
Uncovering Architectural Mismatch
in Component Behavior

Daniele Compare and Paola Inverardi Alexander L. Wolf

Dipartimento di Matematica Department of Computer Science
Universitá di L’Aquila University of Colorado
I-67010 L’Aquila, Italy Boulder, CO 80309 USA

({compare,inverard}@univaq.it) (alw@cs.colorado.edu)

University of Colorado
Department of Computer Science

Technical Report CU-CS-828-97 February 1997

A version of this report to appear in
Science of Computer Programming

c© 1997 Daniele Compare, Paola Inverardi, and Alexander L. Wolf

ABSTRACT

When constructing software systems from existing components, the engineer is faced
with the problem of potential conflicts in the interactions among the components. Of
particular difficulty is guaranteeing compatibility in the dynamic interaction behavior.
Using an architectural description of the system and its intended components, the engi-
neer can reason about the interactions early and at a high level of abstraction. In this
paper we give a case study of the Compressing Proxy system, which was first investigated
by Garlan, Kindred, and Wing. We present architectural specifications and analyses of
two versions of the system. One version is a seemingly obvious melding of the compo-
nents. The other is a solution to deadlock problems uncovered by formal analyses of the
first version. We use the Chemical Abstract Machine as an example of an architectural
description formalism that can help uncover architectural mismatches in the behavior of
components.

1 Introduction

An architectural description makes the analysis, design, and construction of a complex system
intellectually tractable by characterizing the system at a high level of abstraction. Using an archi-
tectural description, the engineer can reason about the satisfaction of system requirements in terms
of the assignment of functionality to design elements and the interaction of those design elements
at their interfaces. This is particularly useful for one emerging method of design, namely that of
assembling a software system from existing components.

Components naturally embody assumptions about the structure and behavior of the larger
contexts in which they operate. When constructing software systems from existing components,
the engineer is therefore faced with the problem of uncovering and avoiding architectural mismatch.
According to Garlan, Allen, and Ockerbloom [11]:

“Architectural mismatch stems from mismatched assumptions a reusable part makes
about the structure of the system it is to be part of. These assumptions often conflict with
the assumptions of other parts and are almost always implicit, making them extremely
difficult to analyze before building the system.”

An important class of mismatches can be understood to arise from conflicts at two levels of in-
teraction. One is the compatibility of the data exchanged among the components, and is usually
captured quite well by the type information present in the interfaces and the static analyses based
on the type information. The other, more difficult compatibility is the dynamic interaction and
communication behavior of the components. Mismatches often arise at this level because engineers
lack the understanding about individual component behaviors that contribute to the correct (or
incorrect) global behavior of the system.

A number of researchers have been experimenting with a variety of techniques for describing
and analyzing systems at the architectural level of design [1, 2, 14, 18]. Each of the techniques
is based on a different underlying formalism. For example, Abowd et al. use Z [23] for specifying
architectural styles, while the Wright architectural description language [2] is based on CSP [13].
The technique developed by Inverardi and Wolf [14] is based on the CHAM (CHemical Abstract
Machine) formalism [5]. CHAM is an operational formalism that leads to a description of an
architecture as a set of components (the “molecules”) whose states and interactions are governed
by transformation rules (the “reactions”).

In this paper we demonstrate how designers can use formal architectural specifications and
analyses to help uncover architectural mismatch in component behavior. To illustrate the benefits
of this approach, we employ the techniques that we developed for the CHAM formalism. Our earlier
work [14] exploited the algebraic and term-rewriting flavor of the CHAM formalism to introduce
the basic algebraic analysis approach to the architectural level of design. Here we extend that work
by giving improved structure to the transformation rules and by showing a second kind of analysis
based on transition-system generation in the style of Milner [20].

We use as our example a case study of the Compressing Proxy system introduced by Garlan,
Kindred, and Wing [12]. This example was later used by Inverardi, Wolf, and Yankelevich [16]
to demonstrate an algorithm for checking assumptions in component behaviors. The Compressing
Proxy is designed as a combination of two pre-existing component systems, each individually de-
signed and separately useful. Due to an architectural mismatch problem, it took the designers of
the Compressing Proxy two attempts to properly develop the system. In their first attempt, the

1

designers used a specially built adaptor component to account for an obvious mismatch between
the function-call-based stream interface of one component and the standard UNIX pipe interface
of the other component. However, this first version of the system exhibited deadlock problems
arising from a behavioral mismatch among the components. After analysis revealed the source of
the deadlock, the adaptor was modified and the second attempt at a solution worked.

As shown below, the Compressing Proxy case study clearly illustrates the point that, when
assembling existing components to form a system, there is a need for precise specifications of the
behavior of the components at the architectural level. Analysis of the specifications can then
provide early feedback about the feasibility of the assembly. Moreover, the analysis can indicate
where adjustments to the components and their interconnections might be made.

Of course, in our study of the Compressing Proxy, we had a priori knowledge of where the mis-
match arose. Nevertheless, it should be clear from the discussion below that the specifications one
would create for the components, as well as the analyses that one would apply to the specifications
to discover the mismatch, reasonably could be expected to follow those illustrated here.

In the next section we introduce the Compressing Proxy problem, giving an intuitive description
of the challenge it presents. In Section 3 we review related work in software architecture specification
and analysis. Following that, we review the essentials of the CHAM formalism that are required
for this paper. We then present the CHAM specifications for the two versions of the Compressing
Proxy architecture, demonstrating the deadlock that arises in the first. The two different styles of
analysis supported by the CHAM formalism and applied to this problem, algebraic analysis and
transition-system generation, are discussed and illustrated in Section 6. We conclude in Section 7
by considering how the two kinds of analysis techniques might be employed in concert.

2 The Compressing Proxy Problem

In this section we present the design of the Compressing Proxy system. Our description is
derived from that given by Garlan, Kindred, and Wing [12].

To improve the performance of UNIX-based World Wide Web browsers over slow networks, one
could create an HTTP (Hyper Text Transfer Protocol) server that compresses and uncompresses
data that it sends across the network. This is the purpose of the Compressing Proxy, which weds
the gzip compression/decompression program to the standard HTTP server available from CERN.

A CERN HTTP server consists of filters strung together in series. The filters communicate
using a function-call-based stream interface. Functions are provided in the interface to allow an
upstream filter to “push” data into a downstream filter. Thus, a filter F is said to read data
whenever the previous filter in the series invokes the proper interface function in F . The interface
also provides a function to close the stream. Because the interface between filters is function-call
based, all the filters must reside in a single UNIX process.

The gzip program is also a filter, but at the level of a UNIX process. Therefore, it uses the
standard UNIX input/output interface, and communication with gzip occurs through UNIX pipes.
An important difference between UNIX filters, such as gzip, and the CERN HTTP filters is that
the UNIX filters explicitly choose when to read, whereas the CERN HTTP filters are forced to read
when data are pushed at them.

To assemble the Compressing Proxy from the existing CERN HTTP server and gzip without
modification, we must insert gzip into the HTTP filter stream at the appropriate point. But
since gzip does not have the proper interface, we must create an adaptor, as shown in Figure 1.

2

FilterFilter
Pseudo Filter

(Adaptor)

gzipCompressing Proxy

process

component

channel

function−call interface

UNIX pipe interface

2 3

1 4

Figure 1: The Compressing Proxy.

This adaptor acts as a pseudo CERN HTTP filter, communicating normally with the upstream
and downstream filters through a function-call interface, and with gzip using pipes connected to a
separate gzip process that it creates.

An adaptor constructed in this way clearly solves the first level of interface mismatch. However,
a deeper level of mismatch can occur without a proper understanding of the behaviors of the
components. Consider the following straightforward method of structuring the adaptor. The
adaptor simply passes data on to gzip whenever it receives data from the upstream filter. Once
the stream is closed by the upstream filter (i.e., there are no more data to be compressed), the
adaptor reads the compressed data from gzip and pushes the data toward the downstream filter.
At a component level, this behavior makes sense. But at a global system level we can experience
deadlock. In particular, gzip uses a one-pass compression algorithm and may attempt to write a
portion of the compressed data (perhaps because an internal buffer is full) before the adaptor is
ready, thus blocking. With gzip blocked, the adaptor also becomes blocked when it attempts to
pass on more of the data to gzip, leaving the system in deadlock.

Obviously, the way to avoid deadlock in this situation is have the adaptor handle the data
incrementally and use non-blocking reads and writes. This would allow the adaptor to read some
data from gzip when its attempt to write data to gzip is blocked.

The Compressing Proxy is a simple example with a well understood solution. Nevertheless, one
can see that it is representative of an all-too-common problem in software development. Below we
show how analyses performed on CHAM descriptions of the component behaviors can reveal such
problems.

3

3 Related Work

In this section we review several formal specification techniques appropriate to the architectural
level of design, and describe some analyses associated with the specification techniques.

