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ABSTRACT

A critical challenge faced by the developer of a software system is to understand whether
the system’s components correctly integrate. While type theory has provided substantial
help in detecting and preventing errors in mismatched static properties, much work re-
mains in the area of dynamics. In particular, components make assumptions about their
behavioral interaction with other components, but currently we have only limited ways
in which to state those assumptions and to analyze those assumptions for correctness.

We have begun to formulate a method that addresses this problem. The method operates
at the architectural level so that behavioral integration errors, such as deadlock, can be
revealed early in development. For each component, a specification is given both of its
own interaction behavior and of the assumptions that it makes about the interaction
behavior of the external context in which il expects lo operate. We have defined an algo-
rithm that, given such specifications for a set of components, performs “adequacy” checks
between the component context assumptions and the component interaction behaviors.
A configuration of a system is possible if and only if a successful way of “matching”
actual behaviors with assumptions can be found. In effect, we are extending the usual
notion of type checking to include the checking of behavioral compatibility.

In this paper we give a first demonstration of the feasibility of our approach by showing
its application to a system that contains incompatibilities between the assumptions and
the interaction behaviors of two of its components. The algorithm successfully reveals
the fact that the error can result in a deadlock of the system.

The work of A.L. Wolf was supported in part by the National Science Foundation under grant INT-95-14202.






1 Introduction

A critical challenge faced by the developer of a software system is to understand whether
the system’s components correctly integrate. While type theory has provided substantial help in
detecting and preventing errors in mismatched static properties, much work remains in the area
of dynamics. In particular, components make assumptions about their behavioral interaction with
other components, but currently we have only limited ways in which to state those assumptions
and to analyze those assumptions for correctness.

In previous work [8, 12, 13], we developed a specification and analysis method for software archi-
tectures based on the CHAM (CHemical Abstract Machine) formalism [5]. The CHAM formalism
had, until then, been used primarily to describe the semantics of various models of concurrency
and the semantics of various concurrent programming languages. We showed how it could be used
instead to describe actual software systems. The method has proven to be useful for uncovering a
variety of errors at the architectural level.

The method as we defined it, however, has a significant shortcoming. This shortcoming limits
the method’s usefulness when one is developing a system by assembling existing architectural
components. In particular, the method depends on the specification and analysis of a system’s
global component interaction behavior. A more appropriate method would permit the specification
of the local interaction behavior of an individual component. This would include both the actual
behavior of the component and the assumptions it makes about the expected interaction behavior of
other components. The method would then use the component specifications to discover mismatches
among the components at system integration or configuration time.

We have begun to formulate a new method that takes this approach. Although currently based
on the CHAM formalism, the method is likely to have wider applicability. In this method, rather
than specifying whole systems and their global behavior, we specify individual components and
their local behavior. We have defined an algorithm that, given such specifications for a set of
components, performs “adequacy” checks between the component context assumptions and the
component interaction behaviors. A configuration of a system is possible if and only if a successful
way of “matching” actual behaviors with assumptions can be found. In effect, we are extending
the usual notion of type checking to include the checking of behavioral compatibility.

In this paper we give an initial demonstration of the feasibility of our approach by describing
its application to a system, the Compressing Proxy, first investigated by Garlan, Kindred, and
Wing [10], and later by Compare, Inverardi, and Wolf [9]. The system contains incompatibilities
between the assumptions and the interaction behaviors of two of its components. Qur algorithm
successfully reveals the known fact that the error can result in a deadlock of the system.

In the next section we briefly review related work. In Section 3 we provide some background on
CHAM and our use of it for software architectures. In Section 4 we briefly describe the Compressing
Proxy, which we use as an example target system for our method. The specification aspects of our
method are presented in Section 5, while the checking algorithm is presented in Section 6. We
conclude with some final comments on the method and our plans for future work.

2 Related Work

Software architectures are structures of individual components that behave independently and
interact. Moreover, the dynamics of these structures are of interest. In this line, it is not unexpected



that many languages used to express concurrency semantics are borrowed to describe software
architectures. Besides CSP and CHAM, other models have been used, such as the Pi Calculus [18]
and Posets [14]. We believe that our approach is independent of the particular specification
language used, but one advantage of the CHAM formalism is that it has not embedded within
it any particular form of interaction. In most other languages, synchronous or asynchronous,
broadcast or point-to-point communications are chosen.

