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Abstract

Computers have become an important part of today’s everyday life, from their high profile
use to manage corporate information, to personal information retrieval (web browsing), to in-
formation kiosks, to consumer electronics, and to managing our microwave oven. The spectrum
of computers runs from the very large supercomputers for intensive computation to the very
small to replace traditional electronic circuits. Today, there is exciting new computer science
being applied to small computers. This tutorial addresses the evolving software technologies for
small computers, specifically, those used in a distributed environment. These machines support
multitasking continuous media environments, though their application domains are specialized
for explicit purposes.



1 Introduction

Today, computers range from process control computers that are an economical replacement for
hardwired logic to supercomputers designed to perform massive computations in the shortest possi-
ble time. The smallest computers have become pervasive in diverse applications such as controlling
power supplies, games, automobiles, appliances, and device controllers for a computer. It now ap-
pears as though a more sophisticated level of communicating computers is about to become pervasive
in society. This tutorial paper describes the rationale for developing these small, communicating
computers (or SCCs) then considers the software that will control them.

1.1 The Evolution of Small, Communicating Computers

SCCs are at the confluence of two mainstreams of computer usage: distributed computing and
embedded systems (see Figure 1). Distributed computing has become a mainstream computer
science activity since 1980 (with the commercialization of the Ethernet). Since 1985 there have
been huge computer science research programs driven by the need to study various facets of dis-
tributed computing to support scientific computation (including the DARPA Star Wars program,
NSF High Performance Computing and Communication, and National Research Council Grand
Challenge problems). Since 1990, corporations have radically changed their information systems
(IS} and information technology (IT), evolving from purely centralized computing to distributed
computing. A more recent emphasis on computer and network technology to support human col-
laboration (shared information, electronic meeting rooms, shared virtual environments) has also
contributed to the interest in effective distributed systems. The competitive business environment
— commerce — has also stimulated distributed computing through the rapid growth of informa-
tion dissemination through entertainment media and the Internet. Mainstream computer science
research is highly focused on all aspects of distributed computing, ranging across hardware, operat-
ing systems, databases, networks, programming languages, programming paradigms, and numerical
methods.

Somewhat independently there has been an evolution in the way electronic control systems are
designed and implemented based on the use of computers. Electronic circuitry has been a classic
element of larger systems since the 1950s. As this area developed, it became clear that control sys-
tems could be built with discrete, digital logic (rather than the continuous analog logic used in early
systems). Computers became important in this evolution when designers realized that they were
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Figure 1: The Evolution of SCCs



a cost-effective way for implementing functionality that would otherwise be implemented in digital
circuitry. By incorporating a microcomputer (such as an Intel 4004) into the controller design,
then storing the software to control the computer in a ROM, the computer could perform the same
function as hardwired logic. This avenue has been driven by commercial ventures in sophisticated
control devices to “automatically” perform a broad range of functions ranging from microwave oven
control to set-top boxes for television control. The defense and space programs have stimulated
tremendous growth in these embedded systems through their intensive refinement of navigation
and control devices from hardwired controllers to computers with sophlstlcated recognition and
strategy selection mechanisms.

As the next century approaches, we are seeing striking interest in the application of small
computers within a distributed computing environment. Part of the interest in SCCs stems from a
trend of “thinning down” computer systems in general [15], and distributed systems in particular;
embedded systems developers are interested in SCC technology since they have “fattened up” to
the point that they need substantially more sophisticated systems to manage their software. There
is also a new overlap of applications between distributed systems and embedded systems — that
of supporting continuous media.

The result is a confluence of technologies; thinned-down distributed systems required the same
computer technology as fattened-up embedded systems. The alignment of technologies coupled with
the emergence of several markets has stimulated a very high level of activity in small, communicating
computers.

1.2 Driving Applications

The rapid evolution of SCCs is driven by user requirements rather than technological innovation.
SCCs have evolved because people want to buy them for their features (or perceived features)
rather than because they are an application of a new technology. The following application areas
are significant driving forces:

Ubiquitous Computing Weiser introduced ubiquitous computers in 1993 [14, 13]. The key ele-
ments of ubiquitous computers are that they are pervasive, nonintrusive devices that provide
useful service while being essentially invisible to users. Further, they are fully connected into
a global network. An important aspect of ubiquitous computing is that they are an enabler
of collaboration from the perspective of situated work [14].