The specification of an architecture involves a delineation of the components and the ways
in which those components are connected. Perry and Wolf [21] give a model for architectural
specification that distinguishes three different classes of components: data elements, processing
elements, and connecting elements. The processing elements are those components that perform
the transformations on the data elements, while the data elements are those that contain the
information that is used and transformed. The connecting elements are the “glue” that holds
the different pieces of the architecture together. For example, the elements involved in effecting
communication among components are considered connecting elements.

The Wright specification language [2] provides a means to formalize connecting elements. The
idea is that connecting elements should be treated as “first class”, such that they have their own
specification independent components. This should allow components to be more easily connected
and reconnected in a variety of ways, as long as those connections satisfy the specifications. More-
over, it should be possible to demonstrate the correctness of components and connectors somewhat
more independently so that the verification task is reduced in complexity and cost.

Wright employs a subset of CSP [13] to define communication protocols among components. In
particular, CSP is used for the specification of component interface behavior, and for the specifica-
tion of roles and glue in connectors.

Formal analyses of Wright specifications concentrate on two properties. The first is the standard
property of deadlock freedom, which has been extensively studied in the context of CSP. The
second, and more interesting, is the port-role compatibility problem. The simple form of this
check is to guarantee that ports and roles realize identical protocols. But we could allow for more
flexible combinations of components if we could guarantee the weaker condition that the “promised”
behavior of a role is “respected” by the corresponding port. This can be cast in CSP terms, where
the problem is interpreted as refinement of protocols. Once cast this way, there are commercial
tools available for performing the analyses. An example is FDR [9], which is an application of
model-checking techniques.

A somewhat different perspective on architectural specification and analysis is provided by event
languages. Here the key property is the identification and ordering of events, which are discrete
markings of computational progress. An event is a very flexible, abstract notion that allows the
architect to describe the system at an arbitrary level of detail, depending on the particular definition
of events of interest.

Rapide [17, 18] is an executable, event-based specification language targeted for the architectures
of distributed systems. The idea behind Rapide is that simulation is a key capability for checking the
consistency of interfaces and connections, for understanding the behavior of the system as a whole,
and for verifying that the system’s communication adheres to the desired interaction structure of
the architecture. A Rapide specification can be thought of as a very high-level prototype.

A Rapide architecture specification consists of a description of a set of interfaces, connections,
and constraints. Interfaces specify the components of the system in terms of the resources that they
provide and require, and specify the behaviors of the components in terms of the actions that they
exhibit and to which they respond. Connections define the communications among the components
in terms of the interfaces of those components. Finally, constraints restrict the behaviors of the

4

interfaces and connections.
Behavior specifications for components and interfaces are given by event patterns that describe

the partially ordered set of events, called a poset, that can be generated by the actions of the com-
ponents and interfaces. An event can be considered an instantiation of an action at some particular
point in time. An execution of a Rapide specification (i.e., a simulation of the architecture) results
in a poset that represents some particular interaction among the components. The poset indicates
the dependencies and independencies among events exhibited by the system for that particular
execution.

Architecture analysis using Rapide amounts to checking for proper orderings of events within
the context of constraints on those orderings. It also involves checking for causality among events.
Particular event orderings are generated through simulation and examined for these properties. A
somewhat different kind of analysis also possible with Rapide is to guarantee that the communica-
tion structure of the architecture is strictly preserved as specified. This is particularly useful when
comparing an implementation of the system to its architectural specification and leads to a form
of acceptance testing based on architecture-level concerns.

Le Métayer [19] has developed an approach to software architecture specification in which
software architectures are modeled as graphs and software architecture styles are modeled as graph
grammars. The approach is based on drawing a clear distinction between the specification of
a single component’s behavior and the specification of the overall structure of the system. A
graph represents an architecture by interpreting nodes as components, whose behavior is separately
specified in a conventional specification language, and interpreting arcs as the communication links
between components. Architectures that exhibit the same graph structure are considered to be
elements of the same architectural style. Thus, an architectural style can be naturally expressed as
a (context-free) graph grammar.

The evolution of a system, in terms of its topological structure, is governed by a “coordinator”
component whose behavior is specified as conditional graph rewriting rules. The main contribution
with respect to the analysis of architectures is that it is possible to statically check if a given
coordinator changes the structure of the graph specification according to the given style—that
is, according to the given graph grammar specifying the style. Of course, the use of a dedicated
component, the coordinator, to manage the dynamic structure of a system imposes a specific view
of how a software architecture must be constructed, which limits the generality of the approach.

4 Background on the CHAM Formalism

The CHAM formalism was developed by Berry and Boudol in the domain of theoretical com-
puter science for the principal purpose of defining a generalized computational framework [5]. It
is built upon the chemical metaphor first proposed by Banâtre and Le Métayer to illustrate their
Gamma (Γ) formalism for parallel programming, in which programs can be seen as multiset trans-
formers [3, 4]. The CHAM formalism provides a powerful set of primitives for computational
modeling. Indeed, its generality, power, and utility have been clearly demonstrated by its use in
formally capturing the semantics of older, more familiar computational models, such as CSP [13]
and the CCS process calculus [20]. Boudol [6] points out that the CHAM formalism has also been
demonstrated as a modeling tool for concurrent-language definition and implementation.

Inverardi and Wolf [14] developed a framework for architectural specification and analysis based
on the CHAM formalism. Their goal is to apply the power of the CHAM, not to its original

5

purpose of capturing computational models and defining programming languages, but rather to
the design phase of specific software systems. Below, we briefly summarize the concepts in the
CHAM formalism relevant to this paper. We also report on the use of those concepts in the domain
of software architecture.

4.1 The Chemical Abstract Machine

The CHAM formalism is operational in nature. It is has a notion of state and a way to specify
the possible evolutions from one state to another. The set of all possible evolutions that a CHAM
can perform, starting from a given state, completely describe its behavior.

A CHAM is specified by defining molecules m,m′, . . . defined as terms of a syntactic algebra
that derive from a set of constants and a set of operations, and solutions S, S ′, . . . of molecules.
Molecules constitute the basic elements of a CHAM, while solutions are multisets of molecules
interpreted as defining the states of a CHAM. A CHAM specification contains transformation
rules T, T ′, . . . that define a transformation relation S −→ S ′ dictating the way solutions can
evolve (i.e., states can change) in the CHAM. Following the chemical metaphor, the term reaction
rule is used interchangeably with the term transformation rule.

Transformation rules can be conditional, in that their application may depend on the satisfaction
of a condition by the current state. Conditions are expressed as premises in the rule, with the
meaning that the rule can be applied if and only if the current state satisfies the condition expressed
by the premises.

The transformation rules can be of two kinds: general laws that are valid for all CHAMs and
specific rules that depend on the particular CHAM being specified. The specific rules must be
elementary rewriting rules that do not involve any premises. In contrast, the general laws are
permitted such premises. Informally, the general rules define the computational mechanisms any
CHAM is based on, while specific rules define the particular behavior of a given CHAM specification.

Solutions can be built from other solutions by combining them through the multiset union
operator. For example, given solutions S = m1, . . . ,mn and S′ = m′1, . . . ,m

′
k, we obtain S] S′ =

m1, . . . ,mn,m
′
1, . . . ,m

′
k that is another solution.

CHAMs obey four general laws. Two of those laws are relevant here.

The Reaction Law. An instance of the right-hand side of a rule can replace the corresponding
instance of its left-hand side. Thus, given the rule

M1,M2, . . . ,Mk −→M ′1,M
′
2, . . . ,M

′
l

if m1,m2, . . . ,mk, and m′1,m
′
2, . . . ,m

′
l are instances of the M1...k and M ′1...l by a common

substitution, then we can apply the rule and obtain the following solution transformation.

m1,m2, . . . ,mk −→ m′1,m
′
2, . . . ,m

′
l

We use an upper case M to represent a generic pattern, while a lower case m represents a
suitable instance of the pattern.

The Chemical Law. Reactions can be performed freely within any solution, as follows.

S −→ S′

S] S′′ −→ S′] S′′

6

In words, when a subsolution evolves, the supersolution in which it is contained is also con-
sidered to have evolved.

At any given point, a CHAM can apply as many rules as possible to a solution, provided that their
premises do not conflict—that is, no molecule is involved in more than one rule. In this way it is
possible to model parallel behaviors by performing parallel transformations. When more than one
rule can apply to the same molecule or set of molecules, we have nondeterminism, in which case
the CHAM makes a nondeterministic choice as to which transformation to perform. Thus, we may
not be able to completely control the sequence of transformations; we can only specify when rules
are enabled. Finally, if no rules can be applied to a solution, then that solution is said to be inert.

