Self-Disclosing Design Tools:
An Incremental Approach Toward
End-User Programming

Christopher John DiGiano

” CU-CS-822-96

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

SELF-DISCLOSING DESIGN TOOLS:
AN INCREMENTAL APPROACH TOWARD
END-USER PROGRAMMING

CHRISTOPHER JOHN DiGIANO

University of Colorado at Boulder

Abstract

The typical direct manipulation software application currently suffers from a lack of
expressiveness in that users are limited to the functionality anticipated by the system’s
graphical interface. A programmable application provides users with the ability to
transcend the constraints imposed by its direct manipulation interface through end-user
programming. By weaving programming expressions into their regular interaction with
such tools, users can potentially accomplish tasks faster and more accurately, and take
on whole new kinds of problems they had never considered previously. However, for
many users the transition from a direct-manipulation style of interaction to a more
formal, language-based one can be a daunting challenge.

This research seeks to address the language learnability problem inherent in
programmable design tools by embedding “self-disclosure” mechanisms into these
systems. Self-disclosing design tools can—as they are being used—present short,
relevant programming language examples. Through exposure to these incremental
language learning opportunities within the context of authentic activity, this work
hypothesizes that users can acquire end-user programming skills with minimal
distraction from the tasks at hand. To test this theory, the self-disclosing drawing tool
Chart ‘n’ Art was developed and evaluated in a series of studies. The final analysis
reveals that, at least for some individuals, self-disclosing tools can have a positive
educational impact on programming language acquisition with only limited interference
to user activity, and that the disclosures themselves can facilitate the composition of
programming expressions.

Acknowledgments

This report is essentially a reformatting of my Ph.D. dissertation which was completed
Dececember 6, 1996. I am indebted to a number of people and organizations who made
my thesis work possible. First, I should recognize the National Science Foundation
(grants RED-9253425, REC-9553371, REC-9631396) for constant financial support
and the CU Department of Computer Science and Institute of Cognitive Science for
travel funding. I would also like to thank Jim Ambach, Hal Eden, Gerhard Fischer,
Corrina Perrone, Alex Repenning, and others in the Center for LifeLong Learning &
Design for their helpful feedback on this work, as well as collaborators at Apple
Computer, Inc.—Jim Spohrer and Jamie Dinkelacker to name a few—who always had
useful comments. I am particularly grateful for the opportunity to interact closely with
my advisor, Mike Eisenberg, whose creative work provided the inspiration for my A
becoming a better writer, speaker, and researcher. The dissertation also benefited from
the wisdom and experience of Clayton Lewis with whom I frequently met. The rest of
my thesis committee, Tom Landauer, Jim Martin, and Nancy Butler Songer, also
provided invaluable comments and advice.

Additional thanks are in order for those at the Boulder Daily Camera, CU Publications
Department, and the University of Michigan’s Collaboratory for Research on Electronic
Work who provided insight into the process of information graphics design. I also
appreciated working with Stan James and Susanne Commisso on their related student
research projects. I would especially like to thank Eric Blough and Francesca Iovine for
the countless hours they devoted to helping organize the user studies and other aspects
of this research. The studies would also not have been possible without the assistance
of Halden Field, Stefanie Lindstaedt, Anders Mgrch, Ann Nishioka, Cyndi Rader,
Markus Stolze, and others. Finally, I am grateful for the chance to collaborate with
John Rieman in designing the summative assessment.

Table of Contents

L. Introduction. . ouueeieien it iiiieiienineeererereseseenesesnreesnenanns 1
LT OVEIVIBW vt e e e e e e 1
1.2 The ComplexXity CriSISo.iutreriit ittt et e, 1
1.3 Custom Information Graphicsccooeiiiiiiiiiiiiiii i, 2
1.4 Designers of Information Graphics...............ooooviiiiiiii i, 3
1.5 Tools for Information Graphics.............cooeiiiiiiiiiii i 4
1.6 Design Tool Tradeoffsoooiiiii i 5
1.7 Self-Disclosing Programmable Design ToolS...............oocooiiiviiininni .. 6
L8 Chart N7 ATl et T 8
LOEValuationooiniiii e 8
LIOReader’s GUIdE.......ovieieiii e e 9

2. Case Studies of Design and Programmingccoovevvinnnnn. 11
2.1 CU Publications Departmentccoooiiiiiiiiiiiiiiieeeee, 11

2.1.1 A Custom Column Chartoooiiiiiiiii 12
2.1.2 Potential for Programmingoooviiiiiiiiiiiiiiiiiiie e 13
2.1.3 Learning Challenges.coouiiiiiiiiiii e 14
2.2 Dale GIasgow & ASSOCIALESvuiritieit ettt 15
221 ACustom Pie Chart........ooiiiiiii i 15
2.2.2 Potential for Programmingooooiiiiiiiiii 15
2.2.3 Learning Challenges...........oooviiiiii i 17
2.3 The Daily Camera NeWSPaAPETouviviniiiitiit it 17
2.3.1 AFloating Bar Chart...........cooiiiiiii e 17
2.3.2 Potential for Programmingcooooiiiiiii i 19
2.3.3 Learning Challenges............cooviiiiiiiiiiiii e 19
2.4 Collaboratory for Research on Electronic Worko .. 20
2.4.1 A Custom Bubble Chartccooiiiii i 20
2.4.2 Potential for Programmingooooiiiiiiiiiii i 21
2.4.3 Learning Challenges..........cooovviiiiii i 22
2.5 SUIMIMATY ..ottt e e e 23

3. Self-DiISCloSure...cuviiiiiiiiiiiiiiieiiiiiiiieeeteteneneneteesnennnenens 25
3.1 Self-Disclosure Defined............o.ooviiiiiiiiiii e 25
3.2 Examples of Self-Disclosing Systemscoiiiiiiiiiiiiiiiiiiiiiin., 26
3.3 Learning Programming from Disclosuresoooooiiiiiiiiiiiienn.... 29
3.4 Dimensions of Educational Disclosures..............oo.oviiiiiiiiiininninninian.., 31

341 AdAPUIVILY. ..ot 32
342 BXplorability.....o.oieiii i 33
343 INITUSIVEIIESS . oottt ittt e e 34
BAAREIEVANCEt 35
B S0P ettt 36
346 SIIUCTUIE . ..ottt ettt e e 37
3.5 Guidelines for Effective Disclosures..............coooviiiiiiiiiiiiiiien . 38

4. Chart ‘n’ Art: A Prototype Self-Disclosing Tool..................... 41
4.1 Drawing with Chart ‘0’ Art.......oooiiii 41
4.2 Programming with Chart ‘n” Art...........ccocoiiiiiii 42

4.2.1 Chart ‘n’ Art’s Enriched SK8Script..............cooiiiiiiiiiii . 43
422 An EBXample ... 45

4.3 Learning with Chart ‘n” Art e 48

viil

4.3.1 Mouse DiSClOSUIESo.ivieieiiiii e 49
4.3.2 Selection Labeling. ..o 50
4.3.3 Alternatives DISCIOSUIS..........oviviiiiiiie e 51
4.3.4 Possibility DISCIOSUIESvoviiiiii i 52
4.4 Experimenting with Chart ‘n” Art...........ocoooiiiii e, 54
S. Chart ‘n” Art in Perspective.....ouveieiiienenereeneneerenenrnseseeeannns 57
5.1 Formative Feedback and the Evolution of Chart ‘n” Art........................ 57
5.1.1 Designers resisted spreadsheetscoooiiiiiiiii ... 57
5.1.2 Choice of syntax could interfere with learning 57
5.1.3 Lack of robustness could hinder formal evaluations....................... 58
5.1.4 Designers wanted tight control over their tools............................. 58
5.1.5 Multiple disclosure modes were confusing and effortful.................. 59
5.1.6 Alternatives scroll bar was used only infrequently......................... 60
5.1.7 Disclosures could clutter designers’ SCreens..............coeevvevvnennnn... 60
5.1.8 Mechanisms for reusing disclosed expressions were awkward........... 61
5.1.9 Users were unsure how to refer to drawing objects 61
5.1.10 Users did not necessarily attend to disclosures 61
5.1.11 Users were confused about the meanings of possibility disclosures ... 62

5.2 Chart ‘n” Art Implementation..................ooooiiiiiii . e 62
5.3 Dimensions of Chart ‘n” Art Disclosures...............coovevviiiiiiiiiiinn. 65
531 AdaptivILy ..o 65
5.3 2 EXplorabilityouvni i 65
5.3.3 INtIUSIVENESS. . euttet ittt et 66
5.3 4REIEVANCE .o.vittiii 66
5.3.5 SCOPC ...ttt 67
5.3.0 STUCTUIC. ...ttt et 67
5S4 RelAEd SYSIEIMS . .. e vttt 67
5.4.1 Programmable Applications for Information Graphics.................... 68
5.4.2 Programming Graphics By Demonstrationcccocoeveeni.. 69
5.4.3 Recordable Programming by Demonstration Systems..................... 70
5.4.4 Learning Environments for Programming e 71

6. Evaluating Self-Disclosure.........coooiiuiiiiiiiiiiiiiiiiiiiiiniennnn. 75
6.1 Initial StUAIES ... e.ve ettt 75
6.1.1 Feasibility StUdycooviiiiiiii e 75
6.1.2 Preliminary Evaluation ... 76

6.2 Goals for the Summative ASSESSMENt...........oviviniieiiiiiiiiiieienannn, 79
6.2.1 Distinguishing Training and Performance Tasks........................... 80
6.2.2 More Sensitive Testing Instrumentscoeeeeeenin.. 80

0.3 Method ..o 81
6.3.1 SUDJECLS vttt 81
6.3.2 Materials..........oooeiiiiiiiiiii e, 82
6.3.3 Procedureoouiiiiiiii 84
6.3.4 Coding and Reliability.............c.oooooiiiiii 88

6.4 Results............ooeviiininnn, e 88
6.4.1 ShOrt-ANSWET SCOTES......iuiuiuitititit et 90
6.4.2 Multiple ChOiCe SCOIES.......iviiiiiii i 92
6.4.3 Performance Timesoooiiiiiiiiiiiii e 95
6.4.4 Final Programming Task................ooooiiiiiii e, 96

6.5 DISCUSSION L.ttt ettt e e e 97
6.5.1 Incidental Learning...........o.oiriiiiiit e 97
0.5.2 COMPOSIEION ...ttt ettt et e 98

6.5.3 Programming Experience Influence........................ococoinl. 98

X

6.5.4 Overall TNterpretation..................ccceeeeeeeeeeeeeeeeeen.., e 99

I O4) 11 L1 T4 - FA eeens 41
T REVIBW ..o 101

7.2 LAMIEALIONS. ..o ottt e et e e e e 102
T.3Future WOork.. ..o 103
7.4 ContriDULIONS. . ..ot e 105

S =0 a3 1 Lo N 107
FN 13T 1T b G 115
Appendix B .ot i i i i i e e i i e e aeas 119
Appendix C ..oviiiiiiiiineneinneneennnns Seeseteitieeteienatatettenienones 121
AppendiX D ooiniiiiii i i it i et r et e e 129
FN 1 113 16 . G 131
W2 N 3 2 1 T 1. 133
APPENAIX G ovirniiiiiiiiiiiiiieiiiiiteteeeeeinraenentreencnssssnsssenenes 135

Appendix H ..ottt ittt it ii ittt i ittt etereteneanenas 151

List of Tables

Table 3-1.

Table 3-2.

Table 3-3.

Table 4-1.

Table 4-2.
Table 4-3.
Table 6-1.
Table 6-2.

Table 6-3.

Table 6-4.

Table 6-5.

Table 6-6.

Four disclosing techniques for providing programming language learning
OPPOTTUNIEIES O USETS. ..ttt ettttteteeetee et e et e ettt eeee e eeannes 30

A comparison of learning opportunities by relevance and timing.
Contextualized opportunities are related to the tasks at hand and
synchronized opportunities are those which can take place while
performing these tasks............ooooii i 31

Six characteristic dimensions of pedagogical disclosures. AU 31

Some of the more common forms of explicit in SK8Script using the repeat
COMMANG. ... ettt 46

Some mathematically-based coordinate properties of Chart ‘n’ Art
Actors. These properties are distinguished from the standard Actor
properties by the fact that they refer to a coordinate system where y-values
increase going up............... U 47

Characteristics of the four basic self-disclosure mechanisms in
Chart ‘n’ Art, including the target programming knowledge each is
intended to teach. (d.m. stands for “direct manipulation.”)................ 49

(a) The distribution of programming experience over experimental
conditions where EO is the least experienced group and E3+ the most
experienced. These categories were used when assigning subjects to
conditions. (b) The distribution of programming experienced using only
two experience categories. These categories were used for data analysis.83

The sequence of instruction, task, and test events for each condition in the
formal experiment. From top to bottom, the dotted lines demark the
training phase, memory assessment phase, and performance phase,
TESPECTIVELY. ..o 85

A brief description of the five main training tasks. Note that subjects were
given more detailed instructions in the actual experiment as described in
Appendix C. .o 86

A brief description of the three main performance tasks. Note that subjects
were given more detailed instructions in the actual experiment............ 87

Mean scores for the short-answer test, multiple-choice test, and final
program grouped by condition and programming experience. The short-
answer test scores are on a subjective six-point scale (described in 6.4.1),
while the multiple-choice test scores are percent correct.................... 89

Summary of statistically significant pair-wise differences between
conditions generated using Scheffé post-hoc tests of ANOVAs of short-
answer, multiple-choice, and final program scores. Each significant
difference is described by its mean, the 95% confidence level, and the p-
value. Low experience subjects are those familiar with at most one
programming language (EO-1). High experience subjects are those
familiar with at least two languages (E2+). ..., 89

Xil

Table 6-7.

“Table 6-8.

Table 6-9.

Table 6-10.

Table 6-11.

Table 6-12.

Table 6-13.

Table 6-14.

Degree of programming language understanding demonstrated in the short
answer test. The understanding score is the mean understanding per
condition as rated by judges on a scale from 1 to 6. For each condition the
table lists mean score, the 95% confidence level, standard error, and
standard deviation.ooiiiii i 90

Responses to the subjective question: “How helpful did you find
Chart ‘n” Art’s programming language instruction?”..................... 92

Responses to the subjective question: “How much do you think you
learned from Chart ‘n’ Art’s programming language instruction?” 92

Overall percent correct of multiple choice programming questions for each
condition, along with the adjusted scores after removing the answers to 11
questions that may have been influenced by the introduction to

Chart ‘n” Art’s disclosure mechanisms. For each mean the table lists the
95% confidence, standard error, and standard deviation.................. 93 -

Summary of statistically significant differences across the three main
multiple-choice question topics. The pair-wise differences were generated
using Scheffé post-hoc tests of ANOVAs for each topic. Each significant
difference is described by its mean, the 95% confidence level, and the p-
VAU .. 93

Results from performance task P1 grouped by condition. Number

"Completed is the count of subjects who successfully completed the task in

the allotted 45 minutes (2700 seconds.) For each condition the table lists
the mid-mean time in seconds, the 95% confidence level, standard error,
and standard deviation.oiiiiiiie i 95

Results from performance task P2 grouped by condition. Number
Completed is the count of subjects who successfully completed the task in
the allotted 10 minutes (600 seconds). For each condition the table lists
the mid-mean time in seconds, the 95% confidence level, standard error,
and standard deviation.ooi i 96

Degree of programming language understanding demonstrated in the final
program that subjects wrote from scratch without help from disclosures.
The understanding score is the mean understanding per condition as rated
by judges on a scale from 1 to 6. For each condition the table lists mean
score, the 95% confidence level, standard error, and standard deviation.96

List of Figures

Figure 1-1.

Figure 1-2.

Figure 1-3.
Figure 2-1.
Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 3-1.

Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 4-1.

Napoleon’s Russian campaign of 1812, originally drawn by Charles
Joseph Minard in 1861. Reproduced from (Tufte, 1983, p. 41)........... 3

A custom information graphic created by the programmable drawing tool,
SchemeChart. The unique “trapezoidal” bar chart is useful for depicting
maximum and minimum range values as opposed to the single data values
denoted by standard bar chart levels.......................occ 5

Tradeoffs between expressiveness and labor savings for various
computational design toolS...........oooeiiiiiiiiii 7

One of the three column charts Designer B created for the Colorado
Foundation 1993 Annual Report.oooiiiiiiiiii 12

The final design illustrating the three main components of a recommended
QIBT. L 16

Steps in creating an on-screen protractor to produce a pie chart in
FreeHand. (a) Starting with a circle and a single vertical line, the line is
duplicated and rotated with the Transform dialog. (b) Repeated use of the
Duplicate command create the other slices in the protractor. (¢) The pie is
sliced by manually counting protractor lines...................ocevevvenn.n.. 16

The floating bar chart used by the Daily Camera to depict the high and low
temperatures for each day inamonth........................... L 18

A sample bubble chart developed by CREW to depict how time is spent
during meetings. This particular chart depicts the timing and flow of
activities for a group using a shared editor, hence the title “Supported.”
The original chart can be found in (Olson, Olson, Storrosten & Carter,
100). 21

Examples of self-disclosing systems: (a) Netscape Navigator discloses
internal network status in a line of text at the bottom of its window.

(b) The Mac OS discloses what some might consider non-obvious
functions for shutting down the computer. This dialog box appears when
starting up the computer after “improperly” turning off the machine by
pulling its plug. (¢) Microsoft Word’s Tip of the Day discloses how to
INSPECT tAD STOPS. .. vttt e 27

AutoCAD’s self-disclosing interface. Drawing a rectangle with the mouse
reveals the command _rectangle in the bottom Command window. 28

The ranges of degrees along disclosure dimensions that are likely to be
most pedagogically effective, particularly for teaching programming. ...39

A comparison of four existing self-disclosing systems using the six
dimensions of educational disclosures.......................coooiiiinn . 39

Chart ‘n” Art’s basic windows, palettes and menus. Except for the
Language window at the bottom, the system looks like a basic drawing
package such as MacDraw.ooooviiiiiiiii L 42

X1V

Figure 4-2.
Figure 4-3.

Figure 4-4.

Figure 4-5.

Figure 4-6.

Figure 4-7.

Figure 4-8.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.
Figure 5-6.

Figure 5-7.

The Duplicate Special dialog box used for specifying numbers of desired
copies and the offsets for distributing the new shapes..................... 42

The Language window where users can view disclosures and enter
expressions to be executed.oiviiiiiii 43

Steps in creating The Daily Camera’s temperature chart using
programming in Chart ‘n’ Art. Compare the result in (¢) to the actual chart
printed by the Camera which is reproduced in Figure 2-4................. 48

(a) A make mouse disclosure which appears while Alice is dragging the
outline of a new bar. (b) A set mouse disclosure which appears while
Alice is adjusting the width of the new bar. The mouse text reads, “set the
width of Rectangle 30 in DrawWindow t0 6.0” 50

(a) A selection label appearing beneath Alice’s current single-item
selection. (b) A selection label referring to the first seven bars in the chart.51

An alternatives disclosure in response to Alice narrowing one the bars
with the mouse. Note that the Interaction pane label changes to indicate
that the text below contains, “alternative expressions for the last action.”53

The possibility disclosure after Alice selects the first week’s worth of bars
in the temperature chart. ... 54

An early version of Chart ‘n” Art with programmable turtles (stamp,
pencil, turtle, Bart Simpson™) and a spreadsheet (upper left) for storing
both data and chart elements. Turtles in the spreadsheet could traverse data
sets and extract values while turtles in drawing window could place chart -
ClEMENTS.. ... 58

The Language window of the Lisp-based Chart ‘n” Art system.
Disclosures appeared in the middle text pane of the window with an
explanation for each disclosure in the bottom pane. The pop-up menu
beneath the explanations pane selected between two different disclosure
modes. The horizontal “Alternatives” scroll bar to the left of the pop-up
menu allowed users to browse alternative disclosures. Users could only
enter new expressions in the upper Interpreter pane........................ 59

The simpler and more compact Language window used in the SK8-based
Chart ‘n’ Art system. As many alternatives as will fit (and their
explanations as comments) are listed in the scrollable Interaction pane at
the top of the window. At the bottom is the History which replaces the

Transcript window in the Lisp-based version of Chart ‘n” Art.......... 60
Adobe Illustrator’s tool name disclosure appearing in the bottom left
corner of the drawing window.................cooviiii 62

The three main components of the SK8-based Chart ‘n’ Art architecture.63

The role of the disclosure services component in helping the drawing tool,
SimpleDraw, and the high-level event receiver present feedback in a
variety of programming languages.cccoviiiiiiiiiiin 64

Chart ‘n” Art’s match to the suggested profile of an educationally effective
self-discloSINg SYSLEIML. ... euiieie it 66

Figure 6-1.

Figure 6-2.

Figure 6-3.
Figure 6-4.

Figure 6-5.

Figure 6-6.

Figure 6-7.

Figure 6-8.
Figure 7-1.

Figure 7-2.

XV

The target tractor drawing used in the feasibility study. The relative
positions of the small rectangles coming out of the exhaust were
determined by coordinates in a spreadsheet, as shown in (a).............. 76

(a) Time spent in 11 different activities for a fictitious meeting that
subjects were asked to represent with a bubble chart. (b) An example
solution for the charting task. Note: subjects were only asked to draw the
appropriately sized circles; no labeling was required, nor were the
positions of the circles specified............c.coovviiiii 77

A syntax question from the mulﬁple choice programming language test. 81

Two more questions from the multiple-choice test. Number six was
considered a vocabulary question, number forty a semantic question. ...84

(a) The data used for the column charts in the performance tasks. (b) The
target chart for the performance tasks.................oooviiiii o, 88 .

Understanding scores for the short answer test grouped by condition and
programming experience. The error bars indicate the 95% confidence
JeVels.. . 91

Percent correct of multiple choice programming questions on the topics of
vocabulary, syntax, and semantics, and overall percent correct, broken
down by condition. The error bars indicate the 95% confidence levels. .94

Overall percent correct of multiple choice programming questions for each
condition, grouped by programming eXperience. 95

A modular language disclosure architecture that would facilitate
experimentation with a variety of feedback mechanisms. 104

Monitoring disclosures in AgentSK8. As users interact with the form on
the left for specifying agent behavior, the code on the right is
automatically updated and highlighted..................................... 105

1. Introduction

...it is possible to design computers so that learning to communicate
with them can be a natural process, more like learning French by living
in France than like trying to learn it through the unnatural process of
American foreign-language instruction in classrooms.

(Papert, 1993, p. 6)

1.1 Overview

It is no surprise that much of design—from architecture to fashion to music—is
computer assisted. What is surprising, at least for technologists, is how little
processing power is actually exploited to create these artifacts. In many cases, the
nature of the activity—the actual steps in the design process—has changed very little
since the advent of computers. Although computers accelerate some of these steps,
rarely do they completely eliminate the tedious parts of design and free designers to do
more creative work.

End-user programming offers some hope—a means for shifting uninteresting
responsibilities from designer to machine. Programming can empower designers with
the ability to transcend the limitations of their software and attempt completely new
kinds of designs that were simply impractical before. The problem is that designers are
not programmers.

Or are they? This report explores the possibility that end users can be introduced to
programming languages while designing, through a technique called self-disclosure.
This research hypothesizes that language learning opportunities can be integrated into
the experience of using computational tools in a way that is naturally situated and
minimizes disruption of design “flow” (Csikszentmihalyi, 1990). This notion of
embedded learning opportunities is illustrated and evaluated through a prototype self-
disclosing programmable drawing tool called Chart ‘n’ Art.

1.2 The Complexity Crisis

For many complex tasks, computer-based tools have arguably failed to live up to their
potential to revolutionize design. In many such cases, designers of complicated artifacts
have rejected domain-oriented software such as charting packages in favor of domain-
independent tools such as generic drawing programs. Using such tools, the design
process can often be laborious and inaccurate, as the case studies appearing in

- Chapter 2 will make clear. But designers are willing to tolerate this loss of productivity
and accuracy, this research claims, because by using low-level generic tools they
maintain expressive control over their work. Furthermore, the generic tools traditionally
present a simple direct-manipulation interface that is familiar to designers, especially
those with experience in physical media such as pencil and paper.

The response of the software industry to the perceived rigidity of domain-specific tools
and the tedium of using domain-independent tools has been to blur their distinction. For
instance, modern charting packages such as DeltaGraph Pro (DeltaPoint Inc., 1996)
now feature drawing tools for adding custom chart elements and adjusting colors, line
weights, and fonts. At the same time, low-level design programs now sport a growing
list of specialized functionality, for example—in the case of drawing programs such as

[lustrator (Adobe Systems Inc., 1996a)—commands for making pie charts, three-
dimensional shapes, or spirals. Not only would these added features seem to make
domain-dependent software more flexible and domain-independent software more
powerful, but the additional functionality provides software developers with key selling
points in an increasingly competitive market. The problem is that this “creeping
featurism’ had led to a burgeoning complexity in design software that renders such
tools more and more difficult to learn to use. The result is a complexity crisis: in an
effort to help designers of complex artifacts make better use of computational tools,
software developers have paradoxically created software behemoths that are themselves
complex. :

End-user programming has emerged as a possible means for mitigating the complexity
crisis. Proponents claim that programming can aid designers by automating tasks, by
enabling them to extend the functionality of limited applications, and by providing a
symbol system that enables users to think more productively and possibly more
creatively about their activity (c.f Eisenberg, 1995; Nardi, 1993; Papert, 1993). Since
programming offers the potential for designers to personally modify or enhance the
feature sets of their software, the implication is that developers of the underlying design
tools can return to publishing simpler software with base-level functionality. However,
end-user programming introduces its own source of complexity in that users must
somehow learn to specify their intent using a particular formal language. Whether the
end-user language is graphical or textual, designers must learn the vocabulary, syntax,
and semantics of a notational system.

The remainder of this chapter outlines the complexity crisis from the perspective of
particular field of design, information graphics, and offers background information on
this specialty that will help in understanding discussions to follow. Although the focus
is on the field of information graphics, the themes echoed throughout this work have
much broader implications on the design of learnable high-functionality systems to
support a wide range of complex and creative tasks. This issue of learnability will only
become more urgent as the number and variety of these types of tools increase.

1.3 Custom Information Graphics

Information graphics is the design of charts, graphs, and other diagrams used to
portray data. Examples of standard types of information graphics include the column
chart, pie chart, line chart, and scatter plot. These diagrams are characterized by a
collection of chart elements such as bars, wedges, lines, or points whose attributes
correspond to one or more series of data. Attributes can include size, position, color,
weight, orientation, etc. This characterization describes other forms of information
graphics, not just the standard types. Consider the famous diagram in Figure 1-1 of
Napoleon’s Russian campaign of 1812. The main chart element in this case is the band
that generally flows from left to right and back. The position of the band corresponds to
locations visited by Napoleon’s troops on a map of Russia. The width of the band
represents the number of troops. Finally, the color of the band corresponds to the
direction of the army’s movement, gray representing Napoleon’s advance and black his
retreat.

What is remarkable about the illustration of Napoleon’s march is the way it manages to
represent many dimensions of data with a single compact diagram. This choice of
mappings between data and graph elements is uniquely suited for the information being
illustrated. Such “custom” information graphics are found in a variety of media from
scientific journals to business reports to advertisements. Chapter 2 describes two

CARTE FIGURATIVE des pertes suceessives enhommes de Vhrmis Francaise dans fa campagne de Russie 18121813
Dressée par W Winard, Inspecteur Cindeal duy Ports oe Chaussées #n Petraite,

% = Soonrryerni. \“"* %
& § % - ? 5 f " o Rage: 4%& - Liesess wommuines da Fosmonn
s il % T - £ B4 ¥
] T b

TABLEAU GRAPHIQUE de fhtempiérature e degrvds du th ptrw de Rib am g e phre

PRy %

st I e o4

e i L 1

=¥t T R EL]
KUPE o Thooneriber P o Mavernber L PN e

Figure 1-1. Napoleon’s Russian campaign of 1812, originally drawn by Charles
Joseph Minard in 1861. Reproduced from (Tufte, 1983, p. 41).

instances: The first, a unique temperature chart, is from a daily newspaper, and the
other, a representation of meeting activity, is from a scientific article about Computer
Supported Cooperative Work (CSCW).

This report also uses the term “custom information graphics” to describe diagrams that
use a standard data mapping, but are stylized or embellished in some way to distinguish
them from the typical output of computer-based charting tools. Chapter 2 describes

two such cases, one involving an elongated column chart and the other a fancy pie
chart.

1.4 Designers of Information Graphics

The above examples of custom information graphics serve to highlight the variety of
designers involved in the production of such diagrams. In the case of the temperature
chart, the designers are professional graphic artists employed by the newspaper. In the
case of the meeting chart, the designers are computer scientists and psychologists. A
rough categorization of designers pertinent to this research consists of the following
groups: :

e professional graphic designers who are hired by numerous clients to create a
variety of illustrations as a full-time job,

* data-owners such as scientists, statisticians, and business people who not only

produce the diagrams, but are responsible for actually collecting or generating the
data, and

o ‘“gardeners” (Gantt & Nardi, 1992) employed by a particular investigative or
business team to help with the more advanced computing tasks.

Each of these classes of individuals comes to the task of design with a different set of
skills and constraints. Professional graphic designers typically bring considerable
experience with activities involving hand-eye coordination, while data-owners often
have significant mathematical background. Gardeners usually have some background in
domain of the data being graphed, but have a special technical role because of their
more advanced computing skills, possibly including programming. In order to be
successful, graphic artists typically must not only work creatively, but also efficiently,
as they often juggle a variety of projects simultaneously. The primary job of data-
owners is to do science or conduct business, not generate charts, but on the other hand
they have a vested interest in their graphics communicating information effectively.
Like graphic artists, gardeners produce a large number of charts, but as part of research
or business teams, the types of data they graph may be more consistent.

1.5 Tools for Information Graphics

Ever since the teletype printer, computers have been used to plot charts and graphs. The
specialized programs written to produce these diagrams have evolved into present-day
charting tools such as DeltaGraph Pro which provide high-level functionality for
automatically producing standard information graphics. Although computational
support for charting has existed for some time, it is only recently (in the last few
decades by some estimates) that professional graphic designers have abandoned their
X-Acto™ knives and contact paperand turned to computers to help produce their
diagrams.

Curiously, among many professional artists and other designers the preferred method
for creating information graphics with computers involves many of the same steps as it
did without them. Instead of taking advantage of high-level charting tools such as
DeltaGraph, these designers rely on lower-level drawing packages such as MacDraw
(Claris Corp., 1996) that allow the manipulation of primitive shapes such as
rectangles, lines, and ovals. A plausible explanation for this phenomenon is that the
high-level tools simply do not support the kinds of customizations desired by
designers. For example, a designer wishing to create a graphic with a unique data
mapping such as in the Napoleon’s march diagram would today have little choice but to
resort to a drawing tool. Furthermore, a designer creating a stylization of a standard
chart might also prefer to produce the entire design in a flexible and familiar drawing
tool rather than learn chart modification tricks in a charting tool or techniques for
exporting charts from a graphing package into a drawing program.

In addition to charting and drawing tools, a third class of information graphics software
that is only now becoming practical is the programmable drawing tool which combines
mouse-based painting and drawing features with an end-user programming language.
One of the best known examples of programmable drawing tools is the drafting
software AutoCAD (AutoDesk Inc., 1996) which integrates a command language with
a point-and-click interface. Programmable drawing tools such as AutoCAD are part of
larger class of systems known as “programmable applications” (Eisenberg, 1995)
which meld a direct manipulation interface with a programming language, typically an
interpreted textual language such as Lisp or BASIC. A programming language
embedded in a drawing tool can empower designers with the ability to create
illustrations more quickly and more accurately than using a drawing program but
without constraining the design space the way standard charting packages tend to do.
With a programming language, designers can in fact explore whole new kinds of
diagrams that make use of the language’s ability to iteratively perform complex
computations or drawing operations. One such example is the trapezoidal bar chart

16

12

Foints

E-vanks

Figure 1-2. A custom information graphic created by the programmable drawing
tool, SchemeChart. The unique “trapezoidal” bar chart is useful for depicting
maximum and minimum range values as opposed to the single data values denoted
by standard bar chart levels.

shown in Figure 1-2 which was generated with a prototype programmable drawing
tool, SchemeChart (Eisenberg & Fischer, 1994).

Although most commercially available examples of programmable drawing tools are
limited to rather specialized domains such as drafting, circuit design, and geometric
analysis (Jackiw & Finzer, 1993), laboratory prototypes such as SchemeChart are
emerging which can support more general forms of information graphics. A number of
these will be describe in later chapters. At the same time, there is a software industry
trend toward integrating language features into productivity software, as evidenced by
the proliferation of Visual BASIC (Microsoft Corp., 1996b) in Microsoft’s recent
products. The implication is that popular drawing programs such as Adobe Illustrator
or FreeHand (Macromedia Inc., 1996b) may one day be augmented with programming
languages.

1.6 Design Tool Tradeoffs

The above description of programmable drawing packages suggests that with their
added flexibility and labor-saving automation such tools would be ideal for custom
information graphics. However, one must not leave out a critical factor in the labor
savings estimate for programmable design tools: training. Although programming
solutions to many custom information graphics design tasks might seem simple and’
elegant to the computer scientists developing prototype programmable drawing tools,
these language-based techniques must be learned by the designer. Learning the specific
language of a programmable drawing tool and understanding how to integrate it into the
tool’s direct manipulation facilities could be a daunting and time consuming task. Even
for designers with programming experience, such as many “gardeners,” the language
of a programmable application is rarely completely familiar. Indeed, experienced

programmers who begin using system based on a common language such as Lisp or
BASIC must still acquire the tool’s “domain-enriched” dialect for specifically
supporting design activity.