Interactive Television Interactive television (ITV) is expected to provide consumer services in-
cluding basic TV, interactive entertainment, digital audio, video-on-demand, home shopping,
financial transactions, games, digital multimedia libraries, and electronic versions of tradi-
tional print media [4]. The set-top boz is the SCC in this application world.

Web Browsing The availability of information over the Internet grew tremendously in popularity
beginning in 1996. Today, commercial advertisers, print media, sports teams, etc. frequently
list a home page where detailed information can be retrieved over the Internet. Web browsers
are emerging as a “hit application” driving a complete line of development. In today’s technol-
ogy, Netscape and Microsoft (among others) provide free copies of PC software to implement
a web browser. A PC (or Macintosh) owner can load a web browser, connect the machine to
an Internet provider over ordinary telephone lines, and then use the web browser as a user



interface for information retrieval across the Internet. In 1996 Web TVTM hegan offer a prod-
uct resembling a set-top box with a built-in web browser [12]. WebTV’s display is the TV set,
the input device is a remote control (or optional keyboard), and the 2-way communication
network is the telephone network. It is a SCC especially designed to run only a specific web
browser program.

Thin Client Machines There is another product trend intended to exploit the success of web
browsers. The premise is that web browsers have established a human-computer interface
(HCI) that is widely accepted in the consumer marketplace; therefore, the HCI could be
used for services other than web browsing (including, for example, ITV). In general, this
leads to a family of SCCs that span the functionality between a dedicated web browser and
a general-purpose computer — the exact trend we used to explain the emergence of SCCs
from distributed systems. The terms thin client and network computer are used to describe
these machines — ones that depend on HCI technology similar to a web browser, but where
additional software is incorporated into the machine. The Sun JavaStation product line is
intended to operate in this environment [1].

Evolving Embedded Systems These applications have evolved due to the need to use comput-
ers to automate increasingly complex tasks in a hostile environment. For example, the SCC
may be an in-flight computer for spacecraft or a weapon or control a robot working in a mine.
The work performed by these SCCs is well-characterized by navigation and control applica-
tions. The emerging work on telepresence over the network and agent-based automation takes
advantage of the approach [10]. In these applications, the embedded system reads onboard
sensors regarding attitude, direction, etc., and assists in flying the craft within acceptable
value ranges. It could also respond to external commands to follow a particular course, etc.

In the remainder of this paper, we consider the software for SCCs. In Section 3 we focus on the
application programming level, and in Section 4 we consider the operating system technology.

2 SCC Application Domains

5CCs are evolving from distributed computing and embedded systems. While there is significant
commonality, there are traditionally differences in the environments of the two families of systems.

2.1 Embedded Systems Extensions

Embedded systems exist as a component in some larger system such as a spacecraft, weapon,
or microwave oven (see Figure 2). From the total system point-of-view, the embedded computer
(including its software) is just another component in the set of components that make up the total
system. An important characteristic of most of these components is that they interact with one
another to implement a function for the total system. Thus, a sensor might be one component
and an activator another; when a sensor in Component B detects some stimulus, the embedded
computer is required to produce some response to the stimulus within a predefined period of time
— the embedded computer must operate under a hard real-time constraint. In the most critical of
these cases, failure to react to a stimulus within the real-time constraint can result in catastrophic
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failure. It is easy to imagine these kinds of failure in navigation and control applications in an
onboard computer for a spacecraft.

Other functions performed by the embedded computer might have real-time constraints, but
if the computer fails to meet the scheduling constraint, the failure is undesirable but not fatal.
In a PBX system, the digital switch embedded computer is expected to route incoming voice
packets from one line to another within a real-time constrained deadline. However, if the digital
switch occasionally drops a voice packet, the digital-analog converter component can be designed to
interpolate the values in the missing packet and still deliver acceptable-quality audio information.
In this case, we say that the embedded computer operations under one form of a soft real-time
constraint.

Because the computer is embedded in a hardware environment, the load provided by the other
components typically has a unique property: it can be characterized as a set of periodically recurring
tasks. The components in the system periodically take measurements, then require the computer
to analyze the measurements to provide a desired reaction. Much of the real-time technology used
in traditional embedded systems is based on this periodic work, whereas SCCs will have periodic,
sporadic, and sometimes aperiodic workloads. ‘

The environment for an embedded computer system is well-defined by the total system in which
it exists. Because the embedded system traditionally deals with other hardware components —
sensors, actuators, controllers, etc. — it must be designed to handle hard real-time constraints.
As the nature of the total system applications change, there is an increasing need to handle soft
real-time for processing audio and video streams of information. This need to support continuous
media is a major influence in causing the overlap of distributed computing and embedded systems.