As discussed in Section 3, several formalisms have been proposed to model software architec-
tures. The CHAM formalism represents a minimalist and flexible approach, allowing for specifica-
tions that immediately reflect the dynamic behavior of the specified system. The algebraic structure
of the molecules allows one to also model the static structure of the system, thus obtaining a com-
prehensive framework in which both static and dynamic features of the software architecture can be
expressed. Of course, the minimalism of a CHAM can be a drawback when the system specification
becomes too detailed.

4.2 Specifying Software Architectures

The CHAM specification of a software architecture consists of three parts [14]:

1. a description of the syntax by which components of the architecture (i.e., the molecules) can
be represented;

2. a solution representing the initial state of the architecture; and

3. a set of reaction rules describing how the components interact to achieve the dynamic behavior
of the system.

The syntactic description of the components is given by an algebra of molecules or, in other words, a
syntax by which molecules can be built. Following Perry and Wolf [21], we distinguish three classes
of components: data elements, processing elements, and connecting elements. This classification is
reflected in the syntax, as appropriate.

The initial solution is a subset of all possible molecules that can be constructed using the syntax.
It corresponds to the initial configuration of the system. Transformation rules applied to the initial
solution define how the system dynamically evolves from its initial configuration.

In our use of the CHAM, we model components as elements of a syntactic category, thus com-
pletely abstracting away from their internal behavior. In other words, a component is represented
by a name; the only structure that we add refers to the state of the component with respect to its
interaction with other components in the system. Thus a complex molecule can represent a specific
state of a component in terms of its interaction with the external context. This reflects a precise
choice in the level of abstraction we have chosen to model software architectures.

With this necessarily brief introduction to the CHAM formalism and its use in the domain of
software architecture, we can now illustrate the utility of our approach to uncovering architectural
mismatch in dynamic behavior.

7

5 Specifications of the Compressing Proxy

As described in Section 2, the Compressing Proxy architecture was developed in two versions.
We refer to them as the Blocking and the Non-blocking Compressing Proxy, respectively. In this
section we give their CHAM specifications to serve as a basis for the analyses discussed in Section 6.
The specifications are purposefully kept simple and focused to highlight the important aspects of
our approach.

Note that in keeping the example simple, we are specifying the system at a rather high level.
Nevertheless, it is already possible at this level to shed light on potential architectural problems of
behavioral mismatch. If required, however, it is appropriate within the CHAM model to incorporate
additional detail into those descriptions.

In our formulation of the Compressing Proxy architecture we refer to the depiction given in
Figure 1. The filter to the left of the adaptor is referred to as the “upstream” filter, while the
filter to the right is referred to as the “downstream” filter. Communication along channels 1 and 2
represents the passing of data from the upstream filter through the adaptor to gzip for compressing.
The reverse communication along channels 3 and 4 represents the passing of compressed data back
through the adaptor and onto the downstream filter. Notice that the data themselves are not
represented, only the communication channels and the protocols governing them.

Below, we first present the specification of the Blocking Compressing Proxy and then show
a series of applications of its transformation rules to illustrate the system’s dynamic behavior.
As a demonstration of the mismatch problem, this particular behavior results in deadlock. We
then present the specification of the Non-blocking Compressing Proxy in terms of its differences
from the Blocking Compressing Proxy. These differences precisely embody the enhancements to
the adaptor module that eliminate the deadlock problem. The proof of this is supported by the
analyses presented in Section 6.

5.1 The Blocking Compressing Proxy

The first step in specifying the Blocking Compressing Proxy architecture is to define the syntax
Σb of its molecules M .

M ::= P | C | E | M �M
P ::= F | AD | GZ

C ::= i(N) | o(N)

N ::= 1 | 2 | 3 | 4

E ::= endi | endo

F ::= CFu | CFd

The syntax consists of the set P representing the three kinds of processing elements and of an
infix operator “�” used to express the status of a processing element. The connecting elements for
the architecture are given by a second set C consisting of two operations, i (for input) and o (for
output), that act on the elements of a third set N . This third set is used to define the topology of the
system in terms of the communication channels connecting the components, and correspond to the
numbers given in Figure 1. A fourth set E introduces the control signals used in the communication
between gzip and the adaptor. The set F contains the representation of the “upstream” and the
“downstream” CERN filters between which is placed the adaptor for gzip. Notice that at this
level of abstraction we are not concerned with the actual data transferred between the components,

8

simply the protocol by which they communicate. We take as the set of syntactic elements the initial
algebra in the class of all the Σb algebras.

Let us provide some intuition behind this syntax. We use the two operations i and o to represent
primitive communications over the channels between components, where i is for input and o is for
output. The elements of E are used by AD and GZ as markers to indicate that they are in a
position to end their data transfer, if appropriate; endi denotes “ending input”, while endo denotes
“ending output”. Finally, the infix operator “�” is used to express the status of a processing element
with respect to its input/output behavior. In particular, the status is understood by “reading” the
molecule from left to right. Consider, for example, the AD molecule o(2) � endo �AD � i(1). This
is interpreted to mean that AD offers output on channel 2 and is then prepared to end output. It
is further interpreted that AD has previously accepted input on channel 1. The left-most position
(i.e., the left operand of the left-most “�” operator) in the molecule indicates the next action that
the molecule is prepared to take; if this position is occupied by a communication operation, then
the kind of communication represented by that operation can take place.

The next step in specifying the Blocking Compressing Proxy architecture is to define an initial
solution S0. This solution is a subset of all possible molecules that can be constructed under Σb

and corresponds to the initial configuration of a system conforming to the architecture.

S0 = CFu � o(1),

CFd � i(4),

i(2) � endi � o(3) � endo �GZ,

i(1) � o(2) � endo �AD

The solution establishes the basic connectivity of the components, which corresponds to the channel
numbers shown in Figure 1. It establishes that the upstream filter will offer data along channel 1
(to AD) and the downstream filter will accept data along channel 4 (from AD), although both are
initially in a quiescent state, since the left-most position of each molecule is not a communication
operation. GZ and AD are somewhat more complicated. GZ is initially in the state of accepting
data along channel 2 (from AD). It can then end its input and enter a state of offering data along
channel 3 (to AD), after which it can end that output. AD is initially in the state of accepting
data along channel 1 (from an upstream filter) and must wait until it has stopped accepting the
data before it can offer data on channel 2 (to GZ). It can then end its output. The full meaning
of the initial state becomes apparent when combined with the transformation rules.

There are eight transformation rules that define the complete behavior of the Blocking Com-

9

pressing Proxy at this level of architectural modeling.

T1 ≡ i(x) �m1, o(x) �m2 −→ m1 � i(x), m2 � o(x)

T2 ≡ e �m � c −→ c � e �m
T3 ≡ endo �m1 � o(x), endi �m2 � i(x) −→ m1 � o(x) � endo, m2 � i(x) � endi

T4 ≡ endi �m1 �GZ �m2 −→ m1 �GZ �m2 � endi

T5 ≡ endo �GZ �m −→ GZ �m � endo

T6 ≡GZ �m −→ m �GZ

T7 ≡ f � c −→ c � f
T8 ≡AD � i(1) �m −→ i(3) � endi � o(4) �AD

T9 ≡AD � i(3) �m −→ i(1) � o(2) � endo �AD

where m,m1,m2 ∈ M , x ∈ N , c ∈ C, e ∈ E, and f ∈ F . Rule T1 is a general inter-element
communication rule, rules T2 through T5 capture the communication protocol between gzip and its
adaptor, rule T6 enables the iteration of GZ, and rule T7 describes the activation of the upstream
and downstream filters. Rules T8 and T9 are the critical rules for the mismatch problem; these
rules describe the behavior of the adaptor and are replaced with two other rules in the corrected
version of the architecture.

Let us provide more explanation for each rule.

• T1 generically describes pairwise input/output communication between processing elements.
In particular, communication occurs if there is a processing element m1 that accepts input
from a channel offered as output by some other processing element m2 on the same channel.
Recall that the ability of a processing element to communicate is syntactically indicated
by the appearance of a communication operation in the left-most position of the molecule.
Completion of the communication—that is, the result of the transformation—is indicated by
a rewriting of the molecule such that the communication operation is moved to the right-most
position of the molecule.

• T2 allows either AD or GZ to iterate its communication behavior.

• T3 terminates communication through AD and GZ in the successful case—that is, the com-
ponents “agree” to terminate the data transfer between them.

• T4 allows GZ to independently terminate its input. This situation can arise, for example,
when its internal buffer is full.

• T5 allows GZ to independently terminate its output. This situation can arise, for example,
when the internal buffer has emptied.

• T6 reactivates GZ to allow new compressions.

• T7 also reactivates components, in this case those representing upstream and downstream
CERN filters.

10

• T8 changes the structure of AD with respect to the initial solution to indicate its readiness
to receive compressed data. As such, AD can no longer receive data on channel 1 from an
upstream filter and pass them along to GZ on channel 2 for compression.