From the perspective of Module Interconnection Languages, informal or semi-formal languages
have been used to describe software architectures [20]. In those cases, it is more difficult to prove
properties of the systems. Perry [16] presents a model in which the semantics of connections are
taken into account to check when modules match. The semantic information in the modules, given
as predicates, is used to verify some properties. However, as it was aimed to modules and assembly
of modules, the dynamics of the system are not considered.

The use of sequences of actions associated locally to modules (components) to describe the
behavior of the allowed interactions was introduced in Path Expressions [7]. In that work, a de-
scription of potential behavior is given by a regular expression in which atomic elements represented
calls to the module.

The idea of using behavioral equivalence to check the dynamics of a software system at the
architectural level has been explored by Allen and Garlan [1, 2]. In their architectural description
language Wright [19], each component has one or more ports that represent points of interaction
with other components. Rather than interacting directly, however, components interact indirectly
through special components called connectors. Connectors themselves have special ports called
roles. Interaction occurs between two or more components by placing a connector between them
and by associating each port in a component with a role in the connector.

The semantics of ports and roles in Wright are given using a subset of the language CSP [11]. A
notion of consistency is introduced via a behavioral equivalence between the CSP agents describing
the semantics of corresponding ports and roles. Although roles where introduced explicitly to
support connector reuse, the idea is related to our notion of expected behavior. Roles, in a sense,
describe the expected behavior for a particular port. However, consistency is checked only at the
port level; it is not possible to verify properties that require several ports to interact among them.
In other words, the internal behavior of the component is not taken into account, and complex
evolutions are not captured by the equivalence. In the example introduced in our paper, we show
how the behavior of the component is used in order to find such anomalies.

We can illustrate this point about roles and ports through an analogy that we call the guest
analogy. Suppose you are invited to a party. You expect the host to receive you at the door and to
invite you in. You also expect your host’s partner to take you to the living room and to offer you
a drink. If your host’s partner does not yet know you, then you expect your host to first introduce
you to the partner. If both individual behaviors (host and partner) are satisfied, but your host
disappears before introducing you to the partner, then you will be in an uncomfortable situation.
From your perspective, it is therefore insufficient to have only the behavior of your interaction with
the host and your interaction with the partner described, but your assumptions about the global
party context—that the host will introduce you to the partner—must also be described.



3 Background

The CHAM formalism was developed by Berry and Boudol in the domain of theoretical com-
puter science for the principal purpose of defining a generalized computational framework [5]. It
is built upon the chemical metaphor first proposed by Banatre and Le Métayer to illustrate their
Gamma (I') formalism for parallel programming, in which programs can be seen as multiset trans-
formers [3], [4]. The CHAM formalism provides a powerful set of primitives for computational
modeling. Indeed, its generality, power, and utility have been clearly demonstrated by its use in
formally capturing the semantics of familiar computational models, such as CSP [11] and the CCS
process calculus [15]. Boudol [6] points out that the CHAM formalism has also been demonstrated
as a modeling tool for concurrent-language definition and implementation.

A CHAM is specified by defining molecules m,m’, ... defined as terms of a syntactic algebra
that derive from a set of constants and a set of operations, and solutions S,5’,... of molecules.
Molecules constitute the basic elements of a CHAM, while solutions are multisets of molecules
interpreted as defining the states of a CHAM. A CHAM specification contains transformation
rules T,T',... that define a transformation relation S — S’ dictating the way solutions can
evolve (i.e., states can change) in the CHAM. Following the chemical metaphor, the term reaction
rule is used interchangeably with the term transformation rule.

The transformation rules can be of two kinds: general laws that are valid for all CHAMs and
specific rules that depend on the particular CHAM being specified. The specific rules must be
elementary rewriting rules that do not involve any premises. In contrast, the general laws are
permitted such premises.

Solutions can be built from other solutions by combining them through the multiset union
operator. For example, given solutions § = my,...,m, and 5’ = m{,...,m}, we obtain S W .S" =
My, ..., My, MY, ..., m) that is another solution.

CHAMSs obey four general laws. Two of those laws are of relevance here.

The Reaction Law. An instance of the right-hand side of a rule can replace the corresponding
instance of its left-hand side. Thus, given the rule

My, My, ..., My — M{, M}, ..., M|

if mq1,ma,...,my, and mi,my,..., m; are instances of the M; j and M| , by a common
substitution, then we can apply the rule and obtain the following solution transformation.

