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Abstract. In the first part of the paper, we introduce some mortar finite element methods for
solving two-dimensional elliptic problems discretized on overlapping non-matching grids. We prove
optimal error bound and estimate the condition numbers of certain overlapping Schwarz precondi-
tioned systems for the two-subdomain case. We show that the error bound is independent of the
size of the overlap and the ratio of the mesh parameters. In the second part, we introduce three
additive Schwarz preconditioned conjugate gradient algorithms based on the trivial and harmonic
extensions. We provide estimates for the spectral bounds on the condition numbers of the precondi-
tioned operators. We show that although the error bound is independent of the size of the overlap,
the condition number does depend on it. Numerical examples are presented to support our theory.
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1. Introduction. The mortar element method was first developed for the pur-
pose of coupling different discretizations in different nonoverlapping subdomains. Sev-
eral studies have been carried out; see e.g., [1, 2, 3, 4, 5, 8, 9, 11, 16, 23]. In this
paper, we consider the case of overlapping subdomains. We provide an optimal error
analysis for the two-subdomain case, and a spectral bound estimation for the Schwarz
preconditioned system. The main advantage of non-matching grid methods is that
highly structured local grids and corresponding fast solvers (and software) can be
used easily. To preserve the global accuracy of the discretization, the interpolation
between the neighboring subdomains has to be sufficiently accurate. The mortar
method provides one such interpolation scheme that passes the values of a function
from one grid to another without loosing accuracy as will be shown in this paper. It
is somewhat surprising that the discretization error is independent of the overlap as
long as a trivial requirement is satisfied; the overlap is not smaller than the size of
the coarser mesh. We also show that the error is independent of the ratio of the mesh
sizes. Another interesting finding is that larger overlap can make the resulting linear
system easier to precondition.

We are interested in solving the following elliptic variational problem: Find u* €

* Dept. of Comp. Sci., Univ. of Colorado, Boulder, CO 80309, cai@cs.colorado.edu. The work
was supported in part by the NSF grants ASC-9457534 and ECS-9527169, the National Aeronautics
and Space Administration under NASA contract NAS1-19480 while the author was in residence at
the Institute for Computer Applications in Science and Engineering.

! Faculty of Math. Info. and Mech., Warsaw Univ., Warsaw, dryja@mimuw.edu.pl. The work
was supported in part by the NSF glant CCR- 9003408 and in part by the Polish Scientific Grant
102/P03/90/09

f Dept. of Comp. Sci., Univ. of Colorado, Boulder, CO 80309, msarkis@cs.colorado. edu.
The work was supported in part by the NSF grant ASC- 9457534, and in part by the NSF Grand
Challenges Applications Group grant ASC-9217394 and by the NASA HPCC Group grant NAG5-
2218.

1



H}(§)), such that
(1) a(u,v) = f(v), Vove Hy(Q),

where
a(u,v) = / Vu-Vuvde and f(v)= / fodz.
Q Q

Here f(z) € L*() is a given function and = Q; U Q, an open polygonal domain
in ®2. We assume that both Oy and Q, are open polygonal domains and that the
diameters of ., Q; and Q, are of order 1. We shall introduce two independent
triangulations on Q5 and Q,, respectively, and a mortar element method defined on
the union of the two, generally non-matching, triangulations. We assume that u”
satisfies the following local regularity conditions:

ug, € H7HQ,), and 0 <7, <1

for 7 = 1,2. No global regularity of u* is assumed.

A lot of work has been done in the area of non-overlapping non-matching grid
methods; see, e.g., [1, 2, 5, 16, 22]. There are also several methods that use over-
lapping non-matching grid preconditioners for matrix problems obtained from non-
overlapping discretization schemes; see [9, 11]. The idea of using overlapping non-
matching grids is not exactly new. Some very interesting recent development in using
overlapping non-matching grid methods can be found, for examples, in the papers of
Kuznetsov [17], Blake [6] and Mathew [19]. However, to the best of our knowledge,
this is the first paper that provides an optimal error analysis for the overlapping
mortar element method.

To avoid unnecessary complications, we restrict our discussion to Poisson’s equa-
tion with zero Dirichlet boundary condition. The extension to the smooth variable
coefficient case is straightforward. The paper is organized as follows. In Section 2,
we introduce some notations. The mortar element method and some implementation
remarks are given in Section 3. The analysis of the method is provided in Section 4.
Several technical lemmas, used in Section 4, are actually introduced and proved in
Section 5. Section 6 reports several numerical experiments that are used to verify the
theory on the accuracy. Three preconditioning techniques are proposed and analyzed
in Section 7. Section 8 contains some numerical examples supporting the theory of
the preconditioning methods. A short conclusion is given in Section 9.

2. Model cases and function spaces. In this paper, we shall focus on two
model cases that have different technical difficulties. The main theorem on accuracy
holds for both cases, however, different proofs are needed. Most of our results can be
extended to more general cases.

Case R: The union of Q0 and Qs is a rectangular domain, as shown in Fig.1.
1 2 g )

Case L: The union of 3y and €, is an L-shaped domain, as shown in Iig.2.
) .



Before introducing the mortar element method in € with non-matching grids
in the overlapping subdomains, we need to define some notations. First of all, let
v = 08; N Q,1 = 1,2, be the interfaces. For Case R we define § as the distance
between the two interfaces, shown in Fig.1, and for Case L we assume § = O(1).

e Triangulations and finite element spaces. Fori = 1,2, let
hi _ frchi oo '
T ={K;,j=1,...,M;}

be a standard finite element triangulation in €);; see for example Fig.1. Here K;-” 1s
a triangle and h; the mesh size. M, is the total number of triangles. We assume that
they are shape regular and quasi-uniform; see Ciarlet [10]. The two triangulations
need not to match in the overlapping region. Let V* = V%(Q;) be the space of
continuous piecewise linear functions on 7% which vanishes on 92 N 9;. For each
node z]* in 7" we denote by ¢/ () the usual basis function, i.e., ¢/*(z) € V", and

¥(z) = 1if 2 = 2} and zero at all the other nodes. We define the support of a basis
function by

supp(¢]") = supp(a") = {x| € O and ¢{"(z) # 0}.
Note that 8Upp(;1:§“) is an open set. We also need the space
X" = {(uy,ug)|u; € VM i =1,2}.
We denote by Vi as a subspace of V% containing all functions that vanish on 0€;.

e Trace spaces. We denote by V"(;) the restriction of V" on ;. Let us denote
by ai,ay, -+, al, the nodes of 7% () on #;, and also denote by a} and at, 1 the two
endpoints of v;; see Fig.2 (a) and Fig. 3. We assume that if af (or al, ) is a node
of T"(€);) then af = d (or @, = al, ,,); see Fig.1 and Fig.2 (a). It is important to
note that for v; to belong to V*, v; must vanish at a} and a, ; see Fig.3 (a) for an
example of a function in V% (+;).

e Trivial extension operators. For any r* € V"(y;), we define a function
denoted by &r' in V() satisfying: &r' = r* at the nodes ay,ak, - al
Er' equals to zero at the remaining nodes of Thi,

a and

7
Y my—10

e Interface test function spaces. For 1 = 1,2, Whl (7:) denote the space of

continuous piecewise linear functions on the grid af,dl, -, a

t 7 : '
? 7n,-—17a771,‘+17 SUbJGCt to
the constraints that these continuous piecewise linear functions are constants in the

intervals [af, ab] and [al, _y,al, . ]; see Fig.3 (b).