The choice of information graphics tools mentioned so far—charting tools, drawing
tools, and programmable drawing tools—represent a tradeoff between expressiveness
and labor savings as illustrated by points ctl, dt, and pdt in Figure 1-3. The designer
must decide whether to use more flexible but typically more time consuming tools to
create custom artifacts, or be satisfied with the automatic output of a charting tool. The
trend indicated by the diagonal line is that the more expressive the program, the more
effort it requires to use. Note how other types of tools also fit the trend such as the
advanced charting tool (ct2) with added features for editing automatically created charts
(e.g. by changing the color of graph elements or the default position of axis labels or
legends.) These systems typically require more effort from the designer who must learn
to navigate the additional menus and dialog boxes that control these options. Pixel-
based painting programs such as Photoshop (Adobe Systems Inc., 1996¢) represent
another point, pt, along the trend line. These tools allow users to make even finer
grained customizations to charts and graphs than drawing tools, e.g. by smudging the
tops of bars in a bar graph to indicate uncertainty in a data set. However, the price for
this added flexibility is the tedium of delicately operating pixel-level tools such as an
on-screen airbrush.

Clearly, the expressiveness-labor savings diagram is an oversimplification of the
factors influencing the adoption of specific design tools. Designers’ prior experience
with various tools and technologies will undoubtedly play a role. For example, a
designer with no spreadsheet experience might consider a spreadsheet-based charting
tool such as Microsoft Excel (Microsoft Corp., 1996a) to be more effortful than a
designer who had used spreadsheets, and place the system at point ct3 in the diagram.
In the case of programmable drawing tools, the perception of labor savings will
obviously depend on programming background. The diagram also does not take into
account the long term benefits of adopting various design strategies. For instance, a
programmable drawing tool might have a high initial cost, but the long term labor
savings might eventually place it further to the right in Figure 1-3. Studies of software
adoption in other domains (Mackay, 1991; Rieman, in press), however, suggest that
users generally seek short term solutions to the task at hand and only learn about new
software opportunistically.

1.7 Self-Disclosing Programmable Design Tools

This report proposes an alternative form of graphics software called the self-disclosing
programmable design tool. A self-disclosing design tool is a programmable application
with embedded language learning opportunities designed to gently introduce designers
to programming. The goal, indicated by point sddt in Figure 1-3, is an expressive tool
perceived by designers to require much less effort to learn than typical programmable
tools. A self-disclosing design tool acts like standard direct manipulation software with
one important exception: Mouse actions can trigger the presentation of one or more
short, istructive, programming language examples directly related to the user’s current
activity. In this way, by revealing connections between direction manipulation
interaction and programming expressions, such a tool has the potential of progressively
orienting the user to the language.

" pdt Jsadt Key
§ ct Charting Tools
.% Pt at dt Drawing Tools
3 ‘ pdt Programmable Drawing Tools
ol ct2
Ik o3 ot pt Painting Tools
o sddt Self-Disclosing Design Tools

Labor Savings

Figure 1-3. Tradeoffs between expressiveness and labor savings for various
computational design tools.

To better understand self-disclosure it helps to be familiar with the inspiration for this
technique: human language acquisition. Although there is still considerable debate about
how much linguistic knowledge is innate, most researchers agree that a necessary
condition for first language development is immersion in a language-rich environment.
Evidence for this basic tenet comes from “Wild Child” studies of people who as infants
lived in language impoverished environments and failed to develop normal language
skills (Fromkin, Krashen, Curtiss, Rigler & ngler 1985). A more controversial issue
is the importance of the structure of the language input received by children acquiring a
first language. Some linguists believe the shorter, simpler, and more grammatical
expressions in child-directed speech or “motherese” is necessary for language
acquisition (Gleitman, 1984). But other linguists point to cultures that have normal
language abilities, yet its members speak very little directly to their children (c.f. Snow,
1986). One thing is clear, however: Caregivers rarely, if ever, offer children explicit
grammar lessons. Rather, human language is somehow acquired implicitly from
exposure to other speakers.

It is this incidental learning of spoken language that is the model for the self-disclosure
technique. Self-disclosure provides a means for immersing computer users in a
programming-language-rich computational environment, analogous to the
conversational environment that typically surrounds human language learners. The idea
is that by enabling users to observe a variety of disclosed programming language
examples, they can begin to understand the vocabulary, syntax, and semantics of a
programming language by analyzing and generalizing from the various expressions.
Research on human learning suggests that “analysis-based generalization” (Lewis,
1988) is in fact a reasonable way for people to acquire the declarative and procedural
knowledge necessary for programming (Pirolli & Anderson, 1985; Wiedenbeck,
1989).

Obviously, pro gramming language learning is not perfectly analogous with human
language acquisition. For example, programming languages are traditionally written
languages, while the above discussion has focused on spoken language acquisition. To
further refine the notion of self-disclosure, then, this project has attempted to
incorporate lessons learned from various forms of learner-centered educational
computing including constructionism, cognitive apprenticeship, learning on demand,
and minimalist instruction. The combination of research from educational computing
and language acquisition has influenced the development of a conceptual framework for
the design of pedagogically effective disclosure mechanisms. This framework takes the
form of the following six dimensions to be described in more detail in later chapters:

* Adaptivity: the capacity of a self-disclosing system to change the content and
form of disclosures to suit the needs of each user individually.

* Explorability: the degree to which a self-disclosing system supports active user
inquiry into the meaning and utility of disclosures.

e Infrusiveness: a measure of how distracting disclosures are for users.
* Relevance: the degree to which disclosures are contextualized to user activity.
e Scope: the extent of hidden information that is disclosed to users.

® Structure: a measure of the strictness of sequence in the presentation of
disclosures to users.

1.8 Chart ‘n’ Art

Chart ‘n’ Art is a programmable information graphics tool designed as a test bed for
self-disclosure mechanisms falling along various points in the six dimensions of the
disclosure design space. On its surface, Chart ‘n’ Art looks like a standard direct
manipulation drawing package such as MacDraw. In one on-screen palette, the system
features a standard collection of primitive shapes—rectangle, oval, line, etc.—that can
be drawn onto a window using the mouse. Another palette maintains a range of colors
that can be applied to the shapes. Various menu commands enable users to cut, copy,
paste, duplicate, and rearrange shapes.

Once users start drawing with Chart ‘n” Art, however, they begin to notice some
important differences. After almost every mouse click or drag, in addition to the
expected drawing program effect the system also presents a small amount of text either
by the cursor or in a special window labeled “Language.” This feedback is

Chart ‘n” Art’s way of incrementally disclosing its programming language to the user.
In all, Chart ‘n” Art offers four different disclosing mechanisms: mouse disclosures,
selection labeling, alternatives disclosures, and possibility disclosures. These
mechanisms, described in detail in Chapter 4, are designed to expose designers to
numerous expressions of varying complexity.

Because of the general-purpose architecture of the system, Chart ‘n> Art can actually
disclose and respond to a variety of programming languages. Currently, two language
are supported: Lisp and SK8Script. SK8Script is a prototype-based object-oriented
language similar to AppleScript (Apple Computer Inc., 1993) and HyperTalk

(Apple Computer Inc., 1996a) which is being developed at Apple Computer, Inc.
Although Lisp was used for preliminary testing of Chart ‘n” Art, it was SK8Script that
was used for the final evaluation, because of its extremely readable syntax.

1.9 Evaluation

Throughout the process of creating the Chart ‘n” Art prototype, a number of evaluations
were conducted. These include a feasibility study, a field study of professional graphic
designers, and a preliminary laboratory experiment with a variety of users. The most
recent evaluation was a summative assessment of educational impact which attempted to

quantify and characterize the nature of programming learning resulting from
disclosures. In particular, this experiment sought to address three critical questions:

1. The incidental learning question. What can users learn about an end-user
programming language simply from exposure to disclosures, without actually
employing them to execute expressions?

2. The composition question. How much can users learn about writing their own
expressions and especially about composing nested or sequenced statements when
exposed to short, isolated disclosures as typically found in Chart ‘n> Art?

3. The programming experience question. What influence does programming
background have on what can be learned from disclosures in Chart ‘n’ Art?

1.10 Reader’s Guide

The rest of this document expands on the arguments made in this introductory chapter,
explains in depth the theory behind self-disclosure, describes the Chart ‘n’ Art
prototype, and reports on the system’s evaluation. Chapter 2 recounts a number of
challenging information design tasks faced by real-life designers and sketches some
potential solutions to these tasks involving programming. Chapter 3 then presents self-
disclosure as a means of introducing these designers to programming and as a general
mechanism for revealing hidden functionality in computer systems. It is here that the
six dimensions of pedagogical disclosures are described in depth. Chapter 4 presents
Chart ‘n” Art and its various disclosure mechanisms. Chapter 5 analyzes Chart ‘n’ Art
in terms of its evolution over a number of prototypes and its relationship both to the
disclosures dimensions and to other programmable drawing tools and computer-based
learning environments. Chapter 6 describes the lessons learned from three different
evaluations of Chart ‘n” Art with emphasis on the summative assessment involving
some 30 subjects. Finally, Chapter 7 concludes by identifying limitations with

Chart ‘n” Art’s approaches to self-disclosure and describes future work for addressing
some of these limitations.

2. Case Studies of Design and Programming

To motivate the need for designers to learn programming, this chapter presents a
number of real-life case studies of custom chart creation. It begins by recounting a field
study of graphic artists involved in creating, among other things, custom charts. The
study reveals a potential role for programming, but also a number of challenges in
introducing programming into such a setting. To complement these findings three other
case studies are presented, illustrating the variety of design settings that could benefit
from programming and the complexity of the end-user programming learnability
problem. '

2.1 CU Publications Department

In the spring of 1995, a field study of professional graphic designers at the University
of Colorado’s Publications Department (CU Publications) was conducted to help assess
the role for programming in the creation of custom charts and graphs.” The field study
involved seven approximately two-hour visits to the publications department. The
primary informants were two professional graphic artists, Designer A and Designer B,
with many years of design experience and three and seven years of computer
experience, respectively.

The designers at CU Publications served numerous university clients with a variety of
needs including brochures, maps, magazines, and posters. For both of the informants
chart creation was a relatively small proportion of their regular activity and would often
be a component of a larger project such as an annual report. When they did receive a
charting task the client would often provide them with an existing graph to “beautify”—
that is, to make more attractive or to arrange in a more creative way that fit in the
surrounding context for the graph. The software used by Designers A and B was
primarily general purpose drawing and layout software, including Adobe Illustrator,
Macromedia FreeHand, Adobe Photoshop, QuarkXPress (Quark Inc., 1996), and
Aldus Page Maker (Adobe Systems Inc., 1996b).

The first visits were spent reviewing the designers’ portfolios of charts, graphs, and
other illustrations. They described the processes involved in creating the artifacts and
for some designs reenacted the steps they took using the computer. Another visit was
spent watching Designer A create a complicated voice-dialog diagram for an automated
phone service using a combination of Illustrator and PageMaker. For the next two
sessions, the informants agreed to follow a tutorial found in one of Illustrator’s printed
- manuals that reviewed the use of the system’s charting component. This component
provided a simple spreadsheet for entering data which could then be mapped to a small
number of standard chart types. The purpose of these sessions was to observe how the
subjects reacted to the lessons provided in the manual and to elicit their opinions of
[Mustrator’s charting functionality. In the final two sessions participants were asked
follow-up questions formulated after reviewing data from previous sessions. Data
collected from the field study provided valuable insight into designers’ tasks, tools, and
learning opportunities.

' The field study was a joint project of the author and fellow student Susanne Commisso.

12

2.1.1 A Custom Column Chart

One of the artifacts that Designer B described from his portfolio was the Colorado
Foundation 1993 Annual Report. The report contained three simple yet elegant column
charts, one of which is reproduced in Figure 2-1. As best as Designer B could
remember, he produced each of these charts using the layout program QuarkXPress as
follows: First, he installed a “‘guide” on QuarkXPress’s vertical ruler which appeared as
a horizontal line across the screen to mark the horizontal axis and the bottom of each
column in the chart. For each data point, Designer B then installed additional guides,
the position of each guide proportional to the target height of a column in the chart. The
position was determined either by estimating its appropriate height relative to other
guides or by performing a scaling calculation using pencil and paper or a calculator.
Next, he dragged out the shape of a new rectangle and positioned and sized it so that its
bottom matched the horizontal axis guide and its top matched the corresponding guide
for its height. This rectangle served as a model for all the others which would share all
the same attributes except height. For each of the other six columns in the chart,
Designer B duplicated this model rectangle, moved the copy into position beside the
other columns and then adjusted its height to match its corresponding guide.

L Tovia

Sadb

g .
2%
W
W

YRR RS UMY 4L HE U3

2’(’,:
W
v
1%”‘9’
f

Figure 2-1. One of the three column charts Designer B created for the Colorado
Foundation 1993 Annual Report.

Designer B estimated that this type of column chart took him two hours to complete. It
is interesting to note that Designer B had at one time tried using automatic means for
producing such charts more quickly—at least one such attempt was with Illustrator’s
built in charting component. In the end, he abandoned this approach and chose to stick
with more familiar general-purpose drawing tools. One reason was clearly his
discomfort with its spreadsheet interface for entering data values. Designer B
commented that with the charting component it was “hard to figure out what goes
where” and he “couldn’t figure out the spreadsheet deal.”

Another contributing factor to Designer B’s disinterest in automatically generated charts
may be a perception that such tools limit his creativity. For instance, the designer
mentioned that for the annual report he wanted long, narrow columns with a certain

13

amount of white space in between and expressed skepticism that such a custom look
could be achieved with a charting tool. Designer B also commiented that rather than
scanning in and modifying a client’s initial concept he preferred to start from scratch.
Similar sentiments were echoed by Designer A who complained that Illustrator’s
charting component was “not creative” and made graphs that were “just like everybody
else’s.”

‘Walking the designers through the Illustrator tutorial did little to change the designers’
opinion of the system’s charting component, it would seem. Both had difficulty
entering values in the spreadsheet cells and navigating from one cell to the next. Not
surprisingly, they were impressed with the component’s speed in generating standard
charts. But, they were also quick to critique elements of the automatically produced
designs, such as the default placement of text labels. They also soon identified
capabilities beyond the component’s ability, such as remembering custom adjustments
after the data for a chart had changed and its graph was automatically regenerated.

2.1.2 Potential for Programming

Proponents of end-user programming might argue that what is needed is a computer
programming language that could help automate the chart creation process and make it
more accurate without compromising designers’ expressiveness. But what form of
language-based support would be appropriate in this setting? A partial solution that
would leverage off of Designer B’s existing expertise would be if he could specify the
exact height of each column by typing instead of dragging. The ability to type in a
shape’s attributes is now supported by more and more drawing programs including
QuarkXPress. This might indeed help Designer B’s particular dilemma for the narrow
column chart task, but it is not a very general solution to Designer B’s tedium. For
instance, next week he may need to create a different chart and wish to type in the width
of a shape, or perhaps the size of its border or the exact RGB values of its color.
Furthermore, some scaling may be necessary to convert the input values to the actual
measurements in inches, picas, or pixels used by the drawing program.

A more general solution would be for Quark to integrate a programming language into
QuarkXPress.” Each shape could have any number of named attributes that could be
changed by typing a short attribute-setting command such as

set the height of Rectangle 1 in DrawwWindow to 61.8

into an interpreter window. Quark would not be saddled with having to create interface
widgets for adjusting each property, and Designer B would be free to enter exact values
for any aspect of a shape so long as it had a name. Scaling could be accomplished by
nesting a multiplication expression and possibly an addition expression within the -
attribute-setting command:

set the height of Rectangle 1 in DrawWindow to 61.8 * 10 + 5

At this point, one must question how much tedium is actually being saved when such
an expression must be typed for each column in the chart. But if QuarkXPress were to
feature a full-fledged programming language, Designer B would also be able to create
procedures for abstracting functionality and applying it to input values:

* All programming solutions in this chapter are presented in SK8Script, the primary
language supported by the prototype self-disclosing tool, Chart ‘n” Art. SK8Script is an
object-oriented, English-like language related to HyperTalk and AppleScript. More
information about SK8Script can be found in Chapter 4 which describes Chart ‘n’ Art
in some detail. ,

14

on growColumn n, h
set the height of Rectangle n in DrawWindow to h * 10 + 5
end growColumn

The designer could then type a—now much shorter—growColumn command for each
rectangle he wished to precisely size. To simplify things even further, one can imagine
that growColumn could be associated by Designer B with his collection of rectangles for
the chart such that selecting one of them and typing a value would automatically cause
the value to be passed to growColumn on that particular rectangle. An even more
sophisticated scenario, but still completely possible with a simple programming
language facility, would be to configure the program to respond usefully to the user
attempting to paste a comma-separated list of values on top of a group of selected
rectangles. Each value in the list could be sent to the growColumn function for each
rectangle, causing the entire set of rectangles to be accurately sized at once.

2.1.3 Learning Challenges

There are a number of formidable barriers that stand between designers like the
informants in the CU Publications field study and the above vision of end-user
programming. First, one must be concerned that programming is such a different
activity from designing that graphic artists would be reluctant to even begin using a
computer language, especially non-visual text-based ones, such as seen in the
SK8Script examples. After all, both informants had rejected Illustrator’s spreadsheet
interface, it would seem, for being too foreign. Any language that designers are
expected to learn must respect their existing skills and build on these rather than present
a radically different means of formally expressing their work. A second barrier is time
for learning. The CU Publications informants were busy professionals responsible for
juggling a number of clients simultaneously. Any time used to learn new skills,
regardless of the long term benefits, would be time taken away from these pressing
projects. :

Even if designers have the time and interest to learn programming, an additional
challenge is developing appropriate educational resources. For example, the field study
informants seemed to favor learning experiences that were both informal and highly
relevant. The designers generally preferred trying things out for themselves or talking
to knowledgeable colleagues to reading the software manuals. When they did turn to
these manuals (only two copies of each manual were kept in the department library), it
was usually to address specific questions about their current tasks. This task-directed
learning strategy mirrors results from related field studies of office workers in general
(Mackay, 1991; Rieman, in press). The informants made only limited use of software
training classes for similar reasons. Designer A complained that classes taught
techniques that were not very relevant to her current projects and Designer B reported
that he was having difficulty setting aside time in the evenings or Saturdays to attend
them.

The appropriateness of software tutorials for designers is also questionable. Prior to the
Ilustrator tutorial, neither of the informants in the field study had stepped through any
of the tutorials supplied with their design software. When they did try the Illustrator
tutorial, they seemed interested in learning about the graphing features, but were also
resistant to the tutorial’s rigid sequence of steps. Both commented that they would have
done some steps differently had they been on their own. A consistent confounding
factor, particularly for Designer A, was the need to constantly switch focus from the
printed tutorial (placed beside the keyboard) and the evolving design on the screen.
Reading the instructions out loud to Designer A seemed to help her considerably.

15

2.2 Dale Glasgow & Associates

The next case study comes from the book Information Illustration by Dale Glasgow
(Glasgow, 1994). The author is founder of Dale Glasgow & Associates, a small
graphic design firm with well-known clients such as U.S. News and World Report,
Air & Space Smithsonian, General Motors, Ogilvey & Mather, Bell Atlantic, MCI,
IBM, Exxon, Philip Morris, and Champion International. Before forming Glasgow &
Associates, Glasgow worked at USA Today as an illustrator and graphics editor for the
Money section. Information Illustration is a how-to guide for graphic artists which
describes lessons learned from his more than 10 years of experience doing design on
the Macintosh. The 31 case studies in his book describe the steps Glasgow took to
create everything from an investment map for a real estate company to the universal
health security card proposed by the Clinton Administration. The primary software
used to produce these illustrations was Macromedia FreeHand, a drawing package
almost identical to Adobe Illustrator, the tool of choice for the designer in the previous
case study.

2.2.1 A Custom Pie Chart

One of the more interesting case studies in Glasgow’s book, from the perspective of
this report, describes the production of an illustration for a retirement magazine. The
magazine wanted an attractive diagram showing the recommended dietary division of
calories from fat, protein, and carbohydrates. The resulting chart is reproduced in
Figure 2-2. In his book, Glasgow describes in detail the steps he took to produce the
final design. Most notable is the methods used to create the three pie slices by way of a
jury-rigged on-screen protractor. Glasgow first drew a circle and a single vertical line
along the radius. Next, he duplicated the line and rotated it 3.6 degrees from the circle’s
center to create a second slice using the Transform dialog shown in Figure 2-3a. The
next figure in the sequence shows how Glasgow then used FreeHand’s Duplicate menu
command to generate additional slices, each offset by 3.6 degrees from the last. By
“keeping the trigger finger on this command,” he was able to evenly divide the circle
into 100 slices. Glasgow then counted 30 3.6 degree slices on his protractor to identify
where one pie wedge would go, then 20 more for the second and third wedges as
shown in Figure 2-3c.

According to Glasgow the entire illustration including the draped table cloth look and
the figures, which were pasted in from previous drawings, took approximately six
hours to produce. Glasgow’s trick for creating an on-screen protractor could not have
occupied a large portion of this time, but it highlights the sometimes mixed blessings of
computer-based design tools. While computers offer powerful features they also
sometimes rob designers of very useful traditional tools such as physical protractors.
These powerful software features can sometimes be used to construct tools that mimic
the traditional ones, as Glasgow demonstrates. However, this is not always the case.

2.2.2 Potential for Programming

What solutions might the end-user programming community offer for Glasgow’s pie
chart problem? A simple language-based aid would be the ability to call the Duplicate
menu command repeatedly automatically, without the need for a “trigger finger,” using
an expression such as

repeat 98 times ’
menuSelect the menu named "Duplicate" of the menu named "Object®
end repeat

16

Figure 2-2. The final design illustrating the three main components of a
recommended diet.

e s B TR s

@ (b)
Figure 2-3. Steps in creating an on-screen protractor to produce a pie chart in
FreeHand. (a) Starting with a circle and a single vertical line, the line is duplicated
and rotated with the Transform dialog. (b) Repeated use of the Duplicate command

create the other slices in the protractor. (c) The pie is sliced by manually counting
protractor lines.

This type of solution, characterized by “macro languages” is a common facility in
productivity packages such as spreadsheets and word processors, although not as
prevalent in drawing programs. More sophisticated approaches would obviate the need
for an on-screen protractor in the first place. One possibility would involve specifying
the interior angle of the wedge and its angle of orientation via mechanisms described in
the CU Publications case study. Another approach would be to associate a callback
procedure with the drag feedback for arc creation by direct manipulation:

on dragFeedback of Arc
sendToLog my angle
end dragFeedback

This procedure could continuously print the current angle of the arc in degrees, radians,
or percent as the user dragged out the shape. Although not an automation technique,
this approach would empower designers with the ability to create elements more
accurately in ways unanticipated by the original tool developer. Such mechanisms

17

would be particularly appropriate for pie charts which typically have a relatively small
number of data points.

2.2.3 Learning Challenges

What can be gleaned from Information Illustration about Glasgow and his work
environment suggests that end-user programming solutions like the ones above could
be difficult to introduce into Glasgow’s repertoire of design techniques. As with the
CU Publications graphic artists, Glasgow seems aware of the existence of spreadsheet
or charting software that could automate some of his processes or make them more
accurate, but has nonetheless avoided this route. It would seem logical for Glasgow to
advocate such tools to produce, if not anything else, a starting point for a custom chart
design. After all, in the chapter “Setting up an Electronic Studio” his list of useful
software in addition to the “core illustration software” includes spreadsheets and in the
same section he writes:

...you don’t want to rein yourself in, constrain yourself from doing
images in certain ways because you don’t have the appropriate type of
software—and because doing the image with the software you do have
would take so long you'd get burned out. (Glasgow, 1994, p. 24)

And yet, none of the eleven numerically oriented case studies in the book mentions the
use of a spreadsheet or charting program.

Assuming that Glasgow could be convinced of the value of end-user programming
techniques, his home office work environment presents a unique challenge to one of the
most prevalent means of learning about software: seeking help from others. A number
of studies about customization and use of software point to help from colleagues as
critical for skill advancement (Gantt & Nardi, 1992; Mackay, 1991; Rieman, in press).
It should be noted that the communities that were studied consistently included some
very advanced users or “gurus” (Gantt & Nardi, 1992). In contrast, Glasgow works
primarily by himself in a home office with no nearby programming experts.
Opportunities for independent designers like Glasgow to learn end-user programming
must take into account the limited social interactions inherent in small office situations.

2.3 The Daily Camera Newspaper

The third case study concerns a custom graph that appears monthly in Boulder’s local
newspaper, The Daily Camera. This graph is found in the Camera’s “weather wrap-up”
section which uses text and pictures to describe the variations in temperature,
precipitation, and other meteorological statistics over the previous month. These
statistics are compiled by an amateur meteorologist in Boulder who types them on his
home computer, prints them out and hand carries them to the Daily Camera office. It is
then the responsibility of graphic artists at the Camera to lay out the information and
translate some of the numbers into attractive graphs.

231 AF lokating Bar Chart

One of the more intriguing set of statistics, the high and low temperatures for each day,
is depicted with a “floating” bar chart as shown in Figure 2-4. The bottom of each bar
denotes the low for each day and the top, the high, with the exact values appearing on
horizontal axes above and below the bars. Not only does the graph allow for useful
comparisons of highs and lows across days, but the range of temperature is nicely
captured in the length of the bar, which, appropriately, also looks a bit like a

18

thermometer. Unlike the charts in the previous case studies which were refined or
elaborated versions of standard chart types, the floating bar chart is not supported by

most charting packages or spreadsheets (although at this writing DeltaPoint has recently
released version 4.0 of DeltaGraph Pro which can do this).

What makes this floating bar chart particularly interesting is that 28 to 31 new highs and
lows must be entered into the graph each month, providing an incentive for designers to
develop a process which is as efficient as possible. Indeed, the graphic artist currently
assigned to this job claims that he can generate a new temperature chart in 15 to 30
minutes. But once again, no automatic tools are used to size or position the chart
elements or enter the text values for the horizontal axes. Rather, the designer relies on

the general-purpose drawing tool Macromedia FreeHand, the same package used by
Glasgow.

February Temperature Ranges

”‘;‘6 6£-16-13042453551 4 29 19 25 27 vi(iﬁ 2517 28453739383424302817 1132
oW

Figure 2-4. The floating bar chart used by the Daily Camera to depict the high and
low temperatures for each day in a month.

The key to the design strategy adopted by the Daily Camera graphic artist is to modify
the temperature charts from the same month the year before. This approach guarantees
that the chart already has the correct number of data points and it also makes it likely
that temperatures will be in a similar range, thus limiting the degree of adjustment that
needs to be made to the bars. In a phone interview, the designer admitted that
occasionally the file for a month from the previous year is missing, forcing him to adapt
a different month by adding or removing bars. Changing the exact temperature text in
the upper and lower horizontal axes is a matter of placing the text tool on the text boxes
and typing the new values. Adjusting the bottoms of each bar involves two steps. First,
the designer selects both bottom corner anchor points by clicking on one point then
shift clicking on the other. Then he drags the bottom edge up or down and releases the
mouse when it seems to be in approximately the right location. To help guide his
dragging, the designer looks at the left axis, the dotted horizontal grid lines, and any

19

bars he had recently adjusted for the same month to represent similar temperatures. A
similar technique is used to adjust the position of the tops of each bar.

2.3.2 Potential for Programming

The ideal programming solution would query the graphic artist for the month and the
new highs and lows and then automatically generate a new chart based on the standard
design, completing the task in only the time it takes to enter the new values. But
perhaps a more realistic goal for an end-user programmer would be an interplay
between direct manipulation and language-based interaction. The user could be
responsible for opening the appropriate file for the target month in the previous year,
just like is done now. Programming language expressions like those described in the
first case study could then be used to adjust the position and size of a bar to correspond
to its new high and low temperatures. For example, if the first day of the month had a
low of -6° F and a high of 17° F, a user could execute the following expressions
(assuming a 1:1 scale):

set the bottom of Rectangle 1 in DrawWindow to -6
resizeTop of Rectangle 1 in DrawWindow to 17

where resizeTop stretches or shrinks the bar so that its top is at the given position. The
real power could come through mapping expressions that could adjust each bar for its
respective temperature range:

set the bottom of every Rectangle in DrawWindow to =
every item in {-6, -16, -13, 0, 42, 45, 35, 51, 41, -
29, 19, 25, 27, 39, 25, 17, 28, 45, 37, 39, 38, -
34, 24, 30, 29, 17, 11, -3, 2}
resizeTop of every Rectangle in DrawWindow to -
every item in {17, 3, 18, 57, 55, 59, 60, 64, 70, =
50, 56, 60, 66, 60, 51, 67, 65, 61, 61, 63, 63, =
63, 50, 67, 61, 25, 21, 21, 37}

This is one of the more straightforward solutions available in languages such as
SKS8Script that support list mapping, but one can imagine a variety of other solutions
involving iteration or recursion.

In order to update the temperature chart on a monthly basis, the user could save the
above text in an on-line scrapbook and paste the expressions back into a programmable
drawing tool’s interpreter each month, replacing the values in the brackets with the new
highs and lows for the current month. A somewhat more advanced user could abstract
the mapping functions into a named procedure:

on adjustBars of highList, lowList
set the bottom of every Rectangle in DrawWindow to -
every item in lowList
resizeTop of every Rectangle in DrawWindow to =
every item in highList
end adjustBars

which could be loaded and executed each month to produce a new chart. Similar
techniques could be used to change the text boxes in the upper and lower horizontal
axes.

2.3.3 Learning Challenges

The hurdles that the Daily Camera designer would face before he could begin
integrating programming in his design activity are in many ways similar to those in the

20

previous two case studies. With his only programming experience being a class in
BASIC “a long time ago,” the designer would have to be reminded about what
programming was and what uses it had. At a minimum, in order to use programming to
make his design more exact, the graphic artist would have to learn about expressions
for setting shape attributes. To automate his tasks, he would also have to learn about
specifying lists of values and using mapping or iteration expressions. Finally, to reuse
expressions on a monthly basis he would have to learn strategies for saving and
reloading his code, possibly abstracted as a procedure. To motivate this learning, the
Daily Camera designer would have to be convinced that programming had a larger role
in his work than just the temperature chart. In the phone interview he pointed out that
the graph was a small part of his work and expressed concern that a programming
language would not be relevant to the rest of his projects.

2.4 Collaboratory for Research on Electronic Work

The previous case studies have focused on custom charts and graphs created by
professional graphic designers. This final example looks at the custom information
graphics needs of a research laboratory where the designers themselves are owners of
the data. The Collaboratory for Research on Electronic Work at the University of
Michigan (CREW) focuses on the design of new organizations and the technologies
that make them possible. Unlike the professional graphic artists in the other case
studies, researchers at CREW have considerable programming experience, although
none use programming regularly.

A particular area of research at CREW is how time is spent in meetings and the flow of
discussion from one topic to the next. CREW researchers have conducted comparison
studies of teleconferences with various configurations of communications media,
compared the way time is spent in meetings in different countries, and looked at the
effects of groupware on the events of a meeting. Spreadsheets are used heavily to
record the events in meetings and to compile statistics. But the primary vehicle for
quickly communicating activity flow in a meeting, the bubble chart, is created using a
hand-held calculator and the general-purpose drawing tool CricketDraw.

2.4.1 A Custom Bubble Chart

Researchers in CREW have developed a custom bubble chart to represent activity
during a meeting as shown in Figure 2-5. A bubble chart is a type of diagram supported
by only the more sophisticated charting packages. It uses a collection of circles or
“bubbles” to depict data where the diameter of each circle is proportional to the value of
its corresponding data item. CREW uses these bubbles to represent categories of
activity during a meeting such as “Plan and Write,” the area of which represents the
total time the group spent in that activity. But the CREW version of the bubble chart
adds several other data dimensions. The area of each bubble can be divided into
sections, the white portion representing the direct introduction of an idea, the black
wedge denoting the time spent clarifying the topic. Directed edges between bubbles
represents the transitions between activities, the weight of each line proportional to the
frequency a transition is made.

Interviews with one of the CREW researchers uncovered a cumbersome but effective
process for creating an aesthetically pleasing bubble chart with CricketDraw in
approximately two to three hours. First, an “anchor” bubble such as the one for
“Alternatives” in Figure 2-5 is drawn using CricketDraw’s oval tool. With the ratio of
the area of the resulting circle to the time spent in that activity as a reference, the desired

21

Plan and

Figure 2-5. A sample bubble chart developed by CREW to depict how time is spent
during meetings. This particular chart depicts the timing and flow of activities for a
group using a shared editor, hence the title “Supported.” The original chart can be
found in (Olson, Olson, Storrosten & Carter, 1992).

diameters of the remaining bubbles is computed from the activity data. These bubbles
are then drawn to their approximate sizes by using CricketDraw’s on-screen ruler as a
guide while dragging the oval tool. Next, the bubbles are repositioned so that they are
approximately evenly spaced. A black wedge representing topic clarification is then
added to the appropriate bubbles. This wedge is drawn by direct manipulation using
CricketDraw’s triangle tool, for lack of an arc tool. Smaller triangles are used to fill in
the area towards the edge of the circle that were missed by the main triangle. The final
step involves drawing the curved arrows between bubbles to denote transitions between
activities. CricketDraw’s splines tool is used to draw the arrows at four to five different
pen widths, depending on the frequency magnitude. To avoid cluttering the diagram,
only transitions over a certain threshold frequency are sketched.

