied as processes or threads in a conceptual architecture. While on the other, they are
passive if they are represented as data in a conceptual architecture.

In this section, after more fully explaining about those dimensions, a considerable body of work on the
conceptual level taxonomy of workflow management architectures will be done. At the same time, which
of the current available workflow management architectures should belong to which branch of the
taxonomy will be examined.

4.1 Detailed Explanations of the Conceputal-level Dimensions

Generally speaking, there are several criteria or dimensions being used to characterize architectures in
terms of conceptual aspects. The optimal set of criteria, which is completely grouping architectures and
fixing some common properties of each architecture, has been sought through the architectural
framework. That is the very three dimensions presented in the Figure 4 and explained in the conceptual
level of the framework: Components of the workflow model, a pattern of workflow enactment control and
a type of process structure.

4.1.1 Active-Model vs. Passive-Model

The workflow model is able to be well represented by the entity-relationship model as shown in Figure 5.
Among the components of the workflow model, the following five are what the control part of a workflow
management system has to handle.

e An Actor is a person, group, or computing facility that can fulfill to execute, to be responsible for, or to
be associated in some way with activities, procedures, resources, and other actors, So, actors have some
dependent relationships each other, based on the execution sequence of their activities.

e An Activity is a work step of a procedure. An activity is either a compound activity, containing
another procedure, or an elementary activity. each activity has associated with transition conditions,
invoked applications, input/output repository, and jobs.

¢ A Role is a named designator for an actor, or a grouping of actors which conveniently acts as the basis
for access control and execution control.

e A procedure is a predefined set of work steps, and a partial ordering of these steps. A work step
consists of a header(identification, precedence, etc.) and a body(the actual work to be done).

e A Job is the locus of control for a particular execution of a procedure. The job is called a workcase; if a
procedure is considered a Petri net, then a job is a token or related set of tokens flowing through the
net. if the procedure is an object class, then a job is an instance.

I QOrganization I
A Computing Transition
is_part_of Faciity Conditions | [Jobs | I Procedure l

have

}stateﬁof is_part_of

.. correspond_to ; ;
Activity pond... > I Invoked Applications l

is_a is a
have_precedence

is_associated_with

Y used-in Computer Hurman
Repository Programs Activities
is_a is_a ls_e/ \15_21
l Input I I Output l l Script I Programming
Languages
with APls

Figure 5. The Workflow Model

In the conceptual architectures, it is so crucial how these are transformed or embodied onto an
architecture. In other words, they can be alive as an active component in an architecture. Or, they can just
be an passive component, like data stored on database. The former is called active-model, the later is.

called passive-model. Suggestively speaking, almost of the current commercialized workflow management
systems are based on the passive-model. It is possible to compare their properties to each other as
following:

¢ the configuration of a conceptual architecture is flexible in an active-model, meanwhile it is firm in an
passive-model.

e while, in an active-model, an architecture is reflective of the structures of workflow procedures, in an
passive-model, architectural components are organized by taking its functionality into consideration.

e For an instance, a workflow procedure is able to be realized, as a process or a thread, in a active-model
workflow management architecture. While on the other, in the passive-model workflow management
architecture, it is stored as data.

Again, the active-model concept should be divided into three sub-concepts: class-active, instance-active
and hybrid, according to how workcases from a procedure are reflected in an architecture. In the class-
active case, workcases are represented as a passive component. Workcases are becoming active
components of an architecture in the instance-active case. The hybrid case is to combine both the class-
active and the instance-active. The detailed explanation about these active-models and the typical
architectures acting for each of the cases will be presented in the next section.

4.1.2 Workcase-based, Activity-based, Role-based vs. Actor-based

This dimension is based on how the workflow model is represented in a workflow management system.
The representation is completely different in the active-model from in the passive-model workflow
architecture.

In an active-model workflow management architecture, a workflow model is able to be embodied as an
active component. At this time, it is possible for the embodiment to be accomplished through either a
class-active pattern or an instance-active pattern. Of course, the hybrid pattern of both the class-active and
the instance-active works out, too.

In the class-active pattern, the following alternatives are possible:
¢ Procedure-based embodiment: whenever a procedure is created, it becomes an active component,

o Activity-based embodiment: whenever a procedure is created, it is represented into a number of active
components corresponding to the activities being included in itself.

e Role-based embodiment: whenever a procedure is created, it is represented into a number of active
components corresponding to the roles being associated within itself,

e Actor-based embodiment: whenever a procedure is created, it is represented into a number of active
components corresponding to the actors being associated with itself.

e Hybrid embodiment: whenever a procedure is created, it is represented into a number of active
components corresponding to any combinations of four components.