! ! !
My, Mo,y M —— My, My, ..., Y

The Chemical Law. Reactions can be performed freely within any solution, as follows.

S — 5
Sws— 5w s

In words, when a subsolution evolves, the supersolution in which it is contained is also con-
sidered to have evolved.
At any given point, a CHAM can apply as many rules as possible to a solution, provided that their
premises do not conflict—that is, no molecule is involved in more than one rule. In this way it is
possible to model parallel behaviors by performing parallel transformations. When more than one



rule can apply to the same molecule or set of molecules, we have nondeterminism, in which case
the CHAM makes a nondeterministic choice as to which transformation to perform. Thus, we may
not be able to completely control the sequence of transformations; we can only specify when rules
are enabled. Finally, if no rules can be applied to a solution, then that solution is said to be inert.

When applying the formalism to software architecture, we structure specifications into three
parts [12]:

1. a description of the syntax by which components of the system (i.e., the molecules) can be
represented;

2. a solution representing the initial state of the system; and

3. aset of reaction rules describing how the components interact to achieve the dynamic behavior
of the system.

The syntactic description of the components is given by an algebra of molecules or, in other words, a
syntax by which molecules can be built. Following Perry and Wolf [17], we distinguish three classes
of components: data elements, processing elements, and connecting elements. The processing
elements are those components that perform the transformations on the data elements, while the
data elements are those that contain the information that is used and transformed. The connecting
elements are the “glue” that holds the different pieces of the architecture together. For example,
the elements involved in effecting communication among components are considered connecting
elements. This classification is reflected in the syntax, as appropriate.

The initial solution is a subset of all possible molecules that can be constructed using the syntax.
It corresponds to the initial, static configuration of the system. Transformation rules applied to
the initial solution define how the system dynamically evolves from its initial configuration.

4 The Compressing Proxy Problem

In this section we present the design of the Compressing Proxy system. Qur description is
derived from that given by Garlan, Kindred, and Wing [10].

To improve the performance of UNIX-based World Wide Web browsers over slow networks, one
could create an HTTP (Hyper Text Transfer Protocol) server that compresses and uncompresses
data that it sends across the network. This is the purpose of the Compressing Proxy, which weds
the gzip compression/decompression program to the standard HTTP server available from CERN.

A CERN HTTP server consists of filters strung together in series. The filters communicate
using a function-call-based stream interface. Functions are provided in the interface to allow an
upstream filter to “push” data into a downstream filter. Thus, a filter F is said to read data
whenever the previous filter in the series invokes the proper interface function in £. The interface
also provides a function to close the stream. Because the interface between filters is function-based,
all the filters must reside in a single UNIX process.

The gzip program is also a filter, but at the level of a UNIX process. Therefore, it uses the
standard UNIX input/output interface, and communication with gzip occurs through UNIX pipes.
An important difference between UNIX filters, such as gzip, and the CERN HTTP filters is that
the UNIX filters explicitly choose when to read, whereas the CERN HTTP filters are forced to read
when data are pushed at them.
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Figure 1: The Compressing Proxy.

To assemble the Compressing Proxy from the existing CERN HTTP server and gzip without
modification, we must insert gzip into the HTTP filter stream at the appropriate point. But
since gzip does not have the proper interface, we must create an adaptor, as shown in Figure 1.
This adaptor acts as a pseudo CERN HTTP filter, communicating normally with the upstream
and downstream filters through a function-call interface, and with gzip using pipes connected to a
separate gzip process that it creates.

Without a proper understanding of the assumptions made by each component, a mismatch in
the interaction behavior of the components can occur when they become integrated into a single
system. Consider the following straightforward method of structuring the adaptor. The adaptor
simply passes data onto gzip whenever it receives data from the upstream filter. Once the stream
is closed by the upstream filter (i.e., there are no more data to be compressed), the adaptor reads
the compressed data from gzip and pushes the data toward the downstream filter.

From the perspective of the adaptor, this local behavior makes sense. But it is making as-
sumptions about its interactions with gzip that are incompatible with the actual behavior of gzip.
In particular, gzip uses a one-pass compression algorithm and may attempt to write a portion of
the compressed data (perhaps because an internal buffer is full) before the adaptor is ready, thus
blocking. With gzip blocked, the adaptor also becomes blocked when it attempts to pass on more
of the data to gzip, leaving the system in deadlock.

