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Abstract

Recent microprocessors contain hybrid branch predictors that attempt to combine the predictions of
multiple single-level or two-level branch predictors. The prediction-combining hardware — the selection
mechanism — may itself be large, complex and slow. We show that the combination function is better
performed statically, by a profiling or static analysis technique. An important advantage of our approach
is that a branch site need only cause interference within a single component predictor. And, although
prediction combination itself is now static, the actual predictions remain dynamic, so there is no specific
risk of worst-case performance.

Static selection requires that information be stored in or with the program text. The most obvious
implementation, dedicated branch opcode bits, would seem unavailable to pre-existing ISAs. We argue
that a number of recent implementation techniques, such as code rewriting and decoded caches, are
applicable. In various combinations, these techniques could be used to solve not only encoding problems,
but pipeline problems. We also argue that our proposal addresses the scaling issues currently facing
hardware designers.

Miss-rate results are presented which show a clear and consistent performance advantage. Using a
cross-validation technique, we show that our static method is robust in the face of traces that it was
not profiled on. These results are obtained with a realistic whole-system benchmark, and with realistic
hardware sizes.



1 Introduction

Branch prediction is considered to be an important research topic because misprediction penalties have
become a major impediment to high processor utilization. Branch predictions are used by deeply pipelined
designs, so as to avoid pauses in the instruction prefetching. On a modern wide-issue processor, each one-
clock pause means that up-to-N instructions were not issued. Worse, issue width is now similar to the size
of a basic block, which means that a branch predictor must do about one prediction per clock, and in the
near future, perhaps two per clock.

Research in this topic is not disconnected from industrial practice. In fact, recent microprocessors such
as the MIPS R10000 [16], and the Alpha 21164 [6], contain extensive prediction hardware. More recent
hardware is reportedly faithful to published predictor designs.

Recently there has been interest in hybrid branch predictors. The fundamental idea here is that different
predictor schemes have different advantages. Hence, a combination of basic schemes might (at some cost)
obtain all of their advantages. And, in fact, a hybrid predictor is known to be in the upcoming Alpha
21264 [9]. ;

In Section 2, we will point out what some of these advantages might be. We will also give some idea of
the suggested implementation techniques, and the cost and speed penalties that might be involved.

This paper proposes that the prediction-combining hardware — the selection mechanism — be replaced
by a static choice that is made once per branch site. The most obvious implementation would be to dedicate
one or more branch-opcode bits to this purpose. (Some alternative implementations will also be discussed.)
This approach has a clear advantage in terms of hardware cost, and may have an advantage in terms of the
predictor’s critical path.

This paper shows that the prediction accuracy is acceptable. In fact, we will argue that the prediction
accuracy can improve, because components can view less of the workloa.d stream. And, in Section 5, we will
demonstrate an improvement, relative to a comparable dynamic hybrid predictor. For example, one result
shows a 4096-bit dynamic selection mechanism getting a 4.6% miss rate, while our static approach gets 3.4%.
Much more importantly, we will show that our results are never worse than those of the dynamic selection
mechanism, and this will be shown across a realistic range of benchmarks and configurations.

This paper is organized as follows. In Section 2, we will survey recent literature, and define some of
the more important terms and prediction schemes. In Section 3, we introduce our proposal, and explore
hardware and software implementation issues. In Section 4, we describe a group of sample hardware designs,
and a benchmark with which to evaluate them. In Section 5 we present a variety of evaluations, and in

Section 6 we summarize and discuss some possibilities for future work.



2 Previous Work

There is an extensive literature on branch prediction, to the point where a 1992 taxonomy [17] is already
becoming dated. Typically, predictors use the program counter, and/or recent branch history, to index into
an array of up/down saturating counters. The actual prediction is based on whether the counter contains a
high or low value. Counters typically use two or three bits, so as to reflect the ‘recent popular direction’ for
that subset of the branch stream.

A branch history is simply a short shift register, which receives one bit each time a branch is taken or
not. A branch history may be global, in which case it is kept in a Branch History Register. A history may be
kept per branch site, in which case a Branch Target Buffer (“BTB”) is usually kept, with address tags, and
typically with 2-way or 4-way associativity. An intermediate method uses a tagless Branch History Table,
which permits different branch sites to be aliased to the same branch history.