• Finally, T9 permits AD to receive new data for compression, restoring the molecule to its
original status.

Notice that most of the rules apply to individual components, and thus are independent of the global
context. For example, the “decision” by gzip to end its input or output through rule T4 or T5 is
local to the component. Only rules T1 and T3 involve coordination among multiple components.

To summarize the formulation, let us take the perspective of each component in the system. A
filter is modeled as a component that iteratively offers data for output (if it is an upstream filter)
or accepts data for input (if it is a downstream filter). Rule T7 models this iterative behavior. The
adaptor AD is modeled as a bi-modal element. In its initial mode, AD iteratively accepts data
from an upstream filter and passes data on to GZ. Rule T2 models this iterative behavior. Rule T8

models the change from AD’s initial mode to one of iteratively accepting data for input from GZ
and offering data for output to a downstream filter. Rule T9, on the other hand, models the reverse
change in mode. GZ begins its behavior by iteratively accepting data from the adaptor. Rule
T2 models this iterative behavior. Rule T4 models the decision by GZ to end this iterative input
behavior and begin to iteratively offer data for output to AD. The iterative output behavior of GZ
is modeled by rule T2, while the decision by GZ to end its iterative output behavior is modeled
by rule T5. GZ and AD can coordinate the ending of their transfer of data. This is modeled by
rule T3, which applies generically to both the case of AD→GZ data transfer as well as the case of
GZ→AD data transfer. The overall iterative behavior of GZ is modeled by rule T6. Finally, the
actual input/output behavior of all components is modeled using rule T1.

We have thus defined an abstract machine that evolves dynamically from one admissible state
to another, starting from the initial solution S0 and using the transformation rules T1 through T9

to model the possible behaviors of the system. Naturally, these behaviors involve only a subset of
all possible molecules that can be constructed under Σb.

One thing to observe about our formulation is that there is no way for gzip to operate on
an empty stream, although it is possible for the actual tool to do so. This is an example of the
fuzzy boundary between architectural abstraction and what might be considered an implementation
detail. To model the ability of gzip to operate on an empty stream requires the addition of a simple
rule to account for this case. We did not include such a rule here, however, because it does not
materially affect the analyses we are demonstrating.

Another thing to observe about our formulation is that the data themselves are not modeled.
We simply indicate the behavior that leads to data transfer, without specifying either the form or
granularity of the data.

Finally, a possible source of confusion in this formulation arises from the generic manner in
which rules T1 through T3, as well as rule T7, are defined. For example, rule T1 applies to any pair
of communicants, while rules T2 and T3 apply to both AD and GZ, but in different situations and
in different roles. This is a stylistic issue that is not in any way dictated by our approach. We
chose in this example to develop a compact set of transformation rules, perhaps at the cost of some
degree of readability. An alternative would have been to instantiate the generic rules for each of
their possible specific uses. While it would then have been clear as to which rule applied to which

11

component, the number of rules would have increased. We regard this ability to flexibly tradeoff
succinctness against specificity as one of the strengths of our approach.

We now trace through just a few applications of the transformation rules to illustrate how our
formulation captures the essence of the architecture. This particular trace happens to be one that
leads to the deadlock resulting from the architectural mismatch.

First, data to be compressed must be available, and therefore the solution must be “heated” by
rule T7 acting on the molecule CFu � o(1).

S0
T7−→ S1, where

S1 = o(1) �CFu,

CFd � i(4),

i(1) � o(2) � endo �AD,

i(2) � endi � o(3) � endo �GZ

Now a reaction can occur within the subsolution consisting of molecules o(1) �CFu and
i(1) � o(2) � endo �AD. This reaction is governed by T1 and represents the initial transfer of
data from CFu to AD.

S1
T1−→ S2, where

S2 = CFu � o(1),

CFd � i(4),

o(2) � endo �AD � i(1),

i(2) � endi � o(3) � endo �GZ

The data transfer has occurred through a single reaction, and CFu is now in a state in which T7

is required to activate it once again for a further data transfer. Although T7 can be applied, for
brevity we do not consider this possibility further in the discussion, since our intention here is only
to illustrate the behavior of the system.

At this point, reaction T1 can occur again, modeling the passing of data from AD to GZ for com-
pression. T1, in this case, acts upon the subsolution consisting of molecules o(2) � endo �AD � i(1)
and i(2) � endi � o(3) � endo �GZ.

S2
T1−→ S3, where

S3 = CFu � o(1),

CFd � i(4),

endo �AD � i(1) � o(2),

endi � o(3) � endo �GZ � i(2)

From this state, any one of the three reactions T2, T3, or T4 can occur nondeterministically. (Recall
that we are not further considering applications of T7, although it too can be applied in this
situation.)

A reaction involving T2 would model the availability of new data. In fact, this reaction models
the possible iteration of communication from AD to GZ—that is, the cycle T2, T2, T1, . . . , T2, T2,
in which every cycle results in a new amount of data to be compressed. It is evident that a
possibly infinite amount of effort could be spent unproductively looping between the rules T2 and
T1. This behavior amounts to modeling that the internal buffers of the adaptor and gzip have an

12

infinite capacity. Although this is clearly unrealistic, it has a minimal impact on the modeling of
the architecture. However, this can be easily solved by modifying the specification such that the
T2, T2, T1, . . . T2, T2 cycle is suitably constrained to, for example, simulate some bounded buffer [7, 8].
In fact, it is important to introduce a constraint such as this only if it is necessary in the description
of the system, which for our purposes here it is not. Therefore, we do not consider this situation
further. Instead, we only consider situations in which the buffer is implicitly treated as finite.

We postpone the application of T4 and now consider the application of T3, which represents the
situation in which AD terminates its output before GZ has terminated its input.

endo �AD � i(1) � o(2), endi � o(3) � endo �GZ � i(2)
T3−→

AD � i(1) � o(2) � endo, o(3) � endo �GZ � i(2) � endi

Notice that the molecule AD � i(1) � o(2) � endo represents the fact that the adaptor has completed
the first part of its processing. GZ, on the other hand, is in the state of offering output on channel 3.
To this end, the molecule AD � i(1) � o(2) � endo has to react by using T8. We now have a solution
S4.

S3
T3,T8−→ S4, where

S4 = CFu � o(1),

CFd � i(4),

i(3) � endi � o(4) �AD,

o(3) � endo �GZ � i(2) � endi

This reflects the changed state of AD, which now is ready to receive compressed data back from
GZ, since AD has terminated its (blocking) writes.

At this point we can have a reaction between AD and GZ.

S4
T1−→ S5, where

S5 = CFu � o(1),

CFd � i(4),

endi � o(4) �AD � i(3),

endo �GZ � i(2) � endi � o(3)

Again, T2, T3, or T4 can occur nondeterministically, and we consider the reaction performed by T3.

endi � o(4) �AD � i(3), endo �GZ � i(2) � endi � o(3)
T3−→

o(4) �AD � i(3) � endi, GZ � i(2) � endi � o(3) � endo

This reflects the fact that GZ has terminated its output and becomes idle, while AD is ready to
output the compressed data to CFd. Molecule CFd can be activated through T7, and then T1 can
occur.

i(4) �CFd, o(4) �AD � i(3) � endi
T1−→

CFd � i(4), AD � i(3) � endi � o(4)

With this reaction, CFd terminates its wait and in fact accepts all the compressed data from AD.
It is then ready to take on new data.

13

By allowing T6 and T9 to react, we reach a state equal to the initial solution S0, from which
other reactions can start. In practice, this corresponds to the iterative behavior of the Compressing
Proxy.

Let us now return to the state of the system represented by solution S3 and consider the
application of T4 instead of T3.

S3
T4−→ S′4, where

S′4 = CFu � o(1),

CFd � i(4),

endo �AD � i(1) � o(2),

o(3) � endo �GZ � i(2) � endi

Notice that this models the situation in which gzip must terminate its input because its buffer is
full. It needs to write the compressed data, but the adaptor has not yet terminated its output of
non-compressed data. For this reason gzip blocks waiting for the adaptor to read. However, the
adaptor can only try to send more output to gzip. In fact, now the only reaction that can occur for
AD is within the subsolution consisting of the molecule endo �AD � i(1) � o(2), which is governed
by T2.

S′4
T2−→ S′5, where

S′5 = CFu � o(1),

CFd � i(4),

o(2) � endo �AD � i(1),

o(3) � endo �GZ � i(2) � endi

It is easy to see that no further useful transformation rules can be applied to this solution. Thus,
the system has deadlocked because there is no possible correct evolution from S ′5.

A symmetrical deadlock occurs if we consider the application of T5 to solution S5. Here it is
reasonable to imagine that gzip’s internal buffer has emptied. For brevity, we do not show this
situation.