2.4.2 Potential for Programming

Clearly, end-user programming could play an important role in simplifying the above
bubble chart creation process. Programming could automate many of the tedious or

22

inaccurate steps enabling CREW researchers to more quickly and accurately compare
meetings. As with the columns in the first case study and the pie slices in the second, a
simple but useful programming technique would be the ability to exactly specify some
of the dimensions of both the bubbles and edges. For example, if a total of 20 minutes
was spent on an activity, one could use the following expressions to adjust the size of a
bubble appropriately (assuming a 1:1 scale):

set the height of Oval 1 in DrawWindow to sqgrt (20 / Pi) * 2
set the width of Oval 1 in DrawWindow to sgqrt (20 / Pi) * 2

Note that the expression to the right of the token ‘to’ automatically computes the
diameter from the area, obviating the hand-held calculator. Even more useful would be
a procedure that could size any bubble for its corresponding time:

on adjustBubble n, a
set the height of Oval 1 in DrawWindow to sqgrt (a / Pi) * 2
set the width of Oval 1 in DrawWindow to sgrt (a / Pi) * 2
end adjustBubble

A constraint-based programming language would be useful to help layout the bubbles
after they are sized using an expression such as:

given Bubblel (an Oval), Bubble2 (an Oval)
declare distanceBetween (Bubblel, Bubble2) - =
(Bubblel’s height)/2 - (Bubble2’s height)/2 > 30

where distanceBetween computes the Euclidean distance between the centers of its two
arguments. This expression declaratively specifies that the gap between bubbles must
be greater than 30 pixels. The designer could then be responsible for tweaking the
arrangement in order to group related activities or to minimize edge crossings. Edges
could automatically be placed between activity bubbles using programming:

on drawEdge of Bubblel, Bubble2

make LineSegment with tail Bubble2’'s center with head Bubblel'’s
center
end drawEdge

A more sophisticated procedure could compute the splines points for curved edges
which start and stop short of the bubble’s centers as in Figure 2-5.

2.4.3 Learning Challenges

As already experienced programmers, CREW researchers face a different set of
challenges in acquiring the particular end-user programming language or languages
supported by their design tools. They may need less convincing about the benefits of
programming techniques, but they must still be informed of the basic paradigm of the
language such as whether it is imperative or declarative and they must still learn the
language’s specific vocabulary and syntax in relation to their existing programming
knowledge. Perhaps most important, CREW researchers would likely need to be
trained in the highly interactive style of programming described in the programming
solutions in this chapter which are in fact typical for programmable applications. Users
with formal training in programming may have to “unlearn” software engineering
techniques that encourage planning, modularization, and progressive refinement. In
their place users may need to learn more opportunistic strategies that seem successful
for programmable applications, such as the intertwining of direct manipulation and
language-based interaction.

23

2.5 Summary

The above case studies touch on a number of important and, in some cases, surprising
themes relating to the design of information graphics and the practicalities of
introducing programming into such design activity.

Designers are currently creating custom information graphics with relatively
primitive software tools which force them to position and size graphics “by eye.”
This may come as a surprise to viewers who have assumed graphs like the one in
Figure 2-1 were plotted extremely accurately by automatic charting tools.

Designers often encounter serious limitations with their drawing software such as
the lack of a protractor tool in FreeHand, but are able to develop clever “work-
arounds.”

A simple end-user programming language can provide the necessary abstractions to
accomplish many of their tasks more accurately and can help automate repetitive
jobs such as producing monthly temperature charts.

Designers are busy people with limited time for learning.

A key challenge in orienting designers to end-user programming languages is
situating the instruction in terms of tasks which are of interest to designers.

Programming language instruction cannot rely on the existence of social networks
or the necessary organizational infrastructure that would enable users to consult
with a guru or attend training classes.

3. Self—Disclosure

The case studies in the previoys chapter illustrate the limitations of direct manipulation
tools for information graphics and highlight the potential for Programming to free
designers from those constrains. The solutions offered for each case study suggest
how desj gners might weave programming €Xpressions into their regular interaction
with drawing tools, enabling them to accomplish tasks fagter and more accurately, and
to take on whole new kinds of problemg they had never considered previously.
However, for many users the transition from a direct~manipu1ation style of interaction
to a more formal, language-baged one can be a daunting challenge. Consider how
designers in some of the case studieg were reluctant to eyep use spreadsheet

being used. By situating these incrementa] language learning opportunities within the
context of authentic activity, this Teport hypothesizes that USers can acquire end-user
brogramming skills with minimal distraction from everyday activity. This chapter
defines the notion of self—disclosing cOmputer systems in itg broadest senge and
develops a framework for describing varioys forms of self-disclosure when the
technique is applied for educationg] burposes. This framework Is used to Ccompare and
contrast existing self—disclosing Systems, and is algo employed to characterize the
prototype self—disclosing design tool, Chart " Art, after the System is described in

3.1 Self—Disclosure Defined

The term “self-disclosure” i most often found in psychological and sociological
literature where i refers to the act of revealing private information about oneself to 3

However, this €Xpression can be VEry appropriate. Ap carly example comes from Bolt
in his book, The Human Interface:

Imagine: ¢ computer-based body of information that unfoldy itself to
You automatically gy ¢ unction of the curiosity and interest you show in
it. This process of self-disclosure goes in both direction- The
nformation base discloses itself to you gy You disclose Yourself to it.
(Bolt, 1984, pp. 86-96) (original emphasis)

26

a helpful feedback mechanism they have built into a pen-based interface: When users
hold down the pen at any point in the middle of a gesture the system reveals a “pie
menu” of possible next strokes and their meanings.

A subtle difference between these two uses of the term and the psychological definition
of self-disclosure is that the party doing the disclosing, in this case a computer, is not
really doing so on its own volition. A curious glance or deliberate pause by the user is
what actually triggers the feedback in these systems. Closer to its psychological roots
would be a definition for self-disclosure in computers that encompasses the notion of
information volunteering (Fischer & Stevens, 1987); that is, presenting information that
was not requested and possibly not even anticipated by the user.

Bolt’s use of the expression “self-disclosure™ also differs from the psychological
definition in another way. Bolt’s imaginary system discloses information external to the
computer, such as—to use one of his examples—a browsable image of an historic
house. In contrast, self-disclosure in psychology is about revealing very personal
internal information. The nature of a computer’s internal information depends on one’s
perspective on what private data a computer could be said to own. This report will
consider a computer’s internal information to be the hidden or non-obvious information
about its status or functionality. An example of this kind of internal information is the
pen gesture functions revealed by Venolia and Neiberg’s self-disclosing interface.

Combining the notions of information volunteering and internal information leads us to
a general definition of self-disclosure in the context of computers that captures much of
the essence of the term’s psychological meaning:

Self-disclosure is the act of the computer volunteerin§ hidden or non-
obvious information about its status or functionality.

3.2 Examples of Self-Disclosing Systems

Self-disclosing systems as defined above are not uncommon, although they are
sometimes described using other terms such as “transparent,” “glass box,” (Boulay,
O'Shea & Monk, 1981) or “open” systems. Figure 3-1 depicts some very simple
feedback mechanisms that fit the definition of self-disclosing systems. Figure 3-1ais a
snapshot of the Netscape Navigator web browser after the user has just clicked on the
link “Back to Acme Pet Index.” While Navigator is attempting to retrieve the data for
this link, it volunteers information about the status of the necessary network connection
at the bottom of the window.

® Note that this is a working definition that suffers from a number of ambiguities. For
instance, whether or not a computer is “volunteering” information may be subject to
individual interpretation. Likewise, information that might be obvious to one user may
not be so obvious to another. Thus, a system that reveals such information might seem
self-disclosing to only certain individuals. :

This computer may not have been shut down
properly the last time it was used,

To turn off this computer, always choose Shut Down
from the Appile menu, or press the Power key on the
keyboard.

File Edit
About This Macintosh..

Automated Tasks B |
Calculator ’

ar

Y » Shut Down

Press the Return key on the keuboard to continue.

(b)

B s
T

[: Lot
v Did you know. ..

fou can get infarmation about tab stops. Hold down
OFTION, point to a tab stop on the ruler, and hold down
the mouse button.

©
Figure 3-1. Examples of self-disclosing systems: (a) Netscape Navigator discloses
internal network status in a line of text at the bottom of its window. (b) The Mac OS
discloses what some might consider non-obvious Junctions for shutting down the
computer. This dialog box appears when starting up the computer after
“improperly” turning off the machine by pulling its plug. (c) Microsoft Word’s Tip
of the Day discloses how to inspect tab stops. ‘

27

28

Figure 3-1b is the dialog box that can appear when users start up a computer running
the Macintosh Operating System (Mac™OS) after the machine had literally been
unplugged. Here, the computer is volunteering information, in this case about what
some might consider the non-obvious ways to properly shut down a Macintosh.
Another example of self-disclosure that is familiar to many personal computer users is
the Tip of the Day dialog shown in Figure 3-1c, which is available in some Microsoft
productivity tools such as Word (Microsoft Corp., 1996¢). The Tip of the Day
messages consist of random hints on how to use a tool’s advanced features, especially
those not advertised in menu items or on-screen buttons. Users can configure their
Microsoft tool to display the Tip of the Day window each time the software is launched.

A number of programmable tools also feature disclosure mechanisms. An example of a
self-disclosing programmable tool is the computer aided design system, AutoCAD,
shown in Figure 3-2. The interface for this tool has evolved over the years from a
simple command line to a direct manipulation-style graphical user interface. Although
users can now interact with the interface by points and clicks alone, the system still
makes its command line available in a text-only “Command” window for backwards
compatibility, the entering of exact values, and the execution of library functions. Users
can also enter coordinate parameters either by typing their values or by using the mouse
to select screen locations. What makes AutoCAD self-disclosing is that mouse clicks on
one of its extensive toolbars causes the system to disclose the equivalent historical
command name in the Command window. The screen snapshot in the figure was taken
immediately after the user drew a rectangle on the screen using the mouse. Notice how
the system has volunteered the normally hidden command “_rectangle” by printing it in
the Command window.

% i i i imension Uiew Settings ASE Render Muodel Special

M fe s.ﬂskto Fder.emp:autoc =
14.2545,2.2080

£

==
Command: _rectang
First corner:
Dther corner:

Command: |

Figure 3-2. AutoCAD’s self-disclosing interface. Drawing a rectangle with the
mouse reveals the command _rectangle in the bottom Command window.

Note that there are a number of systems related to the above examples that do not
qualify as self-disclosing under the given definition. For instance, on-line help systems
that require users to explicitly request assistance via a keystroke or menu command, are

29

Suzuki & Mizushima, 1995) as opposed to 3 tool domain. Even though the data
structures for such critiquing knowledge are internal to the system, the entities to which
they refer (e.g. kitchen appliances, human cojor perception, etc.) are externg] to the

computer. Such critiquing systems could be considered “disclosing,” but not “self-
disclosing.”

3.3 Learning Programming from Disclosures

Disclosures are by definition Informational in that they communicate data about a
system’s status or functionah'ty for all users to see. The more interesting issue,
however, is whether disclosures can be not just informational byt educational. For
example, after Word users see the Tip of the Day in Figure 3-1¢ can they remember g
tip (especially after seeing the same t1p more than once) and ceventually employ it in thejr

An experienced architect and graphic designer had Started using
AutoCAD 1o calculate the perimeter and area of a floor plan. Hey initial
approach involved selecting parts of the floor plan with, the mouse,

AutoCAD’s printed manuals how ro compose the textuql commands into
an executable file, Designer had become programmer. (DiGiano &
Eisenberg, 1995)

30

Table 3-1. Four disclosing techni

learning opportunities to users.

ques for providing programming language

Disclosing
Technique

Description

Example

Advertising

Echoing

Identifying

Monitoring

presenting possible expressions that
could be used to operate on various
objects on the screen

revealing language expressions that
could replace mouse actions

revealing expressions for referencing
an object

dynamically showing the connections
between graphical specifications and
programming language declarations
or specifications.

The user selects an oval in a drawing
and the system discloses commands
for operating on ovals.

The user drags out the shape of
rectangle and the system discloses a
rectangle creation command.

The user selects a rectangle and the
system discloses a unique name for
that shape.

As the user interacts with a dialog box
for aligning shapes, the system
updates a linked textual expression
for aligning shapes.

Even with AutoCAD’s limited self-disclosure mechanisms, the anecdote demonstrates
how a user can acquire at least rudimentary knowledge about a programmable

application’s programming vocabulary,
demonstrates the central characteristic o
disclosing systems in general, that lear
of self-disclosing tools can be exposed
regular activity, so that learnin
architects like the one in the an

learn while solving; users can learn while doing.

syntax and semantics. The story also

f the educational experience offered by self-
ning is incidental to the use of the system. Users
to potentially educational feedback during their
g 18 not necessarily a distinct enterprise. For example,
ecdote can learn while designing; mathematicians can

Learning programming “while doing” (Anzai & Simon, 1979) or “on demand”
(Fischer, 1991) is in stark contrast to the more traditional programming language
opportunities such as tutorials, training classes, manuals, or personal consultation with
an expert or “guru.” These educational resources along with others to be discussed later

in this chapter are presented in Table 3-2. For bus
studies, these traditional

y designers such as those in the case
approaches are undesirable because of the time they take away

from designing. Some work environments such as the CU Publications Department

may further decrease designers’ willingness to en
by encouraging employees to pursue self-
additional drawback, as one of the inform
traditional learning opportunities are typic
which designers are actuall
with many computer-based 1
1984). In contrast, education
designers’ current constructions and
opportunities that are highly relevan

gage in traditional training experiences
improvement only on their own time. An

ants at CU Publications complained, is that
ally decontextualized from the projects in

y involved. Lack of relevance is also a common problem
earning opportunities such as on-line help (Houghton,

al self-disclosing tools have the potential to react to
provide useful programming language learning

t to the “tasks at hand” (Fischer & Nakakoji, 199D).

31

Table 3-2. A comparison of learning opportunities by relevance and timing.
Contextualized opportunities are related to the tasks at hand and synchronized
opportunities are those which can take place while performing these tasks.

. Relevance
Timing Contextualized Decontextualized
Synchronous self-disclosure on-line help
critics pedagogical screen savers
Asynchronous consultation tutorials
training classes
manuals

3.4 Dimensions of Educational Disclosures

Self-disclosing tools cannot guarantee learning; they can only offer learning
opportunities. This research argues that the quality of the learning experience depends
critically on the design of disclosures and on the kind of time and attention users can
devote to them.* One of the goals of this research was to develop a model of the
disclosure design space in order to classify existing self-disclosing systems and to gain
insight into the how designers of future systems could influence educational impact.
This model, summarized in Table 3-3, is comprised of the following six dimensions:
adaptivity, explorability, intrusiveness, relevance, scope, and structure.

Table 3-3. Six characteristic dimensions of pedagogical disclosures.

Disclosure

Dimension Description

Adaptivity the capacity of a self-disclosing system to change the content and form of
disclosures to suit the needs of each user individually.

Explorability the degree to which a self-disclosing system supports active user inquiry

into the meaning and utility of disclosures.

Intrusiveness a measure of how distracting disclosures are for users.

Relevance the degree to which disclosures are contextualized to user activity.

Scope the extent of hidden information that is disclosed to users.

Structure’ a measure of the strictness of sequence in the presentation of disclosures
to users. '

The choice of dimensions of educational disclosures was largely influenced by two
bodies of research: learner-centered educational computing and human language
acquisition. Learner-centered education is a recent pedagogical movement that promotes
the same notion of learning-while-doing that is at the heart of the self-disclosure

* A related issue is whether or not users need to necessarily remember what they see in a
disclosure if they can be assured that the disclosure will appear again when needed. This
notion of “using on demand” is briefly explored in the context of Chart ‘n’ Art in

Section 4.4.

32

approach. This movement emphasizes that “people learn best when engrossed in the
topic, motivated to seek out new knowledge and skills because they need them in order
to solve the problem at hand.” (Norman & Spohrer, 1996) This educational philosophy
is also sometimes described using the terms “constructionism,” “problem-based
learning,” or “learning on demand.”

Research in human language acquisition has also influenced the development of self-
disclosure dimensions. The reason is that learning about a system by observing
disclosures can be viewed in many ways as analogous to learning to speak by listening
to the ambient language in one’s environment. Using language acquisition terminology,
one can think of the AutoCAD designer in the above anecdote as being “immersed” in a
language rich environment in which the “input language” was AutoCAD commands.
Even though child language acquisition typically emphasizes spoken language learning
whereas programming languages are traditionally formal written notation, the field
provides a rich body of empirical data that has relevance to language learning in
general. A related influence on this research comes from the field of second language
acquisition, which focuses on older learners with existing linguistic competence. These
learners share some of the same motivational challenges faced by those learning
programming, since both groups are acquiring new communication strategies that have
confusing similarities with and differences from their existing expertise. Of particular
relevance to the self-disclosure approach to learning programming is work on incidental
second language acquisition from picture books by Richards and Gibson (Richards &
Gibson, 1945) and, more recently, on captioned television by Neuman and Koskinen
(Neuman & Koskinen, 1992), both of which are detailed below.

Let us now consider each of the dimensions of educational disclosures in turn.

3.4.1 Adaptivity

Adaptivity is the capacity of a self-disclosing system to change the content and form of
disclosures to suit the needs of each user individually (Totterdell, Norman & Browne,
1987). A self-disclosing system which is highly adaptable monitors a user’s attention to
disclosures (perhaps by timing pauses in activity coinciding with the appearance of
disclosures or by measuring the proximity of the mouse pointer to disclosures) as well
as any history of the user employing disclosed functionality. This data helps form a
model of the user’s current interests and abilities, and, when combined with a model of
the domain of information being disclosed, determines the most appropriate set of
disclosures to follow. A self-disclosing system which is not adaptable makes no such
attempt to alter its disclosures based on user interaction.

A programmable tool that is highly adaptable might adjust future disclosures depending
on how often certain types of expressions (e.g. assignment statements, control
structures) had been disclosed and the frequency with which a particular user employed
them. For example, if AutoCAD were adaptable, it might initially disclose the simplest
form of the _rectangle function as shown in Figure 3-2, but after a user called this
function successfully a number of times, the system might then show a more
sophisticated form of the command which included optional parameters.

Adaptivity is one of the main ideas behind intelligent tutoring systems (ITS), the
umbrella term for a variety of today’s educational computing efforts. An ITS, in
contrast to earlier computer aided instruction (CAI) systems, can generate and adapt
teaching materials as it is being used. An example of an adaptive ITS system is
Anderson’s Lisp tutor (Anderson, Corbett, Koedinger & Pelletier, 1995) (discussed in
more detail in Chapter 5) which reacts to an individual student’s progress on a

33

programming problem by helping to fill in perceived gaps in the student’s cognitive
model of the solution. Anderson et al. claim that students using the Lisp tutor can
achieve at least the same level of proficiency as conventional instruction in one third the
time. Note, however, that the Lisp tutor’s adaptivity is just one of a number of key
features in the system such as the use of scaffolding and the immediacy of feedback that
may have contributed to this rate of success.

Another example of adaptive systems for learning programming is Selker’s COgnitive
Adaptive Computer Help (COACH) (Selker, 1994). COACH is an open environment
for writing Lisp programs that offers advice on syntax and style as users compose
_expressions, the feedback being determined by a dynamic user model based on
perceived experience and proficiency. Selker reports that subjects composed five times
as many functions than a control group using the same system without adaptive help,
and that the experimental group’s code was of higher quality. A less rigorous study of a
related adaptive system for aiding Lisp programming, the Lisp-Critic, reported similarly
positive results (Fischer, 1987). Both systems are described in more detail in

Chapter 5.

Although the evidence from educational computing indicates that adaptivity is important
for learning, linguistic investigations suggest that it might not be necessary, at least for
child language acquisition. A thorough summary of this research by Snow (Snow,
1986) reports that in North American and Northern European families people speaking
to children “fine-tune” their speech by adjusting the syntactic and semantic complexity
to match a child’s language competence. But Snow also points out that other studies
question the importance of such graded input, since children have been found to
automatically filter out speech which is beyond their current comprehension levels to
avoid becoming confused or misled by complex utterances. Furthermore, caregivers in
other societies such as the Kipsigis of Kenya are much less willing to adapt adult
speech for their children and yet these children acquire language just as rapidly as in
western cultures. Snow speculates that fine-tuning may be more effect than cause, that
is caregivers are simply adjusting their speech in order to communicate with a child as it
gains linguistic proficiency independent of graded input.

In the ideal, then, experience in educational computing suggests that programming
language disclosures should be adaptive to individual users. On the other hand, if
learning programming via disclosures is analogous to first language acquisition, this
adaptivity may not be completely necessary.

3.4.2 Explorability

Explorability is the degree to which a self-disclosing system supports active user
inquiry into the meaning and utility of disclosures. Unlike the previous dimension,
explorability is not actually a measure of disclosures themselves, but of the
environment that is doing the disclosing. By supporting exploration, self-disclosing
systems can broaden the range of educational opportunities they offer beyond the
simple incidental learning provided by disclosures alone. A self-disclosing system that
offers a high degree of exploration enables users to review previous disclosures, study
explanations for disclosures or related information, and, in the case of disclosed
functionality, actually try out the revealed commands.

By definition, self-disclosing programmable tools have a certain degree of explorability
built-in, since these tools provide a programming language interpreter in which users
can try out disclosed expressions. However, to further encourage exploration self-
disclosing programmable tools can also offer, among other things, on-screen

34

documentation for each disclosed programming expression, the ability to modify
disclosures and execute them directly, and support for undoing executed statements that
had undesirable results.

The opportunity to experiment with disclosed programming expressions resonates with
progressive educational paradigms such as learning by doing (Anzai & Simon, 1979),
learning on demand (Fischer, 1993), constructionism (Papert, 1991), and cognitive
apprenticeship (Collins, Brown & Newman, 1989) that emphasize the need for learners
to actively employ new knowledge. Evidence is growing that these approaches in the
school setting can have positive effects. Resnick’s review of educational programs
found that, among other things, the successful programs stressed active participation by
learners (Resmck 1989). Support for active experimentation during learning is also
found in the professional setting. In their study of professional programmers learning
new systems, Berlin and Jeffries identified a common and successful learning strategy
which they called “copy and experiment” (Berlin & Jeffries, 1992). They noticed that
programmers often duplicated related code and then experimented with it in order to
understand how to use the new system. In a related field study, Rieman (Rieman, in
press) also found that exploratory learning was a widely accepted strategy; however, an
interesting caveat was that users favored it only as long as the exploration was task-
oriented.

Language acquisition research provides mixed evidence for the value of explorability in
learning programming. Studies of first language learners indicate that the amount of
talking a child “needs to do” in order to acquire a language varies considerably: some
can speak very little and still become as competent as others who are constantly
chattering (Aitchison, 1985). On the other hand, for second language learning
explorability seems more important. Studies of second language incidental vocabulary
learning report more effective acquisition when learners must retell stories they read
which had novel vocabulary (Joe, 1995; Newton, 1995). These studies also observed
that students with the greatest improvement used the story vocabulary more
generatively, that is in new contexts and in new structures.

What does all this mean for the design of pedagogically effective self-disclosing
programmable tools? Generally, it seems valuable for users to be able to become active
participants in programming language acquisition, not just passive learners through
incidental exposure to a language. Rieman’s study implies that as much as possible,
users should be able to do this active inquiry into issues directly relevant to their current
task.

3.4.3 Intrusiveness

Intrusiveness is a measure of how distracting disclosures are for users. A self-
disclosing system with high intrusiveness ensures that users cannot ignore disclosures,
for example the shut down warning in Figure 3-1b and the Tip of the Day in Figure 3-
lc, which require that users dismiss a dialog box before they can begin working. A
system with low intrusiveness presents disclosures subtly, for instance the small status
line at the bottom of Navigator’s window in Figure 3-1. In the context of self-
disclosing programmable design tools, intrusiveness gauges the degree to which
programming language feedback diverts users from their design activity.

Obviously, a minimum level of perceptibility is necessary for users to begin learning

from programming language disclosures. On the other hand, highly intrusive language
disclosures might disrupt design “flow” (Csikszentmihalyi, 1990) to such a degree that
the benefits of learning programming techniques are outweighed by the costs. Intrusive

35

but highly valuable learning experiences can lead to a “production paradox” (Carroll &
Rosson, 1987) in which learning is inhibited by lack of time and working is inhibited
by lack of knowledge. An example of such a quandary is when a system discloses very
useful functionality to the user through an elaborate on-screen tutorial that demands the
user’s complete attention for an extended period of time. The user knows that by
following the tutorial he or she could learn important and useful facts about the system,
but at the same time is concerned by the disruption it will have on pressing work.

The pedagogical tradeoffs of intrusiveness are well known to designers of critiquing
systems for learning. These systems attempt to feed back helpful information about a
construction in progress, providing opportunities for users to “learn on demand”
(Fischer, 1991). Fischer et al. claim that the principle challenge for critiquing systems
is “saying the right thing at the right time” (Fischer, Nakakoji, Ostwald, Stahl &
Sumner, 1993). Their work suggests that there is no one proper level of intrusiveness,
but that such systems must offer a variety of presentational mechanisms, possibly
under user control (Nakakoji, Sumner & Harstad, 1994).

Although intrusiveness in systems for learning while doing is clearly a complex issue,
language acquisition provides evidence that a remarkable amount of learning can take
place with almost imperceptible feedback from the environment. Studies of children
listening to stories (Elley, 1989) and watching captioned television (Neuman &
Koskinen, 1992) indicate that students pick up vocabulary incidentally with impressive
speed. According to Elley, story telling with teacher explanation resulted in vocabulary
gains of 40 percent on a test of target words in a particular story, but even without
explanation students gained 15 percent simply from hearing the story. Neuman and
Koskinen’s study indicated that language minority students can not only acquire second
language vocabulary by being exposed to captions, but that they learn more words than
if they had read the equivalent text without the video.

Clearly, vocabulary acquisition is only one of the challenges facing language learners.
However, numerous formal models of language acquisition exist that are capable in
principle of inferring sophisticated grammars from relatively unintrusive language input
similar to that provided to the children in the above vocabulary studies (Pinker, 1979).
If programming language learning is indeed analogous to first or second language
learning, the implication is that even the most unintrusive programming disclosures
might prove beneficial.

3.4.4 Relevance

Relevance is the degree to which disclosures are contextualized to user activity. A self-
disclosing system with high relevance attempts to time disclosures to coincide with
related user activity. A system with low relevance essentially presents status and
functionality information randomly to users and makes no effort to connect the
feedback to current activity. This is the case with Microsoft’s Tip of the Day and an
carlier system, DYK (Owen, 1986), which presented random Unix tips upon the user’s
request. Highly relevant programming language disclosures include expressions that
relate to how a user is currently employing a direct manipulation interface (as in
AutoCAD) or ones that are known to be particularly useful given the current state of a
user’s project. Programming language disclosures of low relevance include random
expressions intended to be shown during idle moments. Somewhere in between these
two extremes along the relevance dimension is the Chart ‘n’ Art pedagogical screen
saver (DiGiano & Eisenberg, 1996) which randomly suggests a variety of commands
that could modify the user’s current construction in interesting ways.

36

Research in educational computing gives reason to believe that relevance can be an
important factor in the effectiveness of disclosures for learning programming. Often
cited is WEST, an intelligent arithmetic expressions tutor for a mathematical game,
which attempted to intervene with “relevant and memorable” hints and suggestions
(Burton & Brown, 1976). Experiments showed that students exposed to the tutoring
exhibited “a considerably greater variety of patterns” than those without tutoring. It is
important to note, however, that this level of relevance may only be practical in highly
constrained domains such as WEST’s mathematical game. More open learning
environments may find it much more difficult to anticipate appropriate feedback. Even
if the pragmatics of offering highly relevant feedback was not an issue, it is not clear
that this is necessarily the best approach. Random disclosures such as in the
pedagogical screen saver have the advantage that users can be introduced
serendipitously to new and interesting programming language features that might never
have been revealed otherwise because of their irrelevance to users’ current

constructions.

Language acquisition research also offers some insi ghts into the role of relevance in
learning from programming language disclosures. For example, Snow’s summary of
child-directed speech reports that within North American and Northern European
families a child learns better when exposed to utterances that express his or her own
intentions or relate to topics of the child’s choice. On the other hand, the Kipsigis of
Kenya do not use such child-centric speech, but Snow argues that their children acquire
language just as rapidly because of the prevalence of repeated highly predictable
situation-specific adult speech. These results suggest that programming language
disclosures might be more learnable if they are either highly relevant to user activity or
else repeated in highly predictable ways.

3.4.5 Scope

Scope is the extent of hidden information that is disclosed to users. A self-disclosing
system with wide scope exposes users to a large variety of information, in the most
extreme case providing coverage over all internal status or functionality information. A
self-disclosing system with narrow scope offers only isolated glimpses into what might
be going on within. For example Navigator’s status line in Figure 3-1 only discloses
basic connection information and leaves out lower-level TCP/IP negotiation. In the
context of self-disclosing programmable design tools, scope refers to both the variety
and complexity of the syntax and semantics of programming language expressions
shown to users. For instance, do disclosures illustrate the key concepts (perhaps
defined by chapter headings) in programming textbooks such as data structures, control
structures, variables, etc.? Do disclosures show multiple-line programs that illustrate
program plans (Spohrer, Soloway & Pope, 1985) in addition to simple one-line
statements? Do disclosures illustrate more than one way of accomplishing the same
task, but using different strategies or syntax?

Obviously, a self-disclosing programmable design tool which could teach an entire
language would be very useful. And clearly, a certain minimum coverage of a language
is necessary for users to begin employing it in their work. On the other hand, self-
disclosure is likely only one of many resources including textbooks and on-line help by
which users can learn programming (see Table 3-2). The key issue is whether
disclosures provide sufficient examples for designers to begin integrating programming
into their repertoire of tools.” These examples need not necessarily be that extensive,

* A related question is whether designers are motivated by disclosure to take advantage of
these alternate resources and learn more about programming.

37

depending on the design of the end-user language. Powerful yet simple languages such
as described in (Eisenberg, 1995) demonstrate that a well-designed end-user language
for a particular domain (e.g. painting, simulations of dynamical systems, etc.) can
provide a wide range of expressiveness through only a small number of high-level
primitives. In addition to careful language design, developers of self-disclosing
systems can limit the scope of necessary disclosures by analyzing the patterns of
language use in designers already familiar with the system. Such analysis might include
a “programming walkthrough” (Bell et al., 1994) of the language interface to determine
the “critical mass” of programming knowledge for that particular programmable tool.

Self-disclosing programmable tools can achieve a relatively wide scope by disclosing
multiple line examples which illustrate a number of programming concepts at once.
This approach is in contrast to the “one-liners” offered by AutoCAD. Note, however,
that the disclosure of these longer, richer examples may come at the price of higher
intrusiveness and lower comprehensibility. Long examples can easily clutter the screen,
potentially covering up valuable context and interrupting design “flow.” Even when
such intrusion is tolerated by designers, care must be taken not to overwhelm them with
a large variety of new material.

For lack of applicable linguistic evidence to the scope dimension, let us now move on
to the last of the six dimensions, structure.

3.4.6 Structure

Structure is a measure of the strictness of sequence in the presentation of disclosures to
users. A highly structured self-disclosing system is programmed to show specific
disclosures or groups of disclosures in a certain order. A self-disclosing system
without structure makes no attempt to constrain the order of presentation and must craft
disclosures to be understood in isolation.

A highly structured self-disclosing programmable tool presents programming
expressions in an order that follows a certain programming curriculum, for example,
from basic syntax to control and data flow to sophisticated optimizations. Note that
such an environment does not preclude the possibility that the feedback could still be
highly relevant to users’ current activities. For instance, in AutoCAD the use of a tool
could trigger a disclosure thematically related to the current point in the curriculum but
also temporally connected to the particular tool currently being used.

The most pedagogically effective level of structure is still a matter of contentious debate
among educational computing researchers. In part, this is due to varying definitions on
what it means to be “pedagogically effective.” Early CAI systems emphasized a rigid
curriculum that indeed enabled certain individuals to perform better on standardized
tests. However, these systems were criticized for teaching decontextualized knowledge
through demeaning drill and practice. ITS was developed to address some of these
problems by adding the ability to adapt materials somewhat for the individual learner,
but at its heart is still a fixed curriculum based on a model of expert behavior. On the
other end of the structure spectrum lies the open learning environment popularized by
Papert in (Papert, 1993). Open learning environments are foundational to
constructionist educational philosophy. Constructionist systems provide little, if any,
structure and instead rely on the self-directed learner to find “cognitive hooks” or
touchstones for learning. Case studies of constructionist approaches cite anecdotal
evidence of limited success, but few, if any, formal evaluations have been conducted
(Elsom-Cook, 1990). Increasingly, researchers are seeking a middle ground between
the two extremes of ITS and constructionism as is evidenced by new approaches such

38

as learning on demand (discussed previously) and guided discovery tutoring (Elsom-
Cook, 1990).

The degree to which structure is important in human language acquisition is also a
complicated and controversial topic. As mentioned above, Snow’s research suggests
that although language input for many children is “graded,” it is not clear whether this
type of structure is necessary, since children can automatically filter out overly complex
speech on their own. One thing is clear, however: Caregivers rarely, if ever, offer
children explicitly sequenced grammar or vocabulary lessons. Rather, human language
is somehow acquired implicitly from exposure to a wide variety of child directed
speech.