The idea of hybrid predictors was proposed by McFarling [12]. He describes a series of simple predictors,
most notably “gshare”, which we show in Figure 1. The paper argues about why each simple predictor
works, and concludes that to some extent each works in a different way. Hence, a “combining predictor” is
suggested, which is a specific variant of the general scheme shown in Figure 3. The “combining predictor”
contains two component predictors, both of which are operated normally. Additional hardware then uses
the PC to select from yet another array of 2-bit counters. The selected counter’s value indicates which
component predictor has been the most successful lately for that branch site. Given this indication, the
hardware simply chooses one of the two available predictions.

Update of a combining predictor, shown quite generically in Figure 4, involves changing the selected
counter if one component predictor was right and the other was not. The component predictors are also
updated, in whatever way is normal for each specific component.

The paper concludes, from performance on SPECS89, that combining predictors have better performance
than any single predictor of the same hardware size. Note that the selection mechanism’s array was the
same size as the arrays of the component predictors, so the cost of that extra array was accounted for when
normalizing performance versus hardware cost.

Chang, Hao and Patt [2] looked for good combinations of components. They did not want to try all
possible combinations, in all possible hardware size ratios. So, they used a 1:1 ratio, and determined, per
branch site, the effectiveness of each component. This allowed a static computation of the miss rate of an
“idealized” hybrid predictor. The paper argues that this ideal is in fact not perfect, since it does not adapt
to program dynamics. However, the method allowed them to choose the best pairing, which they determined
to usually be gshare plus “PAs”. (“PAs” [17] [14] is described in Figure 2.) They argue that the pairing
is successful because gshare does well on site correlation, and PAs does well on successive uses of one site.

They also suggest that some predictors have a quicker warm-up time (i.e. a smaller training cost).



The paper suggests several “two-level” implementations for dynamic selection mechanisms, and reports

their performance on SPECint92.
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In a more recent paper Evers, Chang and Patt [7] consider a larger selection of component predictors,
and propose a hybrid predictor with not two components, but six. This “multi-hybrid” contains unequal
sized elements, in the expectation that some will warm-up (train) more quickly after context switches. It
also contains a component predictor which is specialized for predicting loops.

The basic problem with this concept is that the selection mechanism is expensive. To make a multiway
choice, it cannot use anything so simple as one two bit counter. So, they propose having six two-bit counters
in each line of a 2048-high BTB. Each counter rates a given component, and the highest-rated component
wins. A priority scheme resolves ties, but update rules are necessary to prevent ties from becoming the
common case.

The paper studies this predictor’s performance under a load of context switches, which are simulated by
periodic flushing of the predictor state. This simulation method is deprecated in Gloy, Chen and Smith [8],
which compares results from this method against results from full-system traces. They argue (for example)
that flushing makes large tables appear pointless, whereas in actuality they reduce aliasing between kernel
and user branch sites. _

A major difficulty of a 6-way hybrid is the rather long critical paths through the selection mechanism.
Evers, Chang and Patt do suggest a way whereby updates can precompute the highest ranked component,
reducing the work that must be done during that BTB line’s next prediction. But in any case, it is clear
that this whole approach has increased costs, in both hardware area and in time. The problem with any
such scheme is to assess not only its effectiveness, but also its cost-effectiveness.

Instruction set support for branch prediction was part of the RISC revolution of the 1980’s. In some cases,
it was an explicit part of the ISA that programmers should expect “BTFNT” (Backward Taken, Forward
Not Taken) prediction. The PowerPC [5] has a bit for reversing BTFNT. It could be argued that the loop



instructions of the IBM Power (and PowerPC) ISA permit excellent prediction of inner loops, including
-potential prediction of loop exit. (This is because there is a hardware register which is dedicated to loop
counting, and a processor implementation could specifically detect when the loop is one cycle away from
termination.)

Other ISAs such as SPARC and Intel 1960 [13] allow compilers to provide a branch prediction, via a bit
in the branch opcode. There are some minor variations on this in the literature. For example, implementing
the classifying predictor of Chang, Hao, Yeh and Patt [3] probably involves having an “almost never taken”
branch form, and an “almost always taken” form. (In this case, “almost never” means less than 5% of the
time.) The predictor in the upcoming PA-8500 [11] keeps track, not of branch direction, but of whether or
not the branch went in the direction indicated by the static hint. The HP designers argue that a conventional
predictor suffers whenever a usually-taken branch and a rarely-taken branch are aliased to the same prediction
counter. With the HP design, however, such situations will have little impact if each opcode bit was set

correctly. The counter will most likely represent a correct prediction for both branches.

