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Abstract

Dynamic storage allocation has become increasingly important in many applications, in part due
to the use of the object-oriented paradigm. At the same time, processor architectures are including
deeper cache memory hierarchies to hide the increasing latency to main memory. In this paper, we
investigate efforts to predict which heap objects will be highly referenced at the time they are allocated.
Our approach uses profile-based optimization, and considers a variety of different information sources
present at the time of object allocation to predict the object’s reference frequency. Our results, based
on measurements of four allocation intensive programs, show that program references to heap objects
are highly skewed and that our prediction methods can successfully predict the program objects that
will be the most highly referenced. We show that using this technique, a large fraction of a program’s
heap references can be directed at a part of the heap that is small enough to fit in the cache (e.g., 8-64
kilobytes).

*This research supported by NSF Grant CCR-9404669 and an equipment donation from Digital Equipment Corporation.



1 Introduction

Due to the widespread success of C4+4 and, more recently Java, object-oriented applications now dominate
the commercial marketplace. As a result, the use of dynamic storage allocation in application programs has
increased dramatically. A recent study of ours comparing C and C++ programs showed that over a range
of application domains, heap objects are allocated almost ten times more frequently in C++ than in C [3].
Because all objects in Java must be allocated on the heap, dynamic storage allocation in Java is likely to be
even more frequent than in C++ [8].

At the same time, while basic processor cycle time has increased dramatically, the speed of bulk memory
has not increased as fast. As a result, modern architectures now include several levels of cache between
the processor and main memory to hide this latency. The result is that it is more important than ever for
applications to fit well in the cache on modern systems, and to avoid main memory references as much as
possible.

These two trends suggest that providing high reference locality for programs with large amounts of
dynamically allocated memory is important now and will be increasingly important in the future. Surprisingly
little work has been done with the specific goal of improving locality of reference (especially in the cache) in
programs with explicit storage management (e.g., use malloc). Recent work of ours surveyed existing malloc
implementations with the goal of understanding what techniques they provide to support cache locality [10].
QOur conclusion was that the existing methods, including eliminating boundary value tags, and providing a
fast allocator front end to rapidly reuse freed objects, did provide substantially better reference locality than
the simple first-fit algorithm. v

We suspected that reference locality could be increased beyond what is currently being done. Our
approach exploits the significant non-uniformity of references to heap-allocated objects that we measure
and present here. In particular, we observed that a small fraction of the heap objects account for a large
percentage of the heap references in all the programs we considered. This Skéwed access pattern suggests
that traditional allocator implementations introduce significant inefficiencies in the cache.

Existing malloc implementations allocate memory with little awareness of the specific object address
being generated. In general, these implementations are tuned to allocate and free objects as fast as possible
and are not aware of overall application performance with respect to the cache memory. As a result, addresses
are mapped to objects in a mostly random fashion (with perhaps a sequential bias if large amounts of memory
are allocated without subsequent frees). We show later that a small number of objects receive a majority
of total references in significant programs, and as a result, assigning a random address to such objects may
result in two problems in the cache.

First, if two highly referenced (HR) objects are mapped to two addresses that conflict in the cache, then

unless the cache is set associative, a significant number of conflict misses will occur. Second, because HR



objects account for a small percentage of the total objects allocated, most objects are not HR objects. As a
result, since the object dddresses are assigned randomly, on a given cache line only a small fraction of the
line may be devoted to an HR object, while the rest of the line is essentially wasted because the objects that
occupy it are infrequently referenced.

Organizing program code to improve its locality of reference in the virtual memory (e.g., see [14]) and
cache (e.g., see [12]) has been of interest for many years. These methods work because frequently executed
code segments can be readily discovered using program profiling and/or static profile estimation [18]. In this
paper, we investigate the analogous problem of predicting frequently referenced heap objects at the time
they are allocated. We refer to this prediction as HR (highly referenced) prediction, and to the algorithms
used for prediction has HR predictors. The technique we use is also analogous to a technique we previously
published that predicts the lifetimes of heap-allocated objects [2].