In the instance-active pattern, the following alternatives are possible:
s Workcase-based embodiment: whenever a workcase is created, it becomes an active component.

e Activity-based embodiment: whenever a workcase is created, it is represented into a number of active
components corresponding to the activities being included in itself.

e Role-based embodiment: whenever a workcase is created, it is represented into a number of active
components corresponding to the roles being associated within itself,

e Actor-based embodiment: whenever a workcase is created, it is represented into a number of active
components corresponding to the actors being associated with itself.

e Hybrid embodiment: whenever a workcase is created, it .is represented into a number of active

components corresponding to any combinations of four components.

In an passive-model workflow management architecture, a workflow model is used to be transformed into
the one of following alternative patterns:

¢ Workcase-based transformation: whenever a workcase is created, it is stored as data.

e Activity-based transformation: whenever a workcase is created it is stored as data after being
transformed into a set of activity data.

o Role-based transformation: whenever a workcase is created, it is stored as data after being transformed
into a set of role data.

e Actor-based transformation: whenever a workcase is created, it is stored as data after being
transformed into a set of actor data.

¢ Hybrid transformation: whenever a workcase is created, it is stored as data after being transformed into
a set of combination data of the four components.

4.1.3 Centralized, Vertically Distributed, Horizontally Distributed vs. Fully Distributed

A pattern of distribution structure for the workflow enactment control and schedule must be able to
become one of dimensions for the conceptual level taxonomy of workflow management architectures.
There must be a component, playing the role of workflow enactment control and schedule, in a workflow
management system. Roughly speaking, it is not too much to say that the component discharges almost of
all functions of a workflow management system. The component is able to perform the scheduling work in
a different fashion.

The first one is that the scheduling work for all instances(workcases) of a procedure is done by a single -
performer; The second is that the work is done by multiple performers each of which has an exactly same
functionality. So, each performer takes over a portion of workcases and schedules their enactment; The
third is that the work is completed by the cooperative work of several performers each of which has a
different functionality. That is, this is to allot a portion of the work to each performer. So, each of the
performers fulfills its own role or duty in the scheduling work for all workcases of a procedure; The final
one is that the work is done by the combined fashion of both the second and the third. These scheduling
fashions are called ‘the centralized, the vertically distributed, the horizontally distributed and the fully
distributed workflow enactment scheduling mechanism, respectively.

The distribution structures for controlling and scheduling of the workflow enactment are able to be
differently realized in the active-model and the passive-model.

In a passive-model workflow management architecture, the distribution structures are realized as
following:

Centralized: There is a server fully discharging the workflow enactment control and schedule for all
workcases out of a procedure. Almost of all workflow management systems currently available in the
market belong to this category of the distribution structure.

Vertically distributed: There are multiple copies of a server taking fully responsibility for the work. So, a
portion of workcases being produced from a procedure is assigned into each of them. In this case, they
need not to cooperate or communicate each other to do the work.

Horizontally distributed: There are several servers taking partial charge of the work. So each sever has an
exclusive responsibility on its allotted task out of the workflow enactment control and schedule work for
all workcases from a procedure. There should be a kind of cooperation and communication among the
servers to accomplish the work.

Fully distributed: In this case, workcases belonging to a procedure are handled by a combined fashion of
the vertical and horizontal distribution. That is, multiple copies of servers are going to be exclusively
discharging their own allotted tasks which are divided from the workflow enactment control and schedule

work. As a result, a portion of workcases should be assigned into a set of servers needed to complete the
scheduling work.

In an active-model workflow management architecture, the workflow model itself and its component are a
key subject doing the workflow enactment control and schedule work. The distribution structures are
realized as following:

Centralized: This is the case of that a procedure or its workcases perform the workflow enactment
controlling and scheduling work. In this case, a workcase-based active-model component in an
architecture is used to be fully discharging all about the corresponding procedure such as monitoring,
enactment controlling and scheduling for all workcases out of the procedure. Therefore, one workcase-
based active-model component must be created whenever a procedure is defined in a workflow
management system.

Vertically distributed: There are multiple copies of the workcase-based active-model component,
corresponding to a procedure, in an architecture. So, a portion of workcases being produced from the
procedure is assigned into each of them. In this case, they need not to cooperate or communicate each
other to do the work.