e Mortars, mortar spaces and slave nodes. The curve +; has two sides.
We refer to one of them as the mortar side, and the other the non-mortar side. In
most mortar element methods, see e.g. [5], the choice is rather arbitrary. In our case,
we have only one choice. For 7, we define the 7" side as the mortar side and the
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7™ side as the non-mortar side. On the non-mortar side, a finite element space 1s
defined by using the mortar projection given below by (2). A similar definition is
used for y,. We define the mortar space V"2(v;) (resp. V™ (73)), as the restriction
to the interface v (resp. ;) of the space V"2 (resp. V™). Among the points
ab,a, - ,af;m_l,a;“_{_l, as will be seen later, the values of the solution are known at
ag, ay, a;, and a;, ., through the given boundary conditions. We shall refer to the
other points, aj, af, - - -, al, _; as the slave nodes since their values are determined by
the mortar projections to be defined below.

o Mortar projections. The mortar projection 71 maps the space V"2(7;) into
VP (y1). Given a ¢ € Ly(y), we set (m19) € V7 (y,) to zero in the intervals [a, ai]
and [a, ,a}, ] and determine the values of (1) at the slave nodes a}, al, - - !

m1—1

,a

(2) / (¢ — mphpds =0, Vi € Wi, ().

Similarly, we define the mortar projection 7y on +,, which maps V" (72) into V2 (v,).
e The solution space. We define the solution space V" as follows:

Vi = {(uh'uz)fui ceVh i=1,2 Utpy, = T1(ugp, ) and vy, = Wz(ulm)}.

o

2
E:E
Fic. 1. The subregions 2,1 = 1,2, are rectangles Q; = L% x ,. 1 0, are of O(1). § is the size

of the overlap.

Before closing this section, we need to make an important assumption under
which the mortar projections are computable.

Assumption 1. Let aj be a slave node on ~;, then

supp(ay) Ny =0, fori # j,
and 1,7 =1.2.

REMARK 2.1. For Case R, the assumption implies that § > max{hy, hy}; oth-
erwise the subdomains are not connected on the mesh level. For Case L, it means
that the two darkend regions in Fig.2 (b) do not intersect each other. Without this
condition, the two mortar projections cannot be calculated independently.
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n LoNU4 ™ Pmd1] =

Fic. 2. Case L, i.e. the union of Q; and Qs is an L-shaped region.

3. Overlapping mortar element methods. In this section, we introduce the
overlapping mortar element method and discuss some implementation issues, such as
the construction of basis functions in V*. Our variational problem associated with

(1) is defined by: Find u = (uy,uy) € V*, such that

(3) ap(u,v) = fr(v) Yo = (vy,0y) € V7,
where
1
ap(u,v) = / Vuy - Vo de + = Vuy - Vo, do+
O\ 2 Ja na,

1

“/ Vuy - Vg do + Vg - Vuy da

2 Q10Qy S\
and

L 1 .
fh(v> = /Ql\QQ forde + ;2‘ llm% foy de+

1
o "0o d +/ vy d.
2 ./sz]mxzz Jos 2\ fos

The main motivation for defining the variational problem this way is that the
resulting stiffness matrix is symmetric. We will show later that the space V" is
non-empty under Assumption 1. We remark that for matching overlapping grids, by
identifying the nodes that are in the overlapping region, (3) reduces to the usual finite
element problem associated with (1).

<t



Since v; vanishes on part of €2, ¢ = 1,2, we can define a norm in X" by
[olli, = an(v,v).
It is easy to see that the bilinear form ay(-,-) is bounded in the sense that
(4) an(u,v) < |ullnllolln, Vu,v e X"
For our estimate of the discretization error, we assume that
ut € HY Q) U HY2(Q,),

where 0 < 7; <1, for 7 = 1,2. The main result of the paper is summarized as
THEOREM 1. Assume that Assumption 1 is true. Then, the exact solution u* of
(1) and the mortar element solution w of (3) satisfy

(5) = ulle < € (B2 e gy + BE " Lar47s ) )

where C'> 0 is a constant independent of hy, hy, hy/ha, haf/hy, and §.

In the next few sections, we shall prove the theorem for both Case R and Case
L, with slightly different techniques. We note that V* < X"*. The selection of
basis functions in V" is not as trivial as in the usual finite element case because the
matching conditions have to be satisfied. As a result of the mortar mapping, some
of the basis functions, near the interfaces, are not local functions, i.e. the support of
the basis function covers all the elements that intersect the interface.

Let Z; = {af",1 = 1,. .., NI} be the set of nodal points in €, not including
boundary or interface nodes. N/ indicates the total number of nodes in ;. For each

x;‘ , recall that ngl (z) denotes the corresponding regular finite element basis function.
Let Z; = {&),1=1,..., Nk '} C Z; be a subset of nodes such that supp(z} ) N\y; # 0
(for ¢+ j). For ea,ch xt € Z;, we define

U= &m0l y)), G A

Then, every function u = (uy,us) € V" has a unique representation of the form

Uy = Z Ul(rhl h1 t + Z Uz ;1) }11 (l;)

Ilh] Ell JTZQEZQ
and
Uy = Z “2(11 ) /h> + Z Ul /Ll )wh?( )
2% €2, oleZ

In summary, the basis functions have the form:

0.{ .0 el ez
=1 - /7] 17,1 ~
(617 (), 0 (2)) if 2t € Zy
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N e

adal 'a2 —/7/1‘ am]-—ldmldml-l—l ay ag ‘/ll" amvl—lavml mi+1
T 71
(a) (b)
F1G. 3. (a) A function in the space V™1 (v1), which is the image of . (b) A test function in
the space Wh, (711).

and

a. - {m,#%m> if )2 e@\zz
CL @R @), ¢ (@) i € Za.

Note that the interface slave nodes are not accounted for the degree of freedoms. The
total degree of freedoms is Nj* + Nj?. The functions 4/ (z) (i = 1,2) have to be
pre-calculated by solving some small linear systems of equations determined by the
mortar projection. Two additional linear systems need to be solved for finding the
slave values. The numbers of unknowns of these two linear systems are equal to the
numbers of the slave nodes on the interfaces. In the two dimensional cases that we
consider, the linear systems are always tridiagonal, symmetric and Well conchtloned
due to the nature of the mortar projection.

4. Analysis of the discretization error. To analyze the discretization error,
we use the well-known Second Strang’s Lemina, in Strang and Fix [20], for the non-
conforming situation. Let «* and u be the solutions of (1) and (3), respectively. We
have

h)-

Vi \ < f ’ * —
e =l < inf (™ = ollx + [lu = vf

Here and below we use u™ to represent (u*|q,,u*|q,). Using the fact that
lu—olli = aplu —v,u —v) = ap(u” —v,u—v) + {frlu—v) —ap(u*,u—0)},

and (4), we obtain

|fr(u —v) — ap(u™,u—v)

lu =l <l = lu + [ =]

<l =l sup eI el W)l
0£weVh llwl| s
' 7



- Therefore,

. w(w) — ap(u*,w
(6) lw* —ullp < inf 2|ju* — o], + sup [fulro) = ai( )‘
. veVh 0¢wevh H'U?Hh
In the rest of this paper, we shall refer to the first and the second term of the
right-hand side of (6) as the best approximation error and the consistency error,
respectively.