3 Static Hybrid Predictors

The basic idea behind our ap‘proach is that it would be nice to simply eliminate the dynamic selection
mechanism. After all, that hardware component only exists in order to decide who to believe. A bit in a
branch instruction can make just such a choice.

A simple way to compute such selection bits is by profiling. There is, for instance, literature which
is positive about the degree to which profiles are predictive of subsequent executions [1]. Profiling was
originally a compiler technique, but more recently, code rewriting systems, such as ATOM, have been used
to generate profiles. And, some recent microprocessors have hardware which can be used to gather profiles
of even real-time systems [4].

The most obviou‘s place to store selection bits is in branch opcodes. This poses a problem for most
pre-existing instruction set architectures. However, it is not a problem for all ISAs: for instance, upcoming
VLIW designs. And, with code rewriting techniques, conventional ISAs can undergo adjustment. The
selection bits can also be promoted into cache line headers, or trace cache headers, which makes them
available at pipeline-convenient times. The selection bits can also be promoted into non-branch instructions,
which are suitably coupled to the actual branch. Predecessors in the control flow graph are all suitable, and
predecessors on a trace are also candidate locations. In particular, NOPs inserted by code scheduling could
be quite convenient.

A potential performance drawback of the basic idea is that superficially it cannot track dynamic behavior,

at least at a fine or medium grain. It has been argued [7] that this is important, because some programs may



go through phases of execution, each of which should be characterized. This argument is not enormously
strong, because we are not, after all, proposing fully static prediction. Actual predictions are done by a
component predictor, which is most likely dynamic, and therefore capable of adaptive behavior.

‘This negative argument is nevertheless a point which must be dealt with. In the data presented later,
we are careful to compare our results to those of a reasonable dynamic hybrid predictor. Also, by cross-
validation, we will show that phases of program execution do not seem to be a problem.

Static selection quickly leads us to a large number of topics. It is, for instance, an appealing idea because
it would support an N-way selection mechanism as straightforwardly as a it supports a 2-way. If only the
selected component is cycled, then the idea allows component predictors to have unequal or even variable
prediction latency. It also suggests a simple way to obtain multiple predictions per clock, by “coloring”
branch sites so that successive branches are unlikely to want the same component predictor. Without such
freedom, it is difficult to see how the designers of the “billion transistor chip” will be able to spend very many
of those transistors on prediction. It would surely be uphill to use a high-latency subsystem as a latency
cure.

A more subtle performance issue is the question of pipeline staging. Examining Figures 3 and 4, we see
that a hybrid predictor goes through three steps in sequence: {1) The PC and BHR flow into the components;
(2) predictions emerge from each component, and a selection action chooses a prediction; (3) the resolved
branch information is used in updating actions.

In fact, step 3 may occur much later {(and may not occur before the next prediction). However, the
critical question, here, is when information from the code stream must be used. In conventional systems,
the answer is that the code stream affects step (3). Our proposed information could be used in step (1),
so that only one component predictor need be cycled. If a parameter of the evaluation came from the code
stream, then this pipeline timing would be a strong requirement of the scheme. However, this paper does
not propose that, and thus our information is not required until step (2).

The above argument places branch prediction schemes into three timing categories. A given pipeline/cache
design may or may not incur penalties for a type (1) predictor. However, since our proposal is of type (2),
we believe that there is no strong impediment to an aggressive implementation of our scheme. Note that the

prediction bits in various RISC ISAs imply that their designers planned type (2) implementations.

4 Experimental Design

4.1 Selection of a Configuration

The first test of our proposal is to select some predictors, select a benchmark, and obtain a profile.



In Section 2 we discussed several hybrid predictors. From these, we chose to implement the McFarling
combining predictor. It has the advantage that the implementation details are clear, for any desired size. It
has no free parameters, and therefore gives a clear point of comparison between papers. Also, the data in
the hybrid predictor literature [12] [2] [7] show that it works quite well.

Chang, Hao and Patt [2] reported that their best predictor combination was PAs [17] plus gshare [12].
Both of these predictors have free parameters, but papers such as Sechrest, Lee and Mudge [14] report the
most effective ratios between the parameters. It was decided that the PAs predictor would have a 256-high
BTB, plus a one-dimensional array of 512 counters. Further, the BTB was given 4-way associativity, and an
“update on taken” update policy. This policy means that if an update would cause a BT'B eviction, and if the
branch was Not Taken, then the BTB update is ignored. This policy choice is only sometimes advantageous;
but in any case, it was used throughout, and therefore does not lead to any unfair comparisons.