Our approach uses profile-based optimization to first identify frequently referenced heap objects based
on training inputs, and then to predict when such objects aré allocated based on information present at the
time of allocation. In this paper we consider a variety of such information including the object’s size, the
contents of the call stack, the value of the stack pointer, and the depth of the stack.

Based on measurements of four heap-allocation intensive programs, our results show that many of the
HR objects in a program can successfully be predicted at the time they are allocated. Using this tecﬁnique,
a large fraction of a program’s heap references can be directed at a part of the heap that is small enough to
fit in the cache (e.g., 8-64 kilobytes). . ’ ;

This paper has the following organization. In Section 2 we discuss related work. In Section 3 we deécribe
the methods we use to predict HR objects. In Section 4 we describe our evaluation methods, including
the programs measured and the instrumentation performed. Section 5 presents our results and Section 6

concludes and suggests directions for future work.

2 Background

The issue of locality of reference of heap-allocated objects has been investigated extensively, although more so
for garbage collected languages than for languages with explicit storage allocation. The poor reference locality
characteristics of first-fit storage allocation [11] has prompted the improved “better fit” methods [17] that
are now often used. As mentioned, in our own previous work, we looked at existing malloc implementations
with an eye to what impact they had on cache locality [10]. This previous work did not consider the more
speculative 1ssue of predicting reference locality as we do in this paper.

There have also been a number of papers investigating the effect of heap organization on reference locality

in garbage collected languages [6, 13, 19], including several recent papers that specifically consider the effect



of garbage collection on cache performance [7, 15, 20, 21]. This work differs from ours in its focus. While
much of the related garbage collection work has investigated how generational garbage collection interacts
with processor cache architecture, none of the previous work we are aware of has attempted to classify objects
using profiles and segregate them as we do. The work of Courts [6], in which the working set for an entire
Lisp system is obtained by performing a “training” of the system, is the closest in this group to our work.
However, our focus is speciﬁcaliy on optimizing for cache locality while theirs was on VM performance, and
our prediction techniques differ completely from theirs as well.

There has also been related work in the different dimension of attempting to predict the other aspects
of behavior of allocation-intensive programs. Perhaps the closest work in spirit to our work is the previous
work of Barrett and Zorn, in which we attempted to predict object lifetimes (and short-lived objects in
particular) using information present at the time of allocation [2]. While the methods used in this paper are
similar, our results are quite different. In particular, in the current work, we investigate a wider variety of
predictions methods to solve the more important problem of improving reference locality. Further, we find
that the technique used in the previous work, that of combining size and stack context information, is not
as effective in predicting reference locality as the methods we consider here. In very recent work, Cohn and
Singh showed that object lifetimes in allocation-intensive programs can be predicted using decision trees to

extract relevant static features present at an object’s allocation [5].

3 Algorithms

The section discusses the optimization process we use to do HR prediction, and describes the specific HR

predictors we have considered and their implementation.

3.1 Overview

Figure 1 presents a diagram of the optimization framework that we use. The process starts by instrumenting
the program to be optimized, which can be done either with a special compiler, or as we do, with a executable
transformation tool (e.g., ATOM [16], described in the next section). The instrumented program 1s then run
with a number of training inputs that are intended to be representative of the program in actual use.

In our case, these training executions result in trace files that contain a great deal of information about
the heap objects allocated by the program. In particular, the instrumentation requires that all loads and
stores to heap objects are recorded. This instrumentation is costly, as we describe in the next section,
and may explain in part why this particular optimization has not been considered before. In the figure,
the output from the instrumentation is called a “fat” trace file because it contains additional information

beyond what is needed for the research described here, but potentially interesting to other researchers doing
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memory management studies. In the near future, we intend to make these “fat” trace files available publicly
on the WWW.