2.2 Client-Server Distributed Systems

Client-server computing is the dominant model for how application software can be distributed
across two or more general-purpose computers (see Figure 3). This logical model was derived from
early experience on the ARPAnet in the 1970s to accomplish file transfer and remote terminal
access. In the client-server model, the overall computation is partitioned into two parts, one part
to be executed on a client machine and another part to be executed on a server machine. The
client represents an active entity and the server a passive entity; the server can do work when it is
asked, and the client decides when to invoke the server.
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Experience with the basic model has encouraged designers to create the system so that the
server supports many clients, and hence, to implement functions that manage shared resources.
The earliest commercial servers were the disk and file servers to manage shared information (see
Chapter 16 of [9]), print servers to manage a shared printer, communications servers, to manage a
shared data multiplexor connected to modems, etc. Another widely-used application was to create
a “compute server” in a network of inexpensive client machines; each client implemented a window
system and other elements of an HCI, while the compute server provided cycles to execute actual
applications. For example, the X window system is built on this model.

The client-server model was also a natural way to accommodate the evolution from “legacy
mainframe computing” to distributed models (see [8]). It provided a technological evolution path
that allowed organizations to begin displacing their large mainframe computers with a network of
clients and servers, where the servers were initially the extant mainframe computers. This approach
is particularly valuable to business information systems since it allowed them to adopt a strategy
for evolving their timesharing and transaction systems into a scalable distributed computing envi-
ronment.

The liabilities of client-server computing are in its complexity. In general it has become a chal-
lenge to design good ways for software to be distributed between a client and a server. Once the
software is partitioned, its performance may decline dramatically. Client-server networks introduce
a new level of complexity in administering the computer system. An effective distributed envi-
ronment in which the clients and servers intercommunicate using well-accepted network protocols
such as remote procedure call require considerable attention to set-up and maintain. This admin-
istrative complexity is especially problematic in cases where the client machine is to be used in
nontechnical environments, e.g., the home. The trend toward thin clients is intended to snnphfy
these complexities, especially in administering the client machine.

As the client-server model has evolved, the implicit goal has been to offload increasing amounts
of the computation from the server (mainframe) to the clients (PCs). This allows the overall
network to scale without depending on the scalability of the server — the shared resource. The
recent trend to thin down clients is a radical departure from the traditional goal of distributed
computing, but it has an ever-increasing list of proponents. This trend to of selectively assigning
work to the client machine based on the way the user applies the machine provides the momentum
for thinned-down clients and SCCs.



Finally, note that a significant difference between embedded systems and client-server computing
is in the nature of the offered load. While embedded systems can usually be designed around
periodic work, client-server environments typically interact using a sporadic or aperiodic work
patterns.

2.3 SCC Domains

Small, communicating computers are evolving to address the needs of thinned-down clients and
fattened-up embedded systems. In turn, developers from these two camps are changing their
requirements for computing support based on the evolution. For example, embedded system devel-
opers are expanding their application development horizons to include capabilities often found on
a PC in addition to their standard requirement for real-time computing. PC-oriented developers
are now looking to real-time techniques to support continuous media.

The convergence of technologies invites new application domains that were not previously sup-
ported by computers; ITV is a notable example of this.

As an example of a typical SCC application, we briefly review one of our own experimental
systems that relies on the SCC technology.

The FLOATERS blimp is an unoccupied air vehicle developed to explore several facets of SCC
software technology [10, 11]. FLOATERS is physically about 4 feet long, 3 feet tall, and 2 feet wide.
The onboard computer is a 80486 laptop connected to other microprocessors to control components
of the blimp. There are two propeller motors that have individual speed controls, and a ganged
pitch control. By controlling the individual speeds and the pitch, FLOATERS can be navigated
in all three dimensions. The blimp also contains equipment to report the location and orientation
of the blimp, and a videocamera to view the terrain immediately in front of FLOATERS. Finally,
there is an RF LAN so that the onboard computer can communicate with a ground station.