The gshare predictor was given 2048 counters, organized as 2° by 2%. Following McFarling’s sugges-
tions [12], the McFarling combining predictor also has 2048 counters.

Results are also reported with everything four times the size, to to test the stability of the configuration,
and the stability of the profile. The total storage devoted to this larger size is extremely small, compared
to some simulated configurations in the literature [2][7]. However, it is actually somewhat on the large
side, compared to current hardware practice. For instance, the MIPS R1000 [16] uses a bimodal [12] (a.k.a.
2bC [2]) predictor of only 512 counters. The Alpha 21164 [6] uses 2048 counters in the same organization.
As we have already pointed out, large predictors are necessarily slow, and even given unbounded area, an
optimum size must exist.

For reference, we will also show the results for the component predictors, operated standalone. And,
we will show the results of double-sized components. Specifically, we present gshare predictors that are 27
by 2%, 28 by 2%, 28 by 25, and 2° by 2%. We present a PAs predictor with a doubled BTB height of 512
instead of 256. (The PAs has 512 counters in both cases, since PAs is relatively insensitive to the addition
of counters.) Since the hybrid predictor uses corﬁponents of approximately equal size, doubled components

give some idea of the performance of alternative organizations having comparable overall costs.

4.2 The Benchmark Suite

The results here use the Ultrix portion of the IBS traces [15]. These traces have become popular because
they are traces of an entire system, including the kernel, interrupt handlers, daemons, and an X server.
They are also fairly accurate, although they are not perfect. (Discrepancy checking turns up a small set
of problems, which can be attributed to buffer overflows during the original hardware monitoring process.)
And, they are long enough to capture entire file system operations. As shown in Table 1, they vary from 40

million to 150 million RISC instructions.



Benchmark | Millions | % of Ops | Conditional
of Ops | in Kernel | Branch Sites
groff 105 13.6 6,292
gs 118 13.3 12,761
jpeg-play 151 8.0 7,828
mpeg_play 99 21.8 5,571
nroff 130 8.3 5,230
real_gcc 107 12.7 17,300
sdet 42 98.7 5,284
verilog 47 22.6 4,613
video_play 53 69.9 . 4,575

Table 1: Charactieristics of IBS Suite

Their deficiency is that they are from a small, slow machine (a 16 MB MIPS R2000), so recent large, fast
servers have a somewhat different I/O balance. For our purposes, that is not as important as the fact the
traces avoid the small-footprint and user-only problems that have been noticed in program suites such as
SPEC [14] [8]. The number of branch sites per trace varies from 4575 to 17300. The median distance between
branches ranges from 3 to 6 instructions, but the médian distance between re-reference of the same branch
site varies from 17 to 250. That is the variation from trace to trace: different sites have median re-reference
distances which span five orders of magnitude, and the distribution of those medians has a tremendous tail.
The interbranch distance is not different between kernel and user state, but the site inter-reference distance
has consistently higher means when the kernel state is included. All of these facts indicate that the IBS
traces are entirely different from (say) SPECint92’s “eqntott”, where a mere five branch sites are responsible

for 90% of the dynamic conditional branches.

4.3 A Simple Profile

Each trace was run through the simulated component predictors, and a count of wins (correct predictions)
was obtained per component per branch site. Each site is then assigned to the component with more wins.
Figure 5 gives a breakdown, showing the percent of dynamic branches which have been allotted to each
component. These numbers give some idea of the imbalance between the predictors. The four-times-larger
predictor makes slightly more use of PAs (which becomes more efficient at that size) but still represents a
subsystem that could reasonably be implemented in the near term.

The “tie” categbry comes from sites whose two win counts were approximately equal. (In this case,
“approximately” means that gshare’s win count, at a site, was within 5 of the PAs win count.) The tie
category was measured to capture the sites in the distribution tail, whose normalized d‘ynamic weights are
effectively in the part-per-million range. In this regime, the exact win counts do not have great significance

for our purposes, and ratios of counts would have even less significance. So, the “fuzziness” of the count
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comparison was adjusted so as to capture a desired fraction of the dynamic weight. For the purposes of
turning the profile into selection bits, the “tie” category was given to gshare. According to our measurements,
gshare predictors are less perturbed by having too many branch sites. This is partly because gshare allows
aliasing, and hence should have graceful degradation compared to a tagged predictor. However, it is also
because gshare has a quite good miss rate when a site indexes a counter last indexed by a different site.
Apparently shared gshare indexing patterns tend to be predictive for all the sites which share them.