After the unnecessary information is removed from the trace, the result of program instrumentation and
training is the thin trace file indicated in the figure. The actual data contained in the thin trace file depends
on the predictors being considered, but in general contains information about each object including the
number of references that were made to it, what the call stack was at the time it was allocated, what the
size of the object was, etc.

Based on the data in the thin trace file, predictor selection takes place. The process of predictor selection
involves éomparing the effectiveness of the different predictors over the training data gathered, and generating
a specific instance of the predictor based on the specifics of the program being optimized.

The underlying assumption of this approach is that the program behavior observed in the training runs
18 representaﬁive of the behavior that is likely to occur in actual use. As a result, the goal of the selection
process 1s to determine what data that is available at the time an object is allocated will be most effective
in predicting that the object will be highly referenced. The current approach we are using is to classify
objects as either highly referenced or not (a binary decision), and then to find the best correlation between

information available at the time the object is created and the fact that the object is highly referenced.



Categorizing an object as highly referenced can be done in different ways, and we consider two of those
approaches here. The most natural way is based on a normalized “references per word of object” (e.g., a
reference density) metric, where all objects with greater than a threshold number of references per word are
classified as highly referenced. Another possible approach is to ignore the object size in reference calculations,
and set a threshold for the total references to the object regardless of its size. Later we show that thresholds
based on reference density work much better than thresholds based on total references. Other categorizations
are possible, including looking only at loads to objects, instead of both loads and stores. Such a distinction
would be of value in systems where store buffers substantially reduce the ovefhead of store instructions.

Another important decision that must be made before a predictor instance can be created is that the
correct threshold value must be chosen. The fraining data allows a large number of alternative performance
scenarios to be considered (as we show in Section 5) across a variety of threshold settings: The actual thresh-
old value chosen, while being selected automatically, may depend on implementation parameters related to
the hardware on which the program is likely to be run, such as the size of the L1 or L2 cache.

Finally, the most important input to the predictor selection process is a set of potential prediction
algorithms. Before describing the predictor algorithms in depth, we first outline the rest of the process
shown in Figure 1. To make this discussion concrete, suppose the most effective prediction algorithm is
determined to be based on object size, and the specific instance of that algorithm for a given program is to
predict all objects with size 34 bytes as highly referenced.

After the predictor instance is determined, a modified version of the allocation runtime system is au-
tomatically created that implements that instance. In the example mentioned, the malloc code would be
modified to include a test for objects of size 34 bytes. If the allocated object is predicted to be highly refer-
enced, then the object is allocated in a different part of the heap, which we call the HR segment. The HR,
segment is a small section of the heap reserved for HR objects. Placing the HR objects in this smaller space,
instead of spread throughout the heap, should improve the program’s reference locality, and thus its runtime
performance. Finally, an optimized version of the program is created that incorporates the predictor-based

allocator, and the optimized version of the program is executed with new inputs.

3.2 The Prediction Algorithms

We looked at a number of different predictors, ranging from the simple to the complex. The predictors we
have spent the most time considering are based on the value of the stack pointer, the allocated object size,
the stack contents, and stack contents plus object size. These predictors have varying degrees of success and
varying degrees of implementation overhead. We also considered the call stack depth and when the object
was allocated, but neither of these predictors showed as good performance as the ones listed above, so we

will not discuss them in depth.



o Object Size The object’s size is a very easy predictor to implement, but one that uses very little
information about the object being allocated. The trouble with using size as a predictor is that unless
different sized objects have fundamentally different access patterns, it will end up miss-predicting a
large number of objects. Some programs are predictable in this manner, though, such as CFraAc, and
for these programs this predictor can be a very efficient way of optimizing the program. A simple case
statement inside the malloc call can determine if the size being requested is for an HR object and

allocate the storage appropriately.