FLOATERS is used to develop and test ideas regarding continuous media support (communi-
cating the videocamera image to ground stations), digital control (all navigation is done through
the onboard computer), and agent-based automation (the onboard computer can be given abstract
commands which it must translate into low-level commands for the propellers).

The onboard computer is a SCC. It has many elements of classic embedded systems in terms of
the navigation and control tasks. However, it is also a distributed computation when we consider
how it is to perform a high level task such as traversing a space according to some plan determined
on the ground.

3 Application Software

There can be several different types of software in a computer system based on the way the computer
will be used (see Figure 4). Each application domain uses a particular set of vertical application
programs to meet its specific requirements. For example, the ITV domain uses TV guide software,
set control software, etc.; a navigation and control system uses software to plot a course and other
software to control onboard instruments.

Middleware is a term that has been coined in the last five years to identify a common set of
functions that applies to a set of applications from similar domains. For example, ITV and web
browsers may have a common set of software functions to decode and encode network packets,
whereas onboard and weapons computers might use an entirely different set of network protocols
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(and hence have different middleware). Middleware has been popularized by taking advantage of
the fact that some software can be reused across multiple applications and multiple domains. Web
software is an example of middleware.

System software provides a common set of facilities for use by all middleware, and hence, by all
applications in all domains. It includes various tools, window systems, file managers, along with an
operating system. The operating system, discussed more in Section 4, is responsible for managing
hardware resources and for providing software abstractions of the hardware to the middleware.

Application software is written to use an application programming interface (or API) created
by the middleware and/or the system software. The nature of the API dictates much about the
ultimate capability of the applications, and also about the style in which application software
will be constructed. For example, if the middleware provides a particular menu system, then all
applications will use that menu system for the HCI (meaning that they will all have a consistent
“look and feel” with regard to menu operations). ~

3.1 Trends in Software for Embedded Systems

Embedded systems for controllers and onboard computer’s have been viable technologies for over 15
years. The challenge in these programming environments has been along two dimensions: Making
the code fit into a limited amount of memory, and making the code execute in a limited amount of
time.

Assembly Language Programming. When the amount of software in the embedded system
was small, software for embedded computers was typically written in assembly language. This



allowed the programmer to be highly aware of the effect of the source code on the amount of mem-
ory being used by the program, and the amount of time that could be expected to execute the
code. Unfortunately, this style of code development was very time-consuming, error-prone, and
“expensive to develop. The resulting code was also very difficult to maintain or modify to incorpo-
rate new functionality. However, success using this approach stimulated the idea of incorporating
increasing amounts of functionality into the software. As the functionality requirements increased,
the programming time increased at a much faster rate. Assembly language programming became
impractical in the face of growing functionality requirements.

In mainstream computer science evolution, high level programming languages have completely
displaced assembly languages. High level languages allow programmers to work at a much more
abstract level than do assembly languages; with high level languages, programmers can devote more
of their energy to designing innovative algorithms and solutions than is possible using assembly
language. Before high level languages could dominate, it was necessary for the language translation
(compiler) technology to become efficient enough that the space and performance losses due to the
use of the abstraction were outweighed by the increased efficiency at the algorithm level (and in
the time saved on programming itself!).

Single Threaded Software. The original software for an embedded system was written as a
single program to be executed by the CPU in the embedded computer. That is, the requirements
for the software could be identified, then a single program would be written to satisfy all the
requirements. As requirement sets began to grow, the complexity of the control flow in the software
became at least, if not more, complex than the requirements. For example, if code modules fi, f2,
ooy [ were designed to meet requirements rq, 72, ..., 7, then a main program needed to be written
to call f; whenever appropriate. In the case that there were timing dependencies on the execution
of the f;, the situation could worsen to the point that any particularly function, f;, might have to
be decomposed into subfunctions f;1, fi2, .- fim, then to have f;; called at just the right time.
The main program is responsible for implementing this coordination; thus by its nature it is fragile,
making it difficult to maintain or change. ;

Programmers soon realized that this could be handled much more effectively, i.e., greatly sim-
plifying the construction and maintenance of the main program, by changing the single thread of
ezecution into multiple concurrent threads of execution — multithreaded ezecution. Fach of the f;
could be written as a separate program, being executed by a logical machine, using interrupts and
synchronization events to start and stop the execution of the subfunctions, f; ;. Then, a scheduling
entity could simply run each f;; when it was logically ready to run. This solution was also being
widely used in the mainstream software technology in the 1970s, so it was a natural evolutionary
change in embedded system software.- ’

In a multithreaded environment, the programmer focuses only on implementing f; as a set
of subfunctions, fi1, fi2, .- fim to be executed by a single thread in the multithreaded (or
multithreaded) environment. Each thread is then assigned to one of the f;.