5.2 The Non-blocking Compressing Proxy

Let us turn to the second version of the architecture and see what changes are necessary in
the CHAM model we developed for the first. The primary difference that we must account for
in the second version is that the adaptor can use non-blocking writes when sending data to gzip.
Therefore, any time one of the writes would have blocked, the adaptor should now be able to read
any available data from gzip using non-blocking reads. In addition to avoiding deadlock, this
approach introduces a certain degree of incremental processing by allowing the Compressing Proxy
to start sending out compressed data before all the incoming data have arrived.

We give the specification of the Non-blocking Compressing Proxy in terms of its differences
with the Blocking Compressions Proxy. First, we must introduce new elements to represent the
new behavior of the adaptor. In particular, we enrich the structure of the molecules by introducing
an infix operator “‖” to syntactically represent a molecule that can be broken down into parallel
subcomponents, thus allowing multiple reactions to occur simultaneously. In more familiar terms,
“‖” can be interpreted as a parallel operator.

14

This change requires a new syntax of molecules for the architecture. We can formulate this
syntax by a simple modification to Σb. Let Σn be the syntax that we obtain by replacing the
highest-level molecule syntax generator M by M ′, which is defined as follows.

M ′ ::= P | C | E | M ′ �M ′ | M ′ ‖M ′

Next, we need to alter the solution that represents the initial configuration. S ′0 is obtained from S0

by simply replacing its AD molecule with the following AD molecule.

i(1) � o(2) � endo �AD ‖ i(3) � endi � o(4) �AD

This new molecule in the initial solution represents the parallel communications that AD can
perform. In this way, AD will never block while performing input or output.

To complete the specification, we need to replace rules T8 and T9 with rules appropriate for the
Non-blocking Compressing Proxy.

T ′8 ≡m1 ‖ m2 ‖ · · · ‖ mn −→ m1, m2, . . . ,mn

T ′9 ≡AD �m −→ m �AD

where m,m1, . . . ,mn ∈ M . Note that rules T1 through T7 defined for the Blocking Compressing
Proxy also hold for the Non-blocking Compressing Proxy.

T ′8 is a rule that breaks apart a complex molecule into its (parallel) components, which can then
participate in (parallel) reactions. T ′9 reactivates the idle adaptor, encompassing rules T8 and T9

from the Blocking Compressing Proxy.
The introduction of the parallel operator in Σn is for notational convenience and readability.

As evident from rule T ′8, its semantics is simply that of reaching a solution in which the elements
of the parallel molecule are placed into the solution by themselves. The same effect could thus be
achieved by directly placing the elements into the initial solution, avoiding the need for rule T ′8.
On the other hand, use of the parallel operator allows us to express the close relationship of the
concurrent threads of the component. The fact that the CHAM itself is an inherently parallel model
leads to the interpretation of that operator in more basic CHAM terms. The parallel operator also
allows for a more uniform treatment of the adaptor reactivation rule, which now can be simply
expressed by rule T ′9.

There is an important thing to notice about this specification, particularly in regard to the
interaction of the processing. We assume that an element of F always performs a single input,
followed by a single output, followed by another single input, and so on. In essence, we are
modeling the input/output behavior of these processing elements as [IO]∗. The adaptor performs
a single input or a single output during the communication with an element of F , so that we can
also model its input/output behavior as [IO]∗. But it performs a sequence of outputs followed by
a sequence of inputs when it communicates with GZ, so that its behavior in this case is modeled
by [O+I+]∗. Finally, the input/output behavior of GZ is also modeled by [I+O+]∗, because it can
make a sequence of inputs followed by a sequence of outputs. (Recall the role of endi and endo in
the communication.)

Let us simply trace how the new architecture solves the deadlocks possible in the previous

15

version. Consider the following intermediate solution.

Si = CFu � o(1),

CFd � i(4),

endo �AD � i(1) � o(2),

i(3) � endi � o(4) �AD,

endi � o(3) � endo �GZ � i(2)

This solution models the situation in which output from AD to GZ has already begun. If T4 is
applied to Si, we have the following reaction.

Si
T4−→ Si+1, where

Si+1 = CFu � o(1),

CFd � i(4),

endo �AD � i(1) � o(2),

i(3) � endi � o(4) �AD,

o(3) � endo �GZ � i(2) � endi

Notice that GZ, because it has terminated its input of non-compressed data, can immediately
begin its output of compressed data to AD, which in turn can terminate its writing in order to
read from GZ.

Si+1 admits two possible reactions and, since they do not conflict, they can occur in parallel.
One reaction is T1, the communication of compressed data from GZ to AD. The other is T2, which
allows AD to wait for its output of non-compressed data.

Si+1
T1,T2−→ Si+2, where

Si+2 = CFu � o(1),

CFd � i(4),

o(2) � endo �AD � i(1),

endi � o(4) �AD � i(3),

endo �GZ � i(2) � endi � o(3)

We can observe that AD holds the non-compressed data that it could not yet pass to GZ, but in
this version of the architecture will not block. From this state, rules T2, T3, and T4 can once again
be applied in a nondeterministic—and deadlock free—manner. This reflects the fact that AD uses
non-blocking writes when sending data to GZ.

5.3 Discussion

Clearly, the key role in the system is played by the adaptor component. In particular, the
role is that of a “matchmaker”, since it must interconnect a CERN HTTP Filter with the gzip
UNIX filter, each having a different communication modality. In the first architecture, the adaptor
initially has a structure that follows the communication style of function-call-based streams. After
the application of T8, the molecule is radically changed to allow communication through UNIX
pipes. It then returns to its initial structure by means of the application of T9. Therefore, we can

16

see that the two communication behaviors are mutually exclusive in the first architecture, leading
to the mismatch between gzip and the upstream and downstream filters. Conversely, the second
architecture permits these communication behaviors to coexist through a concurrent behavior (i.e.,
multi-threading) of the adaptor. This choice avoids the potential deadlocks exhibited by the first
architecture.

The two specifications make use of the same set of processing elements and the same commu-
nication channels. Therefore, the two architectures have the same topology. They differ, however,
in the internal behavior of the adaptor component, which has a significant effect on the global
behavior of the system. This difference is clearly reflected in the augmentation of Σb with a parallel
operator, the alteration to the adaptor molecule in the initial solution S0, and the replacement of
the two adaptor-specific rules in the set of transformation rules.

In the next section, we use formal techniques to analyze the two architectures for the critical
properties that reveal both the mismatch and its resolution.

6 Analysis of the Architectures

A primary reason for why we are exploring the use of the CHAM formalism at the architectural
level is that it allows for two, quite different analysis techniques. On the one hand, we exploit the
algebraic and equational nature of CHAM to allow us to prove a variety of important properties
about an architecture. This was the technique illustrated in general in our earlier work [14]. On
the other hand, we take advantage of the CHAM formalism’s operational flavor by generating
transition systems from specifications and then reasoning at the transition-system level. In fact, we
have developed a tool to automate the process of generating a transition system from the CHAM
specification of a software architecture; the definitions underlying this process are presented here.
The flexibility in analysis techniques provided by the CHAM formalism can be very convenient for
architectural engineers since, depending on the kind of property of interest, they can choose the
most appropriate technique to apply.

In this section we employ both the algebraic and transition-system techniques in order to un-
cover the architecture-level mismatch in component behaviors of the Compressing Proxy system.
For convenience, Table 1 reproduces the initial solutions and transformation rules for the two
architectures presented in Section 5.

As usual when analyzing concurrent systems, we are interested in safety and liveness properties.
In this section, we restrict our attention to the analysis of safety properties, which are intended to
state that nothing “bad” can ever happen. In the case of the Compressing Proxy, we are interested in
analyzing our specifications with respect to deadlock, since that is the erroneous behavior resulting
from the use of the first version of the adaptor component. Liveness properties state that something
“good” will eventually happen. In Appendix A we use the algebraic technique to show the absence
of livelocks—that is, our specifications indicate that the Compressing Proxy cannot run forever
unproductively.