Although educational computing and language acquisition offer no obvious suggestions
for the optimal degree of structure for programming language disclosures, they do teach
two important lessons: (1) the appropriate amount of structure is dependent on the
desired learning experience, and (2) learning can potentially take place in the absence of
structure. If a user has a casual interest in programming, a very loosely structured set of
disclosures—not necessarily all noticed by the user—might be adequate for long term
acquisition. Considerably more structure might be necessary if the user needs to learn
programming rapidly. Note, however, that the structure can only be so rigid and fine-
grained before users begin missing important elements in the sequence due to the fact
they are still trying to get work done with their tool and cannot always attend to
disclosures.

3.5 Guidelines for Effective Disclosures

The above discussion of dimensions for educational disclosures presents a complex
picture of the tradeoffs inherent in the design of a self-disclosing system. Note that the
design decisions are even more complicated when one considers the potential for
interactions between dimensions. For example, the adaptivity of a self-disclosing
system could influence the ability of a tool to present relevant disclosures or structure
them appropriately. Furthermore, the intrusiveness of a system could affect the scope
of disclosures, since the larger the screen space devoted to disclosures the greater the
variety of feedback that could be shown at once. On the other hand, the evidence
presented above from learner-centered educational design and human language
acquisition suggests a number of ways in which the self-disclosure design space could
be simplified to ensure pedagogically effective systems. A useful way of viewing these
simplifications is as constraints on the ranges of degrees along each disclosure
dimension as shown in Figure 3-3. For adaptivity and explorability, educational
computing and language acquisition work suggests a design emphasizing the “high”
end of the spectrum. In the case of intrusiveness and structure, previous research
predicts that systems between the low and intermediate range of the spectrum will have
a positive educational impact. The two recommended ranges along the relevance
dimension in Figure 3-3 reflect two themes in research on contextualized learning: (a)
that low relevance can support serendipity, and (b) that high relevance feedback is
particularly memorable. Finally, there is little evidence to indicate constraints on the
scope dimension, although common sense suggests one avoid the extreme low end
(disclosing nothing) and the extreme high end (disclosing everything).

Let us now return to the four examples of existing self-disclosing systems and compare
them to the above profile of an educationally effective one. Figure 3-4 indicates an
estimate of where each of the four systems falls along each of the six disclosure
dimensions.

39

Low High
Adaptivity frememe —
Explorability . -
Intrusiveness m——...|
Relevance
Scope |- mm—
Structure |e—— i

Figure 3-3. The ranges of degrees along disclosure dimensions that are likely to be
most pedagogically effective, particularly for teaching programming.

Navigator Status Line. By being neither adaptive nor explorable Netscape
Navigator’s status line fails to meet the guidelines for the first two dimensions.
However, by using only a small of amount of screen space at the bottom of its
windows the status line does fall under the suggested range of intrusiveness. The
internal connection information displayed by the status line overlaps the suggested
degrees of relevance, since it can sometimes provide the user with potentially important
information about the current status of the network. The scope of the status line
disclosures is limited to a small but reasonable subset of possible connection
information. Finally, the sequence of Navigator’s feedback is simply dictated by the
connection protocol, not by any curriculum, therefore the system falls on the low end
of the structure spectrum, but still within the suggested profile.

Low High
Explorability
Intrusiveness
Relevance
Scope
Structure

Navigator MacOS Microsoft AutoCAD
Status Line Shutdown Warning Tip of the Day Command Window

Suggested range O Actual range

Figure 3-4. A comparison of four existing self-disclosing systems using the six
dimensions of educational disclosures. }

Mac OS Shutdown Warning. Unlike Navigator, the Mac OS shutdown warning is
beyond the suggested range of intrusiveness by requiring the user to explicitly dismiss

the dialog. The Mac OS disclosure overlaps the suggested ranges of relevance, since it

can sometime provide timely information about how to properly shut down, assuming

the user starts the computer soon after unplugging. Obviously, being only a shutdown

warning, the scope and structure of this Mac OS disclosure is extremely limited.

Microsoft Tip of the Day. As a modal dialog box, Microsoft’s Tip of the Day
shares some of the disclosure characteristics of the Mac OS shutdown warning. By
displaying random hints, the system falls on the low end of the relevance spectrum, at
the point where serendipity might be advantageous. Unlike the shutdown warning, Tip
of the Day disclosures offer a broad scope of suggestions, although typically limited to
advanced features.

40

AutoCAD Command Window. AutoCAD is the only self-disclosing system of the
four that enables users to experiment with and discover more about its disclosures.
Since exploration is limited to only evaluating a disclosed command language
expression, AutoCAD’s form of self-disclosure still falls short of the recommended
range. By echoing equivalent expressions in response to the use of direct manipulation
tools, AutoCAD achieves a high degree of relevance, well within the suggested profile.
The scope of AutoCAD disclosures is limited to only those direct shape creation
commands that have command line equivalents. Finally, AutoCAD makes no attempt to
sequence disclosures for the pedagogical purposes and so falls on the low end of the
recommended range of structure.

4. Chart ‘n’ Art: A Prototype Self-Disclosing Tool

Chart ‘n’ Art is a programmable information graphics tool developed by the author to
explore a variety of self-disclosure mechanisms and to provide a vehicle for evaluating
the educational effects of disclosures on users. This system is by no means the ultimate
self-disclosing tool, but rather represents a region in the self-disclosing design space
characterized in Chapter 3. This chapter describes drawing, programming, learning,
and exploring with Chart ‘n’ Art. The next chapter will present various perspectives on
the system including its implementation, the evolution of its interface, and its
relationship to the self-disclosure design space and existing tools. Readers seeking
more detailed information on Chart ‘n” Art and its language should consult the

Chart ‘n’ Art User Manual (DiGiano, in preparation) as well as the SK8 User Guide
(Apple Computer Inc., 1996b).

4.1 Drawing with Chart ‘n’ Art

At first glance, Chart ‘n’ Art looks like a standard Mac OS direct manipulation
drawing package such as MacDraw, with a tool palette, color palette, drawing window
and menus as shown in Figure 4-1. With its self-disclosure mechanisms disabled, the
system, in fact, behaves like a simple drawing package. Users create a shape by
selecting a tool from the palette and then dragging the mouse to form the outline of the
desired shape in the drawing window. Creating a polygon requires that users click the
mouse to indicate vertices; a double click closes the polygon. The currently selected
item in the color palette determines the interior color of new shapes. A new color can be
assigned to a shape by selecting the object and then selecting a new item in the color
palette. Chart ‘n’ Art does not currently allow users to change the border color of
shapes via direct manipulation.

Shapes can be resized by selecting the item in the drawing and dragging one of eight
small black “handles” which appear on the shape’s perimeter. Shapes can be moved by
dragging the item to a new position. Holding down the shift key constrains the
movement to either the horizontal or vertical plane depending on the direction of the
initiating drag gesture. Users can also rearrange shapes via menu commands. Layering
menu commands change the stacking order of shapes. Distribute menu commands
move selected shapes so that there is equal distance between their centers either
measured horizontally, vertically, or diagonally.

Chart ‘n” Art provides the standard Mac OS Edit menu commands for cutting,
copying, and pasting shapes. There are two additional menu commands to facilitate
copying items: The first is the Duplicate menu command that makes a single copy of the
selected shape or shapes and offsets the new shapes above and to right of their
originals. The second is the Duplicate Special menu command that brings up a dialog
box (Figure 4-2) where users can specify an arbitrary number of desired copies and the
exact horizontal and vertical offsets to be used for distributing the duplicates.

42

% File Edit Arrange Uiew Windows Language Data
Untitied-1

Drawing
Window

Interaction
Pane

History
List

set the height of
"zet the bottom of Rectangle 1 in Drowlindow to 2"
| "set the fillColor of suery Rectongle whose height

Figure 4-1. Chart ‘n’ Art’s basic windows, palettes and menus. Except for the
Language window at the bottom, the system looks like a basic drawing package
such as MacDraw.

Figure 4-2. The Duplicate Special dialog box used for specifying numbers of
desired copies and the offsets for distributing the new shapes.

4.2 Programming with Chart ‘n’ Art

Like its predecessors SchemePaint (Eisenberg, 1995) and SchemeChart (Eisenberg &
Fischer, 1994), Chart ‘n’ Art is a programmable application with programming
language features that complement direct manipulation operations. Unlike its
predecessors, Chart ‘n’ Art’s architecture allows it to be programmed through a
variety of languages, making it possible to compare and contrast the learnability of

43

various end-user programming languages. Currently only SK8Script and Lisp
disclosures are supported. As mentioned earlier, SK8Script is an interpreted, object-
oriented, English-like language related to AppleScript and HyperTalk. Although
SK8Script and Lisp have a very different syntax, the operations typically used in
Chart ‘n” Art are specified with similar keywords in both languages. For simplicity’s
sake, this report will present examples only in the SK8Script language and illustrate
system interaction with the SK8Script interpreter.

Users can edit and evaluate SK8Script expressions in the Language window shown in
Figure 4-3. Typing an expression into the Interaction pane of the Language window
and clicking the Execute Line button (or pressing the Enter key) causes that expression
to be evaluated. Previously executed expressions accumulate in the history list at the
bottom of the window. These history entries can be copied and edited or combined to
form new expressions. Selecting a history entry automatically copies the text of the
previous expression into the Interaction pane for reuse. Selecting multiple history
entries sends a concatenation of their corresponding expressions to the Interaction pane.

|=et the fillColor of every Rectongle whose4héi§hiw>

"set the height of Rectangle 1 in Drawldindow to
| "set the bottom of Pectangle 1 in Droudindow to 2"
i 'set the fillColor of every Rectangle whose height > 20 in Droullindow to Red” ‘

Figure 4-3. The Language window where users can view disclosures and enter
expressions to be executed.

4.2.1 Chart ‘n’ Art’s Enriched SK8Script

The programming language available to Chart ‘n’ Art users is actually an enriched
version of SK8Script with extra facilities for manipulating graphical objects. There are
also a few modifications to standard SK8Script to support the most typical graphics
operations. These additional language features were kept to a minimum, since the goal
of Chart ‘n” Art was to explore mechanisms for improving the learnability of the
existing language, not enhancing the design of the language itself.®

To understand how one uses SK8Script for managing drawings, it helps to be familiar
with the language’s underlying object model called the SK8 Object System. This object
system is prototype-based, meaning that any object can be a template for creating new
objects, obviating the need for object classes. Objects encapsulate data in the form of
“properties” and procedures in the form of “handlers.” To facilitate graphics operations,
the SK8 Object System contains “Actor” objects which have properties for position,
color, size, etc. and handlers for drawing themselves, dealing with mouse and
keyboard input, and so on.

® For an in depth discussion of the potential power of well-designed domain-enriched
languages see (Eisenberg, 1995).

44

The direct manipulation tools in Chart ‘n’ Art’s drawing palette are in effect creating
new instances of Actors and installing them into the drawing window. Alternatively,
users can perform the same operation with Chart ‘n” Art’s special programming
language function, make. Make creates a new Actor of a given type and installs it into
the front-most drawing window (unless a container is specified). Users can specify the
initial properties of the new actor using ‘with’ clauses. For example, the following
expression creates a new line and provides its initial end points:

make LineSegment with head {20, 30} with tail {100, 115)

Note that coordinates in SK8Script are simply lists of two values with lists delimited by
curly brackets and each item within the list separated by commas. If users do not
indicate the position of a new Actor, the default location is the center of the visible part
of the drawing window. If no color is specified, the default fillColor is the currently
selected item in the color palette. Make currently can create instances of the following
SK8 Actors: Rectangle, RoundRect, Oval, LineSegment, and Polygon, corresponding
to each of the shapes that appear in Chart ‘n’ Art’s tool palette.

Once Actors are installed in a Chart ‘n’ Art drawing window, users can refer to one or
more of the shapes via SK8Script in a variety of ways. The most common method is to
- use what is called a “selection expression.” Selection expressions provide a powerful,
consistent way to identify a single object or a “collection” of objects. Selection
expressions include a source, filter, selector, and preposition. The source can be any
expression that evaluates to a collection of objects, although most often in

Chart ‘n’ Art it is the front-most drawing window, referenced by the global variable
Drawwindow.” When the source of a selection expression is a window, only the Actors
within that window are searched for a match. The filter limits such a search to objects
that are of a specific type or objects that pass an arbitrary test. The selector chooses a
particular item or subset of items from the filtered source. Finally, the choice of
preposition can provide added guidance for the selection, although for most

Chart ‘n” Art applications only the keyword ‘in’ is used.

Consider the following selection expression:
Rectangle 2 in DrawWindow

In this example, the source is DrawWindow, the front-most Chart ‘n’ Art drawing.
The filter is the type filter Rectangle, so the search is limited to only rectangle shapes
in the drawing. The selector is the index 2; that is, it selects the second object returned
by the search. The result is a reference to the second rectangle drawn by the user in the
front-most drawing window. If, instead, one wanted a collection of all the rectangles in
the drawing, the selector every could be used:

every Rectangle in DrawWindow

The keyword ‘every’ causes the selection expression to return a list of all the members
of the source that match the filter. If one wanted all the shapes in the drawing, the type
filter could be changed to the wildcard keyword ‘item’:

" Technically, the DrawWindow variable does not refer to a window, but an instance of
invisible Actor within a drawing window called ‘PaperSurface.” Shapes drawn via direct
manipulation or the ‘make’ function are installed so that their direct container is a
PaperSurface, not a window. The reason this is done is that drawing windows contain
extra actors such as scroll bars and axes that would complicate selection expression. A
PaperSurface contains no such clutter, only the shapes that users might want to search.

45

every item in DrawWindow
SK8Script also supports test filters made up of Boolean expressions:
every item whose fillColor = Red in DrawWindow

This selection expression returns all of the shapes in the drawing that are red.

Selection expressions in Chart ‘n” Art are particularly useful in combination with the
assignment operator, set. The set operator has a number of variants. The simplest
stores a value in a variable:

set x to 15
But set can also be used to change the value of an object’s properties:
set the fillColor of Oval 3 in DrawWindow to Green

Here, set takes a property name, £i11Color; a target object—in this case the result of
the selection expression “Oval 3 in DrawWindow”; and a new value, Green. This is
the most common technique for making changes to a shape in Chart ‘n’ Art. A similar
assignment statement can be used to change the attributes of more than one shape. For
instance,

set the bottom of every Rectangle in DrawWindow to 0

will make the bottom edge of each rectangle in the drawing have a vertical position of 0,
thereby aligning the bottoms of all of the rectangles. In this document, such an

- assignment statement is called a “one-to-many mapping.” There is also a “many-to-
many mapping” which for a particular property assigns a list of values in turn to a list
of objects In SK8Script this type of assignment is 1ndlcated by the words “every item
in” followed by a list of values at the end of the statement:®

set the bottom of every Rectangle in DrawWindow to every item in {0,
10, 20, 30}

In this example, the bottom edge of the first four rectangles in the drawing are assigned
to the vertical positions 0, 10, 20, 30 respectively.

SK8Script’s one-to-many and many-to-many mapping expressions provide a powerful
and succinct way to specify iteration implicitly. These expressions enable users to
automate a surprisingly large number of drawing tasks with Chart ‘n’ Art. However,
there are also occasions for explicit iteration. Most explicit iteration is accomplished
through the repeat command which comes in a number of forms, the most common of
which appear in Table 4-1.

4.2.2 An Example

Chart ‘n” Art’s language facilities are what make the system particularly suited for
information graphics. To illustrate the utility of programming with Chart ‘n’ Art let us
return to the Daily Camera case study in Chapter 2. Recall that a designer at the Camera
is responsible for generating a floating bar chart each month to depict daily temperature
ranges from the previous month. In actuality the data for the temperature chart consists
of highs and lows for each day in the month, but to keep things simple for now let us

* Many-to-many mappings using a single assignment statement are available in SK8
version 0.91 and earlier. The forthcoming version SK8 1.0 will not have this feature.
Instead, users will be required to nest an assignment statement within a loop.

46

Table 4-1. Some of the more common forms of explicit in SK8Script using the
repeat command.

Application Example
perform commands a fixed repeat 5 times
number of times beep
end repeat
iterate over a sequence of repeat with i from 2 to 5
numeric values set the fillColor of Oval i to Red
end repeat
perform commands for each repeat with shape in DrawWindow’s selection
item in a collection set the left of shape to 20

end repeat

suppose the data is lows and ranges for each day. For example, instead of being given
a list of highs and a list of lows such as

{17, 3, 18, 57, ...}

{‘—61 _16/ '13, O, ...}

suppose that the designer instead received the following two lists:
{-6, -16, -13, 0, ...}

{23, 19, 31, 57, ...}.

As an additional simplification, let us assume that the designer has already constructed
an appropriate set of axes that can be pasted into the back layer of the chart.

As a final note, SK8Script programmers should be aware that the language has been
altered slightly to accommodate the drawing needs of Chart ‘n” Art users. One
important change is that Chart ‘n” Art shapes use a standard Cartesian coordinate
system, not a “screen coordinate” system. This means that objects that are closer to the
top of the screen than other objects have a greater y coordinate. For technical reasons,
most Actor properties which are dependent on screen coordinates are not reimplemented
in Chart ‘n” Art to work with mathematical coordinates. Instead, Chart ‘n’ Art
Actors have alternative properties which work with mathematical coordinates as listed
in Table 4-2. Users can refer to all other Actor properties such as height, width,
left, right, top, and bottom with the original SK8Script names.

The central task for the designer then, is to place and size the appropriate number of
temperature range bars to go on top of the axes. A generally effective strategy in

Chart ‘n” Art is to produce all of the graph elements either by direct manipulation or by
SK&Script and then adjust them for their exact values later. This allows the users to
take advantage of the implicit iteration in many-to-one or many-to-many mapping
expressions. In the case of the temperature chart, the designer might initially create the
bars by either (a) dragging out the shape of a model bar and using the Duplicate Special
menu command (see Figure 4-2) to create the other necessary bars, or (b) evaluating an
iteration expression which generates the bars automatically. There are a number of
programming solutions for this second option. For instance, for the month of February
1996, the designer could use the following expression to generate 29 6-unit-wide
rectangles, one for each day in the month (1996 is a leap year):

47

Table 4-2. Some mathematically-based coordinate properties of Chart ‘n’ Art
Actors. These properties are distinguished from the standard Actor properties by the
fact that they refer to a coordinate system where y-values increase going up.

Applicable

Property Actors Description

bounds all A four item list denoting the bounding rectangle of a shape.
(Typically {left, top, right, bottom})

center all : A two item list denoting the Cartesian coordinate of the middle
of a shape.

head LineSegment A two item list denoting the Cartesian coordinate of the starting
point of a line segment.

tail LineSegment A two item list denoting the Cartesian coordinate of the ending
point of a line segment.

vertices Polygon An evenly-sized list consisting of alternating x- and y-

coordinates for each point in a polygon.

repeat 29 times
make Rectangle with width 6
end repeat

The designer would then need to use the Distribute menu command or the
distributeHorizontally function to spread out the rectangles along the horizontal axis.
The result would look like Figure 4-4a. A somewhat more complicated iteration
expression could distribute the new rectangles automatically:

repeat with i from 1 to 29
make Rec¢tangle with bounds {(i-1) * 8, 50, (i-1) * 8 + 6, 0}
end repeat

In this case, each rectangle is created with a slightly different bounds property where
the bounds is a list of four values denoting the left, top, right, and bottom of the shape.
Since the left and right values are dependent on the loop variable ‘i’, rectangles would
be placed with successively increasing horizontal positions, thereby distributing them
across the horizontal axis automatically.

The next step is for the designer to adjust the vertical position of each bar to correspond -
to the lows data for the month of February. Using SK8Script’s many-to-many mapping
expressions, this requires only a single statement (assuming a 1:1 scale):

set the bottom of every Rectangle in DrawWindow to -
every item in {-6, -16, -13, 0, 42, 45, 35, 51, 41, -
29, 19, 25, 27, 39, 25, 17, 28, 45, 37, 39, 38, -
34, 24, 30, 29, 17, 11, -3, 2}

The result would look like Figure 4-4b. Finally, the designer could use the same many-
to-many mapping structure to stretch the bars to their proper size with respect to the
range data for the month of February:

set the height of every Rectangle in DrawWindow to -
every item in {23, 19, 31, 57, 13, 14, 25, 13, 29, 21, -
37, 35, 39, 21, 26, 50, 37, 16, 24, 24, 25, 29, -
26, 37, 32, 8, 10, 24, 35}

The end result appears in Figure 4-4c.

48

Figure 4-4. Steps in creating The Daily Camera’s temperature chart using
programming in Chart ‘n’ Art. Compare the result in (c) to the actual chart printed
by the Camera which is reproduced in Figure 2-4.

The entire process for creating the temperature chart could be further simplified through
procedural abstraction. In SK8Script, the designer could declare a new function as
follows:

on temperatureChart of lowlist, rangelist
repeat with i from 1 to the length of lowList
make Rectangle with bounds {(i-1) * 8, 50, (i-1) * 8 + 6, 0}
end repeat
set the bottom of every Rectangle in DrawWindow to -
every item in lowList
set the bottom of every Rectangle in DrawWindow to -
every item in rangelist
end temperatureChart

Certain details have been left out of this example programming solution including
scaling and axes creation. Certainly, a commercial programmable charting tool would
need primitives for dealing with these issues. However, this example does illustrate key
techniques useful for a variety of charting tasks. Many of these techniques could be
used in the charting tasks highlighted in the three other case studies described in
Chapter 2.

4.3 Learning with Chart ‘n’ Art

Although the language-based solution in the previous section illustrates the potential for
programming information graphics, Chart ‘n” Art was developed not so much to
support programming in this context, but to investigate self-disclosure mechanisms for
helping users learn a programming language in the first place. As shown in Table 4-3,
there are four basic self-disclosure mechanisms in Chart ‘n’ Art: mouse disclosures,
selection labeling, alternatives disclosures, and possibility disclosures. The self-
disclosure techniques illustrate the different roles for disclosures, use a variety of
presentational methods, are triggered by a number of different events, and are designed
to teach various types of programming knowledge. The goal was to transform almost
every form of user interaction with Chart ‘n” Art into a potential opportunity for
learning programming. '

This section describes each of Chart ‘n” Art’s four self-disclosure mechanisms in turn.
To illustrate how the mechanisms work and what can be learned from them, this section
presents hypothetical interactions between Chart ‘n’ Art and a fictitious designer named
Alice. Alice works for The Daily Camera and among other things is responsible for
creating the monthly temperature chart. In these hypothetical situations Alice will
initially employ the actual direct manipulation techniques currently used at the Daily

49

Camera to produce the temperature charts. These real-life techniques are described more
fully in Chapter 2.

Table 4-3. Characteristics of the four basic self-disclosure mechanisms in
Chart ‘n’ Art, including the target programming knowledge each is intended to
“teach. (d.m. stands for “direct manipulation.”)

Mouse Selection Alternatives Possibility
Disclosures Labeling Disclosures Disclosures

Role echoing identifying echoing advertising
monitoring

Presentation mouse text selection label language language window

window

Trigger mouse selection d.m. | selection
movement completion

Target shape selection functional properties

Programming properties, expressions, alternatives, inaccessible by d.m.,

Knowledge assignment, test filters, nesting, mapping
coordinate referential sequencing expressions
system alternatives

4.3.1 Mouse Disclosures

A mouse disclosure in Chart ‘n’ Art is a single line of text that appears just below and
to the right of the cursor as users create and manipulate shapes by dragging the mouse
as shown in Figure 4-5. This text is a SK8Script expression that users could evaluate in
place of the action they are currently performing by direct manipulation (an example of
echoing). Disclosures include make expressions for generating new shapes, set
expressions for assigning new values for a shape’s dimensions, and move expressions
for adjusting the position of one or more shapes. These expressions often contain
references to a shape’s coordinates, either its four item bounds list, or its two item
center list (see Table 4-2.) As users drag a shape’s outline, these coordinates are
continuously updated (an example of monitoring). Such feedback provides users with a
convenient guide for accurately positioning or sizing shapes. The educational goal of
mouse disclosures, however, is to expose users to the shape property vocabulary, the
syntax for assigning values to these properties, and the Chart ‘n’ Art coordinate
system.

To illustrate mouse disclosures, suppose Alice is producing a temperature chart for the
month of March. Unfortunately, as is sometimes the actual case, Alice cannot locate
March’s file from the previous year, so she must modify a different month, say,
February. Now since March has more days than February, Alice must first add extra
bars to the chart. As she drags the outline of a new bar, a make mouse disclosure
appears by her cursor as shown in Figure 4-5a, indicating the expression she could use
to generate the shape by programming instead of direct manipulation. The four
coordinates in the mouse disclosure update continuously as she drags the mouse. The
new bar is too wide, so Alice next drags the shape’s middle left handle to make it
narrower, causing the ‘set” mouse disclosure in Figure 4-5b to appear by her cursor.

o

‘make Relrtangle with bounds {235, 67, 246, 11}

5@ thv:%f:'%f,»z idth of Rectangle 30 in Draw'Window to 6.0

(b)

Figure 4-5. (a) A make mouse disclosure which appears while Alice is dragging the
outline of a new bar. (b) A set mouse disclosure which appears while Alice is
adjusting the width of the new bar. The mouse text reads, “set the width of
Rectangle 30 in DrawWindow to 6.0”

4.3.2 Selection Labeling

A selection label is a line of identifying text that appears just below the shape or shapes
currently selected in a Chart ‘n” Art drawing window as shown in Figure 4-6. The text
is a valid SK8Script expression for referring to the active selection. For a single item
selection what appears is a simple selection expression (see Section 4.2.1) using a type
filter and index, such as “Oval 3 in DrawWindow.” Multiple-item selections can have
a variety of labels from “every item in DrawWindow” (when all shapes are selected)
to more complex selection expressions using type filters and/or test filters. By default,
the system will first try and use a simple type filter (e.g. “every Oval in
DrawWindow”); if this is not possible it will try a test filter using color (e.g. “every
item whose fillColor = Blue”), and then test filters referring to other properties.
When a selection expression cannot be found for multiple items, Chart ‘n” Art simply
labels them with a list expression containing a selection expression for each individual
item. A selected group of shapes requiring a long list label is instead given the label
“every item in the selection of DrawWindow.” The educational goals of
selection labeling is to (a) familiarize users with the SK8Script selection expression
syntax in general, (b) expose users to particular test filters that provide a powerful
means of searching shapes, and (c) make users aware of the variety of ways to refer to
objects with the programming language.

Figure 4-6 depicts selection labeling just after Alice has selected the bar representing the
first day of the month and then after selecting the first seven days in the month. The

51

(b)

Figure 4-6. (a) A selection label appearing beneath Alice’s current single-item
selection. (b) A selection label referring to the first seven bars in the chart.

latter selection label is a selection expression with a test filter that searches for shapes to
the left of 55 on the horizontal axis.

4.3.3 Alternatives Disclosures

An alternatives disclosure in Chart ‘n” Art is a set of equivalent expressions that
appear in the Interaction pane of the Language window after a direct manipulation
action is completed. Similar to mouse disclosures, these expressions provide options
for accomplishing the same operation via SK8Script instead of the mouse. But since
alternatives disclosures occupy a separate scrollable window pane, their role is to
expand on mouse disclosures and provide additional language feedback. Disclosures
include the make, set, and move expressions in mouse disclosures and also more
sophisticated expressions involving mapping, iteration, nested statements, sequenced
statements, and temporary variables. Aside from exposing users to these specific types
of expressions, the educational intent of alternatives disclosures is to make users aware
that (a) there is often more than one way to accomplish a task using programming, and
(b) expressions can be composed into arbitrarily complex statements by nesting
statements and by sequencing multiple lines of code.

To illustrate alternatives disclosures, let us return to Alice’s last direct manipulation
action in Section 0. The moment Alice lets go of the mouse to fix the width of her new
bar, the language window displays an alternatives disclosure consisting of two
alternative expressions as shown in Figure 4-7. Below each SK8Script alternative is
explanatory text in italics, which is typically automatically generated from a language
definition file, although custom explanations are possible. Suppose Alice continues

52

adapting the February chart for March and adds the final bar by copying the last one she
just drew with the mouse using the menu command Duplicate. This triggers the
following alternatives disclosure illustrating nesting, sequencing, and temporary
variables:

move copy Rectangle 30 in DrawWindow by {16, 16}
-- Makes a copy of Rectangle 30 in DrawWindow and returns the duplicate.
-- Then offsets the position of that result by {16, 16}.

set dup to copy Rectangle 30 in DrawWindow

move dup by {16, 16}

-- Makes a copy of Rectangle 30 in DrawWindow and returns the duplicate.
-- Then assigns the variable dup to that result.

-- Offsets the position of dup by {16, 16}.

Alternatives disclosures showing iteration and mapping are also possible. If, say, Alice
decided to change the colors of all the bars by selecting them and clicking on light green
in the color palette, she would see the following alternatives in the language window:

set the fillColor of every item in DrawWindow to LightGreen
-- Sets each shape's interior color to LightGreen.

set the fillColor of every item in DrawWindow to -

every item in {LightGreen, LightGreen, LightGreen, LightGreen, -
LightGreen, LightGreen, LightGreen, LightGreen, -
LightGreen, LightGreen, LightGreen, LightGreen, -
LightGreen, LightGreen, LightGreen, LightGreen, -
LightGreen, LightGreen, LightGreen, LightGreen, -
LightGreen, LightGreen, LightGreen, LightGreen, -
LightGreen, LightGreen, LightGreen, LightGreen, -
LightGreen, LightGreen, LightGreen}

Sets each shape's interior color to each item in {LightGreen,
LightGreen, LightGreen, LightGreen, LightGreen, LightGreen,
- LightGreen, LightGreen, LightGreen, LightGreen, LightGreen,
- LightGreen, LightGreen, LightGreen, LightGreen, LightGreen,
- LightGreen, LightGreen, LightGreen, LightGreen, LightGreen,
- LightGreen, LightGreen, LightGreen, LightGreen, LightGreen,
-- LightGreen, LightGreen, LightGreen, LightGreen, LightGreen),
-- respectively.

repeat with 1 in every item in DrawWindow
set the fillColor of i1 to LightGreen
end repeat

-- Sets to LightGreen. for each element in each item in DrawWindow

4.3.4 Possibility Disclosures

A possibility disclosure is a list of expressions that appear in the Interaction pane of the
Language window after users select one or more shapes with the mouse. This type of
advertising disclosure describes possible ways in which users could potentially operate
on the selected shapes using programming. This disclosure mechanism is designed to
expose users to expressions that might appear infrequently, if at all, in other forms of
feedback such as mouse disclosures or alternatives disclosures. Indeed, many
operations in Chart ‘n” Art such as setting the attributes of a shape’s border
(frameColor and frameSize) or the weight of a line segment (1ineSize) are currently
possible only through programming. Therefore expressions like these, which would
never be echoed as a result of direct manipulation, can still be revealed to users. In

53

{=zet the width of Rectangle 30 in Drawdindow to 6.0
|| —— Seds dhe widdh of the shepe to 4.0,

get the bounds of Rectongle 30 in Orowlindow to {235.0, 67.0, 241.0, 11.0}
Seds dhe let, dop, right snd bottom boundaiies of the shape o
12F5.0, 670, 2.0, 11.eY .

‘/ the width of Rectangle 30 in Drowlindow to 6.0
set the width of Fectangle 30 in Drawlindow to 11.0
| set the width of Rectangle 30 in Drawdindow to 6.0 ‘

Figure 4-7. An alternatives disclosure in response to Alice narrowing one the bars
with the mouse. Note that the Interaction pane label changes to indicate that the
text below contains, “alternative expressions for the last action.”

addition to describing properties inaccessible by direct manipulation, a possibility
disclosure on a group of shapes reveals one-to-many and many-to-many mapping
expressions for adjusting the group’s attributes en masse. The choice of selection
expression used to refer to such a group of objects is determined by the same set of
rules used for selection labeling. Like alternatives disclosures, expressions generated
by a possibility disclosure are each annotated with explanatory English text.

Let us return to Alice’s temperature chart to describe possibility disclosures in action.
Suppose Alice now has all of the bars she needs for March. Her next task is to adjust
their bottoms and tops for the March highs and lows data. Recall that the technique
actually used at the Daily Camera is to select each bar, one at a time, and drag its ends
to the appropriate vertical positions. When Alice selects the first bar in Chart ‘n’ Art,
the following appears in her Language window’s Interaction pane (explanations have
been removed to conserve space): ' : :

set the frameColor of Rectangle 1 in DrawWindow to Black

set the fillColor of Rectangle 1 in DrawWindow to LightGreen

set the frameSize of Rectangle 1 in DrawWindow to {1.0, 1.0}

set the bottom of Rectangle 1 in DrawWindow to -6.0

set the right of Rectangle 1 in DrawWindow to 6.0

set the top of Rectangle 1 in DrawWindow to 17.0

set the left of Rectangle 1 in DrawWindow to 0.0

set the width of Rectangle 1 in DrawWindow to 6.0

set the height of Rectangle 1 in DrawWindow to 23.0

set the center of Rectangle 1 in DrawWindow to {3.0, 5.5}

set the bounds of Rectangle 1 in DrawWindow to {0.0, 17.0, 6.0, -6.0}
Note that each expression in the disclosure demonstrates how to operate on a different

property of the selected rectangle. The values being assigned to each property represent
the current state of the selected shape. In other words, evaluating any of the

54

set the frameColor of every item whose right < 55.0 in DrawWindow to Black

set the fillColor of every item whose right < 55.0 in DrawWindow to —
LightGreen

set the frameSize of every item whose right < 55.0 in DrawWindow to -
{1.0, 1.0}

set the bottom of every item whose right < 55.0 in DrawWindow to -
every item in {-6.0, -16.0, -13.0, -0.0, 42.0, 45.0, 35.0}

set the right of every item whose right < 55.0 in DrawWindow to =
every item in {6.0, 14.0, 22.0, 30.0, 38.0, 46.0, 54.0}

set the top of every item whose right < 55.0 in DrawWindow to -
every item in {17.0, 3.0, 18.0, 57.0, 55.0, 59.0, 60.0}

set the left of every item whose right < 55.0 in DrawWindow to -
every item in {0.0, 8.0, 16.0, 24.0, 32.0, 40.0, 48.0}

set the width of every item whose right < 55.0 in DrawWindow to 6.0

set the height of every item whose right < 55.0 in DrawWindow to -
every item in {23.0, 19.0, 31.0, 57.0, 13.0, 14.0, 25.0}

set the center of every item whose right < 55.0 in DrawWindow to -
every item in {{3.0, 5.5}, {11.0, -6.5}, {19.0, 2.5}, {27.0, 28.5}, =
{35.0, 48.5}, {43.0, 52.0}, {51.0, 47.5}}

set the bounds of every item whose right < 55.0 in DrawWindow to -
every item in {{0.0, 17.0, 6.0, -6.0}, {8.0, 3.0, 14.0, -16.0}, =
{16.0, 18.0, 22.0, -13.0}, {24.0, 57.0, 30.0, -0.0}, =
{32.0, 55.0, 38.0, 42.0}, {40.0, 59.0, 46.0, 45.0}, =
{48.0, 60.0, 54.0, 35.0}}

Figure 4-8. The possibility disclosure after Alice selects the first week’s worth of bars
in the temperature chart.

expressions immediately following a possibility disclosure should have no effect.on the
current state of the drawing window.