Figure 6 shows how the McFarling combining predictor views the balance between the component pre-
dictors. The disagreement versus the profiled view is not major. On average, the McFarling combining
predictor uses gshare 5% more than the profile thinks warranted. This figure bounds any difference which

the dynamic selection might make.

5 Results

In this section, we will present simulation data for a number of predictors and policies. We begin by exploring
several update policies, and choosing a specific variant of our predictor. We then present the miss rates of that
variant, compared to several dynamic predictors. Next, we examine stability, first by a cross-profile study,
and then by a cross-validation study. Finally, we examine some convergencé properties and the importénce
of trace length.

The miss rate of our static hybrid predictor is shown in Figure 7 given as a comparison against the

McFarling combining predictor. It is important to note that this is not a hardware-normalized comparison,
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since the combining predictor uses an additional 2'! counters. This means that we are using a comparison
that is unfair to our own predictor.

Figure 7 shows two histogram bars for the static predictor. The “update” bar indicates the miss rate,
if both component predictors are updated on every branch. The “no update” bar is for a subsystem where
update is done only to the component predictor whose prediction is used. This policy is clearly and uniformly
better, and it is this policy that is used in subsequent figures. Note that dynamic hybrids are unable to use
such a policy. Since they may at any moment begin relying on any given component, they must keep all
components “trained” at all times. ;

The gshare predictor uses a branch history register (BHR), which is simply a shift register containing
“taken” booleans for the most recent branches. We tried the policy of not updating this BHR when the
gshare component predictor was not updated. This policy turned out to be a bad idea. It would seem that
gshare benefits from having this information.

We also tried forcing the use of gshare, whenever the BTB in PAs had an eviction. The theory here would
be that PAs is about to make a “cold” prediction, and what could be worse than that? The answer is that
gshare is (conditionally) worse than that: the policy is a dis-improvement. We might also note that larger
BTBs have correspondingly fewer evictions, hence policies which deal with BTB eviction have diminishing
effects with larger predictors.

Figure 8 presents the no-update static hybrid, as compared to five alternatives. Again, note that the
McFarling combining predictor uses more hardware. The “gshare, doubled” bar shows the result of instead
using only gshare, but twice the size ( 2% by 2* instead of 27 by 2* ). Similarly, “PAs, doubled” is the Pas
component only, with a BTB height of 512 instead of 256. Finally, the rates of the components (operated
standalone) is given. The ordering of the bars was chosen so that the geometric mean (“GMEAN”) group
would be monotonic from left to right. (Note that an arithmetic mean is an incorrect summary of a set of
ratios [10].)

Figure 9 is similar, and represents the results when everything has four times as much hardware. The
ordering of the bars is the same as in Figure 8, but note that the geometric mean bars are no longer monotonic
from left to right. Essentially, the 4x increase in hardware resources has caused the PAs predictor to pull
ahead of the gshare predictor, thus changing the balance between the components. In this case, the doubled
gshare goes from 2% by 25 to 2° by 2% . The doubled PAs goes from a 1024-high BTB to 2048, but remains
at 2048 counters. A

This change in balance has an effect on the profiling process. To see the extent of the effect, simulations
were done with cross-use of the profiles. By this, we mean that the 4 times larger static hybrid was operated
in accordance with a profile obtained on the small static hybrid. And, of course, vice versa. The result for

the small predictor with the big predictor’s profile showed high stability. That is, about one third of its
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relative advantage (versus the McFarling predictor) went away. The reverse was not true. Running the big
predictor with the small one’s profile essentially erased the advantage over McFarling. This is not horrible
— McFarling is, after all, pretty good, and as stated earlier, the simulated McFarling predictor uses 50%
more hardware than our predictor.

It is clear that the large predictor’s profile will assign more branch sites to PAs than the smaller predictor’s
profile would. A smaller PAs, with its shorter BTB, is relatively susceptible to thrashing. We conclude from

- this that PAs has a performance ‘knee’, and that component predictors with this property will cause profiles
to be at least mildly affected by hardware scaling. However, no major penalty was encountered by any of
the benchmarks.