Horizontally distributed: This is the case of that the components but procedures and workcases, such as
activities, roles and/or actors, of the workflow model have the work controlling and scheduling the
workflow enactment. For an example, an activity-based active-model component may be exclusively
responsible on all about the corresponding activity. Therefore, there must be a kind of cooperation and
communication among those components to accomplish the work.

Fully distributed: This is a case of that an architecture is configured with a combined fashion of the
vertical and horizontal distribution. '

Of course, the detailed realizations of these distribution structures are a little different in a class-active, an
instance-active and a hybrid architecture.

4.2 Architectural Taxonomy of the Current Workflow Management Systems

So far, quite a few workflow management systems have been developed and commercialized in the
workflow literature. Figure 6 is to present the conceptual-level architectural taxonomy for some of the
current available workflow management systems. In the taxonomy, only two dimensions, the process
structure and the pattern. of workflow enactment control, are. considered, because the dimension of the..
model’s component is a little effective in the passive-model conceptual architecture on which the
components are represented as data. In other words, the dimension becomes effective in doing taxonomy
for the active-model conceptual architectures. But, there have been proposed a few workflow management
systems professing an active-model conceptual architecture.

Almost all commercialized products, such as InConcert, Staffware, FloWare, Notes, ActionWKF,
FlowWorks and FlowMark workflow management systems, are adopting a platform of the client-server
architecture with a database management system[31]. It may safely be said that those systems are
categorized into the passive-model and centralized conceptual architecture. Especially, the FlowWorks
workflow management system[1] made by BULL and the FlowMark workflow management
system|20][21][22] produced by IBM are typical examples for the conceptual architecture of passive-
model, centralized enactment control pattern and workcase-based representation.

There is a good examples. for the passive-model, vertically distributed and workcase-based conceptual
workflow architecture.. D. Alonso and et al[5] at IBM proposed an extended . version of the FlowMark
workflow management system, which is originally designed to enhance availability of the workflow
system by handling failures. That is called a clustered server architecture for FlowMark. The architecture
consists of several clusters, each of them with its own database on which the same workflow procedure
information is stored, so that workcases out of a workflow procedure are disseminated into and handled by
these clusters.

Conceptual

: HDistibuted V-Distributed
i« FlowMark * Clustered | * Mobile : ; ;
i » FlowWorks FlowMark

* Mentor

i« Exotica/FMaM
L+ LSDIS's WFMS

Figure 6. Architectural Taxonomy of the Current WFMS

There is a typical workflow management system being fitted into the passive-model and horizontally
distributed workflow conceptual architecture. That is the mentor workflow management system’s
architecture proposed by Jeanine W. et al[17]. It is designed so as to allow for diversity and for scalability
by an approach in which a workflow procedure can be partitioned into a number of subworkflows, each of
which is able to be handled by a different server.

The typical workflow management system belonging to the passive-model and fully-distirbuted workflow
conceptual architecture is the mobile workflow management system which has been proposed by Stefan
J.[28]. It supports the specification of workflows through several modeling perspectives, such. as
functional, behavioral, informational, operational and organizational perspectives. Each of the
perspectives is represented into a passive component and handled by the corresponding server on the
architecture. And servers corresponding to the perspectives are able to be replicated according to the scale
of workflow procedures and their workcases.

According to our literature survey, there have been three proposed workflow management systems
professing the active-model conceptual workflow architecture. These are just Exotica/EMQM, a persistent
message-based architecture for distributed workflow management by IBM[4], LSDIS’s workflow
architectures, CORBA-based enactment architectures for workflow management systems. by the large
scale distributed information systems Lab At the university of Georgia, and CMU’s workflow architecture,
a distributed, mediated architecture for workflow management by the software engineering institute at the
carnegie mellon university[19]. ‘

In the Exotica/FMQM persistent message-based architecture, a workflow procedure is divided by several
subworkflows, each of which is concretized as an active components in the architecture, and the active
components are located into several nodes in network. Each of the active components will be in charge of
coordinating the execution of workcases out of the corresponding subworkflow by examining the queue for
incoming messages and creating an activity thread to manage the execution of the activity. Therefore, this
workflow management system is a typical example of the class-active-model, horizontally distributed and
active-based conceptual workflow architecture.

AP. Sheth and his colleagues at LSDIS Lab have proposed five conceptual workflow enactment
architectures for implementing a workflow management system. The fully distributed workflow enactment
architecture among them is an another example for the class-active-model, horizontally distributed. and.
activity-based conceptual ‘workflow ' architecture, because an activity manager in the architecture is
equipped with an individual scheduler(without a centralized scheduler) and controls the enactment of
workcases through asynchronous IDL interfaces providing the communications among activity managers.