A more interesting possibility disclosure appears when Alice selects the first week’s
worth of bars, as shown in Figure 4-8. In this case, Chart ‘n” Art discloses the same
set of properties, but the simple assignment statements are replaced with one-to-many
and many-to-many mapping expressions operating on all seven bars. The one-to-many
mappings represent properties such as £i11Color for which the seven bars share the
same value. Many-to-many mappings, on the other hand, denote properties such as
height for which the seven bars have different values. Note that the list of values in
the many-to-many mapping for the bot tom property matches the list of low
temperatures for the first week in February.

4.4 Experimenting with Chart ‘n’ Art

The disclosures described in the previous section are intended not only to offer users
programming language learning opportunities, but also to provide them with
“scaffolding” (after Bruner, 1975) for actually employing SK8Script in their design
activity. Expressions that appear in the Language window’s Interaction pane as the

55

result of a disclosure are editable and executable as if the user had typed the text into the
pane for themselves. All disclosures which appear in the Interaction pane, with the
exception of possibility disclosures, are also added to the history list at the bottom of
the Language window. By making past and present disclosures immediately accessible
and editable, Chart ‘n” Art seeks to encourage users to experiment with its
programming language. This does not mean that users need to abandon their familiar
mouse-based interaction style. Rather, users are free to gradually weave programming
expressions into their design strategies. As demonstrated by the analysis of the case
studies in Chapter 2, the effective use of programmable applications often requires a
balance of language-based and mouse-based interaction.

Experimentation with programming in Chart ‘n’ Art can initially involve simply
changing a value in a disclosed expression and then evaluating it. For example, after
Alice drags the left edge of the bar depicted in Figure 4-5b, the disclosure “set the
width of Rectangle 30 in DrawWindow to 6.0” would appear in the Language
window (the actual width value would depend on the final state of the rectangle upon
release of the mouse). Even without completely understanding the expression, she
could then edit it in the Interaction pane and replace 6.0 with a different value. Pressing
the Execute button would confirm that the expression indeed changed the width of the
bar. Alice might then make a mental note of her discovery and continue on with her
(direct manipulation of the chart. Or she might try further editing in the Interaction pane,
say by changing the rectangle number 30 to 29 or even changing the property name
from width to height. Alice could use these kinds of experiments to verify hypotheses
developed from watching disclosures or to try out variations she had never seen before.

Once users become comfortable with some statements, they can begin to employ the
expressions to perform certain design subtasks more accurately and (possibly) more
quickly. To begin using expressions does not necessarily mean to have memorized their
syntax or vocabulary. A common strategy adopted by some Chart ‘n” Art users is to
first perform a desired action inaccurately with the mouse for the sole purpose of
triggering a disclosure which generates a particular expression in the Interaction pane.
This expression acts as a template which they then edit to achieve the desired accuracy.

Possibility disclosures facilitate a different strategy for experimenting with

Chart ‘n” Art’s language. Recall that this disclosure mechanism causes various
possible expressions to appear in the Language window’s Interaction pane after one or
more shapes are selected. Just like alternatives disclosures these expressions can be
edited and executed, singly or in combination. For example, when Alice selected the
first bar in her chart in Section 4.3.4, a number of set expressions appeared in the
Language window. She could have edited and evaluated, say, the expression involving
the ‘bottom’ property so that the bottom of the bar bottom was moved to the low
temperature for the new month she was plotting. This example illustrates how
possibility disclosures can become a means for generating expression templates for -
more obscure statements that would rarely, if ever, appear in alternatives disclosures
resulting from direct manipulation. For users who are wondering if an appropriate
expression exists for what they need to do, possibility disclosures not only show them
their options, but give users the opportunity to try them out immediately.

5. Chart ‘n’ Art in Perspective

The previous chapter described the basic features of Chart ‘n’ Art and the disclosure
mechanism that can help users learn its programming language. To provide a more
complete picture, this chapter looks at Chart ‘n’ Art from a number of different
perspectives including how it evolved in response to formative feedback, its
implementation, its relauonshlp to the dimensions of educational dlsclosures and,
finally, how it compares to existing systems.

5.1 Formative Feedback and the Evolution of Chart ‘n’ Art

Feedback from informal evaluations by colleagues, a field study described in

Chapter 2, and a feasibility study and prehmmary evaluatlon to be discussed in
Chapter 6 influenced significant changes in Chart ‘n’ Art over the two-and-a-half years
of its development. The earliest version of Chart ‘n” Art, pictured in Figure 5-1,
disclosed only Lisp, not SK8Script, and featured programmable turtles and a
spreadsheet for storing both data and chart elements. This section describes

Chart ‘n” Art from an evolutionary perspective by outlining some formative incidents
leading from this early “Lisp-based” prototype to the current “SK8-based”
implementation described in the previous chapter and used in the summative assessment
explained in Chapter 6.

5.1.1 Designers resisted spreadsheets

Chart ‘n” Art was originally designed around a spreadsheet metaphor with cells able to
contain not only textual and numeric data, but charts and chart elements such as data
point markers (see Figure 5-1). Even Chart ‘n” Art programs could reside in individual
cells with nearby cells acting as local variables. One of the chief advantages of this
unifying spreadsheet theme was the fact that a single spreadsheet file could contain
everything needed to recreate a chart using a short program that acted on collections of
cells. This metaphor was called into question, however, after users complained the
interface was too unusual. Most damning was the fact that designers in the CU
publications department field study showed resistance to using spreadsheets in the first
place, even for storing raw data. It became clear that much more research was needed to
make the spreadsheet metaphor easy to use, and the decision was made to focus instead
on improving Chart ‘n’ Art’s disclosure mechanisms within a more familiar drawing
environment.

5.1.2 Choice of syntax could interfere with learning

Evaluation of the original Lisp-based version of Chart ‘n’ Art identified a number of
common syntactic problems users had with the system’s end-user language. For
example, the feasibility study revealed that users often forgot to quote the names of the
programmable turtles used for generating charts and extracting values from the
spreadsheet. Another problem was with the powerful mapping expression set-
multiple, which, although simplified from the standard Lisp mapcar expression, still
proved confusing for subjects in the preliminary evaluation. These same users also had
trouble matching parentheses when editing longer expressions within the small
interpreter window provided for them in the experiment. Although one could argue that
there are long term advantages to users learning the strange but relatively uniform Lisp
syntax, an overriding concern was Chart ‘n’ Art’s ability to demonstrate measurable
learning effects in a short term experiment. What was needed was a more readable end-

58

File Edit Eval Tools Windows

G

Gallery Worksheet

Applications Chart'n' Art Transcript

S e |

Untitied Drawing

X4

Hniitied Sheet

i

: = . = Transcript
? {go—forward : F (defun transcript
10 {wi th-transeript-off

{go-absolute 2.27 1.23 'TRIAMGLE »

? {turn—-north “stampd
HIL

(go~absolute 2.12 1,27 'TRIANGLE)
? {go—forward 10 "sctampX
10

go-absolute B8 48 "STAMP
tget-value ‘TRIANGLE>
(get-cell "TRIANGLE >
{go~forward 1 'TRIANGLE>
{get-value 'TRIAMGLE>
(get-cel! 'TRIANGLED
(go—forward 1 'DROPPER»
(mouse~click 'STAMP>
(go-forward 10 "STAHF

? {go—forward 10 "stamp)
10

? (turn—-south “stamp)
MIL :
7|

CHA| Idie

RN

A e o

Figure 5-1. An early version of Chart ‘n’ Art with programmable turtles (stamp,
pencil, turtle, Bart Simpson™) and a spreadsheet (upper left) for storing both data
and chart elements. Turtles in the spreadsheet could traverse data sets and extract
values while turtles in drawing window could place chart elements. .

user language with limited special characters, and, preferably, a more English-like
syntax. This was a major impetus for reimplementing Chart ‘n” Art in SK8, since the
more readable SK8Script language could be used in place of Lisp.

5.1.3 Lack of robustness could hinder formal evaluations

The Lisp-based Chart ‘n’ Art system tested in the preliminary evaluation had serious
reliability problems which, even with constant experimenter vigilance, resulted in
frequent interruptions and an occasional reboot. Clearly, this would be problematic for
any system being evaluated, but it was especially troubling for Chart ‘n” Art, given
that its disclosure mechanisms were supposed to support learning-while-doing in a way
that was relatively unintrusive. Part of the solution was to limit features in the
reimplementation to those that would be critical for the summative assessment. For
instance, the ability to save charts and graphs was put off until after the experiment,
even though this had been available in the Lisp-based version. This, combined with
rigorous pilot testing, enabled Chart ‘n’ Art to perform almost flawlessly for the thirty
subjects in the summative evaluation, never requiring a reboot.

5.1.4 Designers wanted tight control over their tools

The SK8-based version of Chart ‘n” Art originally provided on-screen forms for
specifying standard chart types such as bar charts and x-y plots. Linked to each of these -
forms was a code view that automatically updated with every change to the form, new

or modified expressions appearing in red. However, observers pointed out that this

type of monitoring disclosure offered a very different kind of language learning
experience that would require its own testing methodology. Perhaps more importantly,
the chart creation mechanisms underlying these forms also violated the clear need for

59

low-level design control demanded by the field study informants. Recall that the
professional graphic designers who were interviewed preferred to draw chart elements
using the primitive shape drawing tools in packages such as Adobe Illustrator rather
than have parts generated automatically by a charting-type program. In the end, the
chart forms were left out of the version of Chart ‘n” Art used in the summative
assessment.

5.1.5 Multiple disclosure modes were confusing and effortful

Subjects in the preliminary evaluation and casual users of the Lisp-based Chart ‘n’ Art
sometimes missed seeing important disclosures such as set-multiple because they
were in the wrong disclosure “mode.” This earlier version of Chart ‘n’ Art provided
either alternatives disclosures or possibility disclosures, but not both. Users had to
select between these two feedback modes with a pop-up menu in the Language window
shown in Figure 5-2. Users in the preliminary evaluation seemed either reluctant or
forgetful about switching back and forth between the two modes. The fact that users
needed to take such an active role in the learning process, i.e. by changing the pop-up
menu setting, was also inconsistent with the overall learning-while-doing philosophy
behind Chart ‘n” Art. Finally, as is typical with most moded systems, users had
trouble remembering which mode was currently active as was evidenced by subjects in
the preliminary evaluation who expressed surprise at seeing certain disclosures only to
realize later that they were in the wrong disclosure mode. In response to the above
problems, the two disclosure modes were merged into one for the SK8-based version
of Chart ‘n’ Art. By default, users would see “Mouse Action Equivalents,” but
selection of objects with the mouse would automatically trigger a “Hints About Your
Selection” disclosure.

. {moke-rectangle :position ‘{34 138) :size '(44 42))

Creates a rectangle with the properties position and size. Withoutany
| |properties, the make-rectangle function creates a default shape.

CHA| Busy

Figure 5-2. The Language window of the Lisp-based Chart ‘n’ Art system.
Disclosures appeared in the middle text pane of the window with an explanation for
each disclosure in the bottom pane. The pop-up menu beneath the explanations
pane selected between two different disclosure modes. The horizontal “Alternatives”
scroll bar to the left of the pop-up menu allowed users to browse alternative
disclosures. Users could only enter new expressions in the upper Interpreter pane.

60

5.1.6 Alternatives scroll bar was used only infrequently

Another reason that users were not exposed to certain disclosures was that the Lisp-
based Chart ‘n’ Art prototype could only show one of possibly many alternative
disclosures at a time. To see other alternatives, users had to adjust the horizontal scroll
bar in the Language window, pictured in Figure 5-2. Without prompting, however,
subjects in the preliminary evaluation were rarely motivated to manipulate the scroll bar
in order to view other alternatives. In addition, the scroll bar itself did not immediately
suggest to subjects in the preliminary evaluation that it could be used to switch to
different alternatives. Instead, many in the preliminary evaluation thought the scroll bar
would simply adjust their view of the disclosure shown in the middle text pane. The
solution adopted in the SK8-based Chart ‘n” Art system was to output all alternatives
and their explanations to a single vertically scrollable text pane as shown in Figure 5-3.
Users could choose to make the pane any size they wanted, depending on how many
alternatives they were interested in seeing at one time. The semantics of the vertical
scroll bar, then, were much clearer: adjusting it would allow one to view the
alternatives listed above or below the current window of disclosures.

|s=t the height of Rectangle 1 in FrontDrowing to 135.0‘[
|~ seds the height of the shape %0 133.0 -

zet the bounds of Rectangle 1 in FrontDrawing to {13.0, 163.0, 21.0,
| - seds e smallest rectangle that containg the entive shape 2 {13.0, 16308, 21.0, 25.0)

£

¢

Execute Line

i zet the height of Rectangle 1 in FrontDrowing to 22.0
==t the height of Rectangle 1 in FrontDrawing to 135.0

Figure 5-3. The simpler and more compact Language window used in the SKS-
based Chart ‘n’ Art system. As many alternatives as will fit (and their explanations
as comments) are listed in the scrollable Interaction pane at the top of the window.
At the bottom is the History which replaces the Transcript window in the Lisp-based
version of Chart ‘n’ Art. ‘

5.1.7 Disclosures could clutter designers’ screens

Disclosure presentations in the Lisp-based Chart ‘n” Art system occupied a variety of
text panes spanning two separate windows: the Language window in Figure 5-2 and a
scrolling Transcript window which maintained a complete list of all disclosures shown
in the current session. Although three out of the five subjects in the preliminary
evaluation felt the disclosure windows would not get in the way of their work, one
commented that it might become problematic with screens smaller than 17 inches
diagonal. Indeed, informal discussions with potential users revealed concerns that
Chart ‘n” Art’s disclosure mechanisms might clutter limited screen space. Clearly, a
more compact presentation of disclosures would allow users to better focus their
attention on the information they needed to learn. It also would also mean that
disclosures could be less distracting for users trying to get their work done. The
Language window in the SK8-based Chart ‘n” Art shown in Figure 5-3 with its
Interaction pane and History pane was designed to combine the functionality of the
Transcript window and previous Language window into a single compact view.

61

5.1.8 Mechanisms for reusing disclosed expressions were awkward

One subject in the preliminary evaluation complained that reusing disclosures required
an “awful lot of button clicks.” He was right. Reusing expressions in the Language
window for the Lisp-based Chart ‘n’ Art (see Figure 5-2) meant manipulating the
alternatives scroll bar to find the desired disclosure, then pressing the up arrow button
in the middle of the window to introduce a disclosure into the Interpreter pane at the top
of the window. An alternative approach involved copying and pasting text between the
Transcript window and the Interpreter pane. Either solution was cumbersome and
clearly did not encourage designers to explore the end-user language being disclosed.
The solution was the multipurpose Interaction pane found in the current SK8-based
version (see Figure 5-3) which enables users to edit and execute the original disclosures
directly without having to copy the text into a separate view.

5.1.9 Users were unsure how to refer to drawing objects

A common misconception by many users of the early versions of Chart ‘n’ Art was
that programming language expressions for managing shapes, such as for coloring or
moving objects, would automatically operate on the current selection. This was not an
unreasonable assumption, given that disclosures usually only appeared after a user
selected an object and performed some direct manipulation action. The object was
‘usually still selected after the disclosures appeared, so these expressions could, in
theory, reexecute properly if they did indeed use the current selection as an argument.’
To make matters worse, this assumption apparently led some users to interpret explicit
object references such as Rectangle-1 in the disclosure “ (set-height Rectangle-1
20)” as a parameter meaning “the currently selected rectangle.” The confusion over
drawing object reference inspired the development of the selection labeling disclosure
technique used in the SK8-based Chart ‘n’ Art. Selection labels were designed to
increase users’ awareness of the SK8Script for explicitly referring to drawing objects, a
very useful class of expressions. The correspondence between these selection labels
and any disclosed expressions involving the labeled object highlighted to users that
shape management expressions did not necessarily operate on the current selection.

5.1.10 Users did not necessarily attend to disclosures

Of considerable concern was the fact that some users did not necessarily attend to
expressions appearing in the disclosure window(s) in the Lisp-based and early versions
of the SK8-based Chart ‘n’ Art. In the feasibility study, for instance, when asked to
type a patticular command into the interpreter window, one subject resorted to trial and
error even though an example of the command was in plain view, but in a separate
disclosure window. It was also not encouraging that one of the informants in the CU
Publications field apparently had not noticed the simple disclosures appearing in the
margin of her active Adobe Illustrator window. As shown in Figure 5-4, Illustrator
displays the name of the current tool being applied to a drawing in the bottom left
margin of the window. Even when in the active window, it seemed users would not

* This is, in fact, characteristic of the expressions many “recordable applications”(see
Section 5.2) such as the MacOS Finder disclose. For example, when the author selected
the file for this chapter and chose Duplicate from the Finder menu, the MacOS Script
Editor recorded the following AppleScript program:

tell application "Finder"
select file "Chart 'n' Art in Perspective" of startup disk
duplicate selection

end tell

62

necessarily attend to disclosures. It was feared that the alternatives and possibility
disclosures in a separate Language window might by themselves be too subtle to have
measurable educational value in a short term study. These concerns were a major
impetus for the addition of mouse disclosures and to a lesser extent, selection labeling.
The goal was to ensure exposure to programming language expressions through
disclosures appearing not just in the active window, but by the mouse pointer within
the user’s current field of view. Clearly, these “in-your-face” tactics are not always
desirable, and should ultimately be under user control in any commercial self-disclosing
system.

Figure 5-4. Adobe Illustrator’s tool name disclosure appearing in the bottom left
corner of the drawing window.

5.1.11 Users were confused about the meanings of possibility disclosures

Initial pilot tests of the SK8-based Chart ‘n” Art prior to the summative assessment
revealed fairly consistent confusion over the semantics of possibility disclosures. As
they do in the current version of Chart ‘n’ Art, possibility disclosures during the initial
pilot tests listed property setting expressions relating to the active selection. However,
unlike the current version, the values being assigned to each property represented
random perturbations of the current state. Evaluating any of these possible expressions
would then cause the selected shapes to change slightly, say from yellow to purple, or
from 100 units tall to 90 units tall. The reasoning behind this approach was that by
executing possibility disclosures without modification users could immediately see how
certain expressions could help them alter their drawing. But pilots indicated that they
expected the values to represent the actual state of the drawing, not its potential state.
Some wanted to use possibility disclosures to verify that they had adjusted a shape
properly by direct manipulation. For example, after widening a shape with the mouse,
they wanted to be able to then select the shape, find the width-setting expression in the
possibility disclosure, and check the value against the intended width. Rather than try
and educate users about the unintuitive semantics of possibility disclosures, possibility
disclosures were altered to match users’ expectations. The current version of

Chart ‘n’ Art now discloses expressions whose values represent the current state of
the selection. Evaluating these expressions without modification has no effect on the
drawing.

5.2 Chart ‘n’ Art Implementation

As already noted, Chart ‘n’ Art has undergone substantial revision from an early Lisp-
based version developed in Macintosh Common Lisp to a recent SK8-based
reimplementation developed with the prototype SK8 authoring environment from Apple

63

Mouse Disclosures
Selection Labels

CLSs ‘ .

\ High-Level Echo Disclosures
SimpleDraw / Possibilities Disclosures

/ CLSs Language Interpreter

Direct Manipulation 1

New Expressions

Figure 5-5. The three main components of the SK8-based Chart ‘n’ Art
architecture.

Computer, Inc. Both run on Mac OS computers. This implementation discussion
focuses on the current SK8-based version.

The Chart ‘n” Art architecture consists of three main components as illustrated in
Figure 5-5: a drawing tool called SimpleDraw, a high-level event receiver, and a
language interpreter. SimpleDraw maintains the drawing windows, palettes and most
menu items, and is responsible for generating mouse disclosures and selection labels in
response to low-level direct manipulation events. The high-level event receiver
monitors interaction with SimpleDraw and presents alternatives and possibility
disclosures when appropriate. The language interpreter allows users to modify
disclosed commands or type new ones and then execute them in SimpleDraw. These
commands are sent to SimpleDraw in the form of Canonical Language Structures
(CLSs), abstract high-level events designed especially for self-disclosing systems.
Canonical Language Structures are also used to transmit information from SimpleDraw
to the high-level event receiver. When SimpleDraw detects the completion of a direct
manipulation action it broadcasts a CLS to any interested receivers and sends itself a
copy of the CLS so that the command specified by the user’s gesture is carried out.

The above data-flow model is similar in many ways to that of a “recordable application”
as defined by Apple Computer, Inc. in its Open Scripting Architecture (OSA)

(Apple Computer Inc., 1995) for Mac OS. In fact, CLSs are supersets of Mac OS’s
high-level events, Apple Events. This means that SimpleDraw can be recorded and
controlled by Apple’s Script Editor and other Apple Event compatible tools such as
UserLand Frontier (UserLand Software Inc., 1996). Like an Apple Event, a CLS is
an application independent, programming language neutral representation of an
operation which can be converted later into an actual expression. Chart ‘n’ Art makes
use of a separate disclosure service to transform CLSs into disclosed expressions as
shown in Figure 5-6. This service consults a language definition database based on the
Apple Event Terminology resource standard, also part of OSA.

The OSA model was chosen as a foundation for Chart ‘n” Art, since OSA’s modular
architecture could, in theory, allow disclosing to take place independently of the design
tool.'” In practice, the OSA model needed a number of extensions to support

* An inspiration for this approach is Eager (Cypher, 1993) which uses OSA to enable
recordable applications to be programmed by demonstration with minimal

64

application independent self-disclosure—some of which were done for Chart ‘n’ Art,
others were left for future work to be described in the concluding chapter. Canonical
Language Structures represent one of the OSA extensions that was implemented. They
have the following advantages over standard OSA Apple Events:

Disclosure ¢
. Services
Mouse Disclosures

Selection Labels ¢ Language Definition
\ High-Level Echo Disclosures
T possiiltes i |
impleDraw ossibilities Disclosures

Figure 5-6. The role of the disclosure services component in helping the drawing
tool, SimpleDraw, and the high-level event receiver present feedback in a variety of
programming languages.

e CLSs provide an additional “alternatives” parameter for listing equivalent
expressions in the case of alternatives disclosures and possibilities in the case of
possibility disclosures.

e CLSs can specify language structures not just events. Apple Events are limited to
describing procedure invocation, object specification, and the getting and setting of
object properties. CLSs can specify variable assignments, looping constructs, and
numeric expressions to name a few possibilities.

e CLSs can be arbitrarily nested. This allows a CLS to specify a complex expression
such as '
set dup to copy Rectangle 30 in DrawWindow
where a copy operation is embedded within a variable assignment.

e CLSs provide an additional “explanation” parameter for providing a custom
explanation for an expression.

Using the more expressive CLS, Chart ‘n’ Art’s SimpleDraw and high-level event
receiver components can disclose more interesting and more educational programming
language statements than would otherwise be possible using Apple Events and yet still
remain application and language independent. These components send a CLS to the
disclosure services module which uses the language definition database to translate the
CLS and its alternatives into the target programming language and automatically
generate explanatory text for each CLS unless it has a custom explanation. The
disclosure service then returns text strings for each expression and for each explanation
for the components to display either by the mouse, in the selection label, or in the
Language window.

modification. Similar in spirit is the Application Independent Demonstration
Environment (Piernot & Yvon, 1993) which provides an OSA-like architecture for
programming by demonstration systems under the Smalltalk environment.

65

Although CLSs allow disclosures to be specified in a language independent fashion and
explanations can be generated automatically by disclosure services, responsibility
currently still rests with the SimpleDraw module to actually create the appropriate
CLSs. Not only must SimpleDraw construct the CLS to send to itself to carry out a
direct manipulation command (the definition of a “factored” application in OSA), but it
also must generate any alternative CLSs that should be disclosed along with the primary
CLS. Clearly this is an unreasonable burden for developers of anything but a prototype
system such as Chart ‘n” Art. The concluding chapter describes some techniques
envisioned for minimizing the modifications needed to render tools self-disclosing.

5.3 Dimensions of Chart ‘n’ Art Disclosures

Another perspective on Chart ‘n’ Art is to analyze its self-disclosure mechanisms in
terms of the dimensions of educational disclosures described in Chapter 3. Figure 5-7
uses these dimensions to summarize how Chart ‘n” Art matches up to the suggested
profile of an educationally effective self-disclosing system. Let us discuss each
dimension in the figure one at a time.

5.3.1 Adaptivity

The current SK8-based version of Chart ‘n” Art does not adapt its disclosures to suit
the needs of each user individually. Identical direct manipulation actions trigger
identical disclosures, regardless of the user’s programming background and regardless
of any prior experience using Chart ‘n’ Art. The Lisp-based Chart ‘n’ Art was
somewhat adaptive in that the system kept count of the various types of disclosures
shown to each user and employed these statistics to determine which of the alternative
expressions to show first. All alternatives were ordered in increasing difficulty as best
as possible using a one-dimensional scale. After a user had seen one alternative a
certain number of times, the system assumed the user understood this expression, and
automatically began showing the next most difficult alternative first. A similar “light-
weight user model” could easily be implemented for the current version of

Chart ‘n” Art. However, the utility of such a simplistic approach is questionable. More
sophisticated user modeling was considered beyond the scope of this research and is
already a well-researched topic in educational computing, especially for the teaching of
programming languages (see the discussion of the Lisp tutor, Smalltalk scaffolding,
Lisp-Critic, and COACH in Section 5.4.4). '

5.3.2 Explorability

The ease with which users can experiment with Chart ‘n’ Art disclosures gives the
system a high degree of explorability. Most disclosed expressions appear in the
Language window’s Interaction pane where they can be immediately edited and
evaluated. Previous disclosures can be recalled from the history list and sent to the
Interaction pane with a single click of the mouse. Explanatory text accompanies
alternatives- and possibility disclosures to help users make sense of the expressions.
Undoubtedly the most useful addition to these facilities would be the ability to undo the
effects of the most recently evaluated programming expression as is possible with some
programming by demonstration systems such as AIDE (Piernot & Yvon, 1993). Also
useful would be hypertext links to related expressions and more in-depth explanations.

66

Low High
Explorability }

Suggested range
(Chart ‘0’ Art's range

Intrusiveness
Relevance
Scope
Structure &

Figure 5-7. Chart ‘n’ Art’s match to the suggested profile of an educationally
effective self-disclosing system.

5.3.3 Intrusiveness

Chart ‘n” Art’s four main disclosure mechanisms each have a different degree of
intrusiveness. Mouse disclosures are probably the most intrusive in that expressions are
presented at the cursor, directly in the user’s field of view. Next are selection labels
which, although not necessarily in the user’s field of view, can clutter the drawing area.
In some ways, these labels are more troublesome than mouse disclosures in that they
persist as long as a selection is active. Users who are annoyed by this, however, can
always deselect and the most recent selection label will disappear. Less intrusive are
possibility disclosures which appear in the Language window, completely separate
from any drawings. This window can be made any size and positioned in the least
obstructive part of the screen to minimize distractions. A current drawback of
possibility disclosures is that because of their computational overhead, they slightly
reduce the system’s responsiveness to mouse actions made directly after selecting one
or more shapes. This could be improved by making disclosure printing interruptable.
Finally, the least intrusive disclosure mechanism is alternatives disclosures which use
the same separate Language window, but do not incur the performance penalties of
possibility disclosures.

Overall, Chart ‘n’ Art’s disclosures are relatively unintrusive, especially when
compared to systems which require explicit user initiative (e.g. users must request to
see disclosures) or acknowledgment (e.g. users must dismiss informational dialog
boxes). Ideally, users should be able to selectively enable/disable Chart ‘n’ Art’s
disclosure mechanisms via preferences dialogs, perhaps similar to the intrusiveness
slider used in (Nakakoji et al., 1994).

5.3.4 Relevance

Disclosures in Chart ‘n” Art are implicitly relevant to user activity because the
programming expression feedback is in direct response to interaction with the system.
Probably most relevant are mouse disclosures since they continuously display
equivalent expressions to what the user is currently doing by direct manipulation. Next
are alternatives disclosures and selection labels since they present expressions
corresponding to the most recent operation or selection. Least relevant are possibility
disclosures, since their output is a sequence of expressions for acting on an essentially
random list of object properties.

The above characterization of Chart ‘n” Art’s self-disclosure mechanisms measures
relevance by temporal proximity to associated user interaction. This is reasonable, if the
goal is simply that users learn from disclosures, since temporal proximity has been
shown to be important for learning from examples and analogical reasoning (Lewis,

67

1988; Lewis, Hair & Schoenberg, 1989). Another possible relevance measure is how
close the disclosed expression are to the kinds of statements that would complement
rather than replace direct manipulation operations. Using this measure, possibility
disclosures are more relevant than the other Chart ‘n’ Art mechanisms, since they
present language-based operations that users could potentially apply to the active
selection, but that might not be achievable with the mouse.

5.3.5 Scope

Chart ‘n” Art disclosures mainly cover a limited, but useful set of SK8Script
expressions: shape properties, selection expressions, assignment statements, mapping,
and iteration. These expressions were identified by analyzing real-life design tasks such
as those described in Chapter 2. A more rigorous “programming walkthrough” (Bell et
al., 1994) of a variation of the temperature chart task at 7he Daily Camera helped
further guide the choice of disclosed expressions. This analysis is discussed further in
Chapter 6. In addition to disclosing a number of useful programming techniques,
Chart ‘n” Art also attempts to familiarize users with a variety of ways for composing
expressions. Unlike simple macro recording which shows only one-line procedure calls
(as in Apple’s Script Editor), Chart ‘n” Art’s alternatives disclosures reveal sequenced
statements, nested expressions, and programming plans involving temporary variables.
Also unique to alternatives disclosures is the display of multiple equivalent expressions
which further increases the scope of programming language expressions seen by users.

5.3.6 Structure

Disclosures in Chart ‘n’ Art currently have little, if any, structure. That is, there is no
explicit attempt to sequence programming language expressions in a particular order.
Disclosed expressions and—in the case of alternatives and possibility disclosures—
their accompanying explanatory text cannot assume that any other expressions had been
seen previously. One should note that certain implicit patterns in the use of

Chart ‘n’ Art’s drawing tools does lead to a number of short predictable sequences of
disclosures. For instance, only after creating a model shape do users duplicate it; and
only after creating a number of shapes, do users typically distribute them horizontally,
vertically, or diagonally. Disclosures for duplicating and distributing are indeed more
complicated and less frequent than those for creating, position, and sizing shapes, so
one could argue that there is accidental structure to Chart ‘n’ Art disclosure
mechanisms. On the other hand, it is questionable whether the basic disclosures that
novice users see while creating and adjusting individual shapes prepare them
sufficiently for the more advanced expressions that they encounter shortly afterwards
when attempting to duplicate or distribute those shapes. The time frame for these
“accidental” sequences may simply be too rushed. The philosophy behind

Chart ‘n” Art is that the most important sequence for disclosures to follow is the
sequence of user interaction with the system, not a rigid programming language
curriculum. Responsibility is left with the user to link together the appropriate language
learning opportunities afforded by disclosures into a personally meaningful, long term
learning experience.

5.4 Related Systems

This final perspective on Chart ‘n” Art examines related systems in the fields of
programmable applications, programming by demonstration, and intelligent tutoring
systems.

68

5.4.1 Programmable Applications for Information Graphics

Programmable applications are becoming increasing prevalent as software tools become
more complex and user communities mature. For instance, as mentioned in the
introductory chapter, Microsoft has now integrated its Visual BASIC language into the
most recent versions of its personal productivity software including Word and Excel.
Early on, this report described AutoCAD, one of the pioneering programmable
applications with some rudimentary self-disclosing features. Other commercial
programmable applications that have long supported end-user programming include
Director (Macromedia Inc., 1996a) and Mathematica (Wolfram Research Inc., 1996).
With Chart ‘n” Art as a comparison, let us now consider two programmable
applications in particular, SchemeChart and Excel, which also support information
graphics.