Figure 5 represents the way the subfunctions are are executed on a machine having only one
physical processor. Suppose that all of f, to f, are ready to run; the operating system scheduler
chooses one of them, say fi, to use the processor. When subfunction fi; has been completed, f21

!Classically, programming language experts have argued that the increased ability to write correct programs.
justifies the use of high level languages
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begins execution, then fs;, etc. After f,; has finished, (and presuming that the thread for fi ; is
now ready to execute), the operating system runs the thread for f .

Single Address Space Computations. Multitasking/multithreaded environments quickly high-
lighted a new problem: the different threads implementing fi, fo, ..., fn are all loaded into the
machine’s memory at one time, even though they implement independent functions. Therefore,
when f; was being executed, a subtle bug in the software might cause its thread to overwrite the
part of memory being used by a different function, fi. f; might look like it is working correctly,
but f would periodically fail for no apparent reason.

The mainstream software solution to this is for the hardware to provide memory protectlon
mechanisms to prevent the thread executing f; from reading or writing memory other than that
which is allocated to it. This avoids the problem of f;’s thread overwriting the memory space
used by fi’s thread since it is no longer possible for the thread executing f; to even access the
memory being used by the thread executing fi (see Chapters 6 and 11 of [9]). Mainstream compiler
technology evolved with the hardware to have translation systems construct f;’s program within
its own address space. :

Unfortunately, the address space 1501at10n mechanism also prevents f; from cooperatively pass-
ing information to fr by writing information into a shared memory location. Such sharing is
common in an embedded system whenever f; and fi are cooperative threads, working on a com-
mon problem (as is often the case in an embedded system). The usual solution is to completely
bypass the memory protection mechanism by constructing f; and fi so they use the same address
space, but execute as separate threads.

Neither approach is completely satisfactory. A better approach is to construct each thread so
that it has its own address space, but so that it can selectively share parts of its address space with
other threads (by mapping the shared part to shared memory). This is the contemporary mainline
computer science solution to the problem, and it is also being used by more and more embedded
software.

Time and Space Needs. Multithreaded/multi address space technology abstracts the memory
space and execution time from the programmer. Experienced C programmers are still able to
construct their code so that they can determine space requirements, but control on execution time
is lost with the abstraction. (It was also true that the growing complexity made it essentially
impossible to construct solutions that met timing constraints in assembly language.) This lead

10



embedded application programmers to begin using real-time operating systems to ensure that the
various subfunctions are executed prior to some deadline established by the system requirements.
From the programmer’s point of view, this requires that the function specification identify the
frequency a subfunction should run, the time to execute the subfunction, and a deadline by which
the subfunction must be completed — hard real-time software.

Cross-Development Environments. Today, multithreaded, multiple-address space software
for embedded systems is developed on a general-purpose computer, e.g. a separate UNIX, DOS,
or Windows-based development computer. The compiler is a cross-compiler that runs on the
development machine, but generates machine language programs for the target SCC. Embedded
systems are developed almost exclusively using this code development model.

3.2 Thin Applications

What’s the big deal about Java and the Web? The fact that they mark the death of fat-
ware and the birth of dynamic computing built on rented components. Edward Yourdon,
[15]

In Section 1 we explained how SCCs have evolved from distributed computing by a recent trend
toward loading less software onto the user’s machine (contrasted with the trend where software
packages are becoming increasingly large.) While one part of computing is to configure the computer
with a faster processor, more RAM, and a larger disk; the trend in SCCs is to use limited memory, a
network for accessing services, and to load software into the SCC only when it is needed. Hamilton
[6] and others refer to this as a shift to net-centric computing.