CMU’s static and dynamic workflow architectures developed by K. Wallnau and et al are examples of the
instance-active-model, vertically distributed and workcase-based conceptual workflow architecture.
Because one of the key ideas expressed in the architecture is executing workflow engines represent the

10

instantiation of a workflow procedure description(model), and a single workflow procedure may be
simultaneously instantiated by several workflow engines.

So far, the conceptual-level taxonomy for the current available workflow management architectures has
been done according to the dimensions of conceptual-level framework. We believe that the active-model
architectures, especially the instance-active-model architecture, should be more appropriate for satisfying
the advanced workflow requirements, such as scalability, availability, and extensibility, to solve long-term
and short-term architectural research issues like dynamic changes in workflow, transactional workflow,
dynamically evolving workflow, large-scale workflow. But, there might be only a few workflow
management systems adopting a platform of the instance-active-model. So, in the next section, we
introduce the “Dispersed Actor-Oriented Workflow Architecture” as a promising new architectural
structure suggested by our taxonomy. That is, it is categorized into the class-active-model, fully-
distributed and actor-based conceptual workflow architecture,

4.3 The Dispersed Actor-Oriented Workflow Architecture

Figure 7 presents a conceptual-level architecture for the dispersed actor-oriented workflow management.
This architecture is based on the generic workflow architecture described in the architectural framework,
and the workflow reference model of the WIMC (Workflow Management Coalition). The novel idea of
this architecture is to create one (or more) process for each actor. The key ideas of the architecture are the
following:

An actor-oriented workflow model [31] is generated from a workflow procedure, which has been defined
by the workflow definition subsystem. This model is designed to partition all workflow control
information into sub-schema, and one sub-schema is distributed to each actor process at the beginning of
enactment time. ’

During enactment, a workcase migrates from actor process to actor process. Each activity in the entire
procedure is performed by one of the actor processes. The assignment of activities to actors is done
dynamically and distributedly during each step of enactment.

The set of actor processes associated with a procedure are called a workflow engine cluster, Several actor-
oriented workflow engine clusters for a workflow procedure are possibly created in order to enhance the
availability of workflow enactment services. So, different workcases of a single workflow procedure may.
be simultaneously created by several actor-oriented workflow engine clusters.

Communication among actor-oriented workflow engines occurs through asynchronous message queues
[4][19]. :

The concept of bridge, which is used to provide the interoperability between different products or
platforms, is able to be constructed on each of the interfaces between the workflow enactment service and
other components of the architectare.

The conceptual key point of the dispersed-actor-oriented workflow architecture is on the partitioning logic
by which a workflow procedure execution are partitioned into different actor-oriented workflow engines
handled by the workflow enactment service. That is, the partitioning logic of the architecture is the actor
assignments onto activities.

In general, the assignment of roles into an activity is fulfilled at the model definition time, which is called
‘the build time’ in some workflow management systems, but a real actor out of actors who are associated
with the role is selected right after the activity is enacted by a scheduler or an enactment controller in the
model execution time (or the run time). We would refer to the actor assignment scheme like this as ‘the
late actor binding’ scheme. As the opposite scheme, we propose ‘the early actor binding’ scheme.

In the early actor binding scheme, the actor assignments into all activities of a workcase or an instance of
a workflow procedure are fulfilled right after a workflow procedure is created, or the workcase or the
instance is created. The former is called the static actor assignment, the latter is called the dynamic actor
assignment. Then, it should be expected to do the efficient assignment of actors. These actor assignment

11

schemes are able to be implemented by constructing a static actor-oriented model and a dynamic actor-
oriented model, respectively.

Adrinistration, < Workflow ™,
: Monitoring Definition
%, Subsystem
T TTWorkédse T
Status Table

: Actor Status Table

: Actor-Oriented
i Workflow Engine Clusters

Invoked
Appﬂcoﬁon_‘,:’

Workflow
.. Client

Figure 7. Dispersed Actor-Oriented Conceptual Workflow Architecture

A static actor-oriented model is constructed only once during the whole life of a workflow procedure. So,
an actor assigned to specific activities of a workflow procedure has to perform all workcases or instances
corresponding to the activities until the assignment is changed by the administrator. However, a dynamic
actor-oriented model is able to be automatically constructed whenever a workcase or instance is created.
Therefore, it is possible to accomplish a dynamic actor assignment based on a workcase or instance of a
workflow procedure.