SchemeChart. SchemeChart (Eisenberg & Fischer, 1994) was a predecessor to
Chart ‘n” Art which included a direct manipulation interface for editing charts by hand
and an integrated Scheme interpreter for customizing built-in graphing functions or
creating entirely new kinds of charts. Unlike Chart ‘n” Art, SchemeChart’s direct
manipulation operations primarily supported painting at the pixel level; no tools were
provided for creating or manipulating primitive shapes such as rectangles and ovals. On
the other hand, SchemeChart offered a richer language than Chart ‘n’ Art with
graphing-specific expressions for creating components of charts including points and
axes and methods for composing these elements into a complete illustration.

SchemeChart had some basic facilities for familiarizing the user with this language. For
example, in the spirit of the Explainer system (Redmiles, 1993), users could select a
sample chart from a palette and view an annotated code listing of the Scheme function
used to create the sample. In contrast, Chart ‘n’ Art explores the potential for users to
learn incrementally from shorter examples relating to direct manipulation activity.
SchemeChart users could also enter a “query mode” in which the selection of a chart
element caused the system to disclose a list of related procedures for operating on that
element. This technique was the precursor to Chart ‘n’ Art’s possibility disclosures.

Visual Basic and Excel. The Microsoft Excel 5.0 spreadsheet now integrates a
version of Visual Basic which allows users to automate everyday tasks, add custom
features, and even create complete applications. Visual Basic can not only be used to
organize and format data sets, but also to specify drawing objects such as rectangles,
ovals, and lines. Users can create and manage these same objects by directly
manipulating drawing tools available in a special Excel toolbar. In macro record mode,
users can set up Excel so that while they employ the mouse to manipulate shapes,
equivalent Visual Basic commands are echoed to a separate window. Although this
feedback is similar to alternatives disclosures in Chart ‘n” Art, Excel’s macro
recording facilities are not specifically intended to support end-user programming
learning. Indeed, Excel’s Visual Basic User Guide claims “...you don’t have to be a
programmer to create macros; in fact, you don’t even have to learn Visual Basic to put
macros to work” (Microsoft Corp., 1995). Instead, macro recording is provided
primarily as a means for specifying simple sequences of operations without typing or
even looking at Visual Basic. Only through the clever use of Excel’s viewing
commands can users set up the dual window display necessary for seeing macros as
they are being recorded—a trick not mentioned in the manual.

Even when users can view Excel’s disclosures, their learning opportunities are limited.
With few exceptions, the scope of macros generated during recording encompasses
only single-line procedure calls operating on the current selection. Exploration is limited

69

to editing the macro and executing it from the start. Users cannot evaluate individual
expressions that appear in the macro being recorded nor does Excel attempt to annotate
recorded expressions with explanatory text. An advantage Excel has over

Chart ‘n” Art is its high-level charting functions for creating standard graph types such
as column and line charts. These functions do appear in macro recordings; however,
users cannot inspect or customize them as was possible in SchemeChart.

5.4.2 Programming Graphics By Demonstration

A number of systems allow users to create custom charts through a different type of
programming known as “programming by demonstration” or “programming by
example.” With this approach users indicate their intentions by presenting examples of
partial or complete charting solutions to the system. The system is often able to infer
from these examples a limited set of declarative constraints or procedures which
simplify the production of similar graphs.

Sage. The Sage system (Roth, Kolojejchick, Mattis & Goldstein, 1994) is comprised
of three main components: SageBrush, for assembling graphics from primitive objects,
SageBook, for browsing previously created graphics, and SAGE, a knowledge-based
presentation system that automatically designs graphics and also interprets users’
specifications. In SageBrush users employ direct manipulation to identify the graph
elements for a particular design and to indicate how the properties of these graph
elements map to their data. The resulting “sketch” is sent to SAGE where a final
illustration is generated. Both sketch and final output can be stored in SageBook for
later reuse.

The sketch created in SageBrush is actually an abstraction of the desired chart typically
consisting of an “encoder” defining a spatial organization (e.g. network, table, grid), a
single instance of each graph element (e.g. mark, bar, line, text box) called a
“grapheme,” and symbols indicating connections to the data. For example, a simple line
chart would consist of a 2D spatial coordinate display encoder and a single arbitrarily
positioned line representing all of the line segments in the chart. By dragging cells from
Sage’s built-in spreadsheet onto a graphical view of the properties of the representative
line, a user could indicate how to map the data to the line chart.

In essence, SageBrush’s sketch is the “program” which declaratively specifies a
design. There is no need for a second language-based view on user actions, because
programming and drawing are one in the same activity. On the other hand, it is
questionable how approachable designers would find this type of drawing since it is not
What You See Is What You Get (WYSIWYG). The reliance on spreadsheet skills is
also a concern in light of the hesitation designers in the case studies in Chapter 2
showed toward such tools. Finally, Sage’s graphical language of encoders and
graphemes lacks the ability to perform numerical calculations useful for, say,
interpolating points in a line chart to create a smooth curve; and the ability to define
imperative procedures for performing animation or generating fractal patterns.

Gold. Graphs and Output Laid-out by Demonstration (Gold) (Myers, Goldstein &
Goldberg, 1994) is similar to Sage in that drawings made by users also serve as
specifications for an automatically generated complete chart. Like Sage, Gold also relies
critically on users’ ability to interact with a built-in spreadsheet. The main difference
between the systems is that Gold infers more from the user’s drawing than Sage does
of a SageBrush sketch. For instance, in creating a column chart, when a user colors a
sample bar, Gold assumes this color should be used for the rest of the bars. When the
bar is placed on the horizontal axis, Gold infers that any linked data should map to the

70

height of the bar. If the user then selects the bar and then a cell in the spreadsheet, Gold
decides that the height of the bar should be determined by data in the selected cell.
Finally, when the user draws a second bar Gold infers that a multiple-column chart is
intended and automatically generates what it determines to be the remaining bars and
maps all the data in the column of the previously selected cell to their heights.

The fact that the final chart is generated in the same space as the user’s initial drawing
brings Gold somewhat closer to WYSIWYG than Sage, but Gold’s inferencing abilities
can lead to a number of surprises. For instance, Gold will usually go back and adjust
the attributes of the examples drawn by the user, even if the user never intended for
them to be “neatened.” It is also possible for Gold to chart the wrong data entirely,
although Gold does support means for users to directly or indirectly edit the system’s
assumptions and force it to refine its inferences.

5.4.3 Recordable Programming by Demonstration Systems

Closely related to Chart ‘n” Art are recordable programming by demonstration systems
which emphasize a dual view of user interaction: a highly graphical view which users
operate by direct manipulation, and a more abstract textual or graphical-textual
“recording” of a formal program. This combination fits the definition of self-disclosure,
since such systems are volunteering information about their programming language. A
number of systems fit this description including SmallStar (Halbert, 1993), Pursuit
(Modugno, Corbett & Myers, 1995), and to a limited extent GNU Emacs (Stallman,
1981). This section focuses on a few of these systems specifically designed for the
creation of complex graphics by demonstration.

Juno-2 and Geometer’s Sketchpad. Juno-2 (Heydon & Nelson, 1994) and
Geometer’s Sketchpad (Jackiw & Finzer, 1993) are constraint-based systems for
generating everything from fever charts to fractal patterns. Users typically begin an
illustration by creating points and lines via direct manipulation tools. The tools in both
systems are more primitive than those in standard drawing packages with no support
for creating rectangles or other polygons with a single mouse gesture. Additional
points, e.g. midpoints, are specified in relation to existing points and lines. Users can
also indicate relations between existing objects, for example to specify that lines should
be parallel. Meanwhile, a second window is designed to echo the corresponding textual
representation of these objects and constraints using a declarative programming
language. The language behind both systems also allows users to name objects and
employ imperative constructs such as procedure invocation, enabling iterative and
recursive patterns useful for repeating graphical elements and fractals. Unique to Juno-
2 is the fact that the graphical and textual views are linked in both directions: users can
directly edit the program text which automatically triggers changes in the graphics
window.

Like Excel, the linked views in Juno-2 and Geometer’s Sketchpad do not seem to be
designed with language learning specifically in mind. Since the linked textual view
provides a complete specification of the graphics, the scope of these disclosures can be
extensive. However, unlike possibility disclosures in Chart ‘n’ Art, the systems make
no attempt to expose users to expressions beyond what they have specified by direct
manipulation. Also lacking is the explanatory text that appears in Chart ‘n” Art’s
Language window or linked sample code as in SchemeChart.

Mondrian and Chimera. Mondrian (Lieberman, 1993) and Chimera (Kurlander,
1993) are programming by demonstration systems that record a “comic strip” rather
than a textual program. Users of both systems create examples using standard direct

71

manipulation drawing tools such as for producing rectangles and ovals. As an
illustration is produced in an editor window, these systems present an enfolding
sequence of representative screen snapshots in another window with textual annotations
for additional information such as command names. These “comic strip” sequences can
be named and parameterized for later reuse. In Mondrian, users must inform the system
that they wish to create a command prior to performing the drawing operations that are
to be abstracted and “neatened.” Chimera comic strips, on the other hand, are
generalized after the fact by selecting the frames to be incorporated into a procedure.
Although users can employ comic strip programs in Mondrian and Chimera to automate
repetitive tasks such as aligning shapes or generating repeated shapes, neither system
seems to provide means for mapping data to graphical elements. Since the languages
for programming both systems is almost entirely graphical, it is unclear how a user
would provide such data without violating the consistency of their program
representations.

The developers of Mondrian and Chimera designed the comic strip feedback of both
systems to be highly readable and understandable by beginning users. Lieberman’s
approach includes a consistent “domino” design for both Mondrian’s tools and comic
strip frames, and the use of voice synthesis to describe the system’s inferences in
natural language. Kurlander and Feiner’s graphical histories for Chimera evolved over
several years (as described in Kurlander & Feiner, 1993) to the current form which
makes use of zooming, highlighting, and detail suppression to draw users’ attention to
the most important elements of a comic strip. These techniques for improving the
readability of disclosures is lacking from Chart ‘n” Art. On the other hand

Chart ‘n” Art offers additional feedback mechanism such as possibility disclosures,
mouse disclosures, and selection labeling that are absent from Mondrian and Chimera.

5.4.4 Learning Environments for Programming

Although all of the graphics tools described so far feature an integrated programming
language of one kind or another, none is specifically designed to support the learning of
that language. Indeed, it seems that Chart ‘n’ Art is unique in its emphasis on
language learning in the context of design tool use. However, Chart ‘n” Art is
certainly not the first software to support programming language learning in general.
An example of an early environment for programming language learning is the Spade-0
Logo system(Miller, 1982). Below some of the more recent contributions to the field
are compared to Chart ‘n’ Art.

Lisp Tutor. Anderson’s Lisp tutor (Anderson et al., 1995) is designed to
complement classroom instruction by providing students with a supportive environment
for working out a limited number of programming assignments. The system consists of
two main windows, one for the user to enter code and the other for the computer-based
tutor to present exercises and provide feedback. As the student enters a program, the
Lisp tutor checks each symbol to ensure the student’s code is following one of several
known solution strategies. So long as the student remains on one of these known
solution paths, the system simply acts as a structured editor by providing templates for
function calls and helping to balance parentheses. However, if the student enters an
improper symbol, the system immediately informs the student that there is a problem
and gives him or her the opportunity to cotrect it. Several such errors in a row cause the
system to offer the student an explanation for the problem and help in fixing it. The
student can also explicitly request these explanations and assistance at any time.

The Lisp tutor obviously represents a very different pedagogical approach from
Chart ‘n” Art. Students are not free to work on their own problems, but are instead

72

constrained to solving a fixed set of generic programming exercises.'’ On the other
hand, by limiting the problem sets, it becomes practical for domain experts (in this case
programming instructors) to build powerful production rules into the system that model
good solutions to the problems and anticipate common errors. In many respects, the
Lisp tutor matches the profile of an educationally effective self-disclosing system by
providing feedback that is highly adaptive, that can be further explored by users, and
that is highly relevant to the task at hand. However, the Lisp tutor lacks a surrounding
environment, such as Chart ‘n’ Art’s direct manipulation drawing facilities, that would
allow learners to apply newly learned programming skills in meaningful ways. The
responsibility for contextualizing abstract programming knowledge is apparently left to
the traditional instruction that the Lisp tutor is designed to accompany.

“Minimalist” Scaffolding for Smalltalk. To help users quickly learn Smalltalk
programming, Rosson, Carroll, and Bellamy developed a hands-on curriculum using a
customized Smalltalk environment (Rosson, Carroll & Bellamy, 1990). The curriculum
consists of a set of example-based learning scenarios grounded in the “minimalist”
model of instruction. According to Rosson et al.:

Minimalism emphasizes the streamlining of instructional materials, and a
task-oriented approach to determining and organizing the content of
manuals, tutorials or other educational artifacts. The goal is to support
users in accomplishing real and meaningful tasks quickly, and to allow
them to take advantage of their existing task knowledge in learning
about a new system.

The authors focused their particular Smalltalk curriculum on the understanding and
modification of a blackjack game program. To help users concentrate on the learning
activities, two scaffolding mechanisms were incorporated into the Smalltalk
environment: a special “Bittitalk” browser which limits classes and methods to only
those relevant to the blackjack implementation, and the View Matcher which provides
an integrated picture of the running blackjack application, including relevant
commentary.

As with the Lisp tutor, it is difficult to compare Rosson et al.’s Smalltalk learning
environment with Chart ‘n’ Art, as the systems represent very different educational
philosophies. The explicit goal of the Smalltalk curriculum is to enable learners to
develop code for an interactive application in four hours. Chart ‘n’ Art takes a less
specific, longer term view of learning as a by-product of the user carrying out everyday
tasks. On the other hand, by constraining the learning tasks, Rosson et al.’s Smalltalk
curriculum is able to stage the introduction of programming concepts, anticipate
problems, and provide detailed “canned” commentary within the scaffolded
programming environment.

Lisp-Critic and COACH. Lisp-Critic (Fischer, 1987) and COgnitive Adaptive
Computer Help (COACH) (Selker, 1994) are distinguished from the above learning
environments in that they are intended to provide educational support for arbitrary
programming projects. Users are free to pursue personally meaning problems in the

"' The following is a sample exercise from (Anderson et al., 1995):

Define a function called “create-list” that accepts one argument, which must
be a positive integer. This functions returns a list of integers between 1 and
the value of the argument, in ascending order.

73

Lisp language and the systems attempt to offer feedback in the form of suggestions for
more readable or more efficient code in the case of Lisp-Critic; and examples,
descriptions, or syntax in the case of COACH. Both systems construct a model of a
user’s programming experience based on analysis of their code and combine this
information with a Lisp knowledge base to adapt feedback accordingly. A major
difference between the two systems is that while Lisp-Critic requires users to take the
initiative and request a critique of their code, COACH is a self-disclosing Lisp
programming environment: as users type expressions, the system provides constant
feedback in an adjacent window pane to the editor.

Lisp-Critic and COACH share the same incremental learning philosophy embodied in
Chart ‘n” Art. Unlike Chart ‘n” Art, however, these systems provide little help for
beginning programmers, since users must be able to write some initial code before
Lisp-Critic or COACH can offer help. On the other hand, their ability to adapt to a
user’s level of expertise means that Lisp-Critic and COACH can better ensure that
novice programmers advance their skills.

6. Evaluating Self-Disclosure

An essential component of this report is the evaluation of the self-disclosure approach
to teaching end-user programming. This chapter reports on a controlled summative
assessment of Chart ‘n” Art designed to quantitatively and qualitatively measure the
nature of programming learning resulting from disclosures. As background to this
experiment, two prior studies are presented which helped assess the feasibility of the
self-disclosure approach and evolve the design of the Chart ‘n’ Art prototype.

6.1 Initial Studies

6.1.1 Feasibility Study

A feasibility study was designed to assess how much users would attend to
programming language disclosures and whether exposure to the disclosures would
indeed enable users to begin employing programming in a drawing tool. In 1993 a very
early version of Chart ‘n” Art that disclosed a limited number of turtle-geometry-based
Lisp expressions was tested on two subjects who were asked to create a few simple
diagrams using the system. Subject A was a medical student with no programming
experience, but significant familiarity with Macintosh and drawing programs. Subject B
was a computer science post-doctoral fellow, also with Macintosh experience. Each
subject was asked to follow a series of tasks involving first direct manipulation and
then eventually Lisp programming. A talk-aloud protocol was used to elicit their
thoughts during the session.

Subjects used the mouse to draw the silhouette of a tractor out of rectangles and ovals
as shown in Figure 6-1. They then entered values into a spreadsheet which would be
used to determine the positions of a series of small rectangles representing smoke
coming out of the tractor exhaust. While performing these tasks, Lisp commands
accumulated in a separate Transcript window (later called the Language window). Both
subjects seemed to notice the appearance of the text in the window, but neither took
particular interest in the meaning of the expressions. Subjects were then asked to use a
programming language statement (turn-south) that had not been disclosed but that
was similar to some of the expressions that appeared in the Transcript. The name of the
command was given, but not its arguments, or the proper order for operations and
operands. Nonetheless, Subject A was able to determine the appropriate syntax after
inspecting the transcript. Subject B, the one with Lisp programming experience,
surmised the expression without consulting the transcript.

Subjects were explicitly told about two more expressions, which again, because of the
Chart ‘n” Art’s limited scope at the time, had not appeared in any disclosures. They
were then asked to compose these expressions along with some that had been disclosed
into a short program to map the values in the spreadsheet into rectangles positioned
above the exhaust of the tractor. Both subjects made the important realization that they
had already accomplished a similar shape placement task by direct manipulation when
drawing the tractor itself. This time, both subjects studied the transcript window to
deduce the shape creation command (mouse-up ‘STAMP) and the command for _
specifying the location of the new objects (go-absolute). With mainly editing tips and
minor syntactic help (such as when to “quote” symbols) from the experimenter,
subjects were then able to combine these expressions with the ones that had been
explicitly divulged to create the desired effect. The final task asked the subjects to find
out about commands associated with two objects on the screen and write these down.

76

Xy
0 O
10 10
30 20
60 30

@) (b)

Figure 6-1. The target tractor drawing used in the feasibility study. The relative
positions of the small rectangles coming out of the exhaust were determined by
coordinates in a spreadsheet, as shown in (a).

Although subjects had initially been told how to inspect Lisp expressions related to
drawing objects by double-clicking on the shapes, both had to be reminded of this
technique.

The feasibility study provided encouraging results. Without explicit instruction,
subjects noticed the one-to-one correspondence between direct manipulation commands
and expressions appearing in the Transcript window and were able to make use of these
disclosures to write Lisp expressions that actually solved drawing problems. On the
other hand, the study also identified a number of critical interface and language design
issues that would have to be resolved before users could learn from and employ
disclosures effectively without assistance. For instance, could disclosures be designed
so that users might attend to them more readily without prompting? Could the language
be designed to be less ambiguous about when to quote symbols or perhaps avoid
quoted symbols altogether? Could expressions related to the status of existing drawing
objects be disclosed without explicit request (double-clicking) by users?

6.1.2 Preliminary Evaluation

A preliminary evaluation of a more complete implementation of the Lisp-based

Chart ‘n’ Art was conducted in the summer of 1995. This study had two goals: (1) to
gain feedback about the system design from users with varying programming
background and (2) to help develop a methodology for formally measuring educational
impact. Indeed, the study helped advance Chart ‘n” Art’s self-disclosure mechanisms
- by inspiring a complete rewrite of the software. Chapter 5 describes how the

Chart ‘n” Art interface evolved as a result of this evaluation and other feedback. The
study’s effect on the design of Chart ‘n” Art’s summative assessment is described in
Section 6.2.

Five employees at Apple Computer, Inc. were recruited to participate in the study via
company-wide email announcements. Four worked in software quality assurance
(SQA) and the fifth was from Apple’s research and development group. None of the
subjects were regular programmers, but all had some programming experience with
between 3 and 5 languages. Only the researcher had programmed in Lisp, the language
being disclosed by Chart ‘n” Art at the time. ’

Subjects first took a language pretest which asked them to describe the meaning of the
following Chart ‘n” Art Lisp expressions:

77

(make-line :start-point '(20 10) :end-point ' (30 35))
(move Rectangle-3 ' (20 40))
(get-prop Rectangle-1l :size)
(set-prop Oval-2 :fill-color *Green-Color*)
(set-multiple (list Oval-2 Oval-3)

:fill-color (list *Green-Color* *Red-Color¥*))

NP

Answers were deliberately restricted to a single line of text below each question.
Subjects were next acquainted with Chart ‘n’ Art through a brief tutorial that had them
draw a rectangle, duplicate it, move both shapes, and select some cells in

Chart ‘n” Art’s spreadsheet.

Subjects were next introduced to the bubble chart used by the CSCW researchers
described Chapter 2. Recall that circles or “bubbles” represent activities in a meeting,
the size of each circle proportional to the amount of time devoted to its corresponding
activity. Subjects were then presented with the data in Figure 6-2a in a Chart ‘n” Art
spreadsheet window. They were asked to produce the corresponding activity chart
using circles whose diameters (in pixels) were equal to the number of minutes spent in
each activity. A sample solution is shown in Figure 6-2b, but note that the textual labels
were not required. Throughout the charting task subjects were encouraged to talk
aloud, try things out, and only ask questions of the experimenter if stuck. After 10-15
minutes, subjects were asked to read a one-page handout that described how to interpret
the disclosures appearing in the Language window and how to reuse these disclosed
expressions. Subjects were instructed to continue working on the charting task. After a
total of 30 minutes, subjects were asked what they liked and disliked about

Chart ‘n” Art and then given a programming language posttest identical to the pretest.
When filling out the posttest, subjects had access to their pretest answers.

ACUVlty Minutes s Summaﬁze

Digress
Argue 34
Brainstorm 51
Clarify 15
Diagram 12
Digress 15 Clarify
Discuss 75
Note 10 ||
Rebut 23 | @Note
Rehash 8 | Discuss
Summarize 20 |f [}
Vote 12| Diagram
| Brainstorm
@) (b)

Figure 6-2. (a) Time spent in 11 different activities for a fictitious meeting that
subjects were asked to represent with a bubble chart. (b) An example solution for
the charting task. Note: subjects were only asked to draw the appropriately sized
circles; no labeling was required, nor were the positions of the circles specified.

78

Of the five subjects, only one from SQA did not complete the task. All were able to use
Chart ‘n” Art’s language to specify the exact size of one or more circles. However,
each subject adopted a different strategy:

* One typed separate make-oval expressions with a list of two numbers for the size
parameter, one for the height and one for the width, both equal to the number of
minutes for each activity. Had she discovered the diameter parameter she would
have needed to enter the number of minutes only once for each activity.

* The researcher, who had previously used Lisp, also did not see the diameter
property and adopted a similar approach with the exception that within his make-
oval expression he embedded calls to a spreadsheet function to automatically extract
the number of minutes for each activity. This spreadsheet function had been
disclosed earlier while he was browsing the spreadsheet.

* A third subject created a mode] oval, made 10 duplicates, and then used the set-
prop command to adjust the diameter of each to correspond to the data.

* The fourth subject used a similar technique, except the duplicates were created one
‘at a time.

* The remaining subject primarily used the mouse to draw each circle and adjust its
size until the disclosure showed he had matched its size to the value from the
minutes column of the spreadsheet. At the very end of the session, he began
reusing the disclosed resize function and typing in values from the spreadsheet.

Four subjects answered the pretest and posttest short answer questions; the fifth (from
SQA) ended the experiment before completing the posttest. Subjects’ pretest answers
were close to 100% correct with the exception of some confusion over question 5
regarding color mapping using the set-multiple command. Those who answered
both pretest and posttest showed little change between tests. In fact, for all four
respondents, answers to the posttest were almost word for word identical to the pretest.
Only question 5 showed significant improvement, and this for only two subjects. One
subject’s answers to question 4 actually worsened. '

All four subjects who answered the posttest questionnaire indicated that Chart n’ Art
disclosures helped them greatly to understand the system’s programming language.
Subjects did not agree on the value of the explanations for these disclosures. Three out
of the four subjects felt the Language window would seldom get in the way of their
work were they using Chart ‘n’ Art professionally. One of these commented that it
might become a problem with screens smaller than 17 inches diagonal.

The variety of solutions to the charting task in this preliminary evaluation of

Chart ‘n” Art was in some ways an encouraging result. It demonstrated that the system
could support a number of different approaches varying in their combination of direct
manipulation and language-based interaction. Users did not see certain disclosures, for
instance about the diameter property, but nonetheless learned enough from other
disclosures to complete or partially complete the charting task. The strategies they
adopted were not the most efficient; for example, no one used the infrequently-
disclosed set-multiple command for operating on all circles at once. However, the
few Lisp commands that subjects did learn about and use enabled them to draw more
accurately, if not more rapidly, than with a traditional direct manipulation drawing tool.
On the other hand, the variety of solutions made the evaluation of disclosure effects
difficult, especially between subjects. Since each subject used a different sequence of

79

mouse operations, they each were exposed to a different set of disclosures. It is not
clear, then, whether the pattern of language use was the result of differing exposure to
disclosures or individual differences in the ability to attend to and learn from
disclosures.

Clearly, the language pretest and posttest failed to provide useful data on the effects of
disclosure. The pretest proved to be too easy for all five subjects who, although they
had never before seen Chart ‘n” Art expressions, were able to successfully guess the
semantics of almost every expression. Because of this “ceiling effect” it is no surprise
that the posttests showed no significant improvement. The one consistent measure of
disclosure effects would seem to be subjects’ high opinion of the language learning
opportunities provided by the Chart ‘n’ Art, indicated in the posttest questionnaire.

6.2 Goals for the Summative Assessment

The feasibility study and preliminary evaluation provided an invaluable formative
assessment of Chart ‘n’ Art’s self-disclosure mechanisms, leading to a number of
non-trivial changes outlined in Chapter 5, including substituting SK8Script for Lisp as
the system’s end-user language. The preliminary evaluation in particular demonstrated
that users could effectively employ disclosures to improve the accuracy of their
drawings. However, due to both the design of the software being tested and the
methodology used for this experiment, the study failed to directly address the question
posed by the thesis of this report: Do well-designed self-disclosing systems have an
educational impact on their users?

The summative assessment was designed to more carefully measure educational
outcomes—specifically, in the case of Chart ‘n’ Art, to assess the nature of
programming learning resulting from disclosures. In particular, the summative
assessment sought to address three critical questions left unanswered by the preliminary
evaluation: :

I. The incidental learning question. What can users learn about an end-user
programming language simply from exposure to disclosures, without actually
employing them to execute expressions?

2. The composition question. How much can users learn about writing their own
expressions and especially about composing nested or sequenced statements when
exposed to short, isolated disclosures as typically found in Chart ‘n> Art?

3. The programming experience question. What influence does programming
background have on what can be learned from disclosures in Chart ‘n’ Art?

To examine the incidental learning question, the experiment included two groups
exposed to disclosures: one that could use all of the Chart ‘n’ Art facilities for editing
and reusing disclosed expressions, and that had full access to the SK8Script interpreter;
and a second group that was limited to only seeing disclosures but not using them or
any other SK8Script expressions. To address the composition question, the summative
assessment exhibited two important differences from the preliminary evaluation. One,
the protocol for the chart creation task encouraged and aided subjects in using
programming as much as possible so that they might have a need for more complicated
expressions. Two, a final task was added that required users to write a sequence of
SK8Script statements, possibly involving nested expressions. Finally, to address the

80

programming experience question, subjects’ programming background was carefully
classified prior to the laboratory studies and used in the analysis of results.

All three questions required testing instruments more sensitive to programming
language gains than those used in the preliminary evaluation, prompting the design of a
detailed multiple choice language test to be described in Section 6.2.2. The decision to
use a multiple choice test led to a rather dramatic change in the experiment from a
within-subjects design to a between-subjects design. This was done out of concern that
a multiple choice pretest, in effect, could disclose elements of SK8Script to subjects,
making it difficult to separate learning due to the pretest itself from learning due to
Chart ‘n” Art’s disclosure mechanisms. Pretests are a standard component of
vocabulary learning studies (c.f. Neuman & Koskinen, 1992) because correct answers
and foils do little to teach subjects about other vocabulary words. However, tests
involving syntactic and semantic questions such as the one described in Section 6.2.2
are difficult to construct without the answer’s choices being inherently educational. A
pretest made up of such answer choices could have a significant impact on an identical
or even similar posttest, as long as subjects could remember inferences made in the
pretest. For the summative assessment, then, a control group which did not see
disclosures was used to establish a baseline test score rather than giving the same
subjects both pretest and posttest.

6.2.1 Distinguishing Training and Performance Tasks

Another major change from the preliminary evaluation was in the design of the
experimental tasks. Rather than having a single task such as the activity diagram both
provide subjects with programming language learning opportunities and at the same
time measure subjects’ programming language acquisition, the summative assessment
made a clear distinction between training tasks and performance tasks. The former were
designed to expose subjects to a consistent set of disclosures that would be useful later
in the experiment. The latter were employed to assess what language skills had been
learned in training and to measure the degree to which disclosures facilitated the writing
of programming statements.

6.2.2 More Sensitive Testing Instruments

The last important change from the preliminary evaluation was in testing instruments.
An additional three-part short-answer question was devised to assess more general
SK8Script programming knowledge. Furthermore, a multiple choice programming
language test covering vocabulary, syntax and semantics was constructed to replace the
simple short-answer questions in the preliminary evaluation that subjects found too
casy. An example of one of the multiple-choice questions appears in Figure 6-3.

Almost every question in the multiple-choice test was designed to meet the following
criteria: .

1. The answer could be inferred after observing one or more relevant disclosures.
2. The relevant disclosures would likely be shown during the training task.
3. The answer was not obvious to subjects without training.

4. The question itself tested important knowledge, not language trivia.

5. The answer choices minimized clues that might help answer other questions.

81

25. Which expression will draw a yellow rectangle with a blue
border?

) D a. make Rectangle {fillColor: Yellow, frameColor: Blue}
D b. make Rectangle whose fillColor = Yellow and whose frameColor = Blue
D C. make Rectangle with fillColor Yellow with frameColor Blue

D d. set frameColor Blue of set fillColor Yellow of make Rectangle

Figure 6-3. A syntax question from the multiple choice programming language test.

To help satisfy criteria 1 and 2, pilot tests were used to identify the set of disclosures
subjects were likely to encounter during the training tasks. Pilot testing by subjects who
saw no disclosures also helped ensure answers were difficult to guess without training.
To address criterion 4, the programming walkthrough of the performance task along
with less formal techniques was used to identify critical pieces of programming
knowledge. Questions that asked subjects to discriminate between vocabulary with only
slight spelling differences or syntax with only minor order differences were avoided.

The fifth criterion concerning minimizing interactions between questions was more
difficult to satisfy. For instance, consider the programming language facts that one can
infer by simply reviewing the answers a-d in Figure 6-3, regardless of one’s
knowledge of the correct answer (c):

1. There is a token called Rectangle which presumably refers to a rectangle shape.
2. There are tokens called Yellow and Blue which presumably refers to colors.

3. The language uses a fairly English-like syntax with perhaps a few symbols such as
4:5’ E{" and 3 : ?.

4. The token ‘make’ is likely the first word in a valid shape creation command.

Although these kinds of clues were difficult to eliminate, careful ordering of test
questions helped reduce the influence one question had on another within the same test.
For instance, the syntax question 25 in Figure 6-3 was placed after vocabulary
questions about Rectangle and Yellow. To make this ordering effective, subjects
were, of course, prohibited from reviewing previously answered questions in the
multiple-choice test.

6.3 Method

6.3.1 Subjects

Subjects were recruited via fliers posted throughout the University of Colorado
campus. Candidates were interviewed over the phone to ensure they had used a
Macintosh drawing program in the last four years and had not used the SK8Script
programming language. The phone interview also asked subjects to rate their level of
expertise in eight Macintosh drawing programs and 23 programming languages. Pilot
tests helped make these two lists as complete as possible; however, subjects could also

82

rate their level of expertise in drawing programs and programming languages missing
from either list. All ratings used the following four standard response categories: “very
experienced,” “somewhat experienced,” “not very experienced,” and “not at all
experienced.” The complete set of interview questions are reproduced in Appendix B.

Because of concern that programming experience might strongly influence educational
impact, subjects were classified under three experience groups: no familiar

. programming languages (EO), familiarity with one or two languages (E1-2), and
familiarity with three or more languages (E3+). Subjects were considered to be familiar
with a language if they indicated that they were “very experienced,” “somewhat
experienced,” or “not very experienced” for any language mentioned in the phone
interview. Only answers of “not at all experienced” were considered an indication of
lack of familiarity. The use of the known-languages statistic as a measure of
programming background was suggested by studies which indicated that number of
languages was the best predictor of programming ability among a variety of variables,
including years of experience (Sheppard, Curtis, Milliman & Love, 1979).

As subjects qualified for the experiment, they were scheduled and randomly assigned to
one of three conditions —no training, passive training, or active training—balanced
across programming experience. Randomization was accomplished through a
combination of hat-drawing and computerized random number generation. The phone
interviews and condition assignments were conducted independently by assistants, so
that the experimenter would be blind to subjects’ recorded programming experience
throughout the laboratory study.

Of the 45 people who were scheduled, 33 actually participated in the study. Each was
paid $45. After omitting 3 subjects because of experimenter error and problems with
the materials, 30 were finally used in the data analysis: 19 undergraduates, 10 graduate
students, and one person who received her undergraduate degree the semester before
the study. Due to scheduling difficulties, only 7 subjects from the E3+ category were
actually tested, while 11 and 12 subjects participated in EQ and E1-2, respectively.
Table 6-1a illustrates the distribution of programming experience across conditions. For
data analysis, subjects were reclassified using two experience categories instead of
three so as to increase the numbers of participants per group and thereby improve the
likelihood of statistically significant results. The low experienced group, EO-1,
represented subjects who were familiar with at most one language, while the high
experience group, E2+, represented subjects familiar with two or more languages.
Table 6-1b shows the distribution of subjects across conditions using these two
programming experience categories.