Encapsulated application technology has emerged as a commercially viable way to produce
applications for SCCs (as well as other classes of computers). The principle for this style of pro-
gramming is that the hardware environment is a distributed environment made up of client and
server machines. Server construction is accepted as being a software-intensive task, meaning that
the construction of the software can be difficult, and the resource requirements to execute server
code can be significant. Clients are lightweight entities that can cooperatively execute software by
downloading an encapsulated application — called an applet — that has been especially designed
to conduct the interaction between the client and the server, with a separate interaction between
itself and the client environment. »

Figure 6 pictorially represents the relationship among components in a systems supporting
encapsulated applications. A client application and a server application intend to communicate to
jointly perform some work. For example, the client application might be a user interface for browsing
a database, and the server application might be the database. The applet has been written by the
developers of the server application. The two pieces of software are designed to communicate with
one another over the network. Next, the applet has also been designed to interact with the client
application through a procedure-call interface (much simpler than the network interface between
the server application and the applet). Now, when the user wants to use the server application,
the server downloads the applet into the client application. When the user queries the server
application, the client application passes the query to the applet, which then interacts with the
server application to carry out the query.

The applet-based software environment is a key technology for allowing SCCs to be configured
with modest resources yet be able to operate in a fully distributed computing environment. Of

11
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courd it depends on there being a “standard” interface between the applet and the client applica-
tiomn. :

Java. Java programs are portable, object-oriented programs, described by Gosling (the language
inventor) as “... C4++ without guns and knives ...” [5]. This means that Java explicitly limits the
ability to reference arbitrary objects within a program, a concession to help ensure secure operation
of programs written in Java. :

When Java programs are compiled, they are translated into a pseudo code language (“byte-
codes”) rather than into a native machine language. This means that compiled Java programs
cannot be executed directly on target hardware, but that they must be interpreted by another
package that has been implemented on the target hardware; this interpreter is called the Java
Virtual Machine [7]. Any machine that contains the Java Virtual Machine can be given a copy of
~ a compiled Java program, and it can then interpret the program.?

A Java Virtual Machine can be implemented in any environment, e.g., as an ordinary process in
UNIX or as a part of a web browser. Web browsers such as Netscape Navigator support embedded
applications by incorporating a Java Virtual Machine in the browser (see Figure 7). As a conse-
quence, when the browser contacts a server to read an html file, the server can provide specialized
functionality by downloading a copy of a Java applet — the compiled version — into the browser.
The browser can then use the Java Virtual Machine to execute the program.

Web Browsers. The World Wide Web (WWW) was originally developed to support geograph-
ically dispersed set of collaborators [2]. The general idea is that there are a set of web servers that

®In cases where the speed of interpreting the applet is a limiting performance factor, the client can include a
“Just-in-time compiler” to translate the Java pseudo code into native language code; it can then be executed directly
as if it were interpreted.
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are information repositories, and another set of web clients that can be used to browse the infor-
mation stored in the repositories. Information is referenced by having the client use a hypertext
link to identify information within the web (i.e., by identifying a server and the information on
that server). The WWW defines [2, 3]:

¢ An address system (Universal Resource Identifier, or URI) to reference information.
e The HTTP protocol for accepting requests and transferring information.
¢ The HTML markup language for describing information.

A web browser is a web client application that provides an HCI to allow an interactive user
to issue a request to a server using a URI (or UR locators, URLs) using HTTP. The web browser
will also use HTTP to accept the hypertext from the server. As the web has evolved, alternative
network protocols including FTP, NNTP, Gopher, and WAIS can also been used, though the general
behavior of the protocol is the same as for HI'TP. When the web client obtains the HTML hypertext,
it interprets it to create a new display for the interactive user. Just as there are alternative network
protocols used in WWW the language used to describe the hypertext object may be be different
from HTML. This new display may have URIs to other objects in the WWW space, allowing the
user to issue a subsequent query, etc.

Notice that the web does not depend on any particular presentation of the HITML at the
user interface; this means that two different web browsers will ordinarily display the same HTML
information .as two different displays. They should have the same “information content” but their
own unique presentation.

It is also important to notice that WWW does not explicitly address encapsulated applications.
HTML accommodates them by allowing the hypertext object to contain fields that are subject to
arbitrary interpretation. This means that a server can place an applet program into a field of the
hypertext, expecting the web browser to interpret it as, say, a Java or ActiveX applet. However, if
the hypertext contains an applet, and if the web browser has the capability to execute the applet,
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then the client and server will perform a new-level of distributed computation over and above the
basic capability assumed by the web.

4 Operating Systems

Part of the confluence of thin distributed systems and fat embedded systems is reflected in the
evolution of operating systems (OSs) for SCCs. With a few exceptions (e.g., WebTV), SCCs are
assembled using hardware from one source, an OS from a second source, and application software
from many other sources (of course in the case of encapsulated software, applications are provided
dynamically at run time, but the applet runtime environment is generally supplied by a different
vendor that the ones supplying the hardware and OS). This section considers the OS technology.