4.1. The best approximation error. Let us denote the subregion Q% as the
union of all closed simplices R’;-”, where Kf‘ € Th and K;” belongs to ; Ny, Let
us assume that Assumption 1 holds; therefore, Q" is a non-empty connected open
subregion. Let V™ (Qfé) denote the space of continuous piecewise linear functions on
0" that vanish on O\ ~1. Let f% denote the discrete harmonic extension operator
on VM (Q!) with boundary data on 7, and zero data on IO\ .

Similarly, let us denote the subregion 2J3 as the union of all closed simplices [7’;”,
where K;” € Th and K;” belongs to Qs N Q. Let us assume that Assumption !
holds; therefore, Q72 is a non-empty connected open subregion. Let V#2(Q!2) denote
the space of continuous piecewise linear functions in Q72 which vanishes on 902\ .
Let H13 denote the discrete harmonic extension operator in V’”(Q%) with boundary
data on 7, and zero data on 9072\ ~,.

In the next lemma, we prove that the best approximation error is optimal. In
the proof, we use several technical lemmas that will be discussed only in Section 5.

LEMMA 1. Assume Assumption 1 holds. Then, for any u* € H™7(Q,), i = 1,2,

and 0 < 71,7 <1, there exists v = (vy,v3) € V% such that

(7) u” = vilaa,) < C (A lullren a,) + B sy )
and
(8) lu” — U2|H1(Qz) <C (h? HU*HHHTI(Ql) + h?HU*HHHm(Qz)) .

Here the constant C > 0 is independent of hy, hy, hi/ha, ho/hy, and 6.

Proof. We first construct w = (wy,wy) € X" Let w; be a continuous piecewise
linear function defined in §; by using the pointwise interpolation of ©* at the nodal
points of 7" The standard interpolation theory ([10]) gives

(Q) Hzf - UHHH(QZ) + hzlu* — wiifjl(gi) S C]Z}*T,H’LL*HHHT,(QJj O < T S 1.

Note however that w ¢ V", in general, since w;,7 = 1,2, do not vanish at the nodes
{a}} and {a}, }. Also, w does not satisfy the matching conditions across the interfaces
Vi 1= 1., 2.

Let z; € V" be a continuous piecewise linear function that equals to zero at the
nodes af and a;, , and to w; at the remaining nodes of 7. Thus, the piecewise linear
function w; — z is equal to w*(a}) at af, and to u*(al ) at a’, . Then by using Lemma
4 (to be introduced in the Technical Lemmas Section 5), we obtain, for 0 < 7, < 1,

(10) wi(ay) = zi(ay)| = [w(ai)] < CRP flu||msn an,s
8



and
(11) lwilal,,) = z(al, )| = [u*(al, )| < Ch[u™]| gram -

Since w; — z; is equal to zero at all nodes of T except ai and a
and (11) to obtain, for 0 < 7; < 1,

we can use (10),

m;?

(12) |]wz~ — Z,’HLQ(Qz) + hifw,- — ZilHl(Qi) S C]l.}_'_n ‘U*HHHri (Qz)’

and consequently, using a triangle inequality and (9), we obtain
(13) ][u* — Zi”L?(Qi) -+ hzlu* - Zi'Hl(Qi) S C]Z}+T'l|u*i|]{1+r(gt).

Now z; € V™ (i = 1,2), but z = (2, 25) & V" because the matching conditions
across the interfaces are not satisfied. To ma,tch the interface values, we need to
further modify z;. Let

r' = mi(2a(m1)) — 21 on 4,
and

r? = Ta(z1(Y2)) — 22 on v,.

We define the function v = (vy,v;) as
=i+ HMNr =12

Note that Assumption Iis used to guarantee the existence of H'r'. Note also that
Hi4r! (resp. H’2r?) vanishes on 7, (resp. 7). Since v; belongs to V"(£), for
v = 1,2, and they satisfy the matching conditions, v belongs to V*. We next show
that v satisfies (7) and (8). By the triangle inequality

(14) [u”™ — vilmia,y < Ju* — zilmay) + HES e

The first term above has been estimated in (13). For the second term, we use Lemma
8 of Section 5, to obtain

s gl i ; o Lo
(15) sl < C (I, + 517 1)
We bound [[rt]|2(,), and similarly ||[7?|[72(,,), as follows,

17 22y = 17122 = 21|12y = 17122 = 121 |22(0n)

< lmize — muT|| 2 + 712 — 1" || 22 -
A consequence of the L? stability of Lemma 5 is that

I 2y < 60122 = w2y + 6llz1 — w220y
9



Using Assumption I, we have that z, = w; on ;. Then,

22 = u™ll 2y = llwz = wllz2ry)-

According to the standard estimate for pointwise interpolation, we get, for 0 < 75 < 1,
that

(16) w2 = w2y < Chy™ 2w e )
Thus, we have obtained
(17) 122 = M g2y < Chy/ ™ U pemaqayy, 0 < < 1.
We also have,
7121 = M| 2y < 6llz1 — w™llzegay)

and therefore, by using a triangle inequality

171 = wllee gy < llor = @ fiz2en)

“(a}) ol (ah, )6l
L2{(m)

ME

Together with (10), (11) and (12), we arrive at

|7121 — mu™||p2(yy) < Ch%/2+TIHIM*HH1+T1 @) 0<m <L

(m)

This implies

(18) rill oy < €S0 ALY

=1

'(Qi)’ Z - 172

We next bound ||7t]] ;172 |, and similarly HTQHHUQ(W). We use the Hol? stabilyity
00 00

{(v1)?
of Lemma 5 to obtain

H?’lHHéO/?(“ﬂ) < |mizg — mu"HHéo/zm) + |71z — WWKHHSJQ(%) <

Clz2 — U*HH&{?(M) +6]|z; — u*HHéf(m)‘

Now with (13), we get

(10) HTZ'HHéO/? ~i)

Q)0 Z - 1, 2
Finally (7) and (8) follow immediately from (14), (15), (18), (19), and the fact
that ¢ is larger than max{hy, hy}. O
10



4.2. The consistency error. The consistency error can be estimated rather

easily. For a smooth u*, by using Green’s formula and that —Au* = f in the L?
sense, we obtain

fh(w) — ap(u”,w) :/Q (f+ AuT)wy da — /7 Ou *(wl)d&}—

1 8n
Jds + QQ(f + AuT)w, dr — gfw 5, (wa2)ds + —2—/71 g (wa)ds =
1 1 ou” ou*
§ [YlU’Yz an - 5[11 9n ( wl)dS + = 5 /w an (w1 - w2)d8,

where %“n— denotes the normal derivative of u*, with the unit vector n pointing to the
outside of {; N €y, Later, we use the density argument (Grisvard [14]) to estimate
Su(w) — ap(u™,w) for any u* € H(Q).

We summarize the result in the following lemma.

LEMMA 2. Letu* € H™7(Q;), 0 <7 < 1,2 = 1,2. Then, there exists a constant
C > 0 independent of &, h; and v, such that

sup ,f’YIU'YQ on [ }dsl
0FweVh ]l

< C (h;ll]u*HHH-rl Q1) —+ h;21|u*I{H1+T2(92)) .