o Stack Pointer The stack pointer at the time of object allocation is also a fairly easy prediction to
implement, but again offers little information about the object being allocated. The stack pointer does
encode the call stack somewhat, and in general piovides enough information to be a medium grade
predictor for most programs. Because this predictor is fairly easy to implement by placing a wrapper
around malloc, checking the stack pointer and placing the object in the HR segment if it is called for,
it can be useful to some programs. The main cost of the implementation is the lookup process that
maps a particular stack pointer value to a prediction. Depending on the number of “significant” stack
pointer values, either a simple test or a hash table lookup could be performed. The stack pointer does
not encode as much information about the object as the predictors to follow, but for some programs

it can do a fairly good job with a low overhead.

o Stack Contents The stack contents predictor considers the call chain at the time of the object’s
creation.” This predictor will be harder to implement, but uses more context sensitive information
about the object allocated and therefore tends to make better predictions. This kind of optimization is
referred to as k-CCP by Chambers [4] (where k is the stack depth used). The depth the predictor looks
to is of particular importance with this predictor. If the depth is set too deep, the predictor can over-
specialize the prediction and not generate something that is useful across data sets. If the depth is not
set deep enough the predictor may not capture what is actually going on. Many programs put in layers
of abstraction around malloc, such as C++ object constructors or array allocators. The depth needs to
be set deep enough to go down the stack past these masks, and get into the actual meat of the program
while avoiding over-specification. Fortunately, because we are using profile-based optimization, the

correct depth to use can be determined automatically on an application by application basis.

The stack contents predictor requires that the chain of callers on the stack be determined. This problem
is similar in spirit to the problem of determining a trace of basic blocks (or path) within a procedure.
There has been recent work in the area of path profiling by Ball and Larus [1] which may be used
as a starting point for the stack contents implementation. One technique that can be used is called

“bit-pushing” where before each call bits are pushed into a shift register that indicate the identity of



CFRrRAC CFRAC 1s a program that factors large integers using the continued fraction method.
The training and testing inputs were 20-25 digit numbers constructed by multiplying
two large primes. The program has approximately 6,000 lines of source code.
EsPRESSO | ESPRESSO, version 2.3, is a logic optimization program. The testing and training
inputs were two of the inputs provided with the release code. The program has
approximately 15,500 lines of source code.

Sis S1s, Release 1.1, is a tool for synthesis of synchronous and asynchronous circuits.
It includes a number of capabilities such as state minimization and optimization.
The program has approximately 172,000 lines of source code.

Vis Vis is a platform used to run test cases on verification. It performs a number of tasks
such as reachability analysis and model checking. The program has approximately
160,000 lines of source code.

Table 1: General information about the test programs.

the call site. Our hope is that these shift operations can be hidden in the pipeline stalls of today’s
superscalar architectures. Using control-flow analysis similar to the path profiling analysis of Ball and
Larus, it may also be possible to significantly reduce the number of shift operations needed to compute

the call-chain information necessary to uniquely identify each malloc context.

An alternate method of establishing the calling context is to selectively inline the chains of callers that
result in predicted allocations of highly referenced objects. If the number of such call chains is small,
then the impact on program code size may be negligible. Research by Chambers et al [9] suggests
that such selective inlining may be effective for certain optimizations. In future work, we intend to

investigate the effectiveness of such inlining in the context of storage allocation optimizations.

4 Evaluation Methods

The infrastructure we utilized for our studies was a network of high performance DEC Alpha multiprocessors.
Each computer came equipped with four 300MHz processors and 512 megabytes of RAM. On these computers
we used a number of DEC tools, such as DEC’s C++ compiler, cxx, and ATOM. ATOM is a tool that allows
programmers to instrument existing binaries with additional code to gather run time data, without interfering
with that program’s execution [16]. ATOM has the facility to insert arbitrary procedures into a binary at
many different places. Code can be inserted per object, procedure, or even instruction. Our use éf this

ability will be discussed in detail below.