Obviously, the way to avoid deadlock in this situation is have the adaptor handle the data
incrementally and use non-blocking reads and writes. This would allow the adaptor to read some
data from gzip when its attempt to write data to gzip is blocked.

The Compressing Proxy is a simple example with a well understood solution. (We note, however,
that the system was indeed initially developed according to the first approach, and the architectural



mismatch was not detected until the system was implemented and in use.) Nevertheless, one can
see that it is representative of an all-too-common problem in software development.

5 Specifying Component Behavior and Assumptions

In this section we show how to specify the behavior of a component at the architectural level
and, from this, how it is then possible to derive a representation of its actual behavior as well as the
assumptions that it makes on the external context. In essence, each component is modeled using
a separate CHAM, which we refer to as a component CHAM. Conceptually, a complete system is
specified by combining the separate CHAMs into a single, integrated system CHAM. The details
of the composition process are beyond the scope of this paper. Here, we are concerned only with
how to specify component CHAMs and how they can be checked pairwise for compatibility.

5.1 Component CHAMs

To specify a component CHAM, we give a syntax for the molecules representing the component,
transformation rules describing the behavior of the component, and an initial solution of molecules
representing the initial state of the component. For the Compressing Proxy we must specify four
component CHAMs, as shown in Table 1.

It is important to note that the justification for choosing these particular specifications of the
Compressing Proxy component behaviors is not germane to the topic this paper. In fact, a detailed
understanding of the specifications are unnecessary to follow the discussion below. Therefore, we
only give a high-level and incomplete description of the specifications here.

Consider the upstream CERN filter. The syntax for molecules M representing this component
consists of the set P representing the name of the component’s processing element CF, and a
placeholder ® to refer to other components with which CF, interacts. M also includes the set
C representing the connecting elements. The connecting elements for this component are two
operations, ¢ for input and o for output, that act on the elements of a third set N. In general,
elements of N are used to refer to the channels through which a component communicates with
other components. In the case of CF, we only need to consider one channel, namely the output
channel for this upstream filter. Notice that for CFy, the downstream filter, we also only consider
one channel, in this case the one representing input to the filter. Finally, the syntax includes an
infix operator “o” used to express the status of the component with respect to its communication
behavior. The status is understood by “reading” a molecule from left to right. The left-most
position (i.e., the left operand of the left-most “o” operator) in the molecule indicates the next
action that the molecule is prepared to take. If this position is occupied by a communication
operation, then the kind of communication represented by that operation can take place.

The interaction behavior of the upstream filter component is captured using two transformation
rules. The first rule is a general inter-element communication rule that generically describes pairwise
input/output communication between processing elements. Notice that this same rule is found in all
four component CHAMs. The second transformation rule allows CF, to iterate its communication
behavior.

The initial solution for CF, is quite simple. It indicates that the component starts out in a state
in which it is waiting to output data. The second transformation rule would have to be applied to
this solution before it could actually carry out a communication.



Upstream CERN Filter (CF,)

Downstream CERN Filter (CF,)

Mo=P[C | MoM M =P [C | MoM
P :=CF, | ® P :=CF; | ®
Syntax C = i(N) | o(N) C = i(N) | o(N)
N = N =m
Trans. T) =i(n) omy, O.(TL) © My T =1i(n) omy, O.(TL) © mo
Rules — my oi(n), ma o o(n) — my oi(n), ma o o(n)
To=CF,oc — ¢coCF, T5=CFi0¢c — coCFy
Init. Sol. CF, oo(n) CF40i(n)
GZIP (GZ) Adaptor (AD)
M:=P|C|FE|MoM M:=P|C|E|MoM
P :=GZ | ® P :=AD | @
Syntax C == i(N) | o(N) C == i(N) | o(N)
N ==mn;1 | ng N ==mn; | ny | n3g | na
E = eof; | eof, E = eof; | eof,
Ty =i(n) o ma, o(n) o my Ty =i(n) omy, o(n) o msy
— my oi(n), ma o o(n) — my oi(n), ma oo(n)
Th=eomoc — coeom Th=eomoc—coeom
Ts = eof,, o my ¢ o(n), eof; o my vi(n) T3 = eof, o my ¢ o(n), eof; o my o i(n)
Trans. — my o o(n) oeof,, my oi(n)oeof; — my o o(n) o eof,, myoi(n)oeof;
Rules Ty =eof; o m — m ¢ eof; T, = eof; om — m ¢ eof;
Ts=GZom — moGZ Ts=AD o i(ng)om
— i(ny) oeof; 0 o(ny) o AD
Ts=ADoi(ny)om
— i(n3) o o(n1) o eof, o AD
Init. Sol. i(n1) o eof; o o(nz2) o eof, o GZ i(nz) o o(n1) o eof, o AD