Proof. We derive a bound for the consistency error on ;. The bound on 7, can
be obtained in a similar way. Let w = (wy,wy) € V*, we have

Ju* du*
/ al; (U)Q — wl)ds / al; — ﬂ’lw?)ds 3
Y1 1

and by using the definition of the mortar mapping (2), we also have, Vi) € Whl(”yl),

ou* 17,
[y Y ——(wy — mywq)ds / (8?1 )(wg Tiwz )ds

a *
< o — ) . sz——mwg‘[}p/z(%)
H ("r’l !
ou*
ikl B (el + lhotllgprg,) -
H 2(,),])/

Applying the trace theorem for w, we deduce that

ok
/ Ol;z (we — w1 )ds
"M

Ju*

n

d’ewhl '71

< Cllwllp,  Inf {

[ /2 ( )J’}

With the help of Lemma 3 (or Lemma 4.1 of Bernardi, Maday and Patera [5])
obtain

/ (?; — w01)ds
Y1,

, we

Ju*

< T
Ch o

< Chp'flwllalle™|[mam (ay)-

H1/2+TI (,,/1)

11



5. Technical lemmas. In this section, we discuss several technical estimateés.
We formulate and prove some of the lemmas in a way that is more general than
needed in this paper since we believe their applicabilities go beyond this paper.

The proof of the following lemma can be found in Bernardi, Maday and Patera
5], although their definition of the mortar mapping is shghtly d1ffe1ent from ours for
Case L because of the two extra intervals [af, a}] and [a?, ,aﬁn +1]- Their proof also
holds here because the length of the intervals [af, aj] and [al, _;,al, ] are O(h;); we
do not include the proof here.

LEMMA 3. Let 7; be the orthogonal projection from L*(v;) onto W, (vi). Then,
for any 0 < 7; <1, the following estimate holds for any v € H™(~;),

~ ~-1/2 ~ T
lo = Fll 2y + 170 = Fivllgrasagy < CRZ ol
As a consequence,

ol U = Bl } < CH ol
Here C' > 0 is independent of h;.

The next lemma is useful only for Case L. Let us restrict our arguments to €,
similar argument applies for ;. Recall that in the definition of the finite element
space V™ (1), we insist that the functions vanish at two interior points ajy and a),
which is a bit unusual in the classical finite element theory. Due to the following
lemma, we show that the interior zero points do not affect the second order (or 147
order) accuracy of the overall discretization.

LEMMA 4. Let Q; be a bounded open subset of R with a piecewise C%' boundary
Iy Assume that the aspect ratio and the size of Qy are both O(1). Let v C 9y be
a OV (differentiable Lipschitz) curve with end points A and B. Also let nCrvnoQ
be an open non-empty connected curve with end points A and zo. Then for any
u € H (), 0 < <1, that vanishes on 99, we have

(20) lu(z)| < Cdt|lullgren (q,), Yz € w

Here d, is the arc distance of the point x to n along the curve v. The constant C > 0
does not depend on u, xo and x, but in general depends on the Lipschitz constant of
0. '

Proof. If x € n then u(z) = 0 and (20) holds trivially. Let us assume that
z € v\ 7. Let z(z) be a point in the interior of 7 such that

d(z(z), 20) < d(z,20) = d,.
We shall first assume that u is a smooth function and then pass 1t to any functions

in A7 () using the classical density argument; see e.g. Grisvard [14] or Lions and
Magenes [18]. Now let u € C*°(€y), then

u(x) = u(=z( / s)ds.



Since u(z(2)) = 0 and u'(s) = 0 on s € 7, we have

Using Schwarz inequality, we have
(21) lu(z)] < /xo [ (s)]ds < di/z}u}m(u),

With the Fundamental Theorem of Calculus,

/

w (s) =u'(z(z)) + /Z;) u' (1)dt

and using that u'(s) = 0 on s € 7, we get

u(z) = /: /Z(Sr) ' (1)dtds.

By using the fact that u"(y) = 0, y € 5, the Schwarz inequality, and that d(zo, 2(z)) <
d(x,z¢) we obtain

(22) lu(z)] < Cd(z,20)°"*|uls,).

We obtain the estimate in H'*™(v) by interpolating the H(v) estimate (21) and
the H*(v) estimate (22) (Lions and Magenes [18]). Thus, for 0 < 7 < 1,

(23) ' u(e)] < O/ 7 ful yrom ).

With the usual density argument, the above estimate holds for any u € H* ().
Finally, to obtain (20) from (23), we consider two cases 1/2 < 7; < 1 and
0 <7 <1/2 separately.
For 1/2 < 7 < 1, we use the trace theorem for C*' (differentiable Lipschitz)
curve (cf. Theorem 1.5.2.1 of Grisvard [14]), which gives

u(@)] < Cd[ullgaraen ) < Cd2 ([l gran ay)-

For 0 < m1 < 1/2, it is known that the continuous function space 1s embedded
into HY2*7(Qy). Using that u vanishes on 1, we can use the Bramble-Hilbert lemma
and scaling arguments to obtain, for 0 < 7 < 1/2,

lu(z)] < Cd2 |ullgrien () VYué€E HH“(QI);

The last arguments can be found in detail in the proof of Theorem 3.3 in Xu [24]. O
REMARK 5.1. We remark that we use the above lemma by taking xo = ab (or
xo = ay, ) and v as an edge of an element K" of T™ (Q,) that contains ab and a!.
The lemma is useful only when af, # a}, and therefore (using the definition of al and
aj) al belongs to the interior of v.
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We next show the boundness of the mortar projection in two different norms.
Since the mortar projection is, in some sense, close to the regular L? projection, the
L? bound is rather easy to obtain. It is a bit involved to obtain its Héé(z bound.

LEMMA 5. The mortar mapping =; is bounded in L*(v;), i.e.,

(24) Imiwllza gy < VBllwlzaey, Yw e L¥(y)
and w; is also bounded in HééQ(%), i.e.,
(25) HW{w“HéO/?(%) < CHw“HéO/E(W)v Vw € Héo/:)(%)»

where the constant C' > 0 is independent of hy, hy, hi/hy, hy/hy and 8.
Proof. Let us consider the proof for wy. The proof for 7, is similar. Using (2), and
1 1

taking ¥, here denoted by v, which equals to 7w at the nodal points al,al,- -, Ay 15

we obtain,

Hﬂ-le%Q(wl) < (W1w7v)L2(’Yl) = (wvv)Lg(’ﬂ)‘
Using simple calculations, we have

[ol172¢y < 6llmaw| 209,
and (24) follows easily. We next estimate the H)l? bound. Let w € Hi(v1). By the
triangle inequality and then the inverse inequality, we have

. 1
(26) Hﬁwllzéo/z(m <C (E'Hﬂlw — Quw|[Tap,) + ||Qh1w|4530/2(%)> ~

Here Qj, : V'2(y) — VM(y) is the usual orthogonal L? projection. Note that
T1@Qnw = Qp w. Therefore, using (24) we have

@27)  lmw = Quwliiag,) = Imw = mQrwlliz(,) < Cllw — Quwllrey)-

The next step is to bound [[w—Q, wl[12(,,). Now we follow the proofs of Theorems

3.2 and 3.4 of Bramble and Xu [7]. Let us denote by Z" the usual nodal value

interpolant on the grid g, ay,a3,---,a), ,a, ;. The interpolator is well-defined in
H'(~1). Let us denote by ¢,1 the standard basis functions associated to the continuous
1

¥ RS NS TS B S | : i . the
piecewise linear functions on the grid aj, a;, a}, sy s - 1 s easy to see that