4.1 Programs

Table 1 lists the four programs in our collection, and gives some information about what they do. These



programs were selected because they are all heap allocation intensive, and CFrac, EsPRESSO, and Sts have
been used in previous related work. A breakdown of basic information about the programs and the data

sets we used for training and testing is presented in Table 2. We see that CFRAC is much smaller than the

Source Insts Total Total Total Total | Maximum | Maximum

Program | Input | Executed | Bytes | Objects | Loads Stores Bytes Objects ~
(x10%) | (x10%) | (x10%) | (x10%) | (x10%) | (x10%) (x10%)

CFRAC small 131 24.1 1.2 10.7 4.3 23.2 1.2
CFRAC large 347 29.9 1.5 27.1 10.6 28.7 1.5
EsprEsso | Zbxpl 24 1711.7 24.2 3128.2 887.6 47.9 0.7
ESPRESSO | cps 506 22776.4 | 187.9 | 79018.6 | 20783.3 233.9 2.9
Vis s208 46 3426.9 66.3 4200.0 | 1407.6 1106.2 12.6
Vis sbc 179 17553.5 | 265.2 | 19748.0 | 5907.5 3476.7 86.5
Sis small 59 1091.5 34.2 7081.2 | 1950.5 556.6 15.7
S1s speed 360 47996.1 | 781.2 | 24288.0 | 10167.7 995.6 26.2

Table 2: Performance information about the memory allocation behavior for each of the test programs. Total Bytes
and Total Objects refer to the total bytes and objects allocated by each program. Maximum Bytes and Maximum
Objects show the maximum number of bytes and objects, respectively, that were allocated by each program at any
one time. Insts Executed refers the the total number of instructions executed. Total Loads/Stores refers to the total
number of heap references the programs executed.

other three programs, and will probably not be included in future work because of its size. 'The other three
programs all allocate between 15 and 50 megabytes of memory over their lifetimes and access this memory
actively. ESPRESsO is the most memory intensive, but also has the smallest maximum memory size, and
uses the fewest objects at one point. VIS uses the most memory and objects at any point, but ends up
allocating the least amount of memory over the run of the program. Sis has the largest total memory usage
and falls in between the other programs with respect to how intensely it utilizes its memory, and how large

the program is at any one time.

4.2 Program Data Sets

In our study we needed both testing and training data for all of our programs. Of the data sets presented
here, we used the smaller of the two as the training set for all of our programs, while testing with the larger
set. We felt this would better simulate the real use of this technology, as no matter how much data is used
to train the system, the testing is likely to uncover some data paths that were not trained.

One problem we had with some of our training-testing pairs, especially with Sis, is that the training
sets and testing sets ended up exercising very different code sections in the program. Sis is a wrapper
program, that allows the programmer to call a number of other logic and circuit design libraries, one of

which implements the same algorithm used in EsPRESSO. This means that unless the same library within



S1s is used for both the trdining and testing data, the best that can be done is to optimize the behavior of
the shell program, which does very little memory allocation. Therefore, our lower effectiveness in Sis is a
result of training on one library component of Sis, and testing on another, and not a fundamental weakness
in our algorithms. The optimal curve shows that SIS still has a great potential for this suite of optimizations.
If we had trained and tested on the same libraries, we may have seen results closer to those of ESPRESSO

and VIs.

4.3 Details

The first step in our data gathering was to instrument our test programs. We did this by inserting procedures
at the beginning and end of the program, at each call site, at each procedure’s end, at the beginning and
end of each memory management routine, and at each load and store instruction.

The procedures at the start and end of the program serve to initialize and finalize the data structures
used by our other routines. The procedures at each call site and at the end of each procedure serve to update
our internal copy of the program"s stack. We have also implemented some optimizations to only output stack
values to the trace file if they are necessary for a memory management routine, i.e., calls that do not lead
to a memory management routine are not output to the trace file.