It is worth noticing that although the algebraic techniques used here are applied to a specific
system, the proof approach is common to a wide range of problems and can be easily adapted
to prove similar results on other systems. In particular, as shown in this section, proving the
presence of deadlock in iterative systems like the one we are modeling amounts to proving the
existence of terminating derivations. In our approach, this reduces to a case analysis on the set
of possible derivations. The algebraic structure of the solutions, and the fact that we always only

17

Blocking Compressing Proxy Non-blocking Compressing Proxy

Initial Solutions
S0 = CFu � o(1),

CFd � i(4),

i(2) � endi � o(3) � endo �GZ,

i(1) � o(2) � endo �AD

S′0 = CFu � o(1),

CFd � i(4),

i(2) � endi � o(3) � endo �GZ,

i(1) � o(2) � endo �AD
‖ i(3) � endi � o(4) �AD

Transformation Rules
T1 ≡ i(x) �m1, o(x) �m2 −→ m1 � i(x), m2 � o(x)

T2 ≡ e �m � c −→ c � e �m
T3 ≡ endo �m1 � o(x), endi �m2 � i(x) −→ m1 � o(x) � endo, m2 � i(x) � endi
T4 ≡ endi �m1 �GZ �m2 −→ m1 �GZ �m2 � endi
T5 ≡ endo �GZ �m −→ GZ �m � endo

T6 ≡GZ �m −→ m �GZ

T7 ≡ f � c −→ c � f
T8 ≡AD � i(1) �m −→ i(3) � endi � o(4) �AD

T9 ≡AD � i(3) �m −→ i(1) � o(2) � endo �AD

T ′8 ≡m1 ‖ m2 ‖ · · · ‖ mn −→ m1, m2, . . . ,mn

T ′9 ≡AD �m −→ m �AD

Table 1: Initial Solutions and Transformation Rules for the Compressing
Proxy Architecture Specifications.

consider derivations starting from the initial solution, greatly simplifies the proof structure. The
same reasoning can be applied to the proof of liveness properties.

6.1 Algebraic Analysis

The property we wish to prove about the Blocking Compressing Proxy is that it allows two
possible kinds of deadlock, one during the communication of non-compressed data from AD to GZ
and the other in the symmetric case.

We make a first observation, which we employ in the following proofs, about the structure of
solutions as controlled by the reaction rules.

Fact 1 The application of any rule does not change the number of molecules or kind of processing
elements in a solution but only transforms the state of the processing elements mentioned in the
left-hand side of the applied rule. The only exception is rule T ′8 of the Non-blocking Compressing
Proxy, which breaks a complex parallel molecule into its constituent parts.

The significance of this fact is that, given the initial solution S0, every derived solution in the
Blocking Compressing Proxy CHAM will have exactly the same number of molecules as the initial
solution, namely four, one for each of the four processing elements of the specification. Given the
initial solution S ′0 of the Non-blocking Compressing Proxy CHAM and after a finite number of
steps in every derivation, all the solutions will have exactly the same number of molecules, namely

18

five, of which two correspond to the parallel threads of the adaptor molecule AD and three to the
other three processing elements of the specification.

Because the CHAM formalism is inherently concurrent and nondeterministic, we need to restrict
our analysis to fair policies in applying reaction rules.

Definition 1 Let R be the set of reaction rules for a CHAM C. Then a derivation
D : S1, S2, . . . , Sn, . . . is fair if and only if there is no reaction rule in R whose application can
be indefinitely delayed.

This definition means that if a rule is enabled infinitely often, because its application pattern
appears infinitely many times in the derivation, then it is impossible in a fair derivation to avoid
applying the rule. Of course, any finite derivation is fair. Fair derivations only guarantee that
if something has to be done it will eventually be done. Below, we restrict consideration to fair
derivations only. It is worth noting that this restriction is reasonable, since it amounts to an
assumption that any implementation of the system will adopt a fair scheduling policy.

We next recall the following definition relevant to all CHAM specifications of software architec-
tures [14].

Definition 2 A reaction derivation S0 −→ S1 −→ · · · −→ Sn is normalizing if Sn is inert.

This definition means that a given derivation terminates, since a solution is inert when there are
no other reaction rules that can be applied to it. Thus, a normalizing derivation is a derivation
that terminates.

We can now prove the following property.

Proposition 1 Let Si be any solution derived from the initial solution by applying the rules of
the Blocking Compressing Proxy CHAM. Then Si
contains the pair of molecules o(2) � endo �AD � i(1) and o(3) � endo �GZ � i(2) � endi or the
pair i(2) � endi � o(3) � endo �GZ and i(3) � endi � o(4) �AD if and only if Si is inert or any
derivation starting from Si reaches an inert solution in a finite number of steps.

Proof: For the “if” part, the proof is by case analysis. By Fact 1, the number and processing
nature of the molecules that appear in any derived solution is fixed. If Si is inert, this means that no
reaction rule is applicable and, further, that appearing in Si are the two molecules o(1) �CFu and
i(4) �CFd. For GZ and AD, then it can only be true that they are in a state in which they are going
to perform either an input or an output, otherwise rule T2 could be applied. This leads to the con-
clusion that they can only be of the form o(2) � endo �AD � i(1) and o(3) � endo �GZ � i(2) � eofi
or of the form i(2) � endi � o(3) � endo �GZ and i(3) � endi � o(4) �AD.

For the “only if” part, we must show that if there is the pair of molecules o(2) � endo �AD � i(1)
and o(3) � endo �GZ � i(2) � endi in Si, then there are only a fixed number of reaction steps that
can be performed. By Fact 1 this is trivial, since the only possibility is that the filters are in a state
that allows the application of T7 and these are the only possible further reactions. The reasoning
for the other pair is analogous.

The proposition above permits us to characterize the solutions that lead to normalizing deriva-
tions. It shows that any normalizing derivation implies that the adaptor and gzip will eventually
reach a state in which one is willing to output on channel 2 while the other is willing to output

19

on channel 3. This exactly models the deadlock situation, in which both processing elements are
trying to output. The other pair of molecules models the symmetric situation in which deadlock
can occur—that is, when both the adaptor and gzip are trying to input, one on channel 3 and the
other on channel 2.

The next proposition shows that in order to reach an inert solution, it is necessary to apply
rule T4 or rule T5. These rules model the situations in which gzip autonomously decides to end its
input or output, thus eventually leading to a deadlock.

Proposition 2 Let S0 be the initial solution of the Blocking Compressing Proxy CHAM and let
δ : S0 −→ S1 −→ · · · −→ Sn be a derivation from S0. Then any derivation δ′ from Sn is normalizing

if and only if there exists in δ a solution Si such that Si
T4−→ Si+1 or Si

T5−→ Si+1.

Proof: Let us first consider whether any derivation δ′ from Sn implies the existence of

Si
T4−→ Si+1 or Si

T5−→ Si+1 in δ. By the hypothesis δ′ is terminating. Since δ′ is normalizing
this means that the last solution must contain either the pair of molecules o(2) � endo �AD � i(1)
and o(3) � endo �GZ � i(2) � endi or the pair of molecules i(2) � endi � o(3) � endo �GZ and
i(3) � endi � o(4) �AD by Proposition 1, because otherwise a non-terminating derivation can be
easily built. Looking at the rules, this is obtained only through the application of T4 or T5. On the
other hand, starting from the initial solution, it is certainly possible to apply rule T4 or T5. In fact,
from the initial solution, a solution is reached deterministically that allows for the application of
T4. If this rule is not applied, then eventually rule T3 can be applied, thus leading to solutions that
allow the application of rules T8 or T6. This in turn allows, in a few reaction steps, the production
of a solution containing a redex for T5 or again T4. This situation can be repeated an infinite
number of times if the derivation is non-terminating.

We must now consider the reverse condition. We only consider the application of rule T4,

since the reasoning for rule T5 is analogous. Let us assume that Si
T4−→ Si+1 exists in δ and let

us prove that any derivation δ′ from Sn is normalizing. By examining the derivations from the

initial solution, Si
T4−→ Si+1 means that either the pair of molecules endo �AD � i(1) � o(2) and

o(3) � endi �GZ � i(2) � endi is present in Si+1, or the pair of molecules o(4) �AD � i(3) � endi
and endo �GZ � i(2) � endi � o(3) appears in Si+1. In either case, there exists a maximum number
of reaction steps that can be further performed on Sn before the pair o(2) � endo �AD � i(1) and
o(3) � endo �GZ � i(2) � endi is created and, by Proposition 1, we have a situation from which
only inert solutions are reachable.

In our framework, a normalizing derivation models a terminating computation. What we want
to do is understand whether this means a successful termination or an incorrect behavior. For the
system under consideration, any terminating derivation signals an incorrect behavior if the data to
be processed are still not exhausted. In fact, in the presence of data, the system must work forever.
From the above proposition, we know that any normalizing derivation has to apply either rule T4

or rule T5. Then, if we look at the solutions we get after their application, it is easy to see that the
data are not completely processed.

Let us now define a state of deadlock for the Blocking Compressing Proxy.

Definition 3 Let Si be a generic solution of the Blocking Compressing Proxy CHAM and let Si+1

be a solution such that Si
T4−→ Si+1 or Si

T5−→ Si+1. Then Si+1 defines a state of deadlock.

20

This definition allows us to ignore the remaining part of the derivations that start from a solution
obtained by the application of T4 or T5, since they (incorrectly) terminate, as we have proven in
the previous proposition.

We can now prove that we have only two kinds of derivations that terminate.

Proposition 3 The Blocking Compressing Proxy CHAM allows only two kinds of normaliz-
ing derivations, S0 · · · −→ Si −→ · · · −→ Sn or S0 · · · −→ Sj −→ · · · −→ Sm, such that
endi � o(3) � endo �GZ � i(2) ∈ Si and endo �GZ � i(2) � endi � o(3) ∈ Sj.