. ) , ,
w=7IT"w— u,(all)qﬁa% —w(a,, )%ai,,

belongs to V™" (~;). Therefore

[0 = Qrywllr2p) < flw =@y

< Hw o Ihl U)HLQ(%) 4 Hw(ai}gba%
14
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Since " w is well-defined for w € H' (71) by using a well-known result of Ciarlet
[10], we obtain

Hw - IhleL2( < C/Ll|le1(A”

Using that w vanishes at a} and al we have
0 my+1

Jw(a})] < OB ],y and feo(al,, )] < CY oy

(n1)s

and then obtain

(28) |w = Qnwllrery < Chafw|g:

{v)-

Using that Qy, is a L? projection, we have [[w — Qp wl|12(,,) < 2||w]|f2(,,). Then
by the interpolation procedure we obtain

(29) o = Quyrollzeqey) < Ol llwll e -

The next step is to show that

(30) 1Qnwlmi) < Clwlmy).
Let wo = w on [aj,af] and [a}, ,al ], and wy = w(ay)gai () on [aj, a}] and wo =
w((ﬁm)@a}nl (2) on [ay, 4,al ], and zero at the remaining points of ;. Hence,

Ithwffql(m <2 ([th(w - wo)ﬁ{l('yl) + IthwOI%ﬁm)) :

By using an inverse inequality, the L? stability result (24), and the definition of
wg, we have

C
lthwo\f’ql(%) < }l“%‘HQMWOHi?(yl) < h—%HWOHZLz(m) <

2

]L?(al 1 + ”U)”Lz L 71“))

_1ﬁam

C y !
5 (0l apaty + o) ot Eaapap + ol Yo, |
1

my

S C;wlifl(’yl)

In the last inequality, we use (21), which holds for functions w that vanish at a} and
1

G’m1+1' N -

Note that Qp, (w—1wp) = Qp, (w—1wq), where Qy,, is the standard L? projection in
the space of piecewise linear functions defined on the grids a},a},-- -, al and vanish
at the end points a] and am1 Hence by using standard results of the L? projection,

and some previous arguments, we obtain (30) by

lth(w - IUQ)G{J(,),I) S C‘{?U - w0|‘17“{1(%) S O{w}?ﬂm)+
15



1

1
O (o) g ey oy + (0 ) W, ) < Clislig

We then use (30), the L? stability of Qy,, and an interpolation procedure to obtain
(31) Hthw”iIé({z(w) < CkuHéO/Q(%)'

The inequality (25) follows from (31), (29), (27) and (26). O

To simplify the discussion of the next lemma we assume that Q; = (0,1) x (0,1)
is a unit square with sides parallel to the coordinate axes. The result of the following
lemma can be extended to any Lipschitz regions by using the techniques developed in
e.g. Necas [15]. Let the z-coordinate of v equal to 1. Let T's C €y be the set of points
that is within a distance § of v; and define ¢ = 9T's N Q). Thus the z-coordinate of ¢
equals to (1 — §).

LEMMA 6. There exists a constant C > 0 independent of &, such that

(32) lel?ﬁ(g; < C (Jlwllf2e + Slwline,)),
and

3 Lo < C (8w w2
(33) lwllz20 < \ [ li ) + g”wuﬂ(m

hold for any w € H*(£y).

Proof. By using the Fundamental Theorem of Calculus we have

w1 =6y) = w(ty) - [

1-§ Ox

(s,y)ds.
Squaring both sides and taking the integral in y from 0 to 1, we obtain

A%wu—éw»%ygzﬁinw»wy+zﬁl(1 @ﬂaymﬂ .

J1-s Ox

Now using Schwarz inequality on the last term,

! 1 1 U Jw 2
N - ) 27 < 2 32 ¢ s
/0 (w(l —b,y))*dy < /o (w(l,y))"dy + 2/0 ] (/1;5 (31: (b,@/)) ds) dy,

and (32) follows. To prove (33), we note that for 2 € (1 — &, 1)

79

Wl = by =wley)— [ P pds,

YLK
s 9z Y
which implies, by squaring both sides and using Schwarz inequality, that

(w(l—&,y))* <2 (‘w(:/zgy))2 +0 1 (aw(s,y)) ds) .

1-s \ Oz

16



The proof of (33) is now obtained by integrating this inequality over (1—8,1) x (0, 1).
il

REMARK 5.2. A similar estimate plays a very important role in the study of
the optimal convergence of the overlapping Schwarz methods with small overlap; see

Dryja and Widlund [12].

The next two lemmas are devoted to Case R. For a given overlap ¢, we introduce
a finite element triangulation of size O(8) on Q;. More precisely, we let 7°(Q;) be a
triangulation of Q;, which may or may not be nested with 7" (Q;). We assume the
triangulation is quasi-uniform with size O(8) and V®(€y) is the space of continuous
piecewise linear functions on the triangulation 7°(€);). We denote by ~¢ the set of
nodal points of 7°(€;) belonging to 4;. Following Dryja, Sarkis and Widlund [13],
we define an interpolation operator IM : V41 (Q) — V¥(Q;) as follows.

DEFINITION 1. Given w € V" (), define ws = IMw € V(Q,) by the values of
ws at two types of nodes of T°(Qy): .
i) For an interior nodal point P € T(Q)\~?, let 7p € TE(Q) be a
triangle with P as one of its vertices. We define ws(P) as the average
of w over Tp, te., [ wdzx/ [  ldz.
it) For a boundary nodal point P € ~%, let 7p € T*()) be a triangle
with P as one of its vertices, and having an edge on ;. We de-
fine ws(P) as the average of w over 7p (41, t.e. the line integral

Jepr wds/ [;,q,, 1ds.

LEMMA 7. There exists a constant C' > 0, independent of § and hy, such that

(34) (I = I} Ywll 120, < C 8 wlinay),
(35) 1100,y < C Jwlgiay,
and

(36) 157 w0l < C flwllz2 )

hold for any w € V™ (41).

REMARK 5.3. A proof can be found in the paper of Dryja, Sarkis and Widlund
[13].  The interpolation operator IM is used only as part of the proof of the neaxt
lemma, not in the implementation of any of the algorithms proposed in this paper.

For the next lemma, let us assume that ( is aligned with the h;-grid, and let H?
be the fiy-discrete harmonic extension operator in V"1 (T's) with boundary data on v
and zero data on d's\ . Also, let H; be the hy-discrete harmonic extension operator
in V" (§;) with boundary data on v, and zero data on 98\ 7.

LEMMA 8. There exists a constant C > 0 independent of & and hy, such that

. 2 1
(31) Ml < O (o, + 5ol
17 :



for any w € V().
Proof. Using a triangle inequality, we have

Hiwlin ey < 20H(w — 1Mw)lip e, + 2AH Ml ¢,y = 21 + 21,

Let 05 be a smooth function with values equal to one on v, and to zero on O\, Let
Iy, be the usual pointwise piecewise linear continuous interpolation operator. Using
the fact that the discrete harmonic extension has minimal energy,

I <y, (Os(Haw — fé”’le)N?ml) <

1 ‘
C (Qle - [gileﬁ_p(Ql) + 52«[]7{110 — ]éleu’HiNmJ .

In the last inequality, we used the standard estimate as in the additive Schwarz theory
(see e.g. [12]). Finally we use (34) and (35) to obtain

I < ClHtvwlinge,y < Cllwle,

Using again that the discrete harmonic extension has minimal energy, and estimate
(36), we obtain

' C
L=C Y (B0 < Sl
xke’Yf
The proof of the lemma follows immediately. 0

REMARK 5.4. This lemma is used only for Case R.