Table 1: Component CHAMs for the Compressing Proxy Example.

The CHAMs for the other three components follow a similar structure and share similar trans-
formation rules. The critical issue for this example is the interaction behaviors of gzip and the
adaptor, so let us explain them a bit further.

In the specifications of gzip and the adaptor, the syntaxes include a set E. The elements of F
are used when communications through AD and GZ take place; eof; denotes “input end of file”,
while eof, denotes “output end of file”. Both component CHAMs share transformation rules 75
through Ty, which govern the iteration of the input and output behaviors involving data markers
eof; and eof,. Rule T5 of the gzip component CHAM describes a simple iterative behavior. The
iterative behavior of the adaptor, on the other hand, is more complex, actually changing structure
with rule Ts. In particular, it is characterized by a phased behavior in which the component
switches from a mode of accepting raw data and then passing the data along (presumably to gzip,
but in fact to any other component for which it is acting as an adaptor), to a mode of receiving



data (again, presumably from gzip but also from any adapted component) and then passing the
data on down the stream.

As mentioned above, when component CHAMs are integrated to form a system, a certain
amount of configuration must occur. For instance, in the Compressing Proxy example, the symbolic
communication channels referred to by the individual CHAMs as elements of N are instantiated
according to the channel numbers in the diagram of Figure 1, resulting in actual connections being
established between the components. Thus, although not obvious from the preceding discussion,
the configuration operation would cause the symbolic channel n; of the upstream filter and the
symbolic channel nz of the adaptor to be identified with the actual channel labeled “3” in the
diagram.

5.2 Deriving Actual and Assumed Behaviors

In order to check for compatibility between components, we need suitable representations of
the actual behavior of a component, AC, and assumed behavior of the external context, AS. For
each component, we derive these two representations from its component CHAM specification.

The model for both representations is a directed, rooted graph, where both nodes and arcs are
labeled. Formally,

G=(N,A,s0:A— N,jta:A— N,m:N—MUN,l:A—A)

where N is the set of nodes, A is the set of arcs, A/ is the set of natural numbers, M is the set
of node labels taken from the CHAM molecule set, and A is the set of arc labels taken from a
set that is obtained from the syntax of the components, plus two special labels 7 and a. In the
Compressing Proxy example, labels are in the set A = {r,a} U C U E. The label 7 can appear only
in AC graphs, while the label a can appear only in AS graphs. In addition to these sets, so is
the source node function, {a is the target node function, m is the node labeling function, and [ is
the arc labeling function. Finally, the graphs are enriched with a relation on arcs called or where
or CP(A).

AC graphs model behaviors in the following intuitive manner. Nodes represent states of the
component and, therefore, are molecules. The root node is the initial state of the component. Note
that in the current formulation we do not allow creation of components. Each arc represents a
possible transition into a new state by using a transformation rule of the component CHAM. The
label on the arc is the part of the molecule that is deleted or transformed by the rule. If no other
molecule should occur in the transformation, then the label of the arc is 7—that is, the transition
can occur without interaction with the external context. An example of such a transformation is
rule T; of CF,,.

Definition 1 (AC graph for a component CHAM)
AC graphs are defined constructively as follows.

o The root node is labeled by the inilial molecule of the component CHAM.

o Let v be a node and let m, be the molecule associated with the node v. Then v has a child
node v; if and only if there exists a rule r whose application to a solution s requires m, tlo be
in s. The labels and or relation are constructed as follows.



— The molecule associated with v; is the molecule obtained by modifying m, with r.

— The arc connecting v to v; is labeled with T if r can be applied to a solution that contains
only m,.
— The arc is labeled X\ if A is the label consumed by r when applied to m,,.