Proof: Starting from the initial solution S0, we can easily see that T4 or T5 can be applied only
if either endi � o(3) � endo �GZ � i(2) or endo �GZ � i(2) � endi � o(3) is in a given solution. In
the first case, the application of T4 corresponds to the situation in which GZ interrupts its input
before AD has terminated its output. The second case corresponds to the symmetric situation.
Then, looking at the rules, we can see that there are only two kinds of solutions in which T4 or T5

can be applied.

Si = . . .,

endi � o(3) � endo �GZ � i(2)

and Sj = . . .,

endo �GZ � i(2) � endi � o(3)

Moreover, these two molecules can obviously never appear in the same solution. This is by Fact 1,
since they are both related to gzip.

At this point we have the following corollary.

Corollary 3.1 In every normalizing derivation, T4 is applied to solutions that contain the
molecule endi � o(3) � endo �GZ � i(2) and T5 is applied to solutions that contain the molecule
endo �GZ � i(2) � endi � o(3).

We use this corollary in the proof of the following proposition.

Proposition 4 There are exactly two sets of deadlock states in the Blocking Compressing Proxy
CHAM.

Proof: The thesis follows immediately from Definition 3 and Corollary 3.1.
What still remains to be proven is that the second architecture removes the potential deadlocks

that can occur in the first.

Proposition 5 Let S ′0 be the initial solution of the Non-blocking Compressing Proxy CHAM and
let δ : S′0 −→ S′1 −→ S′2 −→ · · · −→ S′n be a derivation from S ′0. Then there exist no normalizing
derivations starting from S ′n.

Proof: We simply need to show that in the Non-blocking Compressing Proxy CHAM it
is impossible to perform a normalizing derivation. The presence of the complex molecule
i(1) � o(2) � endo �AD ‖ i(3) � endi � o(4) �AD together with the heating rule T ′9 guarantees
that in a generic solution S ′i (i > 0) there are always two molecules for the adaptor,
i(1) � o(2) � endo �AD and i(3) � endi � o(4) �AD or the molecules evolved from them.

Let us assume that the thesis is not true. Then it should be possible to reach a solution that
is inert. This means that no reaction can be performed on that solution. This implies that, as far

21

as the upstream and downstream filters are concerned, their molecules are respectively waiting to
output and to input, so that rule T7 cannot be applied. Further, GZ has to be in a state that does
not allow the application of T2, T4, T5, or T6. Then it can only be either waiting for input from
AD or waiting to output to AD. As far as the two molecules of AD are concerned, similar to the
reasoning for GZ, they can only be waiting for input from GZ and waiting to output to GZ. In
both cases we can have a reaction between GZ and one of the AD molecules, thus contradicting
the hypothesis that the solution is inert.

We can now state the following result.

Corollary 5.1 The Non-blocking Compressing Proxy CHAM does not allow deadlock.

Having formally proven the absence of deadlocks in the second architecture, we can prove that
it allows infinite derivations if and only if data for compressing are infinitely available. This fact
ensures that there exist no livelocks—that is, situations in which the system makes no progress,
although it is not blocked. Livelocks are generated by infinite derivations in which it is always
possible to apply at least one reaction rule, although no constructive progress is made. In our case,
this would mean that along the derivation, no data processing is achieved. We present these results
in Appendix A.

6.2 Transition-system Analysis

Let us now turn to the other kind of analysis made possible by a CHAM specification of an
architecture, transition-system analysis. First we show how it is possible to generate a transition
system from a CHAM description. Basically, we use the usual approach of deriving the transition
system from the operational semantics [10, 20, 24] by considering that our reaction rules are indeed
the operational semantic rules. Note, however, that due to the concurrent operational nature of the
CHAM, we must also consider all the transitions in which sets of disjoint redexes can be applied. In
terms of the generated transition system, this does not imply any increase in the number of states
but only in the number of arcs to be considered.

The following definitions provide the generation mechanism.

Definition 4 (Operational semantics induced byR.) Let R be the set of reaction rules of a CHAM
C. Then R defines a relation D ⊆ Molecules×Molecules. The relation is the least relation satisfying
the rules.

Definition 5 (Derivative.) Given a set of reaction rules R, an R-derivation from a solution S0 to
a solution Sn is a sequence {Si, 0 ≤ i ≤ n}, n > 0, such that for any 0 ≤ i ≤ n− 1, Si −→R Si+1.
A solution Sj is called an R-derivative of Si if an R-derivation exists from Si to Sj. The set of
derivatives of S0 is called DR(S0).

Definition 6 (Transition System.) A transition system T is a triple (S,D, s0), where S is a set
of solutions, s0 ∈ S is the initial solution, and D ⊆ S × S.

Definition 7 (Transition System Corresponding to a Solution.) Given a solution S and a set of
reaction rules R, R(S) is the transition system (DR(S)∪{S}, D, S), where D is the relation defined
by R.

22

(0,0)

s58

T6

s67

T6

s76

T4

T2

s51

T6

s62

T6

T7

s72

T4

T7

T2

s65

T4 T7

T2

s70

T7

T2

T2T4

s44

T2

s47

T6

T7

T2

s59

T6

T7

s71

T4

T7

T7T2

s61

T4

T7T2

T7

T7

T7

s39

T2

s42

T6

T7T7

T2

s52

T6

T7T7

s66

T4

T7T7

T7T7T2

s54

T4

T7T7T2

Figure 2: Excerpt from the Blocking Compressing Proxy Transition System.

In this way, given a CHAM and a solution, we can generate a transition system that represents
the complete set of possible derivations. If the number of derivable solutions is finite, then the
transition system is also finite.

A portion of the transition system for the Blocking Compressing Proxy is depicted in Figure 2.
Each node represents a unique solution and each directed arc represents a transition applied to a
solution to form another solution. The arcs are labeled with the transformation rules from Table 1.
The graph was produced by a tool that we developed to generate transition systems from CHAM
architecture specifications [22].

In the figure we see a solution with no outgoing arcs, namely S76. The full transition system
contains a second solution, S35, that also has no outgoing arcs. These two states represent deadlocks
in the system. It is clear from the full graph that all paths leading from S0, the initial solution,
to S35 or S76, the deadlock solutions, involve an arc labeled T4 or labeled T5, respectively. This
confirms our earlier result that the application of T4 or of T5 leads to deadlock.

The existence of exactly two deadlock states, S35 and S76, in the transition system is in accord
with Proposition 4, which identifies two sets of deadlock states. It is useful to recall that in the
algebraic proposition we are referring to the solutions to which T4 or T5 can be applied, while in
the transition system we are referring to the deadlock solutions themselves. The sets of solutions

23

of Proposition 4 can be found by tracing back through the various paths that terminate at S35 or
at S76. If we look at the solutions corresponding to the two deadlock states we find, as expected,
the two identified pairs of molecules of Proposition 1 that characterize the deadlock configurations
of the system.

7 Conclusion

In this paper we have presented and discussed the specifications of two architectures for the
Compressing Proxy case study. Our specifications are kept at a rather high level of abstraction, with
many details of the system behavior left unaddressed. For example, we have purposely ignored the
question of granularity of the data manipulated by the components that constitute the Compressing
Proxy. This is not a weakness of the formalism, but rather an explicit degree of freedom in
interpreting the architectural descriptions (e.g., purposely leaving certain implementation choices
up to developers). If more constraints on the admissible behaviors are desired in the descriptions
of the architectures, then the CHAM model allows us to provide more details in the specifications.
Our goal is to see if the CHAM descriptions can usefully reveal the architectural mismatch inherent
in the Compressing Proxy architecture. From the given specifications, this can be simply derived
and formally proved.

It is interesting to note that the uses of the two kinds of analysis techniques, algebraic and
transition, are actually complementary. In fact, while the proof of certain properties can be easier
at the transition-system level, such as the absence/presence of deadlock/livelock, it can be more
complex to use this level of analysis to understand what has to be done in order to prevent or
correct these situations. The transition model is, from this point of view, too abstract, since it can
be difficult to relate problems to the structure of the solutions. On the other hand, the analysis at
the algebraic level can be tedious and complicated for certain properties, but it is highly informative,
since it maintains all the information about the structure of the system. Of course, when the system
under specification has an infinite number of states, then the use of algebraic techniques is the only
practical choice.