It should be noticed that our experimental procedure involves a training period, followed by an evaluation
period. With each trace, we have used the same data for both periods. If our procedure involved (say) a
ﬁeural net, it would be reasonable to wonder if the procedure was susceptible to “over-training”.

Accordingly, we would like to demonstrate that our procedure is stable in the face of previously unseen
data. To do this, we divided each trace into two halves. For each trace, we generated two profiles, one from
each half of the trace. We then evaluated each of these profiles on the other half-trace. The results of this
“cross ?alida.tion” effort are shown in Figures 10 and Figures 11. By “ab” we mean that training was done -
on the “a” half of the trace, and evaluation on the “b” half. The prefix “ba” is of course the reverse.

Cross validation causes a technical problem. Our profiling procedure is supposed to assign each branch
site to one or the other of the component predictors. However, it is entirely possible that a given branch site
will be used in one half of a trace, and not used at all in the other half. This means that a cross-validated
evaluation step will encounter unknown sites. The evaluation process should have some policy or heuristic for
dealing with these cases. If they were sufficiently rare, we could ignore them. However, they represent 2.4%
of the dynamic branch count (as a geometric mean across the 18 half-traces). Worse, there is tremendous
variability: unknown sites represent 47% of the branch count in “ba” mpeg.play.

We do not currently have a heuristic for assigning an unprofiled branch site to a predictor. Therefore,
the evaluation process was peiformed three times, with three different policies in force. These policies are:
assign unknowns to the PAs component; assign them to the gshare component; and finally, assign them
semi-randomly to one component or the other. Figure 10 and Figure 11 show results for all three policies,
and for comparison, show results of a McFarling combining predictor operating over the evaluation half-trace.

The figures also show the miss rate of our static hybrid predictor, profiled (only) on the evaluation
half-trace. That is, the 18 values represent 9 “aa” values, and 9 “bb” values.

The cross validation figures show more variability than our other figures. However, the geometric means
show a high level of consistency. Regardless of the unknown-site policy, cross validated prediction has

generally excellent performance, getting a mean miss rate of 3.8%, versus the McFarling figure of 4.6%. Note
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in particular that the enormous number of unknowns in mpeg_play in Figure 11 did not cause any noticeable
problem for our predictor.

This result leads us to conclude that long traces are not required to produce a useful profile. This led us
to investigate the effect of trace length. Specifically, we adjusted our simulator so as to produce a profile at
any given distance from the front of a trace. A simple metric was applied to each profile, and graphs of this
metric were drawn against trace length.

There is not enough space to present these graphs. However, they do consistently show convergence, and
broadly speaking have three regimes. The first regime is the major training phase, and may take one million
conditional branches. The second regime may take two to four millon branches, and has various smaller

irregularities. The third regime is unlikely to have major features.

6 Conclusions

In Section 2 we described hybrid branch prediction, and the role and implementation of a selection mech-
anism. In Section 3 we introduced one contribution of this paper, which is that the selection mechanism
could be performed statically, with a considerable saving in hardware. The approach was explored from
the viewpoints of implementation, hardware speed, future extensions, scalability, and of compatability with
pipelining. No unsurmountable problems were identified, and some interesting possibilities emerged.

A reasonable rénge of test hardware configurations was selected in Section 4, and shown to be balanced
in Section 4.3. A realistic whole-system benchmark suite was described in Section 4.2.

In Section 5, the configuration was shown to have better performance than a more expensive hardware
alternative. This section also introduced the second contribution of this paper, which is that static selection
allows static elimination of state updates.

From the presented results, we conclude that static hybrid predictors are quite stable. They are unlikely
to exhibit performance breakdowns, they appear scalable, they are able to cope with traces that they were not
trained on, and they do not require long training periods. They also exhibit consistently good performance
relative to well-regarded dynamic predictors. And, it should be noted, the performance was never worse
than that of the more-expensive dynamic predictor.

Omne of the interesting things about this paper’s approach is that it motivates a number of research
directions.

As suggested earlier, the approach can be applied to imbalanced components. It can easily be extended
to 6 or 8 components, and various interesting cases (such as predication or interrupts) could be catered to.

It may also be possible to define further kinds of static information, which reduce aliasing, increase

parallelism, or decrease power consumption. And, all such information could be studied in the context of
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compiler heuristics, rather than of profiling. On the other hand, hardware based profiling [4] and modern

emulation/cross-compilation tools provide interesting system contexts for the gathering and use of static

information.
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