For the sake of the implementation aspects for the dispersed actor-oriented workflow architecture, it is
possible to use some of the implementation alternatives and considerations which are briefly described in
the next section.

5. Implementation-level Considerations

Until now, the possible spaces of the generic and conceptual architectures for a workflow management
system have been defined. This has resulted in a large number of architectural options. In fact, the
implementation generates even a larger number of options, because there are many possibilities that
emerge as we consider the physical, rather than the conceptual components of our workflow system. Thus,
at the conceptual level, we were concerned with (abstract) processes and abstract data types; at the
implementation level, we are concerned with (concrete) processors, workstations, and networks. Tasks
and data entities that conceptually are indivisible now need to be time-shared, or broken into smaller data
sets. At the implementation level, it is necessary to specify which algorithms and data structures will
reside on which users’” workstations, and to. give full consideration to techniques of load. balancing and
data caching and other techniques of resource management. The resource management alternatives for
homogeneous distributed computing environments include a distributed file system, a distributed shared
memory system, and a distributed scheduler for the load sharing functionality. On the other hand, the
object request brokers, like DOMS (distributed object management system) and CORBA (common object
request broker architecture), are alternatives for heterogeneous distributed computing environments. Full
consideration of the implementation level is beyond the scope of this paper.

12

6. Conclusions

So far, hundreds of vendors in the software market have been claiming that their products have workflow
management capabilities. And, based on these products, a lot of corporations are trying to conduct
business procedure reengineering to automate their business procedures.

The high-level architectures for those products can be converged into some of generic architectures shown
in Figure 2. At the same time, In terms of the conceptual aspects, those products are categorized into one
of the conceptual architectures represented in Figure 4. They are also able to be distinguished from each
other through how their workflow management system is implemented.

Ge neric SCRIPTS(EXECUTION)
Fully
Centralized Decentralized Dispersed
CONTROL ATA
Centralized . Centalized
Decentralized

Fully Dispersed . Decenfralized

Fully Dispersed-

Workcase
i Activity
i ROl actor
CONTROL ; !
Cervallzed
Vertically Distriouted
Horizontally Distributed ..
Fully Distributed

Passive

fy DATAPLACEMENT

Procedure Activity Role Acftor
Based Based Based Based

Implementa

CONTROL
DATA

Cenvalized -
Decentralized
Fully Dispersed -

RESOURCE
MANAGEMENT

2o HOMOgENneous

- Heterogeneous

Figure 8. A Hierarchical Framework

In summary, the framework for drawing an architecture for a workflow management system has a
hierarchical structure as shown in Figure 8. The first step of the framework is to describe the major
interfaces and coordination policy. for components of an high-level architecture. The outcome of this step
is a generic workflow management architecture that must be independent of underlying implementation
technology, but that must fix up the scope of implementation possibility by reflecting the current or future
technologies. The main purpose of the second step is to refine the generic architecture in component-by-
component by taking workflow-specific properties into consideration. Therefore, the workflow model, a
pattern of workflow enactment control structure, and how each component of the workflow model is
transformed and embodied onto a workflow architecture must be described in a conceptual architecture.

13

Finally, in the third step, a technology-specific realization of the conceptual architecture must be
speculated for an implementation level workflow management architecture.

After all, the architectural framework should not only be used to characterize and evaluate the existing
workflow management systems, but also play an important role as a guideline for the developers trying to
design and implement a new workflow management system.

7. References

1. “FlowWorks, The Bull Workflow Product: Architectural Design and Functional Specification”, BULL
L.P.M., Oct. 1991

2. Akhil Kumar & J. Leon Zhao, “A Framework for Dynamic Routmg and Operational Integrity Controls
in a Workflow Management System”

3. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor and C. Mohan, “Advanced Transaction
Models in Workflow Contexts”, IBM Research Report

4. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor and C. Mohan, “Exotica/FMQM: A
Persistent Message-Based Architecture for Distributed Workflow Management”, Proceedings of IFIP
Working Conference on Information Systems for Decentralized Organizations, Aug. 1995

5. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor and C. Mohan, “Failure Handling in
Large Scale Workflow Management Systems”, IBM Research Report RJ9913, Nov. 1994

6. Amit Sheth, “Workflow Automation: Applications, Technology and Research”, Tutorial Notes,
SIGMOD Conference, May 1995

7. Clarence A. Ellis, “Workflow Technology”, Tutorial Notes, 1995

8. Clarence A. Ellis and Marc Bernal, “Officetalk-D: An Experimental Office Information System”,
Technical Report, Xerox Palo Alto Research Center