6. Numerical experiments: Accuracy. To support the accuracy theory de-
veloped in the last few sections, we conduct some numerical experiments. We only
consider Case R, and the problem domain is shown in Fig.1. In all tests, we assume
that the exact solution u has the form

v (z,y) = (sin(wm) + sin(%x)) sin(my).

and €0 = (0,2) x (0,1). We denote Qf = (0,1) x (0,1) and Q5 = (1,2) x (0,1).
We denoted the computed solution by u = (uy,uy) € VE Let I, be the pointwise
piecewise linear interpolation operator in 7. The error on which we report in this
section is defined by

e=(er,ez) = (I, u™ — uy, [,u™ — uy).

Our theory applies only to the H' norm, but three discrete norms L* L and H!
are used to measure the numerical error. More precisely, we use

llellrz) = \/HQIH%Q(Q?) + [‘62‘[%9(98)‘
18



Similarly, we can define ||e||pe(q) and llellzi@)- The refinement is done by simply
cutting each triangle into four equal triangles. We use [ to denote the level of refine-
ment.

In the first test case, we take hy and hy close to each other. We choose Q; =
(0,1.2) x (0,1) and Qy = (0.75,2) x (0,1). The overlapping size is fixed to § = 0.45.
The initial mesh (i.e. [ = 0) sizes are h; = 0.2 and hy = 0.25, which translate to two
non-matching grids of 6 x 5 and 5 x 4. The results are summarized in Table 1. Five
levels of uniform refinements are performed. One can see clearly that the method is

of first order in H'(Q2) and second order in L?(1).

We next examine the dependence on the overlap. We fix the mesh sizes at h; =
0.2/32 and hy = 0.25/32, i.e. the refinement level [ = 5. Let ovlp be an integer
denoting the number of elements in the z direction in the overlapping region, we let
ovlp go from 1 to 32. The results can be found in Table 2. As predicted in Theorem
1, the accuracy is independent of the overlap.

Instead of using the same level of refinement in both subdomains, we experiment
with different level of refinement denoted by Iy, and lg,. We also measure the error
separately in (2 and €. We start with the same initial mesh (6 x 5 and 5 x 4), and
refine three times in each subdomain with levels equal to lg, = 3,4,5 and lo, = 0,1, 2.
The results are provided in Table 3. '

7. Additive Schwarz preconditioners. The linear system of equations corre-
sponding to (3) is usually large, sparse, symmetric positive definite and ill-conditioned.
Preconditioning is necessary if iterative methods are used to solve it. In this section,
we introduce several additive Schwarz preconditioners. A good introduction on the
abstract additive Schwarz method (ASM) and its theory can be found in the book
by Smith, Bjerstad and Gropp [21]. The key element of the abstract ASM theory is
the introduction of a bounded decomposition of the finite element solution space V.
Three such decompositions will be discussed in this section. Some numerical results
are given'at the end to support our theory.

7.1. An additive Schwarz method based on the harmonic extension
(ASHE). We first introduce a method that uses discrete harmonic extensions in the
overlapping region. The subspace decomposition is given by

VE= T+ TVs, Vi= V() Vo= V()

where the interpolation operator Z; : Vy"(Qy) — V*(Q) is given as follows: For
v € V9 (Qy), we define Tyvy € V() by

V1 in 4 (interior, zero on ;)
Tiyvy = < wouy on vy
7‘(?5 wour tn 1y
19



and the interpolation operator T, : Vj2(Qy) — V() is given as follows: For v; €
VO}”(QQ), we defirie Tovy € VH(Q) by

Vg in  §y(interior, zero on 7s)
Tovg = { T1U2 on
h .
Hidmve o Q.

Let the bilinear forms by(us, vi) : Vi (Q) x Vi () — R, ¢ = 1,2, be defined by

(38) bi(ui, Uz') == a,'(ui, t?z') = / Vui . V?)Z‘ dzx.
Qi

The subspace projection operator T; : VH(Q) — VJ“(%),i = 1,2, satisfies
bi(Tiu,v) = an(w, Iw), Yo € Vi ().
Now we define the operator T; = 7.T: : VEQ) — VH(Q), and let
T =T +15.

‘To analyze the spectral condition of the operator 7', we use the abstract ASM
theory. The following lemma is a slightly modified version of the abstract ASM
lemma in Smith, Bjgrstad and Gropp [21], for two overlapping subregions with no
coarse space.

LEMMA 9. Suppose the following three assumptions hold:

i) There exists a constant Cy such that for all u € V() there exists
a decomposition v = Y 1, Tiug, u; € Vi (0), with
2
Zbi(uhui) < Ceap(u,u).

=1

it) There exist constants €;;,1,7 = 1,2, such that

ap(Tiui, Tiug) < € a;z,(Igu,T;,Iiuik)lﬂah(z,“u&j,IjUj)l/z

Yu; € V() Vu; € Vohj(ﬂj).
iii) There exists a constant w such that
an(Tiwg, Tus) < whi(ug,wi) Yug € Vi (Q),6 = 1,2.
Then, T is invertible, ay(Tu,v) = ap(u, Tv), Yu,v € V'(Q), and
(39) C%ap (v, u) < ap(Tu,u) < (p(E)w)an(u,u) Yu € VHQ).

Here p(€) is the spectral radius of £, which is a 2 x 2 matriz made of {c;;}.
20



We estimate the condition number of T in the next theorem. Both Case R and
Case L are considered. For Case R, we define the overlapping size § as usual, and for
Case L, we assume that 6 = O(1).

THEOREM 2. Assume that Assumption 1 holds. Then,

coap(u,u) < ap(Tu,uw) < Cap(u,u), Yu e VHQ),

where ¢ > 0 and C > 0 are constants independent of h; and §. Therefore if the overlap
is sufficiently large, i.e., 6 = O(1), the preconditioner is optimal.

Proof. We follow the abstract theory stated in Lemma 9. We need only to verify
the three assumptions. v

Assumption i). Given v = (vy,v,) € V(Q), we define u; € V;*(Q;) as follows:

up = vy — Hioy = v; — H (mvy) in Q,
and
Uy = vy — HiZvy = vy — H2(m01) in Q.
It is easy to check that u; € Voh'(Qz-) and that v = Zyuy + Zous, since

T
vy — Hidvy + HMmwv, =
h ho
H1§7T‘2U1 ‘+‘ Uz - HIQUZ — UQ.

Ilul + IQUQ = {
For 1 = 1,2, we have

4 hi ki C
(40) ai{ug, u;) <2 (Gi(vi,vi) + a:(Hihv, HlZUi)> < g@i(?}iavi)-

To obtain the last inequality, we use Lemma 8 and the standard trace theorem

v - 1 C
/}{hz 2 2 Tyl 112 oy .
l 12Vi Hl(Q;?é) < C <1|U2HH30/2(7,) T s HvlliLQ('\/l)> < 5 a’L({Ul’ U,).

Note that the above inequality holds for Case L with é = O(1). From (40), we obtain
C¢ = C/é, since
C
by(uy, ur) + ba(ug, ug) < gah(u,u).
2

Assumption ii). It is easy to see that p(&) <
Assumption iii). We prove for i = 1. Let uy € VJ*(Qy). Then,

a;l(Ilul,Ilul) _<__ 2(11(U1,U1) + 26&2 (H?%(ﬁz’lb1>7%?§(7l"21L1)) .