— If the application of r results in more than one component molecule, then all the arcs
connecting v to a node labeled with a component molecule are identified as or arcs.

Informally, or arcs identify alternative subgraphs for the same component. As discussed below,
this corresponds to a concurrent (i.e., multi-threaded) behavior of a component. With respect to
proving the absence of deadlock, it is sufficient to show that there is at least one “active” alternative
subgraph in every derivation.

AS graphs are intuitively the counterpart of AC graphs. They model the assumed behavior of
the external context. For each AC graph, therefore, there is a corresponding AS graph that models
the behavior of the context required to perform all the derivations modeled by the AC graph. Since
in general the context can be provided by several components, AS graphs refer to the behavior of
more than one component. It is structured as a graph because, at each step of the actual behavior,
a molecule should be present in the context such that the expected transformation in the AC graph
can take place. Informally, if AC nodes represent states of a component, AS nodes represent states
of the other components that permit a reaction to occur in a solution. Thus, the number of nodes
in an AS graph must be the same as the number of nodes in an AC graph. Moreover, there must be
a correspondence between a node in an AC graph and a node in an AS graph, since they together
describe a subsolution reaction.

In assumption graphs, nodes are labeled differently in order to distinguish the molecules that can
participate in each transformation. As mentioned above, the graph structure allows us to recover
the ordering in which a component asks for molecules from the context. In general, more molecules
can participate in producing the required total context. Thus, we identify nodes with numbers,
but we can replicate a node whenever a potentially different molecule can provide the required
context. In other words, nodes with the same number refer to the same solution, and therefore are
associated with the same node in the corresponding AC graph, but they are considered different if
the required context can come from different molecules. This helps during the matching phase. If a
single molecule produces a subset of the context, then its actual behavior must have the structure
of an AS subgraph.

Given an AC graph for a component CHAM we can define the corresponding AS graph. AS
graphs have nodes labeled with natural numbers.

Definition 2 (AS graph for a component CHAM)
Let Gge be an AC graph for some component CHAM, then the corresponding AS graph, Ggs is
constructed as follows.

o (Ggs has as many nodes as Ggc. Ggs can have replicated nodes.
o The root node of Gqgs has the label 0 and is associated with the root node of G gc.

o Lel v be a node in Ggs, let k be its label, and let p be the associated node in Ggc. Then if p
has an outgoing arc to a node py labeled A (X # 1) due to the application of a rule v, then v
has an outgoing arc to the node corresponding to py labeled with the conjunction of the labels
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Figure 2: AC and AS Graphs for the Upstream (left) and Downstream
(right) Filters.

consumed by r. Fach such label corresponds to the consumed label of a molecule required in
the context to perform the reaction by r. If the reached node does not already exist, then ils
label is k + 1; if there are already j —1 children of v. If the outgoing arc in G qc is labeled with
7 and the label of the reached node is less than k, then the outgoing arc from v is labeled with
a. In general, the node is replicated unless it is possible to show that the external molecule
participating in the reaction is a transformation of the preceding one.

o if u has or arcs, then v also has corresponding or arcs. If the AC arcs are labeled with T then
the corresponding AS arcs are labeled with a.

The intuitive meaning of the o label in AS graphs is that of abstracting away from requirements on
actual behaviors. That is, an a transition means a do not care requirement that can be matched
by any sequence of transformations in the actual behavior graph AC. Actually, by construction,
one of the purposes of a arcs is to model 7 cycles—that is, the fact that a certain molecule can be
“spontaneously” offered infinitely many times in the context. The other use of a arcs is to label
or arcs when the transformation in the actual behavior graph has not required any context. Note
that this is the only case in which an a arc can label a forward arc.

AC and AS graphs for the component CHAMs of the Compressing Proxy example appear in
figures 2, 3, and 4.

10
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Figure 3: AC and AS Graphs for the Adaptor.
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Figure 4: AC and AS Graphs for gzip.

6 Checking Assumptions

The primary goal of this work is to provide a way for an architect to check that a given
configuration of components results in a correct system. In essence this means comparing the
assumptions on the external context made by one component to the actual behavior exhibited by
the components with which it interacts. In this work we have concentrated on deadlock freedom
as the correctness criterion and have developed an algorithm that performs the check.