6.3.2 Materials

To assess baseline programming and drawing program experience, each subject was
initially interviewed by phone using the form described in Section 6.3.1 (Appendix A).
In the laboratory, subjects began filling out a demographic questionnaire (Appendix B)
which consisted of multiple choice questions seeking additional background
information including attitudes towards programming. Subjects were then asked to
perform a series of training tasks, (to be described in more detail in the Section 6.3.3.)
Subjects were guided through these tasks by verbal instructions from the experimenter
so that participants could keep their eyes on the screen and attend to disclosures.

83

Table 6-1. (a) The distribution of programming experience over experimental
conditions where EQ is the least experienced group and E3+ the most experienced.
These categories were used when assigning subjects to conditions. (b) The
distribution of programming experienced using only two experience categories.
These categories were used for data analysis.

Condition
Experience Category No Training Passive Training Active Training Total
EO 3 4 4 11
E1-2 4 4 4 12
E3+ 3 2 2 7
Total 10 ’ 10 10 30
| @
Condition
Experience Category No Training Passive Training Active Training Total
EO-1 (low) 5 5 7 17
E2+ (high) 5 5 3 13
Total 10 10 10 30

(b)
A short-answer and multiple-choice programming language test were used to assess
programming language understanding. The short-answer questions were administered
on paper (see Appendix F), while the multiple choice test required that subjects fill out
an on-screen computer form (reproduced in Appendix G). Identical tests were used for
all three conditions. The short-answer test asked subjects to describe the operations and
operands in Chart ‘n” Art’s language and the syntax for combining these into
sentences. In the instructions for the short-answer test, definitions for “operation” and
“operand” were provided which drew on analogs with English grammar. Typical
questions in the multiple-choice test consisted of a sentence in English followed by
three or four SK8Script answer choices. For the purpose of analysis, questions were
divided into vocabulary, syntax, and semantic questions. Examples of vocabulary and
semantic questions appear in Figure 6-4 and a syntax question is shown in Figure 6-3.

To test language production abilities, subjects were also given three performance tasks
(described in detail in Section 6.3.3) which involved programming in Chart ‘n’ Art.
For each task, subjects were shown printouts of the target chart shown in Figure 6-5b
and a variation on this same chart that used two different colored bars. For the first two
tasks, subjects could also consult the 64-page section from the SK8 manual which
described the SK8Script language, although subjects were told only to use this as a
“last resort.”

A custom version of Chart ‘n” Art was built for the experiment which provided all of
the standard disclosure mechanisms but disabled certain features to ensure the
presentation of disclosures would be consistent within individual sessions and across
subjects. Windows were locked into an arrangement similar to that in Figure 4-1, with
the Language window occupying approximately a third of the screen space. These
windows could not be hidden, closed, or moved, nor could users adjust the
magnification of the drawing window. Other features were added to Chart ‘n’ Art to
simplify the experiment. For example, a special Data menu was provided to select from
the data sets used in the training and performance tasks. Data appeared in a small text
window in the upper right corner of the screen with each value separated by a comma.
Subjects could copy a single value or a string of values from this data window directly

84

6. Which expression refers to the interior color of a shape?
(] a £
D b. fillcolor

D C. paintColor

40. Suppose XX refers to a collection of shapes. Which expression will align the
left-most edge of each shape with the y-axis?

D a. alignleft XX, 0
D b. align the left of every item in XX to 0
U C. map the left of XX to O

D d. set the left of every item in XX to 0

Figure 6-4. Two more questions from the multiple-choice test. Number six was
considered a vocabulary question, number forty a semantic question.

into an expression being typed in the Language window using the standard Mac OS

Edit menu items. Additionally, a logging feature was added to Chart ‘n’ Art which

automatically created detailed records of disclosures and user actions to support later
analysis.

Chart ‘n” Art was run on a Apple Macintosh Quadra 840AV with 40 MB of RAM.
Screen capture hardware was used in combination with a VHS-VCR to record all on-
screen user interaction. This video recording arrangement limited the screen resolution
to 640x425 pixels. Although a 14-inch diagonal monitor would have been the best
match for this resolution, only a 20-inch multiscan monitor was available for the
experiment. To mitigate the “chunkiness” of the resulting images and text, the screen
was set back an additional 10 cm or so from the keyboard.

6.3.3 Procedure

The study involved three conditions: no training, passive training, and active training.
Each condition included three phases: (a) a training phase, (b) a memory assessment
phase involving a written and multiple choice test, and (c) a performance phase
involving the creation of a target chart using SK8Script as much as possible. The
sequence of instructions, tasks, and tests for each phase of the experiment are
summarized in Table 6-2. Subjects were tested individually over a single session lasting
approximately two to three hours: one hour for the training phase, ten minutes for the
memory assessment phase, a ten minute break, and the remaining time for the
performance phase.

Training Phase. The training phase consisted of nine events. The first two events
oriented subjects to Chart ‘n” Art’s direct manipulation interface—its windows,
palettes, and menus—and provided basic instructions and how to complete the training
exercises. Subjects then began the first of the five training tasks in Table 6-3. This first
task, T1, involved creating a combination column and line chart and served to

85

Table 6-2. The sequence of instruction, task, and test events for each condition in
the formal experiment. From top to bottom, the dotted lines demark the training
phase, memory assessment phase, and performance phase, respectively.

Event Type No Training Passive Training Active Training
1 Instr. intro. to d.m. interface intro. to dm. interface intro. to d.m. interface
2 Instr. n/a told to ignore told to watch
disclosures disclosures
Task T1 T1 T1
4 Instr. n/a intro. to disclosure intro. to disclosure
mechanisms mechanisms
5 Instr. n/a n/a how to edit & evaluate
expressions
6-9 Task T2-T5 T2-T5 T2-T5
10 Test short answer test short answer test short answer test
11 Test multiple-choice test multiple-choice test multiple-choice test
12 Instr. intro. to disclosure intro. to disclosure intro. to disclosure
mechanisms mechanisms mechanisms

13 Instr. how to edit & evaluate how to edit & evaluate how to edit & evaluate
expressions expressions expressions

14-16 Task P1-P3 P1-P3 P1-P3

incrementally introduce subjects to many of Chart ‘n” Art’s direct manipulation tools
and menus. The fourth and fifth events in the training phase provided subjects with
additional instructions.

The last four events consisted of the training tasks T2 through T5 where T2 through T4
were more simple column chart tasks designed to introduce other language features
such as for duplicating shapes multiple times. The final training task, T3, was to
produce a thirty-item column chart—an attempt to motivate the subjects who had access
to SK8Script to try the language if they had not done so already.'? For the subjects who
were privy to programming language disclosures, the entire sequence of training tasks
was designed to uncover the fundamental programming constructs users would need
for the performance tasks. These fundamental constructs were identified through a
programming walkthrough (Bell et al., 1994) of two possible solutions to the chart
creation problems posed by the performance tasks.

Training Phase Treatments. The training phases of the three conditions differed in
certain essential ways. First, Chart ‘n’ Art was set up to behave differently for each
group. For the no training condition, mouse disclosures and selection labeling were
disabled and the Language window was made invisible; thus subjects in this condition
saw no disclosures whatsoever. Subjects in the passive training condition could see
disclosures appearing in the Language window and other places on the screen, but

2 Pilot studies indicated that thirty items involved repetition beyond the threshold of
patience for many subjects, who would often wonder out loud if there was an easier way
to do the task than by dragging out each shape.

86

Table 6-3. A brief description of the five main training tasks. Note that subjects were
given more detailed instructions in the actual experiment as described in
Appendix C.

Task Description

T1 Create a combination column and line chart with three data points each (provided by
the experimenter). Adjust the dimensions of the columns slightly. Add more columns
to the chart by duplicating existing ones. Add a background.

T2 . Create a column chart representing the values 65, 80, 112, 85, and 92. Start with a
single 10-unit wide column and duplicate it to create the rest of the columns.

T3 Adjust the heights of the columns to correspond to the values 49, 119, 78, 108, and
38. Change the width of each column from 10 to 20.

T4 Adjust the heights of the columns to correspond to the values 88, 131, 29, 52, and
85. Change the width of each column from 20 to 15.

T5 Create a column chart representing the 30 values 85, 112, 130, 98, 93, 135, 69, 83,
123,107, 36, 82, 83, 101, 130, 110, 60, 56, 92, 55, 67, 99, 45, 46, 41, 69, 126,
102, 133, and 108. Start with a single 10-unit wide column and duplicate it to create
the rest of the columns.

could not edit or execute any of the disclosed expressions. Finally, subjects in the
active training condition could not only see all disclosures, but reuse them at will
through the Language window.

The second difference in the training phase was that the experimenter gave different
instructions to each group. Only the passive and active training conditions received the
instructions in events 2 and 4, and only the active training condition received the
instructions in event 5. In event 2, the experimenter initially identified the Language
window by reading the following description:

The Language window is where Chart ‘n’ Art presents information to
you about its programming language, SK8Script. This programming
language can among other thing help automate the creation of our chart
and place chart elements more accurately.

Subjects in the passive training condition were then told, “For now, don’t worry about
programming language feedback.” In contrast, subjects in the active training condition
were told, “Pay attention to the programming language information which shows up
here and other places on the screen. You’ll be using it soon.” In event 4, both the
passive and active conditions were walked through a brief series of exercises (see
Appendix D) introducing each of Chart ‘n” Art’s disclosure mechanisms. These
exercises were not intended to teach programming expressions to subjects, but rather to
help them interpret the connection between their activity and the disclosures appearing
on the screen. Finally in event 5, subjects in the active condition were shown how to
reuse and edit disclosures and execute expressions in the Language window. Only
these subjects were then encouraged at the onset of the remaining four training tasks to
“Try and use the language as much as possible to make things exact and to help
automate repetitive tasks.” Subjects in the active training group were guided when
necessary by a set of predetermined hints, detailed in Appendix E. The hints also
helped minimize frustrating breakdowns observed in pilot studies of the summative
assessment.

87

Memory Assessment Phase. The memory assessment phase consisted of two
events: event 10, the short-answer test to evaluate subjects’ ability to recall the
operations and operands used in Chart ‘n” Art version of SK8Script; and event 11, the
multiple-choice test to evaluate subjects’ ability to recognized valid SK8Script
expressions. Unlike the previous phase, all three groups were given identical
instructions and materials. They could not use Chart ‘n’ Art during these tests.

Performance Phase. The performance phase consisted of five events. In the first
two events, 12 and 13, the experimenter stepped all subjects through the same
disclosure exercises given to the active and passive training groups in event 4 and the
active group in event 5. For subjects in the passive and active training conditions, these
exercises were therefore at least partial review from the training phase. The idea was to
ensure that all subjects were, at this point, familiar with interpreting, editing, and
reusing disclosures.

The remaining events in the performance phase consisted of the performance tasks P1
through P3 (listed in Table 6-4) which involved creating a floating bar chart similar in
spirit to the temperature chart in Chapter 2. Recall that a floating bar chart consists of
two data series, one corresponding to the bottoms of a vertical bar, and the other to the
tops. For the summative assessment, the first data series consisted of the elevations of
30 thirty cities in a fictitious country and the second series consisted of the heights of
each of these building (measured from the base of each building to its top). The actual
data used in the study is shown in Figure 6-5a with the target chart illustrated in Figure
6-5b. Performance task P1 asked subjects to generate the floating bar chart and the next
task, P2, was to highlight the 16 buildings that were thirty units tall or higher by
coloring them differently from the rest of buildings. Although not advertised to
subjects, performance tasks P1 and P2 were allotted a maximum of 45 minutes and 10
minutes respectively.

Table 6-4. A brief description of the three main performance tasks. Note that
subjects were given more detailed instructions in the actual experiment.

Minutes

Task Allotted Description

P1 45 Create a floating bar chart to depicting the 30 buildings in the “skyscraper”
data. (See Figure 6-5.) Start with a single 10-unit wide column and
duplicate it to create the rest of the columns.

P2 10 Highlight all of the buildings at least 30 units tall by coloring their columns
red.

P3 10 Type a program from scratch that would reproduce the target skyscraper

chart, including the proper highlighting of tall buildings. Assume that you
are starting with a blank drawing window.

In an effort to avoid the variety of solutions demonstrated in the preliminary evaluation
and simplify between-subject comparisons, users’ explorations throughout
performance tasks P1 and P2 were guided when necessary by the same hints (see
Appendix E) which had been available to the active training condition during tasks T1
through T35. It is also important to note that for these two tasks, all subjects used the
full-featured Chart ‘n’ Art setup provided only to those in the active training condition
during the training phase. In other words, even subjects in the no training and passive
training conditions saw disclosures appearing in the Language window and in other
places on the screen. All subjects were also encouraged to edit and reuse disclosures.

88

30 city elevations
2, 2, 4, 5, 9,
34, 34, 43, 45, 49,
56, 57, 60, 63, 64,
73, 75, 82, 83, 83,
87, 90, 92,104,104,

110,111,113,119,119

size of the tallest
building in each city

15, 22, 39, 29, 39,
39, 37, 37, 39, 28,
39, 30, 13, 40, 16,
39, 38, 17, 31, 12,
36, 35, 10, 29, 29,
27, 40, 12, 32, 19

@ : (b)

Figure 6-5. (a) The data used for the column charts in the performance tasks. (b)
The target chart for the performance tasks.

For the final performance task, P3, all history items in the Language window were
erased and all other windows in Chart ‘n” Art were disabled. Subjects were instructed
to simply type into the Language window their best guess of the program which would
recreate the target chart for the previous task, P2, assuming a blank drawing window.
Subjects were told that the essential aspects for the program were generating the

shapes, and positioning, sizing, and coloring them. Details about the exact placement or
sizing of elements were to be fleshed out only if time allowed. Subjects were
encouraged to make use of the full ten minutes allotted for the task.

6.3.4 Coding and Reliability

Subjects’ responses to the short answer questions were coded in terms of (a) the degree
they demonstrated an understanding of the SK8Script programming language, and (b)
the degree they demonstrated an understanding of the questions themselves, i.e. about
the concepts of operations and operands. Understanding was scored using the
following six-point scale: (1) no understanding, (2) a little understanding, (3) some
understanding, (4) considerable understanding, (5) a lot of understanding, and (6)
complete understanding. Scores for the short-answer questions were coded
independently by two judges with SK8Script programming experience. Both judges
were blind to the training conditions and one was not even aware of the nature of the
conditions used in the experiment. Language understanding scores between judges had
a correlation coefficient of .67. For problem understanding scores, the correlation
coefficient was .44. Subjects’ final programs from performance task P3 were coded by
the same judges using the same scale to measure understanding of the SK8Script
programming language. Again, the judges were blind to training conditions. For the
program solutions they evaluated, the correlation coefficient between judges was .79

6.4 Results

This section summarizes results from the summative assessment through a number of
different quantitative and qualitative perspectives. The intent is to enable a discussion of
both scientific issues—focused on statistically significance learning outcomes resulting

89

from disclosures—as well as “engineering” issues (Landauer, in press)—concerned
with the costs and benefits of self-disclosure mechanisms. Let us start by examining the
mean scores for the three tests which revealed significant differences between
conditions: the short-answer test, multiple-choice test, and final program. Table 6-5
lists the means grouped by condition and programming experience and Table 6-6

shows the overall statistically significant results. More detailed tables of results appear
later in this chapter and in Appendix H.

Table 6-5. Mean scores for the short-answer test, multiple-choice test, and final
program grouped by condition and programming experience. The short-answer test
scores are on a subjective six-point scale (described in 6.4.1), while the multiple-
choice test scores are percent correct.

 No Training Passive Training Active Training Overall
Short Answer 1.45 2.00 - 3.20 . 2.22
Low Exper. 1.50 1.40 3.36 2.24
_High Exper. 1.40 2.60 2.83 2.19
Multiple Choice 34% 41% 53% 43%
Low Exper. 40% 35% 55% : 44%
High Exper. 28% ’ 47% 49% 40%
FlnalProgram T S S—— S
Low Exper. 2.70 2.00 3.36 2.77
High Exper. 3.30 2.80 3.67 3.19

Table 6-6. Summary of statistically significant pair-wise differences between
conditions generated using Scheffé post-hoc tests of ANOVAs of short-answer,
multiple-choice, and final program scores. Each significant difference is described
by its mean, the 95% confidence level, and the p-value. Low experience subjects are
those familiar with at most one programming language (E0-1). High experience
subjects are those familiar with at least two languages (E2+).

Active Training - Active Training - Passive Training -
Passive Training No Training No Training
Mean Mean Mean
Diff. +/- p Diff. +/- p Diff. +/- p

Short Answer :1.20 0.94 .0106 i1.75 0.94 .0003
Low Exper. 1.96 0.96 .0003 i1.86 0.96 .0005

..... HION EXDCI o
Multiple Choice 19% 16% .0150

Low Exper. 20% 15% .0104 i15% 15% .0489

High Exper.

Final Program :1.05 1.02 .0432
Low Exper. 1.36 1.14 .0198
High Exper.

The table shows the mean, 95% confidence intervals, and p-values for the pair-wise
differences between short-answer, multiple-choice, and final program scores in each
condition. Performance measures for tasks P2 and P3 are omitted from the table, since,
as discussed in Section 6.4.3, the data were largely inconclusive. The table also breaks
these differences down by subjects’ programming background using the experience
classification developed in Section 6.3.1. Empty cells in the table represent differences

90

that were not statistically significant. Note that there were statistically significant
differences in pair-wise tests between the active and passive training conditions and the
active and no training conditions, but not between the passive and no training
conditions. Also note the lack of significant differences among subjects with high
programming experience, as well as the lack of differences in the final program scores
between the active and no training groups.

6.4.1 Short-Answer Scores

Table 6-7 lists the mean understanding scores for the short-answer test, grouped by
condition. The average subject in the no training group demonstrated somewhere
between “no” and “a little” understanding of SK8Script and its operations and
operands, the average passive training subject showed “a little” understanding, and the
average active training subject exhibited between “some” and “considerable”
understanding. However, the only pair-wise comparisons between conditions that were
significant in an analysis of variance (ANOVA) (F, ,, = 10.907) were between the
active training and no training conditions (p < .0003) and between the active and
passive training conditions (p < .0106).

Table 6-7. Degree of programming language understanding demonstrated in the
short answer test. The understanding score is the mean understanding per condition
as rated by judges on a scale from I to 6. For each condition the table lists mean
score, the 95% confidence level, standard error, and standard deviation.

No Training Passive Training Active Training Overall

Understanding Score 1.45 2.00 3.20 2.22
Conf. Level 0.36 0.61 0.79
Std. Err. 0.16 0.27 0.35
W SH DOY: s 050 SR LS. S
Low Exper. Mean 1.50 1.40 3.36 2.24
Conf. Level 0.76 0.68 0.58
Std. Err. 0.27 0.25 0.24
LM DRV, 0:81 s 0:95 0.8 e
High Exper. Mean 1.40 2.60 2.83 2.19
Conf. Level 0.52 0.81 5.02
Std. Err. 0.19 0.29 1.17
Std. Dev. 0.42 0.65 2.02

Because of the high variability in the active training condition, a t-test'® was used to
reassess the significance of the 0.55 point difference between the scores in the passive
training and no training conditions. (Detailed results from this and other t-tests appears
in Appendix H.) Nevertheless, no significant difference was found (p < .0943).
Additional analysis was conducted to determine “odds-ratio” (Landauer, in press) for
this difference. The results indicate that the odds are better than 9:1 (using the t-test)
that the mean difference between the passive and no training scores is between 0.01 and
1.09.

In an effort to further clarify the weak differences observed in the short answer scores
between the no training and passive groups, their answers were examined for signature
phenomena. Were there consistent errors made by one group and not the other? A

" A t-test excludes influence from the variability in the groups left out of the pair-wise
comparison.

91

review of answers revealed no characteristic differences. Although many in the no
training group erroneously described Chart n Art’s language as sequences of mouse-
actions, so did four in the passive training group. Additionally, three in the no training
group described a plausible text-based language not unlike SK8Script. Answers by
some subjects indicated that they did not fully understand the short-answer questions,
possibly because of confusion over the mathematical terms “operation” and “operand.”
For instance, one subject’s description of SK8Script operations was simply “gives you
exact location of points.” Another subject seemed to confuse direct manipulation actions
with textual programming language commands, claiming that an example of a
SK8Script command was “click on rectangle and drag it up with mouse.” To check that
such subjects did not distort the short answer results, the data was reanalyzed after
removing the scores from the five subjects (distributed approximately evenly across
conditions) who judges rated as having little or no understanding of the questions. The
results were very similar to the original analysis with no training, passive training, and
active training having mean scores of 1.44, 2.13, and 3.28, respectively. There was
no change in significant differences between groups.

Figure 6-6 illustrates the differences among understanding scores as grouped by
programming background. As shown in Table 6-6, the pair-wise significant differences
in an ANOVA (F, , = 20.765) were (a) between low experience subjects in the active
condition (A,) and low experience subjects in the passive condition (P)) (p <.0003),
and (b) between A, and low experience subjects in the no training condition (N,)

(p < .0005). For subjects with high programming experience, an ANOVA between
the no training group (N,,), the passive training group (P,), and the active training
group (Ay) showed no significant differences (F,,, = 2.462, p <.1351). However,
among the high-experience subjects, a t-test between the no training and passive
training group (leaving out the highly-variable active condition scores) was statistically
significant (p < .0085).

9 —
8 —
7 —
6 -
o L] No Training
3 __| Passive Training
N 4 -
3 Active Training
2 —
1 —
0

High

Figure 6-6. Understanding scores for the short answer test grouped by condition
and programming experience. The error bars indicate the 95% confidence levels.

Figure 6-6 suggests a potential interaction effect between condition and programming
experience. It appears that scores for the passive training subjects increased from low
experience to high, while scores for the active training subjects decreased. An ANOVA
of interaction between condition and experience (F,,, = 2.932, p <.0726) showed
no statistically significant effects, but its low p-value warranted closer inspection of the
data. The combined scores from P, and A;; were compared with the combined scores

92

from P, and A in a t-test which did show a significant difference (p <.0299). Of
course, one must be cautious not to overvalue this statistic, considering the particular
comparison was suggested only after a review of the data.

6.4.2 Multiple Choice Scores

The first two questions on the multiple choice test asked subjects to subjectively rate
their programming language learning experience using Chart ‘n’ Art. Table 6-8 and
Table 6-9 show the distribution of responses for these two questions. The first question
asked how helpful subjects found Chart ‘n” Art’s programming language instruction
and the second asked subjects to rate how much programming they learned. Note that
even those who received no language instruction tended to rate their learning experience
positively.

Table 6-8. Responses to the subjective question: “How helpful did you find
Chart ‘n’ Art’s programming language instruction?”

No Passive Active
Training ~ Training Training Total
not at all helpful (1) 1 0 0 1
not very helpful (2) 2 2 1 5
somewhat helpful (3) 4 7 4 15
very helpful (4) 3 1 5 9
Mean 2.90 2.90 3.40 3.07

Table 6-9. Responses to the subjective question: “How much do you think you
learned from Chart ‘n’ Art’s programming language instruction?”

No Passive Active
Training Training Training Total
not at all (1) 1 0 0 1
not very much (2) 3 3 0 6
some (3) 5 7 6 18
alot (4) 1 0 4 5
Mean 2.60 2.70 3.40 2.90

The remaining 39 multiple choice questions measured subjects’ understanding of
SK8Script vocabulary, syntax, semantics or some combination of these topics. A total
of 19 questions addressed vocabulary, 19 syntax (after dropping one because of an
error), and 5 semantics. Vocabulary questions provided three answer choices, while all
other questions offered four possibilities. Table 6-10 lists the overall scores for the
multiple-choice test, grouped by condition. Figure 6-7 illustrates the mean percent
correct for each question topic for each condition. Finally, Table 6-11 summarizes the
statistically significant differences between conditions. Detailed results from the
multiple-choice test appear in Appendix H.

93

Table 6-10. Overall percent correct of multiple choice programming questions for
each condition, along with the adjusted scores after removing the answers to 11
questions that may have been influenced by the introduction to Chart ‘n’ Art’s
disclosure mechanisms. For each mean the table lists the 95% confidence,
standard error, and standard deviation.

Raw Adjusted
No Passive Active No Passive Active
Training Training Training Training Training Training
Overall Mean 34% 41% 53% 30% 33% 44%
Conf. Level 10% 10% 10% 10% 7% 11%
Std. Err. 0.043 0.043 0.045 0.044 0.033 0.048
Std. Dev. 0.136 0.135 0.143 0.140 0.103 0.151
Low Expe"r. Mean .. 40% 350, 55% 36% Toge, 45%
Conf. Level 12% 8% 10% 13% 5% 11%
Std. Err. 0.044 0.029 0.042 0.048 0.019 0.045
Std. Dev. 0.098 0.066 0.110 0.106 0.043 0.119
'High Exper. Mean 28% 47% 49% 24% 37% 41%
Conf. Level 19% 21% 57% 19% 16% 60%
Std. Err. 0.069 0.074 0.133 0.069 0.058 0.140
Std. Dev. 0.155 0.166 0.230 0.154 0.129 0.242

Notice in Table 6-6 that the only significant difference in overall multiple-choice scores
was the 19% gap between the active and no training groups (F,,, = 4.996,

p <.0150). When scores were broken down by topic as shown in Figure 6-7, it
appeared that syntax questions had a large influence on the difference. Indeed, a
Scheffé post-hoc test of the pair-wise differences between conditions for each question
topic (Table 6-11) indicated a significant difference between active and no training for
syntax questions.

Table 6-11. Summary of statistically significant differences across the three main
multiple-choice question topics. The pair-wise differences were generated using
Scheffé post-hoc tests of ANOVAs for each topic. Each significant difference is
described by its mean, the 95% confidence level, and the p-value.

Active Training - Active Training - Passive Training -
Passive Training No Training No Training
Mean Mean ! Mean
Diff. +/- p Diff. 4/ p_ i Diff. 4/- p
Vocabulary
Syntax 30% 22% .0053
Semantics i0 . .

Again, because of the high variability in the active training condition, a t-test was used
to reassess the significance of the 16% difference between the syntax scores in the
passive training and no training conditions. No statistically significant difference was
found (p < .0758). However, from an odds-ratio perspective, the results suggest that
the chance is better than 9:1 (using the t-test) that the mean difference between the
passive and no training scores is between 1% and 30%. A t-test was also used to
compute an odds-ratio for the relatively large (but not significant) difference between
overall scores of the active and passive groups. In this case the results indicate that the

94

odds are better than 9:1 that the mean difference between these two groups is between
2% and 23%.

70
60
50 -

40 -

D No Training
o | Active Training

Percent Correct

20
10

0

Vocabulary Syntax Semantics Overall

Figure 6-7. Percent correct of multiple choice programming questions on the topics
of vocabulary, syntax, and semantics, and overall percent correct, broken down by
condition. The error bars indicate the 95% confidence levels.

Figure 6-7 suggests the possibility of an interaction effect between condition and
question topic, since it appears that passive training may have only helped subjects
perform better on syntax questions when compared to no training Subjects However,
an ANOVA of interaction between condition and question topic (F, ,s = 1.261,

p < .2923) indicated that the effects were insignificant.

A concern with the experimental method was that subjects in the passive condition
might have actively learned some SK8Script during the brief introduction to

Chart ‘n” Art’s disclosure mechanisms (event 4) which occurred approximately 30
minutes prior to the multiple choice test. Additional analysis was conducted to
determine what, if any, influence these exercises might have had on the results in
Figure 6-7. A review of the disclosure exercises indicated that the answers to as many
as 11 questions in the multiple-choice test might have been divulged by disclosures
during the exercises. It should be noted that each suspect disclosure appeared only once
during this time. Removing these questions from the data reduced the percent correct
for all groups as shown in the adjusted scores in Table 6-10. However, none of the
significant differences between groups for either the overall scores or those broken
down by question topic was affected.

Figure 6-8 illustrates the differences seen when the multiple-choice scores are grouped
by programming background. The only pair-wise comparisons between conditions that
were significant in an ANOVA (F,,, = 7.394) were (a) the 20% difference between
A, and P, and (b) the 15% difference between A, and N, . Like the corresponding
flgurc f01 understanding scores, Figure 6-8 %uggests a p0551ble interaction effect
between condition and programming experience where the scores appear to increase
from P, to P,;, but decrease from A, to A;;. Again, an ANOVA of interaction between
condition and experience (F, ,, = =3 932, p <.1592) showed no statistically
significant effects. However, since the ANOVA indicated that the odds were better than
5:1 that there was an interaction, further analysis was conducted. The combined scores
from P, and A,;; were compared with the combined scores from P, and A, in a t-test
which d1d not show a significant difference (p <.0956).

95

70

50
| [] No Training

40 -
1 Passive Training

Active Training

Percent Correct

i

20
10

Low High

Figure 6-8. Overall percent correct of multiple choice programming questions for
each condition, grouped by programming experience.

6.4.3 Performance Times

As shown in Table 6-12 all subjects completed the skyscraper charting task, P1, with
the exception of three subjects in the passive training condition. Because of the missing
data from the three subjects, the table presents mid-mean times for each condition, not
mean times. To compute the mid-mean, those who did not complete the task were given
the maximum allotted time (in this case 2700 seconds) and then the upper and lower
quartiles for each condition were dropped. Means, confidence levels, and errors, were
then calculated based on this filtered data. Unfortunately, there are no known
inferencing techniques for the mid-mean. Therefore a weak nonparametric test, the
Kruskal-Wallis one-way ANOVA of the median times, was used to compared
differences between conditions over the entire data set. No statistically significant
differences were found, which is not surprising considering the high variability in the
times for all conditions.

A much smaller percentage of subjects successfully completed the skyscraper coloring
task, P2, as shown in Table 6-13. Again, because of missing data—in this case from
13 subjects—the table presents mid-mean times for each condition. A Kruskal-Wallis
test on the medians for the unfiltered dataset found no statistically significant
differences.

Table 6-12. Results from performance task P1 grouped by condition. Number
Completed is the count of subjects who successfully completed the task in the
allotted 45 minutes (2700 seconds.) For each condition the table lists the mid-mean
time in seconds, the 95% confidence level, standard error, and standard deviation.

No Training Passive Training Active Training Overall

Number Completed 10 7 10 27
Mid-Mean 1440 1842 995 1426
Conf. Level 421 762 740
Std. Err. 152 274 266
Std. Dev. 339 614 596

Logs files from performance tasks P1 and P2 were examined for various signature
phenomena between conditions, but none were found. The first two expression

96

evaluations made by subjects following the introduction to the Language window and
other Chart ‘n’ Art’s disclosure mechanisms (events 12 and 13) showed no
characteristic differences. Furthermore, an ANOVA of the number of expressions
evaluated per subject as well as a comparison of the delay before a subject evaluated his
or her first expression after event 13, revealed no statistically significant differences
between conditions.

Table 6-13. Results from performance task P2 grouped by condition. Number
Completed is the count of subjects who successfully completed the task in the
allotted 10 minutes (600 seconds). For each condition the table lists the mid-mean
time in seconds, the 95% confidence level, standard error, and standard deviation.

No Training Passive Training Active Training Overall

Number Completed . 5 7 5 17
Mid-Mean 458 318 474 417
Conf. Level 232 183 163
Std. Err. 84 66 59
Std. Dev. 187 147 131

6.4.4 Final Programming Task

Table 6-14 lists the mean programming language understanding scores for the final
programming task, P3, in which subjects typed expressions from scratch without help
from disclosures. The only significant difference in a pair-wise comparison of mean
scores was the 1.05 point gap between the overall passive and active training groups
(F,,;, =3.547, p <.0432). When the scores were grouped by programming
background, only the 1.36 point difference between P, and A; was found to be
significant (F,,, = 5.283, p <.0198).

Table 6-14. Degree of programming language understanding demonstrated in the
final program that subjects wrote from scratch without help from disclosures. The
understanding score is the mean understanding per condition as rated by judges on
a scale from 1 to 6. For each condition the table lists mean score, the 95%
confidence level, standard error, and standard deviation.

No Training Passive Training Active Training Overall

Overall Mean 3.00 . 2.40 3.45 2.95
Conf. Level 0.75 0.67 0.43
Std. Err. 0.33 0.30 0.19
SUDEV.)05 0.94 0.60
Low Exper. Mean 2.70 2.00 3.36 2.77
Conf. Level 1.21 0.76 0.51
Std. Err. 0.44 0.27 0.21
LS9 DOV, 098 061..... 056 ..
High Exper. Mean 3.30 2.80 3.67 3.19
Conf. Level 1.43 1.36 1.90
Std. Err. 0.52 0.49 0.44
Std. Dev. 1.15 1.10 0.76

A qualitative analysis of the final programs was conducted to examine patterns of
programming language use that were independent of conditions. The programs showed

97

a limited variety of solutions to the task of drawing and coloring the skyscrapers. All
but four subjects used the method suggested by the hints provided in the earlier tasks.
This technique involved generating 30 shapes and then sizing, positioning, and
coloring them using various mapping expressions. Three subjects apparently intended
to provide several lines of SK8Script for each of the 30 rectangles in order to specify
properties for each shape such as position, size, and color. The remaining subject
attempted to use a single repeat loop to create a new shape with the appropriate size,
position, and color within each iteration of the loop. None of the programs would have
quite executed correctly, but all consisted of a reasonable sequence of operations that
looked like SK8Script. Although, according to the judges, the closeness to correct
SK8Script varied considerably between subjects, it is worth noting a few common
characteristics of subjects’ code:

e 21 of the 30 subjects (11 low experience, 10 high experience) used forms which
bore a strong resemblance to the SK8Script one-to-many mapping expression.