9. Clarence A. Ellis, Gary J. Nutt, “Office Information Systems and Computer Science”, ACM
Computing Surveys, Vol. 12, No. 1, March 1980

10. Clarence A. Ellis and Carlos Maltzahn, “Chautauqua: Merging Workflow and Groupware”, Jun. 1996
11. Clarence A. Ellis and Gary J. Nutt, “Multi-Dimensional Workflow”

12.Clarence A. Ellis and Gary J. Nutt, “Workflow: The Process Spectrum”, Proceedings of NSF
Workshop on Workflow and Process Automauon in Information Systems: State-of-the-Art and Future
Directions, May 1996

13. David Garlan and Mary Shaw, “Introduction to Software Architecture”

14. Diimitrios Georgakopoulos, Mark Hornick, “An Overview of Workflow Managément: From Process
Modeling to Workflow Automation Infrastructure”, Distributed and Parallel Databases, 3, pp. 115-
153, 1995

15. Dimitrios Georgakopoulos and Mark F. Hornick, “A Framework for Enforceable Specification of
Extended Transaction Models and Transactional Workflows”, International Journal of Intelligent and
Cooperative Information Systems”, Vol. 3, No. 3, pp. 225-253, 1994

16. Gustavo Alonso and Hans-Joerg Schek, “Research Issues in Large Workflow Management Systems”,
Proceedings of NSF Workshop on Workflow and Process Automation in Information Systems: State-
of-the-Art and Future Directions, May 1996

17. Jeanine Weissenfels, Dirk Wodtke, Gerhard Weikum and Angelika Kotz Dittrich, “An Overview of
the Mentor Architecture for Enterprise-wide Workflow Management”, Proceedings of NSF Workshop
on Workflow and Process Automation in Information Systems: State-of-the-Art and Future Directions,

14

May 1996

18.Kamath, G. Alonso, R. Gunthor and C. Mohan, “Providing High Availability in Very Large Workflow
Management Systems”, 5th International Conference on Extending Database Technology, March 1996

19.Kurt Wallnau, Fred Long and Anthony Earl, “Toward a Distributed, Mediated Architecture for
Enterprise-wide Workflow Management”, Proceedings of NSF Workshop on Workflow and Process
Automation in Information Systems: State-of-the-Art and Future Directions, May 1996

20. Kwang-Hooh Kim, “Practical Experience on Workflow: Hiring Process Automation by FlowMark”,
IBM Internship Report, IBM/ISSC Boulder Colorado, 1996

21.Kwang-Hoon Kim, “Experiences on FlowMark: Hiring Process Automation by FlowMark”, Technical
Notes of Computer Science Department, University of Colorado at Boulder, 1996

22.Kwang-Hoon Kim, “Practical Experiences and Requirements on Workflow”, Lecture Notes Asian ‘96
Post-Conference Workshop: Coordination Technology for Collaborative Applications, The 2nd Asian
Computer Science Conference, Singapore, 1996

23. Marek Rusinkiewicz, Amit Sheth, “Specification and Execution of Transactional Workflows”

24, Miller, A.P. Sheth, K.J. Kochut and X. Wang, “CORBA-Based Run-Time Architectures for Workflow
Management Systems” ,

25.Mohan, Dick Dievendorff, “Recent Work on Distributed Commit Protocols, and Recoverable
Messaging and Queuing”, Data Engineering, Vol. 17, No. 1, Mar. 1994

26. Mohan, “Tutorial: state of the Art in Workflow Management System Research and Products”, Tutorial
Notes, 5th International Conference on Extending Database Technology, March 1996

27.Mohan C. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, and R. Gunthor, “Exotica: A Project on
Advanced Transaction Management and Workflow Systems”, ACM SIGOIS Bulletin, Vol. 16, No. 1,
Aug. 1995

28. Stefan Jablonski, “MOBILE: A Modular Workflow Model and Architecture”

29. Stefan Jablonski and Christoph Bussler, “Workflow Management: Modeling Concepts, ‘Architectures
and Implementation”, International Thomson Computer Press, 1996

30. Jari Veijalainen, et el., “Research Issues in Workflow Systems”, ESPRIT III LTR Project Report, Oct.
1995

31. Kwang-Hoon Kim, “Architectures for Large Scale Workflow Management Systems”, Thesis Proposal,
University of Colorado at Boulder, Feb. 1997

15