4.1 OS Functionality

SCC OSs are required to be as compact and efficient as possible, yet are also required to provide
a core multitasking, multi address space environment. Any OS can be systematically studied by
considering the way it provides a general class of functions: process and resource management,
device management, memory management, and file management [9].

Process and Resource Management. The process and resource management function is the
heart of a multitasking OS. It create the software environment that has the illusion of multiple
virtual machines to be used by the multiple tasks. Different OSs use different definitions of tasks,
though the time-honored one is that of process. A process is an abstract entity that can have
resources allocated to it, and that will execute a program. A thread is a similar abstraction, though
threads are distinguished from processes in that they tend to use resources belonging to “someone
else.” In contemporary OSs, there is still the notion of a process that can have resources allocated
to it, while a thread is a child of the process; the thread uses the process’ resources. The OSs used
in SCCs seem to take variants of this general approach to providing a multitasking environment.

Multithreaded operation is possible because the OS first defines a thread, then it provides a
mechanism — called a scheduler — for time-multiplexing the processor across threads. When a
thread is logically ready to execute (it has all the resources it needs at the moment, and is not
blocked on any event), then it is said to be “ready to run.” When the scheduler chooses to reallocate
the processor, it selects from among the then-ready tasks, dispatching the task to the processor for
a block of execution time. Later, the running task will be removed (because it was done or it was
interrupted) and the scheduler will choose and dispatch another thread.

The resource management aspect of the OS is the part that decides which units of which
resources should be allocated to a requesting entity, say a process. A process can only make a
resource request while it is running (otherwise it is blocked and asleep). When the request is
made, the resource manager decides if it can or cannot satisfy the request. If it can, it allocates
the resource units and allows the process/thread to continue execution. If it cannot, the resource
manager blocks the process/thread until some other process releases enough units of the resource
to satisfy the request. At that time, the process can be made ready and begin competing for the
processor again.

14



Device Support. Computers can be configured with a wide array of different device types. Some
devices are low-speed character devices, e.g., a keyboard, touch-sensitive screen, or remote control;
others are high-speed block devices, e.g., a packet network interface. The device manager function
is to provide controlling functions for this array of devices.

The OS could be configured so that it has all possible device management strategies built into it;
then when any device is added to the the system, the device management function (device driver)
is already present. There are two criticisms of this approach: how does the original OS designer
know what all the devicés that anyone will ever want to add to the system? If obscure devices are
not added to my system, why do I need to include their device drivers (using up precious memory
space in my version of the 0S)? ’

All contemporary OSs, including Microsoft DOS, use configurable device drivers. In the case of
DOS, the OS is extended with various device drivers when the machine is booted. Most versions of
UNIX allow device drivers to be added when the machine is powered down so they will be available
the next time the machine is booted; recent versions provide a dynamically loadable device driver
capability e.g., see Linux. ‘

Embedded OSs are especially sensitive to this problem, and have tended to solve it by taking a
variant of the UNIX approach (though, technically it is not quite as flexible). Some of these systems
have an explicit configuration phase in which the OS is rebuilt to have the device management
facilities for the specific hardware configuration.

Memory Management. The memory management system is responsible for allocating memory
to processes, for protecting allocated memory from unauthorized access, and sometimes for auto-
matically moving information back and forth between the memory and storage devices. Today’s
general purpose OSs use very elaborate virtual memory systems based on paging. These systems
provide the most general functionality, accomplishing all the goals of allocation, protection, and
automatic movement. However, there is a cost in time, space, and hardware for virtual memory.
As mentioned in Section 3, embedded system designers frequently forego sophisticated memory
management to conserve time or space.

In emerging SCCs, there will be fewer and fewer single address space application sets. Most
will use use dynamic relocation hardware, but few will use full virtual memory in the immediate
future.

File Management. Embedded systems typically do not use files, but thin clients make extensive
use of them. This will be one of the parts of SCC OSs that will require innovation before a common
OS can be used by the full spectrum of SCCs. Thin clients will continue to use files, and as
embedded systems designers become acclimated to the use of the network (and as the network
bandwidth increases), SCCs will increasingly make use of file access.