To bound the second term, we again use Lemma 8, which implies that

. 1
h
M () gy < € (ol + lmanlEags))
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To bound ||7yu, HHl/Q(_Y )» We apply the H3? stability result of Lemma 5
oo 72

Hmul”ég/z

2
! (72) S OHUIHH&?(’YZ) S CG](Ul,ul).

To bound ||mauy|12(4,), we use the L? stability result of Lemma 5
Hﬁull@ (v2) = CHU1HL2

and use the fact that u; vanishes on «; and Lemma 6 we have
||U1{|%2(72) < C6 by(ur, u).

Therefore w = C, which appears in the above inequality. O

REMARK 7.1. We remark that if the overlap is sufficiently large, i.e., § = O(1),
then the algorithm is optimal in the sense that the convergence rate is independent of
the mesh parameters hy and hy. The large overlap condition is satisfied automatically

for Case L.

7.2. An additive Schwarz method based on the trivial extension (ASTE).
We propose another additive Schwarz method in which the harmonic extension op-
erator used in the previous subsection is replaced by a trivial zero extension. This
method is computationally cheaper and easier to impiement Let us recall the defi-
nition of the trivial extension operators. For i = 1,2, let &' : VM (fyl) — Vhi(Q;) be
the zero extension of 7% to (O, i.e., &r' = r' at the nodes ab,ab, - 4, and &7
equals to zero at the remaining nodes of 7%,

The subspace decomposition is given by

? m

=LVi+ DV, Vi=V (), Vo= V()

where the interpolation operator T V() — V(Q) is given as follows: For

v € Vi (), we define Tyvy € VE (22) by

V1 m Ql
Tivy = { 7oy on o
Eomovy in

and the interpolation operator 7 : Vi (Qy) — VP(§) is given as follows: For v, €
Vo (Qy), we define Tyv, € VH(Q) by

V9 o
Tyvg = { 7103 on v
52 102 mn \Ql .

The bilinear forms b;(u;, v;) : V[;”(Qi) x Y/Oh"'(Q,-) — R, o = 1,2, are defined the same
as in (38). We define the projection operator T} : V*(Q) —>‘Voh"(Qi),?ﬁ =1,2, by

bi(j}ujv) = ah(u,jm), Yo € Vi (§).
22



Now we define the operator T: = Z,;7; : V*(Q) — V*Q), and let T = Ty + T;. The

spectral bounds of 7" are estimated in the following theorem. Again, for Case L, we

assume 6 = O(1). : '
THEOREM 3. Assume that Assumption I holds, and let h = min{hy, ho}. Then,

‘ : )
chap(u,vw) < ap(Tu,u) < C Tah(u,u), Yu e VH(Q),
y

where ¢ > 0 and C > 0 are constants independent of h; and §.
Proof. We only need to verify the assumptions in Lemma 9.
Assumption i). Given v = (vy,v9) € VH(Q), we define u; € V() as follows:

Uy = V1 — 51’01 = U7 — 51(7?1’02) mn Ql;
and
Ug = Uy — 5202 = Vg — 52(’/72?)1) m QQ.

It 1s easy to check that u; € VO}“(Qi), and that u = j,l Uy +_’A[2u2. It 1s straightforward
to show that :

bi(ui,ui) <

FTQ

(l,‘(?)z‘ﬂ)i) _<_ h—ah(v,v)
2)

and therefore C¢ = C/h.
Assumption ii). It is easy to see that p(&) < 2.
Assumption iii). We only discuss the case 7 = 1. Let u; € V" (Q,). Then,

(1,h(i'1u1,j_1u1) S 2 (al(ul, 'lLl) + ag(gg(ﬂ'gul), 52(71'21/,1))) .

Using an inverse inequality and the L? stability result of Lemma 5, we obtain

a9 (gg(ﬁz‘ltl),gg(’ifglqn S P H?’I’Q’Mluig("{z) _<_ T ”ull!%?('yg)"
;ZQ hz

Recall the fact that uy = 0 on vy, and using Lemma 6, we have
2
H“lum(wg) < Célulﬁi’l(ﬁmﬁz)'

Note that for Case L, é can be replaced by 1. Therefore,

. R 65
an(Zyuy, Zyuy) < C m] bi(uy,uy).
%) '

Similarly, we can get

- A 6
an(Zouy, Touqg) < C ‘]‘*bz(uz;uz).
(41

Thus, we can take w = C' §/h. 0O
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REMARK 7.2. The algorithm is not optimal, and both lower and up];er bounds
are dependent on h and the overlapping size §. But, the algorithm is easy to imple-
ment. A slightly improved version of the algorithm is given in the next subsection. A
comparison with ASHE is given in the numerical ezamples section.

REMARK 7.3. The upper bound depends on § in a rather bad way, i.e., it increases
when the overlap increases. This also shows up in the numerical examples.

REMARK 7.4. We note however that the lower bound for Case R can be improved
Jrom Ch to Ch/(1 —6) for large overlap. For the proof we use (32) to obtain

1 1 1—-94

2 2 2 ~
151U1|H1(Q1) < C/z1 ”Ulﬂlﬁ(m) = C}g””?”zﬂ(m) <0 3

V2]l 1 (2\04) -

7.3. A method based on a modified trivial extension (ASTE1). Both
of the upper and lower bounds of ASTE depend on the mesh parameters. Here we
propose a modification of the bilinear form b;(,-) and as a result the upper bound
becomes independent of the mesh parameters. We assume the subspace decomposi-
tion is the same as in the previous subsection. Here we modify the bilinear forms,

ie., bi(ui,v;) V() x Voh’(ﬂi) — R, i = 1,2, are now defined by:

h h .
bl(ul,ul) =11 + *l al(ul,ul) + il Z U?(LU),
h2 }22 h
eD;?
and
h f
ba (g, us) = (1 -+ -2—> az(ug, ug) + e Z ug(r)
hy hq s

Here D;“ (2 # ) denotes the set of mesh points z in the triangulation 7", such that
supp(z) Ny # 0.
We define the projection operator T; : V*(Q) — V/*(Q,),7 = 1,2, by
| bi(Twu,v) = ap(u, Tw), Yo e V().
Now we define the operator 7; = 7,7} : VEQ) — VHQ), and let T = Ty + T,

THEOREM 4. Assume that Assumplion I holds, then

I 1Nt .
c <7~ + ?l—w) ap(u,u) < ap(Tu,u) < Cap(u,u), Yuc Vh(Q),
11 2
where ¢ > 0 and C' > 0 are constants independent of h; and §.
Proof. We exam the assumptions in Lemma 9.
Assumption i) Given v = (vy,v2) € VH(Q) we define u; € V" () as follows:

Uy = vy — 517)1 = vy — gl(TFl”L)Q) mn Ql,
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and
Uy = V9 — SQ’UQ = Vg — 52(71'2'01) imn Q2.
We have
h h
by(uy,uy) <2 (1 + i) (ar(vy,v1) + a1(&or, Evy)) + —l Z Uf(%“)

}22

<C (1 + :—l) (fll(’l;’lyvl) + %Hm“?ﬂ(wﬂ

e (I + el

where v and +; are the lines parallel to v, and contain the nodal points of D,
Using the standard trace theorem, we have

bl(uhul) <C (]21 h12> al(vl ‘01)
And similarly
bo(ug,ug) < C (i i =) ax(v,2).
hi  he
Adding these estimates, we get |
bi(ur,ur) + ba(ug, uy) < C (2 hl ) ap(u,u).
1 2

Therefore, CZ = C(h hQ)
Assumption ii). p(f,') < 2.
Assumption (iii). For u; € VJ" (), and using the L? stability of Lemma 5

(Ilul,ziul) < 2aq(ug, uq) + C HUIHB(%)
Now we use inequality (33) for a strip DY of width 24, i.e.,

1 4
H'llf1||2L2(fyg) S C <h1tuli§_]1(1)§1) + };;Hul”zg(D:l))

to obtain

. . / fiy
ap(Tiuy, Lyuy ) < C (1 + f—) ay(ug,uy) + = Z ui(z) | = Cby(uy, uy).
2 2

Similarly, we have
ap(Lyuy, Loyus) < Cbylug, uy).