The checking algorithm makes use of an equivalence relation between AC graphs and AS graphs.
Informally, the goal of the configuration phase is to find a way to match components. This means
that all the component’s assumptions have to be fulfilled by some other component’s actual behav-
ior. In general, of course, multiple actual behaviors can contribute to fulfilling the assumptions of

11



a single component. In our example, this is true for the adaptor component.

If a configuration phase succeeds, then the system is deadlock free. If the configuration phase
fails, then it means that there is no way to satisfy the assumptions of a component—that is, some
component will block along some derivation in any possible match of components. This is not
enough to conclude that the whole system blocks, but we can iterate the checking phase, reducing
the actual behavior of the blocking components. In other words, we can eliminate the part that
can block and see how this affects other components.

6.1 Checking Algorithm

The checking algorithm is built upon a notion of equivalence that allows us to compare AC
graphs with AS graphs. The equivalence relation allows nodes and arcs to be put in relation.
Actually, since an AS graph can be fulfilled by more than one AC graph, we try to put in relation
one AS graph with more than one AC graph. The idea is that all the arcs and nodes of the AS
graph have to be covered and there should not exist the possibility that an actual behavior cannot
provide the required information.

In the following, we denote by - any sequence of transformations, suitably labeled, including
the empty transformation. We also consider the following equivalence on transformations

o v _ v
Vi = Vig1 — Vig2 = Vi1 — Viy2
Analogously, the following also holds.
v o 0
Vi = Viy1 — Vig2 =V, — Vi42

Definition 3 Let Ggc be an actual behavior graph, Ggs be an assumption graph, and v € A\ a,
then two nodes are related, v; ~ ;:

. 7y 7y
o if u; — pjt1, then also v; — vy and vigq >~ pjgq;
o if u; 2 fi1 then v; 2 Vig1 and Vg1 = jij41 or viyy 18 already a covered node.

ol *
o ify; MA Vi1 and p; # pij41 then either there exists a node vy, such that vy, ~ p; and v;44 LN Vi
or there exists a vy such that if to(A) = vy then so(A) = v,, [(A) = a, A is a or arc and v;
is a descendant of v, but not of vg.

The two graphs are related if and only if all the nodes in Ggc are in relation with G gs nodes.
The G gs nodes in relation are called covered nodes. If the G qs nodes are all covered, then the G gs
graph is completely covered, otherwise it is partially covered.

The above definition allows us to compare AC and AS graphs. Note that in this way we require
that an actual behavior must completely match (part of) an assumption.

This definition derives to some extent from the well known Milner bisimulation. Here we do not
require complete matching between components and we also have to take into account the potential
concurrent behavior of a component. In this respect, the last condition in the above definition says
that if an actual behavior performs something that is not required from the assumptions, then
this is not harmful if either along that derivation it is possible to reach a solution that allows the
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required context or if there exists a concurrent component behavior that can actually provide the
context.
We can now define the matching algorithm. To do so, let us first define the notion of substitution.

Definition 4 (Substitution) A substitution is a set of pairs (AC, AS). We denote with € the empty
substitution and a generic substitution o = [AC1/ASq,...,AC,/AS,].

Given a configuration I'—that is, a set of components—we identify with the notation o(I') the
system built out of the component in I' according to the association in the substitution o.

Definition 5 (Matching Algorithm)
LetT' ={C1,C2,...,Cn} be a configuration and o be an empty substitution.

1. If in ' there are no more AS graphs then Match(T') = (true, o).
2. Try to find a pair ACc; ~ ASc;.

3. If AS¢c; is partially covered, obtain a new graph AS’Cj that reflects this partial match by
labeling all covered arcs with a; let 0 = 0 U{ASc;, ACc;}; go lo step 2.

4. Remove from I' the assumptions ASc;; go to step 1.
The following propositions, which we give here without proof, hold.

Proposition 1 Let I' be a configuration if Match(I') = (bool, o) succeeds—that is, bool = true
and o # €, then the system o(C') is deadlock free.

Proposition 2 Let I' be a configuration, C be any given component, AS be the assumption graph
of C. If there are no or arcs and there is no actual behavior AC in I' thatl satisfies the assumplions
AS (that is, AC # AS) then for any possible substitution AC'/AS there exists a computation such
that C will block.

Proposition 2 might be generalized to the case with or arcs, showing that the algorithm is complete.
However, the case with or arcs is much more complex and requires further, detailed analysis.