4.2 OS Organization

The software organization for how an OS is designed and implemented is relevant to the discus-
sion of SCC OS technology. Prior to 1970, operating systems were typically constructed as one
large monolithic block of code. Several different researchers began to advocate partitioning the
functionality into modules that could be separately developed and maintained. This resulted in an
approach in which core OS functionality was implemented in a kernel, with other aspects of the OS
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being treated as ordinary user programs by the kernel. The kernel-organization is the main design
style used in today’s OSs (see Chapter 18 of [9]). UNIX is a common example of this approach.

As the need for OSs appeared in embedded systems, a new approach began to evolve: config-
urable OSs. In this approach, all OS functions are implemented in modules, based on a core module
(similar in style to a kernel, but generally having less functionality than a kernel). As the embedded
system software was designed, requisite modules were added to the core module. Finally, the core
and required modules were combined and compiled into one specialized version of the OS — con-
figured exactly to meet the requirements of the embedded system’s application software. VxWorks
is a common example of this approach; it is well-known among embedded system builders.

Today there is another technology that is being used to meet the general requirements for SCCs,
including embedded systems: microkernels. A microkernel is a base module that has been compiled
and exists an independent software entity at runtime; however, it is does not have enough capability
to perform OS functions by itself. It is accompanied by a set of servers (same idea as servers in a
client-server model, but these are microkernel servers). A microkernel is configured to a particular
application programming environment by adding a set of microkernel servers to enhance the base
functionality. In principle, these servers could be dynamically, added or deleted from the system,
though that does not happen in practice. Microkernel OS technology is the state-of-the-art in OS
organization. This approach is used in Mach, Chorus, and Windows NT.

4.3 Handling Time Constraints

The microkernel (or other atomic part of the OS) must implement the multitasking model. The
scheduler is a key element of the model, since it determines how threads (or processes) will share
the system’s processor. Real-time requirements mean that the SCC OS must support a particular
class of schedulers; if the scheduler cannot address processing deadlines in some manner, it cannot
be used for embedded systems or continuous media environments.

Best Effort Scheduling. Web browsers and thin clients use best effort scheduling as is found
in Windows 95 or UNIX. When a thread is ready to run, it is placed in a ready list; the scheduler
selects ready threads for execution according to equitability concerns, i.e., over time, if N threads
are ready, each will receive 1/N of the CPU time.

Hard Real-Time. SCCs require some form of real-time support, meaning that the scheduler
must use priorities on each thread where the highest priority thread is guaranteed to run if it
is ready.® Hard real-time schedulers can assure response by requisite deadlines by using a rate
monotonic scheduler with periodic tasks. If there are other tasks that are sporadic, then hard
deadlines can again be assured by using the worst case interarrival period that could occur in
the set of sporadic tasks. Finally, if the tasks may become ready at random times — aperiodic
tasks —.then a sporadic server can be used with a rate monotonic scheduler to provide guaranteed
service provided that the time between tasks arrivals in an aperiodic set is always greater than
some minimum threshold. SCCs for embedded system applications require the OS to provide hard
real-time scheduling support.

3The classic problem with such schedulers is that priority inversions can take place in which a high priority process
is prevented from becoming ready while it waits for a signal from a ready lower priority process.
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Soft Real-Time. SCCs for ITV, involving continuous media support such as MPEG stream
decoding, also use deadlines for task completion. However, an ITV application will not necessarily
fail if a deadline is missed. This allows the operating system to take a soft real-time approach,
which is far less conservative that hard real-time; as a consequence, it makes much better use of
the SCC’s resources. Unfortunately, soft real-time is a leading edge and evolving technology, so the
detailed requirements for the operating system are not known at this time.

5 Conclusion

The trend to thin down clients and to fatten up embedded systems is creating a new class of
small, communicating computers with their unique software requirements. SCCs will be used
in a spectrum of rapidly growing application niches, including ubiquitous computing, ITV, web
browsing, thin client applications, and communicating embedded systems.

The technology business sector is rapidly repositioning itself to address this potentially huge
market. This repositioning causes companies to reconsider the hardware designs, but more impor-
tantly, to completely rethink the way they write and support application software. This has strong
implications on the nature of the operating systems used in SCCs, since they must be small and
tailored to SCCs.

There are technological challenges to be overcome, but none appear to be impossible to address.
The next 5 years will see an exciting growth in the SCC market, and a radical change in the way
computer software is designed to address these machines. ’
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