The procedures placed at the start and end of the memory management routines update our global object
data structure, implemented as an interval set. Each change to this data structure is output to the trace file
and, on object deallocation, a number of pieces of reference behavior are also output. The procedures placed
at each load and store instruction track the references to the objects in our global object data structure and,
on each reference the object’s record is updated and the location of the reference stored.

The output file contains enough data to recreate every call to a memory management procedure, what
the stack was at the time of this call, and what the reference patterns of the objects created was. We
hope to make these trace files available in the future and plan on including complete details along with
documentation.

All of these data gathering procedures do add some overhead to the resultant computation. We found

“that overall the prograrﬁ ran between two and three orders of magnitude slower, and took up one to two
orders of magnitude more main memory during its run time. These overheads can be directly attributed
to the detail of the data we gathered. The overhead to do a procedure call and manipulate a large data
structure every 5-15 instructions ‘is quite large, leading to the large time overhead cited above. The large
space overhead results from the fact that we are keeping at least 2 extra copies of every object in memory,
in addition to the overhead of the data structure, and other information about the object. These two copies
are used to track loads and stores on a per word basis within the object. Overall, these overheads limited

the size of inputs we could observe, but fortunately, our substantial hardware infrastructure still allows us to



evaluate our technique using significant programs. Reducing the overhead of data collection and optimizing

the information gathering process is one of our goals for future work.

5 Results

In this section, we present the results of applying our prediction methods to four test programs. We first
consider the effectiveness of different predictors across all four programs, and we then look at other parameters

and the impact of those parameters on our results.

5.1 Predictor Effectiveness

Figure 2 shows the effectiveness of five different HR object predictors across our four test programs. Each
figure shows the fraction of total bytes allocated on the X axis, and the fraction of total references on the
Y axis. In all figures except Figure 4 the threshold metric used to determine HR objects is the reference
density of the objects (e.g., predict an object will be an HR, object if it experiences some number of references
per byte allocated). Each point on the figures corresponds to a setting of the threshold value and predictor
used. To generate the curves shown, we varied the threshold value widely from very high thresholds, in
which only the most densely referenced objects are considered HR objects, to very low thresholds, in ’Which
almost all objects are classified as HR objects. The shape of the curve shows how effective each predictor is
at 1dentifying HR objects.

These curves imply for a given threshold setting the fraction of all program heap references that would
be made to the HR segment if HR prediction is used. For example, the EsPrRESsO figure shows that a very
substantial fraction of all heap references can be directed at a very small HR segment. Note that these
figures conservatively estimate the size of the HR segment because the assumption is that objects allocated
to the HR segment are never subsequently freed and reclaimed. In practice, if HR objects are freed and the
storage reused, then the size of the HR segment would be smaller than indicated on the graph.

We also note that the fraction of bytes classified as HR objects can be very sensitive to the setting of the
threshold. As a result, in some of the curves presented, portions of the X-axis are not covered by a particular
curve. This implies that further increases or decreases in the threshold setting resulted in classifying all
(or no) objects as HR objects, resulting in values of either 1,1 or 0,0 for these settings. In practice, the
determination of the threshold setting for a particular program would be performed automatically using the
training data gathered. The threshold selected would depend on implementation parameters such as cache
size, and would be based on a exploration of the self prediction curve, the data for which can be computed

from the training run.
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Figure 2: Performance Results for Our Four Test Programs
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Each subfigure in Figure 2 includes three curves based on predictors using different training and testing
sets, and two curves specifically for comparison. The curve labelled “optimal” shows what happens if all
objects allocated by a program are sorted with highest reference density objects first (based on the actual
reference counts taken from the test data set). The optimal curve indicates the best possible space allocation
to achieve the highest reference density possible. The shape of the optimal curve in all programs indicates
that a great deal of opportunity exists in these programs for organizing heap objects to improve reference
locality. In particular, the curve indicates that a small number of objects account for a large fraction of
total references in all cases, and furthermore, a large fraction of objects often account for almost none of the
reference activity (i.e., the curve becomes almost horizontal in three of the four programs).