Let us now see how we can apply these definitions to our example. The aim is to define a
single system out of the four components specified in Table 1. We start with a configuration
I' = {GZ,AD,CF,,CF;}, and we try to apply the algorithm. The first thing to do is try to
find a possible pair (AC,AS). We try with the pair (ACcF,, ASap). This pair succeeds, since we
can put in relation all nodes of ACcp, with nodes in ASpAp. We obtain as a result a partially
covered assumption graph for the adaptor, AS, . Analogously, it happens for the pair (ACcF,,
AS'\p), thus resulting in the assumption graph A5 . Now we can attempt to match the actual
behavior of gzip with the remaining part of the assumption graph of the adaptor. In this case, we
are not able to relate all nodes in ACgyz to the nodes in AS 1y. Figure 5 illustrates this mismatch
problem.

It is worth noticing that the mismatch occurs exactly where the deadlock of the system appears.
In fact, we cannot satisfy the assumption of the adaptor that corresponds to the state in which the
adaptor requires an eof, from the context. Thus, the adaptor will be blocked, not producing an
eof;, which in turn will cause gzip to block, thus achieving a state of deadlock.
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Figure 5: Mismatch in Actual and Assumed Behavior Leading to Deadlock.

The adaptor can be modified to eliminate the deadlock by introducing parallelism into its
behavior, as discussed in Section 4. The modified component CHAM for the adaptor is shown
in Table 2. It replaces the phased behavior of the adaptor with non-blocking reads and writes.
Figure 6 shows the AC and AS graphs obtained from the modified specification of the adaptor.
The successful match in behavior derived from the checking algorithm is illustrated in Figure 7.
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Adaptor (AD)

M =P [ C | E ]| MoM | MM
P = AD | ®
Syntax C == 1i(N) | o(N)
N ==mn1 | ny | n3g | na
E = eof; | eof,

Ty =i(n) omy, o(n) oms
— my oi(n), ma oo(n)
Th=eomoc— coeom
Trans. T5 = eof , o my ¢ o(n), eof; o ms oi(n)
Rules — my ¢ o(n) o eof,, my oi(n) oeof;
Ty = eof; om — m o eof;
Ti=my||ma ||l - || me — ma, ma, ..., my
TE=ADom — mo AD
Init. Sol. | i(3) 0 o(ny) o eof, o AD || i(ng) ¢ eof; ¢ o(ns) o AD

Table 2: Modified Component CHAM for the Adaptor.

AC ADAPTOR AS ADAPTOR

Figure 6: AC and AS Graphs for Modified Adaptor Component.

7 Conclusions and Future Work

In this work, we have presented an algorithm to check properties of a system at the architectural
level. At this level, the properties of interest are mainly dynamic properties related to the coor-
dination of components; one component has a potential behavior, but in order to be successfully
integrated in an architecture, it expects the context to behave in some particular way. We intro-
duced the notion of assumplions to formalize what a component expects from other components.
In other words, in order to work together, components must agree not only on the actual behaviors
(e.g., agree on communication protocol, port naming, an the like) but also on the assumptions they
make of each other.

We used the CHAM formalism to specify component behavior. The CHAM has been previously
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AS ADAPTOR partially matched AC GZIP

Figure 7: Successful Match of Components.

used to define software architectures and to analyze properties of architectures.

The checking algorithm introduced uses the assumptions and actual behavior to verify that the
differences between the actual behavior of a component and the assumptions that other components
make of what its behavior would be cannot produce a deadlock situation. We have shown how the
algorithm works in a case study.

Clearly, this work needs to be generalized. We have introduced the notions needed, and we
have presented an algorithm to check a particular problem in a particular situation. The example
shows that the algorithm is useful in a real context. However, other properties of interest should
be analyzed and algorithms developed to perform verification of those properties.

Moreover, the idea of associating assumptions to components may have interesting consequences,
besides deadlock checking. In general, when components are assembled together to form a system,
the verification performed is based on type checking of the interfaces. As mentioned in the introduc-
tion, some work has been done in checking the dynamics of components. But the notion of checking
assumptions against actual behavior may lead to a general way of verifying that the assembly of
a system, at the architectural level, is correctly done. The information in the interfaces, besides
operations (or ports), types of the operations, and even potential behavior might be enriched by
the assumptions that the component makes on how the context behaves. These considerations give
additional motivation to generalize the results given in this work.
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