Thus, we obtain w = C. 0 :

REMARK 7.5. Note that the bounds appear in the lemma are independent of the
overlapping parameter §, even for Case R. Numerical examples given in the neat sec-
tion indeed show that increasing overlap does not decrease the number of iterations.
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8. Numerical Results: Preconditioning. In this section, we present some
numerical results concerning the convergence rate of the preconditioned conjugate
gradient(PCG) methods. We are particularly interested in the dependence of the
algorithms on the mesh parameters h; and ks, and the overlapping size §. All tests
are for Case R.

In Table 4, we present the number of PCG iterations and the condition number
of the preconditioned system for each of the three algorithms, plus the case when no
preconditioner is used. The initial grids are 6 x 5 and 5 x 4, and the grids are refined
simultaneously for up to [ = 5 times. The overlapping size is fixed at § = 0.45. It can
be seen clearly that the number of iterations for ASHE stays as a constant, however all
other methods have some dependence of the refinement level. The modified method
ASTEL is considerably better than ASTE.

In the second set of tests, we fix the mesh sizes and vary the overlapping parameter
0. As predicted by our theory, ASHE gets better when the overlap becomes larger.
The other two preconditioners do not share this property. The results can be found
in Table 5. We should mention that although ASTE and ASTE1 do not perform as
well as ASHE they still have practical value since they are much easier to implement.

9. Concluding remarks. In the first part of the paper, we introduce a mortar
finite element method defined on overlapping non-matching grids. An optimal accu-
racy theory is provided for the two-subdomain cases. When a geometrical condition
is satisfied we prove that the accuracy is independent of the overlap, as well as the
ratio of the subdomain mesh sizes. In the second part of the paper, we study three
additive overlapping Schwarz preconditioning techniques. One of the preconditioners,
based on the local harmonic extension, is optimal in the sense that the convergence
rate of the corresponding PCG method is independent of the mesh parameters hy
and hy. Much more work needs to be done in the area of overlapping mortar element
methods, such as extending the methods and theory to the case when more than two
subdomains overlap, and to three dimensional problems.
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TaBLE 1
The wnatial grid on Qy is 6 x 5 and 5 x4 on Qy. The element sizes are hy = 0.2 and hy = 0.25.
6 =0.45. In row I, the number in () is the ratio with the number in row | — 1. The ratio indicates
the order of the accuracy of the discretization.

L* L H L=(Ve)
=0 | 0.1130 0.1375 3478 2.817
[=1]3.129D-02(3.77) 3.754D-02(3.66) 1.820(1.99) 1.462(1.93)
[=2 | 8.085D-03(3.87) 9.469D-03(3.96) 0.9208(1.98) 0.7379(1.98)
[=3 ] 2.027D-03(3.99) 2.375D-03(3.99) 0.4617(1.99) 0.3699(1.99)
[=4 | 5.072D-04(3.99) 5.945D-04(3.99) 0.2310(1.99) 0.1850(2.00)
I=5 | 1.269D-04(3.99) 1.486D-04(4.00) 0.1155(2.00) 9.253D-02(2.00)

TABLE 2
We fiz the refinement to l =5, i.e, hy = 0.2/32 (hy = 0.25/32). The grids are (160+ovlp) x 160
(128 + ouvlp x 128).

L? L> HT L>(Ve)
ovlp =1 |1.262D-04 1.415D-04 0.1155 9.253D-02
ovlp = 2 1.262D-04 1.415D-04 0.1155 9.253D-02
ovlp = 4 1.263D-04 1.417D-04 0.1155 9.253D-02
ovlp = 8 1.264D-04 1.421D-04 0.1155 9.253D-02
ovlp = 16 | 1.266D-04 1.435D-04 0.1155 9.253D-02
ovlp = 32 | 1.269D-04 1.486D-04 0.1155 9.253D-02

TABLE 3

We fiz the overlap ovlp = 0.275. The initial grid is 6 x 5 and 5 x 4. The table below gives the
error on §0 and 2z when we refine both grids uniformly with different level of refinement denoted
by la, and lg,, respectively.

L? L H? L=(Ve)

error in {

lo, =3, 1o, =0 | 3.059D-02 7.890D-02 0.3428 1.400

lo, =4, lg, = 1| 8.126D-03(3.76)  2.238D-02(3.52) 0.1471(2.33) 0.6090(2.30)

lo, =5, lg, =2 | 2.119D-03(3.83) 6.177D-03(3.62) 6.917D-02(2.12)  0.2140(2.84)
error 1n {2y

lo, =3, lo, =0 ] 4.732D-02 9.488D-02 1.435 2.466

lo, =4, lo, =1 | 1.294D-02(3.66) 2.599D-02(3.65) 0.7574(1.89) 1.343(1.83)

lo, =5, lg, =2 | 3.310D-03(3.91)  6.709D-03(3.87) 0.3842(1.97) . 0.6926(1.94)

28



TaABLE 4
A comparison offour methods in terms of the iteration numbers and condition numbers, given
in (). The initial grids are 6 x 5 and 5 x 4. The overlap is fized at § = 0.45. [ is the level of
refinement.

no prec ASHE ASTE ASTE1
=0 | 24(15.8) 13(3.0) 15(3.7) 16 (3.8)

[=153(735) . 12(2.2) 19(6.5)  19(5.5)

[=21107(310.95) 11(2.6) 24(14.8) 22(9.4)

) 32(38.2)  27(17.3)

) (

) (

[=3]211(1270))  12(2.5) 32
=4[ 404(5132)  11(2.5) 46(118.4) 33(33.1)
=5 [ 775(20621)  11(2.5) 71(404.4) 42(64.6)

TABLE &
Verifying the overlapping size. The mesh sizes are hy = 0.2/2° and hy = 0.25/25. The actual
meshes are (160 + ovlp) x 160 and (128 + ovip) x 128. Note that ovlp = 32 is the same as & = 0.45.

no prec ASHE ASTE ASTE1
ovlp = T 65(14418) 42(74.4) SI(116.0) I4{10LD)
ovlp =12 | 643(14585) 27(27.3) 55(158.8) 43(100.0)
ovlp =4 | 656(14937) 18(12.6) 58(230,4) 41(95.5)
ovlp=8 | 672(15702) 14(6.1)  64(318.2) 39(88.2)
ovlp =16 | 694(17364) 12(3.3)  67(396.4) 41(77.6)
ovlp =32 | 775(20621) 11(2.5)  71(404.4) 42(64.6)
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