The curve labelled “Stack Depth 3 (Self)” in the subﬁgu'res indicates the effect of using exactly the same
input for training and testing (i.e., self prediction). This is another idealized result that is not achievable in
practice, but provides an upper bound on the effectiveness of the “Stack Depth 3” predictor. In all cases,
we see that self prediction follows the optimal curve quite closely.

The remaining three curves, “Stack Depth 3”, “Size Predictor”, and “SP Predictor”, indicate the effec-

tiveness of HR prediction in practice. From the figures, we see that the size predictor is ineffective in three
of the applications, but. quite effective in CFRAC. Interestingly, the most effective predictor overall, “Stack
Depth 3”7 performs well in ESPRESSO and Vis, but poorly in CFrAC. One nice result of our profile-based
approach is that the particular predictor and threshold to be used in a given application can be selected
automatically on an application by application basis. Since size appears to be most effective in CFRAC, and
requires less runtime overhead to implement, it is an attractive alternative for that application. We note
that the “SP Predictor” works better than size in most cases, however fails to perform as well as the “Stack
Depth 3” predictor in all cases except CFRAC.

The “Stack Depth 3” predictor is highly effective in both EsPRESso and Vis, to the point that it closely
follows the self prediction curve, particularly on the far left side of each graph. Unfortunately, none of the
predictors appears to work well in Sis, in part because there is less reference locality available to exploit,
as indicated by the optimal curve. The self prediction curve in S1s appears much closer to optimal than
the “Stack Depth 3” predictor, indicating that at least part of the difficulty in predicting Sis HR objects
resulted from using training and test sets that exercised significantly different parts of the program.

In practice, the goal of HR prediction is to identify a very small fraction of the total objects as HR
objects and create an HR segment that will fit comfortably in cache mémory‘ As a result, for the programs
measur‘ed, the interesting portion of the graphs presented is the far left portion, in which the curves are often
almost vertical. To understand this fraction of the curve better, we present the data in a slightly different

way in Table 3.
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Program % Refs to % Refs to % Refs to HR Seg. Size | HR Seg. Size | Total Bytes
8 Kbyte 64 Kbyte 256 Kbyte to catch 50% to catch 75% Allocated
HR Segment | HR Segment | HR Segment || Refs. (Kbytes) | Refs. (Kbytes) (x10%)
EsSPRESSO 40% 60% 65% 41.0 582.1 22776.4
Sis 5% 8% 11% 14686.0 35997.0 47996.1
Vis 30% 40% 46% 456.3 3159.6 17553.5
Table 3: Information about what percentage of a program’s references can be grouped into how much memory

(8K, 64K, or 256K bytes) and how many kilobytes the program needs to capture what percentage of references.

In the table, we present the relationship between the fraction of total heap references and the size of an
HR segment that captures that percentage of references. In the left side of the table, we fix the size and
show what fraction of references are made to the HR segment, and in the right side of the table, we fix the
fraction of references, and show the size of the IIR segment needed to account for that fraction of references.
The predictor used in the “Stack Depth 3”7 predictor in all cases.

First, the table does not include the CFRAC application because the total bytes allocated (30 kilobytes)
is not sufficient to be of interest. The table shows that for both EsprEsso and Vis, HR prediction with a
high threshold can result in a very small HR segment (8 kilobytes) and still identify objects that account
for 30-40% of all program heap references. If the HR segment is allowed to be larger, then up to 65% of
EsPRrESSO’s heap references can be limited to a 256 kilobyte region of the heap. As indicated in the previous

figure, however, only a small fraction of heap references can directed to the HR segment in the Sis program.