In general, we advocate a mixed analysis strategy. Our goal is to be able to reason about a
system at the level of software architecture in order to prove non-trivial properties of the system.
In case we can discover a problem at this level of specification, such as the deadlock in the Block-
ing Compressing Proxy architecture, we would like to be assisted in the analysis that leads to a
correction in the architecture. An environment that allows the automatic derivation of a transition
system from a CHAM description plus an inference engine that allows one to simulate derivations
at the CHAM level, can serve the purpose. In this way, the analysis strategy can proceed in two
steps. First a transition system is generated and analyzed in order to identify the critical states
and derivations. Then the inference engine can be used to execute the identified derivation and
solutions. Thus, we can obtain a more informative view of the critical behaviors of the system with
which it is possible to reason and understand the ways in which mismatches in behavior can be
corrected.

The ability to generate a transition system allows the application of model-checking techniques,
once the properties to be proved are expressed in a suitable logic. This can be very useful when
analyzing alternative architectures of the same system that can be characterized by means of
invariant properties. In fact, we have already begun to exploit this approach [15].

24

REFERENCES

[1] G.D. Abowd, R. Allen, and D. Garlan. Formalizing Style to Understand Descriptions of Software
Architecture. ACM Transactions on Software Engineering and Methodology, 4(4):319–364, October
1995.

[2] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3):213–249, July 1997.

[3] J.-P. Banâtre and D. Le Métayer. The Gamma Model and its Discipline of Programming. Science of
Computer Programming, 15:55–77, 1990.

[4] J.-P. Banâtre and D. Le Métayer. Programming by Multiset Transformation. Communications of the
ACM, 36(1):98–111, January 1993.

[5] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer Science, 96:217–248,
1992.

[6] G. Boudol. Some Chemical Abstract Machines. In A Decade of Concurrency, number 803 in Lecture
Notes in Computer Science, pages 92–123. Springer-Verlag, May 1994.

[7] D. Compare. Specifica ed Analisi del CERN Compressing Proxy con la CHAM. Technical Report Tesi
di Laurea, Dipartimento di Matematica Pura ed Applicata, L’Aquila, Italy, December 1995.

[8] D. Compare and P. Inverardi. Modelling Interoperability by CHAM: A Case Study. In Proceedings
of the First International Conference on Coordination Models and Languages, number 1061 in Lecture
Notes in Computer Science, pages 428–431. Springer-Verlag, April 1996.

[9] Formal Systems, Ltd. Failures Divergence Refinement: User Manual and Tutorial. Formal Systems,
Ltd., Oxford, England, October 1992.

[10] N. De Francesco and P. Inverardi. Proving Finiteness of CCS Processes by Non-standard Semantics.
Acta Informatica, 31(1):55–80, 1994.

[11] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse is So Hard. IEEE
Software, 12(6):17–26, November 1995.

[12] D. Garlan, D. Kindred, and J.M. Wing. Interoperability: Sample Problems and Solutions. Technical
report, Carnegie Mellon University, Pittsburgh, Pennsylvania, In preparation.

[13] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

[14] P. Inverardi and A.L. Wolf. Formal Specification and Analysis of Software Architectures using the
Chemical Abstract Machine Model. IEEE Transactions on Software Engineering, 21(4):373–386, April
1995.

[15] P. Inverardi and A.L. Wolf. On the Choice of a Software Architecture: A Guided Tour in the Analysis
of Architectural Design. Available from the authors, October 1996.

[16] P. Inverardi, A.L. Wolf, and D. Yankelevich. Checking Assumptions in Component Dynamics at the
Architectural Level. In Proceedings of the Second International Conference on Coordination Models
and Languages, number 1282 in Lecture Notes in Computer Science, pages 46–63. Springer-Verlag,
September 1997.

[17] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software Engineering, 21(4):336–
355, April 1995.

[18] D.C. Luckham and J. Vera. An Event-based Architecture Definition Language. IEEE Transactions on
Software Engineering, 21(9):717–734, September 1995.

25

[19] D. Le Métayer. Software Architecture Styles as Graph Grammars. In Proceedings of the Fourth ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 15–23. ACM SIGSOFT,
October 1996.

[20] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[21] D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture. SIGSOFT Software
Engineering Notes, 17(4):40–52, October 1992.

[22] A. Rosetti. Generazione di Test Cases da Specifiche Formali della Architettura Software. Technical
Report Tesi di Laurea, Dipartimento di Matematica Pura ed Applicata, L’Aquila, Italy, March 1997.

[23] J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cambridge Uni-
versity Press, 1989.

[24] D. Taubner. Finite Representations of CCS and TCSP Programs by Automata and Petri Nets. Number
369 in Lecture Notes in Computer Science. Springer-Verlag, 1989.

26

A Liveness Properties

In this section we prove that the Non-blocking Compressing Proxy CHAM is free of livelocks.

Proposition 6 The Non-blocking Compressing Proxy CHAM allows infinite derivation if and only
if data for compressing are infinitely available.

Proof: Input of new external data is modeled by the application of rule T7 on the molecule
CFu � o(1). We need to show that any derivation in the Non-blocking Compressing Proxy CHAM,
since there are no deadlocks and therefore all the derivations are infinite, contains an infinite number
of occurrences of rule T7 applied to the molecule CFu � o(1). Let us assume that this is not true.
Then there must exist an infinite derivation that contains only a finite number of applications of rule
T7 on the molecule CFu � o(1). This is clearly impossible since after a finite number of reaction
steps, the fact that there is no longer an occurrence of the molecule o(1) � CFu will prevent a
reaction with the molecule i(1) � o(2) � endo �AD, which in turn will eventually react with GZ,
thus contradicting the hypothesis.

This last proposition can be easily shown to also hold for the first architecture.

Proposition 7 The Blocking Compressing Proxy CHAM allows infinite derivations if and only if
data for compressing are infinitely available.

Another interesting property that we want to prove is that all the different sets of data that are
manipulated by the Non-blocking Compressing Proxy are eventually processed. This fact becomes
clearer if we keep in mind that AD can operate in parallel and that it performs a sequence of
outputs followed by a sequence of inputs when it communicates with GZ. This amounts to showing
that we cannot have derivations in which there is a molecule representing a pending output of the
adaptor, where that molecule is never utilized in a transformation. Of course, we must also prove
an analogous property for GZ, since its input/output behavior is also modeled by [I+O+]∗.

Proposition 8 Let S ′0 be the initial solution of the Non-blocking Compressing Proxy CHAM and
let δ : S′0 −→ S′1 −→ · · · −→ S′n −→ · · · be an infinite derivation from S ′0. Then there exists no
j > 0 such that ∀k ≥ j

1. the molecule o(2) � endo �AD � i(1) ⊂ S′k; and

2. the molecule o(3) � endo �GZ � i(2) � endi ⊂ S′k.

Proof: Let us consider the first point. We prove the claim by contradiction. Assume that in δ there
exists j > 0 such that ∀k ≥ j o(2) � endo �AD � i(1) ⊂ S′k. In other words, we have a derivation
S′j −→ S′j+1 −→ · · · from S′j in which o(2) � endo �AD � i(1) is always present. Therefore no
reaction involving this molecule occurs. Since only T1 can react with it, this amounts to assuming
that the molecule i(2) � endi � o(3) � endo �GZ never occurs in δ. By case analysis on the structure
of Σn, we are sure that there exists a maximum number of reaction steps that can be performed
before we have a situation from which no further reaction is possible. This fact implies that δ is a
normalizing derivation, thus contradicting the hypothesis.

The second point is analogous. For brevity, the proof is not shown.

27

To complete our formal analysis we want to show that the different sets of data manipulated
by the Non-blocking Compressing Proxy CHAM do not mix—that is, we want to prove that the
external data are actually processed. In fact, because of the concurrent behavior of AD, we need
to be sure that the data coming from an upstream filter are all sent from AD to GZ. This fact
guarantees that the integrity of the data is preserved.

Proposition 9 Let S ′0 −→ S′1 −→ · · · −→ S′n be a derivation of the Non-blocking Compressing
Proxy
CHAM such that the molecule o(4) �AD � i(3) � endi ⊂ S′n. Then there exist S ′r and S′t, where
0 < r < t < n, such that the subsolution o(2) � endo �AD � i(1), i(2) � endi � o(3) � endo �GZ ⊂
S′r and the subsolution i(3) � endi � o(4) �AD, o(3) � endo �GZ � i(2) � endi ⊂ S′t.

Proof: Let us assume by contradiction that there does not exist S ′r and S′t with 0 < r < t < n
such that o(2) � endo �AD � i(1), i(2) � endi � o(3) � endo �GZ ⊂ S′r and i(3) � endi � o(4) �AD,
o(3) � endo �GZ � i(2) � endi ⊂ S′t. We know that the ability of a processing element to communi-
cate is syntactically indicated by the appearance of a communication port in the left-most position
of the molecule. Completion of the communication is indicated by a rewriting of the molecule such
that the communication port is moved to the right-most position of the molecule. Therefore, keep-
ing in mind the structure of S ′0 and how T1 describes communication between processing elements,
it follows that o(4) �AD � i(3) � endi 6⊂ S′n. This leads to a contradiction.

28