5.2 Combining Stack Depth with Size

Barrett and Zorn [2] concluded that combining both size and stack context information resulted in more
effective prediction of short-lived objects in C programs. In this section, we consider the effect of using this
combination for HR prediction. The problem with this combination is that it results in highly specific context
information that may not generalize well from one input set to another. We considered this combination, and
the results for two of the four programs are presented in Figure 3. The results for the other two programs
are comparable. The figure shows that combining stack and size reduced the effectiveness of the predictor in
both cases, and significantly reduced the effectiveness in the EsPRESS0 program. Upon further investigation,
we noted that the ESPRESSO program performs a large number of calls to realloc, growing or shrinking the
objects as appropriate. We treat such reallocs as mallocs followed by frees, and as a result, using size as
part of the predictor overspecializes the HR prediction and causes it to fail to generalize from the training

input to the test input.
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5.3 Using Different Threshold Metrics

In this section, we consider the effect of using a different threshold metric to predict HR objects. Up to now
we have considered basing the threshold on the predicted reference density of objects. We now compare that
approach to basing the threshold on the total fraction of program references to the object (i.e., ignoring the
objecf’s size in the computation). As expected, this metric is less effective in that it does not account for
larée objects that are highly referenced overall, but not highly reference on a per word basis.

' Figure 4 shows the effect of using both threshold metrics for the four programs. The reference density
threshold outperforms the reference percentage threshold in all cases. Considering Vis, for example, we
see that the reference percentage threshold results in dramatic increases at approximately 25% of the bytes
allocated. This near-vertical line indicates that a collection of objects accounting for a significant fraction
of the total references are classified as HR objects only after many other objects that account for less of the
total references are classified that way. The equivalent line in the reference density figure indicates that this
threshold metric correctly classifies these objects as HR objects before the other less frequently referenced

ones.

5.4 The Effect of Stack Depth on Prediction

As with combining stack depth and size, increasing the depth of the “Stack Depth” predictor makes the
predictions more specialized and thus less capable of generalizing between program inputs. As described by
Chambers et al. “. ..as the amount of context increases, the precision of the distributions increases, but
the applicability of the distributions decreases ...” [4][p 25]. On the other hand, with respect to calls to
malloc, we know that many applications hide malloc behind application specific abstractions, and thus in
many cases some context is needed.

Figure 5 illustrates the effect of varying the stack depth from one to five in the Stack Depth predictor
in the Vis application. With a stack depth of 1, the predictor has no information, because calls to malloc
are all indirected through another interface. With a stack depth of‘two, we see better performance, but less
effectiveness than depths of 3 or 4, which are quite close in performance. Finally, at a stack \depth of 5, the

performance again decreases, probably because too much context is being used to perform the prediction.

6 Summary

Computing technology trends indicate that it is increasingly important to achieve good locality of reference
in programs that perform significant amounts of dynamic storage allocation. In this paper, we propose and
evaluate a technique that identifies highly referenced objects when they are allocated and segregates those

objects to improve a program’s locality of reference.
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Figure 5: The Effect of Stack Depth on Stack Depth Predictor Performance

Our results show that the opportunity to exploit highly referenced objects exists in four allocation-
intensive programs. We further show that the prediction techniques we develop are effective in three of the
four programs considered. Using the technique of profile-based optimization, we are able to identify and
segregate objects so that a large fraction of a program’s heap references can be directed at a part of the
heap that is small enough to fit in the cache (e.g., 8-64 kilobytes). We further investigate several different
kinds of prediction techniques, and show that the correct context and information to use to predict highly
referenced oijects varies from program to program but can be identified as we process the training data.

In the future, we plan to implement an allocator based on predicting highly referenced objects and
measure the improvement in program reference locality and overall performance using this technique. We
will also carefully consider the costs of implementing our prediction algorithm, including the resulting code
expansion if selective inlining is used to specialize particular allocation calling contexts. While our study used
C programs that perform explicit storage allocation, our technique is also applicable to garbage collected
languages, and we intend to investigate such implementations in the future. Finally, our results indicate

that there might be value in classifying objects into several categories (e.g., highly referenced, referenced,

and not referenced). We also plan to investigate this possibility.
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