* 25 subjects (14 low, 11 high) wrote some semblance of a many-to-many mapping
expression.

* 3 subjects (1 low, 2 high) used a repeat loop with one or more nested expressions
for the loop’s body.

e 18 subjects (9 low, 9 high) had some semblance of a test filter within a selection
expression. ' :

6.5 Discussion

The key results in Table 6-6 highlight interesting differences between conditions in the
summative assessment. The fact that overall scores in the short-answer and multiple-
choice test were significantly higher in the active training condition than the no-training
condition suggests that, with encouragement to actively explore disclosed expressions,
- self-disclosing systems can help teach users elements of an end-user programming
language. Let us examine the results in more detail, especially in light of the three main
questions this experiment was designed to help answer.

6.5.1 Incidental Learning

The passive training group was intended to simulate incidental learning conditions in
that during the training phase these subjects were not explicitly told to attend to
disclosures nor could they edit or evaluate disclosures appearing in the Language
window. However, the differences in the results between the passive training condition
and the no training condition provide little evidence that incidental learning from
disclosures actually occurred. The only statistically significant difference between these
conditions resulted from the t-test of P, and N, scores on the short-answer test. An
explanation for this difference is offered in the Section 6.5.3. Two other results hinted
at the possibility of differences between the passive and no training groups: Odds were
computed to be 9:1 that there was a difference (a) in overall short-answer scores and (b)
in multiple-choice scores for syntax questions.

Given these results one might, despite the lack of statistical significance, employ the
odds-ratio data to inform purchasing decisions. For instance, if a designer could choose
between a standard drawing package and one which featured disclosure mechanisms, it

98

would be helpful for the designer to know that the odds were 9:1 that he or she would
incidentally learning about a potentially useful programming language while using the
latter package. However, the lack of signature phenomena differentiating the passive
and no training groups suggests that even this might be an overly optimistic perspective
on incidental learning. On the other hand, perhaps these signature effects might have
surfaced had users been exposed to disclosures for longer than the one-hour training
period. Further study is clearly needed to help settle the incidental learning issue.

6.5.2 Composition

Quantitative gains in productive programming knowledge were difficult to assess in the
Chart ‘n” Art study. For one, timing results from the performance tasks P1 and P2
were inconclusive. Significantly worse times by the no training condition might have
indicated that those exposed to disclosures could more quickly form SK8Script
expressions, but this was not the case. It is possible that the hour-long training time
was simply too short for subjects to acquire enough SK8Script knowledge to write
expressions on their own. Another confounding issue was that during performance
tasks P1 and P2, subjects almost always favored editing and evaluating disclosures
rather than typing an expression from scratch. This behavior made it difficult to
determine when subjects were actually producing code and when they were simply
copying it.

In the final task in which subjects were forced to write code from scratch,
characteristics of the resulting programs provide some qualitative insight into the
composition question. Note that by the time subjects participated in this final production
task all of them, including those in the passive and no training groups, had had the
chance to see and use disclosures. For this reason, what is more interesting than
differences between conditions (which were at best questionable) are the patterns of
language use by all subjects. After exposure to mainly isolated single-line disclosures,
all subjects regardless of programming experience, managed to devise a meaningful
sequence of SK8Script-like expressions. Subjects’ understanding of the concept of
nested expressions is less clear. Although as many as 18 subjects had some notion of a
selection expression with an embedded test filter (e.g. “every item whose
fillColor is Red”),itis quite possible that subjects thought of such expressions as
a whole rather than as a test nested within another expression.

More promising is the fact that the majority of subjects, with both high and low
programming background, recognized the need for and were able to generate the
semblance of SK8Script’s mapping expressions. As argued in Chapter 2, these
expressions combined with only a few other primitives can allow designers to
accurately and efficiently create a wide variety of custom information graphics. The fact
that many of these expressions contained vocabulary and syntactic errors which would
have prevented them from executing properly is perhaps not as much of a concern as it
would at first seem. Many of these errors may never have occurred were subjects given
access to disclosed expressions to use as templates. Further study is needed to better
understand the ways in which disclosures are similar to structured editors (Goldenson
& Wang, 1991) in facilitating the production of accurate expressions.

6.5.3 Programming Experience Influence

Results from the summative assessment indicate that programming background can
affect one’s ability to learn from disclosures. A, subjects tended to score better than N;
subjects on both the short-answer and multiple-choice tests. Meanwhile, A, subjects
did not outperform Ny, subjects. The implication is that users with low programming

99

experience who are encouraged to actively explore disclosed expressions are somehow
able to learn better than users with a stronger background in programming who are
similarly encouraged. One possible explanation for this phenomenon is that low-
experience and high-experience users approach learning from disclosures with very
different attitudes. Low-experience users may welcome a new way to learn about
programming, a topic that had so far eluded them. High-experience users, on the other
hand, may already have considerable skill in learning from traditional instructional
resources, and are therefore less interested in attending to new forms of learning
opportunities.

As mentioned earlier, there was another significant difference related to programming
experience that was evident between the passive training group and the active training
group in the short-answer test. Py, subjects tended to score better than Ny, subjects, but
P, subjects did not outperform N; subjects. The implication is that high programming
experience users are able to learn better incidentally than users with a weaker
background in programming. One interpretation is that those with more programming
background are “primed” to recognize disclosed expressions and will therefore be more
likely to be interested in and attend to them on their own. A related explanation is that
only those with more programming background have the cognitive structures necessary
to make sense of disclosed expressions. To use Vygotskian terms, disclosures are
within these users’ “zone of proximal development” (Vygotsky, 1978).

Note that the first phenomenon implied that low programming experience users can
better take advantage of disclosures under active training conditions, while the second
phenomenon gives the advantage to high experience users under incidental learning
conditions. Although this interaction between condition and experience was not shown
to be significant in either the short-answer or multiple-choice test results, from an odds-
ratio perspective the chances were better than 12:1 that it existed in the short-answer test
and better than 5:1 that it existed in the multiple-choice test. Such an interaction between
condition and experience, if it does indeed occur, would be curious, but not
unexplainable. Since the second phenomenon deals with subjects learning incidentally
without being explicitly told to attend to disclosures, the attitudinal issues raised in the
first phenomenon may not apply. In other words, high experience subjects may be less
resistant to learning from disclosures when they are not being forced to do so. They
may, in fact, consider themselves clever for having noticed the disclosures and attend to
them all the more.

6.5.4 Overall Interpretation

There are a number of ways to interpret the overall results. In fact, reviewers of this
document disagree amongst themselves on the conclusions to be drawn. Generally,
there are two main interpretations: a negative one suggesting that self-disclosure has yet
to prove itself as a viable means for learning programming, and a positive one
suggesting that self-disclosure shows promise as an effective vehicle for helping
designers become oriented to a programming language. This chapter concludes by
summarizing both of these perspectives.

The negative interpretation. The fact that subjects in the active training condition
performed significantly better than those in the other two conditions is no surprise,
since they were forced to attend to disclosures and make use of them as much as
possible. This would be expected regardless of the instructional method used as long as
the other subjects did not receive the instruction or were not required to attend to it. For
example, the experiment could have alternatively offered active training subjects on-line
help messages describing programming techniques. The most important advantage self-

100

disclosure could have over these other approaches is that users might learn incidentally
from exposure to programming language feedback. However, the differences in
performance between passive and no training groups failed to show that users could
actually learn in this way. The few subjects who did seem to learn some SK8Script in
the passive training condition were those with higher programming experience, but it is
likely that these subjects could just as easily have picked up elements of the language in
a number of other ways. For those with lower programming experience, disclosures
were not effective for learning programming by passive observation. Perhaps
disclosures are unsuitable for those with limited programming experience who might
see the disclosures as little more than a constant barrage of random text.

The positive interpretation. The fact that subjects were able to learn anything at all
about programming in SK8Script simply from observing language disclosures is a
remarkable result. The experiment demonstrates that the unstructured but situated
feedback of self-disclosure can be a means for users to become familiar with a
programming language. The lack of evidence for incidental learning only suggests that
users perhaps need to be somewhat attentive to disclosures to benefit from them. On the
other hand, just because only the active training group showed significant learning
effects does not mean that users need to constantly fixate on disclosures. It is possible
that occasional attention is sufficient. Furthermore, the small but not significantly better
scores by subjects in the passive training condition suggests the possibility that the
cumulative long term benefits of self-disclosure could be meaningful. Finally, the fact
that those with higher programming experience seemed to learn best from disclosures
should not be seen as evidence that self-disclosure is inappropriate for beginning
programmers. Rather, it simply indicates that self-disclosure might work best for these
users in combination with a more structured programming language curriculum.

7. Conclusion

The research presented in the preceding chapters makes a case for self-disclosing
design tools as an incremental approach toward end-user programming. This chapter
briefly reviews the arguments and evidence, identifies some limitations and future
research, and finally highlights the contributions of this work.

7.1 Review

Chapter 2 presented four case studies of designers creating custom information
graphics with general-purpose drawing tools. These designers showed remarkable
resistance to more accurate and more automatic aids such as spreadsheets or charting
software. It was hypothesized that these tools were rejected because of their perceived
rigidity and because of designers’ lack of familiarity with the interfaces to such tools.
Programmable drawing tools were presented as a potential solution for each case study,
because their language-based computational support could be tightly integrated with a
familiar direct manipulation interface that imposed few constraints on the design space.
However, the designers’ unique work environments and frustrations with existing
educational materials indicated that teaching them about using an embedded
programming language would be a challenge.

The following chapter proposed self-disclosure as a technique for gently introducing
designers to programming. Self-disclosure was defined as the act of the computer
volunteering hidden or non-obvious information about its status or functionality. It was
argued that a self-disclosing programmable tool could offer designers situated,
incremental language learning opportunities that addressed many of the concerns about
educational materials identified in the case studies. This chapter also proposed a set of
educational dimensions for characterizing self-disclosing systems and recommended
points along these dimensions that were most likely to specify pedagogically effective
systems.

Chart ‘n’ Art was then presented as a prototype self-disclosing tool that comes close to
matching the profile of an pedagogically effective system. Chapter 4 described

Chart ‘n” Art’s four main disclosure techniques in detail, and how the system attempts
to immerse users in its programming language by taking almost every opportunity to
reveal short programming examples. A comparison between Chart ‘n’ Art and other
computer-based tools for graphic design and programming language education
suggested that its learning-while-doing approach was unique. It appears that no other
graphic design tool had as much emphasis on education, and no other educational tool
had as much emphasis on graphic design.

Chapter 6 provided experimental evidence indicating that not only do Chart ‘n” Art’s
disclosure mechanisms facilitate the use of its language in combination with direct
manipulation activity, but that users can gain programming language expertise by
attending to its disclosures. Limited evidence from the summative assessment of
Chart ‘n’ Art suggested that low experience programmers benefited most when
actively attending to disclosures, while high experience programmers could become
oriented to Chart ‘n’ Art’s particular language incidentally.

102

7.2 Limitations

As conceded earlier, Chart ‘n” Art represents only a small region of points within the
multidimensional design space for pedagogical self-disclosing tools. As such,

Chart ‘n” Art provides only a limited view of the potential role of self-disclosure in
teaching programming to end-users. A broader picture is needed that, for example,
encompasses the following additional points in the design space:

e High Adaptivity. If a self-disclosing system could dynamically adjust its
feedback according to an individual’s ability, would the system have significantly
greater educational value?

o Very High Explorability. What if disclosures were part of an elaborate
hypertext system that provided links to related examples, complete programs, or a
language reference manual? What if there was unlimited undo?

* High Intrusiveness. How much more memorable are disclosures that require
explicit dismissal by the user? How would such disclosures be received by
designers and what would be their impact on design flow?

e Low Relevance. If disclosures were more random than in Chart ‘n” Art, would
users be able to make sense of them?

® High Scope. Will users form a more complete understanding of a system’s
language if disclosures guarantee coverage over all vocabulary and syntax?

o High Structure. Would it be more educational if disclosures could be ordered? If
s0, should the curriculum be patterned after traditional computer science classes?

The dimensions identified earlier are by no means exhaustive. It is likely that these
dimensions will need to be refined and augmented to accurately describe the
pedagogical characteristics of self-disclosing systems. For example, a potential
candidate for a new dimension is “richness” which could refer to the variety of
perspectives used to describe internal status or functionality. At one end of this
spectrum would be systems such Apple’s Script Editor which provide only literal,
executable “recordings” of programs, and at the other end would be tools such as
Redmiles” Explainer (Redmiles, 1993) that offer multiple views on example programs
possibly including explanatory text, diagrams, or high-level descriptions of machine
“transactions” (Mayer, 1979).

Even within the small region of the self-disclosure design space occupied by

- Chart ‘n’ Art, a number of important questions remain unanswered. As mentioned in
the previous chapter, further study is needed to assess the incidental learning effects
from self-disclosure and the impact this has on users of varying programming
background. Additional unresolved issues include the following:

e Long Term Effects. Studies of Chart ‘n” Art have investigated learning over
sessions totaling at most two or three hours. What are the long term educational
benefits of disclosures? Will users learn to pay more and more attention or will their
interest wane?

103

® Procedures and Persistence. Chart ‘n’ Art does not disclose how to write
procedures nor does it allow expressions to be saved to a file. How should the
system support procedural composition and the ability to store programs for use in
future sessions or to share with colleagues?

* Generality. The language used by Chart ‘n” Art to describe direct manipulation
drawing actions is highly imperative. How feasible would it be to disclose a
declarative representation of a drawing, specifying relations between objects and
data? How applicable are Chart ‘n’ Art’s disclosure mechanisms to other domains
of programmable applications such as symbolic mathematics tools or simulation
environments?

* Feasibility. In the current implementation of Chart ‘n” Art, although the drawing
module is not required to produce the actual text of every disclosed expression and
explanation, it nonetheless must construct canonical language structures for most
disclosures. Obviously, this kind of burden limits the commercial feasibility of self-
disclosure. How could developers render a tool self-disclosing without such
invasive measures?

e Thoroughness. Many useful programming topics such as recursion, procedural
abstraction, and progressive refinement are not covered by Chart ‘n” Art
disclosures. How might Chart ‘n” Art be used in conjunction with more traditional
educational materials to provide a more thorough programming education?

7.3 Future Work

Further investigation is being considered to specifically address some of the above
limitations. One proposal is to enable more of the self-disclosure design space to be
explored by developing a modular, flexible disclosure architecture as shown in Figure
7-1. Under this model, a tool handles user interaction and broadcasts “aggregate
events” describing manipulations to an artifact or construction. Aggregate events are
similar to Apple Events only they can describe a hierarchy of actions including low
level mouse movements and also high level operations such as the use of menu
commands (Kosbie & Myers, 1993). Events are translated by a tool-specific disclosure
generator into CLSs which describe the actions in terms of alternative expressions in a
canonical language. These CLSs are then adapted for a particular curriculum by a
disclosure filter that potentially draws from a user model to arrive at a set of CLSs to
actually be disclosed. The disclosure presenter is responsible for translating the filtered
CLSs into a specific language, generating explanations, and displaying the text in a
separate window or by the cursor. Tightly connected to the presenter is a programming
language interpreter in which users can type expressions from scratch or employ
disclosures as templates. Evaluating these expressions causes aggregate events to be
sent back to the tool to affect the current construction.

Using the above architecture, a variety of user modules could be tested to improve
adaptivity without reimplementing the tool or a basic disclosure mechanism. Hypertext
links to disclosures could be implemented by plugging in a more sophisticated
disclosure presenter component. Disclosure generators could be substituted to achieve
varying degrees of relevance, scope, and structure. Note that this modular architecture
would also help address the feasibility issue by making the tool responsible for only
broadcasting aggregate events, not the disclosures themselves.

104

Disclosure CLSs

Generator

Disclosure
Filter

~3

User Model

User Interaction /
\ A

ggregate Events

Ygregate Events

Programming
Language Interpreter

CLSs

Disclosure
Presenter

N

Disclosures

O

Language Definition

Figure 7-1. A modular language disclosure architecture that would facilitate
experimentation with a variety of feedback mechanisms.

To address the issue of long-term effects, a longitudinal study has been proposed that
would measure educational outcomes from a self-disclosing system over a period of
several months. Rather than test Chart ‘n’ Art, the focus would be on a robust
environment with an existing sophisticated user population: the Mac OS Finder. The
Finder is the familiar desktop interface to the file system. Since it is a “recordable”
application (see Section 5.2), a separate Script Editor window can be configured to
disclose AppleScript as users manipulate files. Subjects would be provided with an
extra monitor for displaying these disclosures without compromising subjects’ normal
screen real estate. Subjects would be recruited who might particularly benefit from
AppleScript knowledge: users operating on large numbers of files or performing
repetitive filing tasks. Although AppleScript “recordings” are missing many of the
disclosure mechanisms in Chart ‘n’ Art (e.g. explanations, alternatives, selections
labels, and mouse text), such a study could nonetheless reveal interesting learning
patterns due to long-term exposure to a variety of programming examples.

Ongoing self-disclosure research could potentially address other questions posed by
this report. For example, a screen saver is being developed for Chart ‘n” Art which
randomly permutes a user’s construction (e.g. by creating, deleting, moving, and
resizing shapes) and simultaneously discloses the relevant SK8Script expressions
(DiGiano & Eisenberg, 1996). This more random mechanism allows the system to
reveal programming techniques that it might not otherwise present to the user.

Another line of research has involved adding disclosures to the AgentSK8 simulation
environment. AgentSKS8, based on Agentsheets (Repenning & Sumner, 1995), is a tool
that allows users to design, execute, and interact with simulations of a large variety of
phenomena from physics to biology to sociology. Simulations consist of autonomous
user-defined iconic “agents” whose behavior is specified by pairs of condition-action
procedures written in a derivative of SK8Script called “AgenTalk.” Users construct
these procedures automatically when they manipulate a number of on-screen forms for
indicating conditions and actions through check boxes, menus, and drag and drop
operations. Disclosure was added to make this procedure construction process visible,
so that users could learn AgenTalk programming in order to eventually define more
complex behavior than is possible using the forms. To this end, the procedures are
“monitored” in an adjacent window tightly linked to the forms as shown in Figure 7-2.

105

Changing a check box, menu selection, etc. causes corresponding changes in the
procedures to be highlighted. Explanations for selected portions of the code can appear
in a text pane beneath the procedures and can also be read out loud to the user by a
voice synthesizer. More information on disclosures in AgentSKS8 can be found in
(DiGiano, 1996). :

giobal Water, ice

if amDepiction {me,lce) then
return True

endif

alobal Water
set rew depiction to Water
endAction

n this conditional statement we test
whether the agent has a particular
configuration of neighbors. IF it is true, we
return True. '

Show Script

Figure 7-2. Monitoring disclosures in AgentSK8. As users interact with the Jform on the
left for specifying agent behavior, the code on the right is automatically updated and
highlighted.

7.4 Contributions

This report provides a unique perspective on the language learnability problem of
programmable applications. Rather than try to simplify or hide the language as many
programming by demonstration systems have done, this work seeks to make the
language more accessible. Rather than make a language more accessible by explicit
teaching through textbooks or training classes, this work investigates ways in which
learning can take place implicitly through self-disclosing tools. Chart ‘n’ Art, with its
rich set of feedback mechanisms, is offered as a model for such pedagogical self-
disclosing tools. It is the first programmable application that embeds language learning
opportunities directly into the interface. '

The self-disclosure approach is predicated on two key philosophies: (1) that end-users
should be trusted with a full-fledged programming language that they can gradually
master, perhaps over a number of years; and (2) that computer-based education can take
on relatively benign and incremental forms which, given time, can nonetheless be
valuable learning experiences. Self-disclosure is not intended for users who are
necessarily in a hurry to learn, or for those expecting their education to be highly
structured. Instead, the technique is for designers with more immediate goals than
becoming “power-users” or end-user programmers. First and foremost, they want to
create beautiful art, generate elegant information graphics, or develop insightful

106

simulations. Self-disclosing design tools respect this priority and at the same time
acknowledge the possibility that users might want to eventually advance their skills.

The evaluation of Chart ‘n’ Art suggests that its particular choice of echoing,
identifying, and advertising techniques can be a means for at least some individuals to
become oriented to an end-user language. However, in contrast to the initial hope that
self-disclosure could be a means for lowering the threshold of programming for all, the
summative assessment suggests that disclosures by themselves provide insufficient
learning opportunities for those with limited programming background who are not
actively attending to language feedback. This may be because of the particular
disclosure mechanisms in Chart 'n’ Art, but it may also be evidence of individual
learning styles. Perhaps these users need some combination of more traditional
instruction and unstructured disclosure feedback. Perhaps it is only a certain type of
designer, those who become the local “gardeners” for instance, who have the curiosity
and motivation to make use of disclosures to learn programming.

In conclusion, this research offers important lessons for developers of high-
functionality computational design tools. For those with programmable tools, this work
presents examples of how they might go about embedding self-disclosure mechanisms
into their systems as a way to increase the accessibility and possibly the learnability of
these systems’ languages. For those with design tools that are not currently
programmable, this research gives reason to reconsider the idea of adding end-user
programming facilities. Developers of these tools may have initially rejected such
facilities because it seemed their users did not want to program. It is possible, however,
that the real issue was that their users were concerned about the time-consuming
additional learning burden of becoming oriented to a formal language for their design
activity. By embedding learning opportunities within familiar software, self-disclosure
offers a means of learning-while-doing that could possibly make programming a more
practical design tool for those who have not considered using it before.

References

Adobe Systems Inc. (1996a). Illustrator. San Jose, CA.

Adobe Systems Inc. (1996b). PageMaker. San Jose, CA.

Adobe Systems Inc. (1996c). Photoshop. San Jose, CA.

Aitchison, J. (1985). Predestinate grooves: is there a preordained language "program'?
In V. P. Clark, P. A. Eschholz, & A. F. Rosa (Eds.), Language: Introductory.
Readings, (4 ed.,). New York: St. Martin's Press.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive
tutors: lessons learned. Journal of Learning Sciences, 4(2), 167-207.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological
Review, 86(2), 125-140.

Apple Computer Inc. (1993). AppleScript Language Guide. Reading, MA: Addison-
Wesley.

Apple Computer Inc. (1995). Inside Macintosh: Interapplication Communication.
Reading, MA: Addison-Wesley.

Apple Computer Inc. (1996a). HyperCard. Cupertino, CA.
Apple Computer Inc. (1996b). SK8 User's Guide. Cupertino, CA.
AutoDesk Inc. (1996). AutoCAD. San Rafael, CA.

Bell, B., Citrin, W., Lewis, C., Rieman, J., Weaver, R., Wilde, N., & Zorn, B.
(1994). Using the programming walkthrough to aid in programming language design.
Journal of Software Practice and Experience, 24(1), 1-25.

Berlin, L. M., & Jeffries, R. (1992). Consultants and apprentices: observations about
learning and collaborative problem solving. In CSCW '92 Proceedings, (pp. 130-137).
New York: ACM Press.

Bolt, R. A. (1984). Future interfaces. Belmont, CA: Lifetime Learning Publications.

Boulay, B. d., O'Shea, T., & Monk, J. (1981). The black box inside the glass box:
presenting computing concepts to novices. International Journal of Man-Machine
Studies, 14, 237-250.

Bruner, J. S. (1975). The ontogenesis of language. Journal of Child Language, 2, 1-
19.

Burton, R. R., & Brown, J. S. (1976). A tutoring and student modeling paradigm for
gaming environments. In Proceedings of the Symposium on Computer Science and
Education. Anaheim, CA.

108

Carroll, J. M., & Rosson, M. B. (1987). Paradox of the active user. In J. M. Carroll
(Ed.) Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, (pp.
80-111). Cambridge, MA: The MIT Press.

Claris Corp. (1996). MacDraw. Cupertino, CA.

Collins, A. M., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship:
teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.)
Knowing, Learning, and Instruction, (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New
York: Harper & Row.

Cypher, A. (1993). Eager: programming repetitive tasks from examples. In A. Cypher
(Ed.) Watch What I Do: Programming by Demonstration, (pp. 405-413). Cambridge,
MA: The MIT Press.

DeltaPoint Inc. (1996). DeltaGraph Pro. Monterey, CA.
Derlega, V. J., & Berg, J. H. (1987). Self-Disclosure. New York: Plenum Press.

DiGiano, C. (1996). A vision of higlhly—learnable end-user programming languages. In
A.-Repenning, R. Hubscher, & C. Lewis (Eds.), Child's Play '96 Position Papers.

DiGiano, C. (in preparation). Chart ‘n’ Art User Manual (CU-CS-#): Department of
Computer Science, University of Colorado at Boulder.

DiGiano, C., & Eisenberg, M. (1995). Self-disclosing design tools: a gentle
introduction to end-user programming. In G. Olson & S. Schuon (Eds.), Proceedings
of DIS '95 Symposium on Designing Interaction Systems, (pp. 189-197). New York:
ACM Press.

DiGiano, C., & Eisenberg, M. (1996). Designing pedagogical screen savers. In J. D.
Mackinlay (Ed.) CHI '96 Conference Companion, (pp. 185-186). New York: ACM
Press.

Eisenberg, M. (1995). Programmable applications: interpreter meets interface. SIGCHI
Bulletin, 27(2), 68-93.

Eisenberg, M., & Fischer, G. (1994). Programmable design environments: integrating
end-user programming with domain-oriented assistance. In B. Adelson, S. Dumais, &
J. Olson (Eds.), CHI '94 Proceedings, (pp. 431-437). New York: ACM Press.

Elley, W. B. (1989). Vocabulary acquisition from listening to stories. Reading
Research Quarterly, 24(2), 175-187.

Elsom-Cook, M. (1990). Guided discovery tutoring. In M. Elsom-Cook (Ed.) Guided
Discovery Tutoring: A framework for ICAI research, (pp. 3-23). London: Paul
Chapman Publishing.

Fischer, G. (1987). A critic for LISP. InJ . McDermott (Ed.) The 10th International
Joint Conference on Artificial Intelligence, (pp. 177-184). Los Altos, CA: Morgan
Kaufmann Publishers. ‘

109

Fischer, G. (1991). Supporting learning on demand with design environments. In L.
Birnbaum (Ed.) Proceedings of the International Conference on the Learning Sciences
1991, (pp. 165-172). Charlottesville, VA: Association for the Advancement of
Computing in Education.

Fischer, G. (1993). Conceptual frameworks and computational environments in
support of learning on demand. In NATO Advanced Workshop on The Design of
Computational Media to Support Exploratory Learning. Asilomar.

Fischer, G., & Mgrch, A. (1988). CRACK: a critiquing approach to cooperative
kitchen design. In Proceedings of the International Conference on Intelligent Tutoring
Systems, (pp. 176-185). New York: ACM Press.

Fischer, G., & Nakakoji, K. (1991). Making design objects relevant to the task at
hand. In Proceedings of AAAI-91, Ninth National Conference on Artificial
Intelligence, (pp. 67-73). Cambridge, MA: AAAI Press/The MIT Press.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., & Sumner, T. (1993). Embedding
computer-based critics in the contexts of design. In Human Factors in Computing
Systems, INTERCHI'93 Conference Proceedings, (pp. 157-164).

Fischer, G., & Stevens, C. (1987). Volunteering information—enhancing the
communication capabilities of knowledge-based systems. In H. J. Bullinger & B.
Shackel (Eds.), Proceedings of INTERACT '87, 2nd IFIP Conference on Human-
Computer Interaction, (pp. 965-971). Amsterdam: North-Holland.

Fromkin, V., Krashen, S., Curtiss, S., Rigler, D., & Rigler, M. (1985). The
development of language in Genie: a case of language acquisition beyond the critical
period. In V. Clark, P. Eschholz, & A. Rosa (Eds.), Language Introductory Readings,
(pp.- 112-130). New York: St. Martin’s Press.

Gantt, M., & Nardi, B. A. (1992). Gardeners and gurus: patterns of cooperation
among CAD users. In CHI '92 Proceedings, (pp. 107-117). New York: ACM.

Glasgow, D. (1994). Information Illustration. Reading, MA: Addison-Wesley.

Gleitman, L. R. (1984). The current status of the motherese hypothesis. Journal of
Child Language, 11(1), 43-77.

Goldenson, D. R., & Wang, B. J. (1991). Use of structure editing tools by novice
programmers. In J. Koenenmann-Belliveau, T. G. Moher, & S. P. Robertson (Eds.),
Empirical Studies of Programmers: Fourth Workshop, (pp. 99-120).

Halbert, D. C. (1993). SmallStar: programming by demonstration in the desktop
metaphor. In A. Cypher (Ed.) Watch What I Do: Programming by Demonstration, (pp.
103-123). Cambridge, MA: The MIT Press.

Heydon, A., & Nelson, G. (1994). The Juno-2 Constraint-Based Drawing Editor
(Technical Report 131a): Systems Research Center, Digital Equipment.

Houghton, R. C. (1984). Online help systems: a conspectus. In Communications of
the ACM, (Vol. 27, pp. 126-133).

110

Jackiw, R. N., & Finzer, W. F. (1993). The geometer's sketchpad: programming by
geometry. In A. Cypher (Ed.) Watch What I Do: Programming by Demonstration, (pp.
293-307). Cambridge, MA: The MIT Press.

Joe, A. (1995). Text-based tasks and incidental vocabulary learning. Second Language
Research, 11(2), 149-157.

Kosbie, D. S., & Myers, B. A. (1993). A system-wide macro facility based on
aggregate events: a proposal. In A. Cypher (Ed.) Watch What I Do: Programming by
Demonstration, (pp. 433-444). Cambridge, MA: The MIT Press.

Kurlander, D. (1993). Chimera: example-based graphical editing. In A. Cypher (Ed.)
Watch What I Do: Programming by Demonstration, (pp. 271-291). Cambridge, MA:
The MIT Press.

Kurlander, D., & Feiner, S. (1993). A history of editable graphical histories. In A.
Cypher (Ed.) Watch What I Do: Programming by Demonstration, (pp. 405-413).
Cambridge, MA: The MIT Press.

Landauer, T. K. (in press). Behavioral research methods in human-computer
interaction. In M. Helander, T. K. Landauer, & P. Prabhu (Eds.), Handbook of
Human-Computer Interaction, (2nd ed.). New York: North Holland.

Lewis, C. (1988). Why and how to learn why: analysis-based generalization of
procedures. In Cognitive Science, (Vol. 12, pp. 211-256).

Lewis, C., Hair, D. C., & Schoenberg, V. (1989). Generalization, consistency, and
control. In CHI '89 Proceedings, (pp. 1-5). New York: ACM Press.

Lewis, C., & Olson, G. M. (1987). Can principles of cognition lower the barriers to
programming? In Empirical Studies of Programmers: Second Workshop, (pp. 248-
263).

Lieberman, H. (1993). Mondrian: teachable graphical editor. In A. Cypher (Ed.) Watch

What I Do: Programming by Demonstration, (pp. 341-359). Cambridge, MA: The MIT
Press. ‘

Mackay, W. E. (1991). Triggers and barriers to customizing software. In CHI '91
Proceedings, (pp. 153-160). New York: ACM.

Macromedia Inc. (1996a). Director. San Franciscd, CA.
Macromedia Inc. (1996b). FreeHand. San Francisco, CA.

Mayer, R. E. (1979). A psychology of learning BASIC. Communications of the ACM.
22(11), 589-593.

Microsoft Corp. (1995). Excel 5.0 Visual Basic User Guide. Redmond, WA:
Microsoft Corp.

Microsoft Corp. (1996a). Excel. Redmond, WA.
Microsoft Corp. (1996b). Visual BASIC. Redmond, WA.

111

Microsoft Corp. (1996¢). Word. Redmond, WA.

Miller, M. L. (1982). A structured planning and debugging environment for elementary
programming. In D. H. Sleeman & J. S. Brown (Eds.), Intelligent Tutoring Systems,
(pp- 119-135). London - New York: Academic Press.

Modugno, F., Corbett, A. T., & Myers, B. A. (1995). Evaluating program
representation in a demonstrational visual shell. In I. Katz, R. Mack, & L. Marks
(Eds.), CHI '95 Conference Companion, (pp. 234-235). New York: ACM Press.

Myers, B. A., Goldstein, J., & Goldberg, M. A. (1994). Creating charts by
demonstration. In B. Adelson, S. Dumais, & J. Olson (Eds.), CHI '94 Proceedings,
(pp. 106-111). New York: ACM Press.

Nakakoji, K., Reeves, B. N., Aoki, A., Suzuki, H., & Mizushima, K. (1995).
eMMaC: knowledge-based color critiquing support for novice multimedia authors. In
P. Zellweger (Ed.) ACM Multimedia '95 Proceedings, (pp. 467-476). New York:
ACM Press.

Nakakoji, K., Sumner, T., & Harstad, B. (1994). Perspective-based critiquing:
helping designers cope with conflicts among design intentions. In J. S. Gero & F.
Sudweeks (Eds.), Proceedings of Artificial Intelligence in Design '94, (pp. 449-466).
Amsterdam: Kluwer Academic Publishers.

Nardi, B. A. (1993). A Small Matter of Programming. Cambridge, MA: The MIT
Press.

Neuman, S. B., & Koskinen, P. (1992). Captioned television as comprehensive input:
Effects of incidental word learning from context for language. Reading Research
Quarterly, 27(1), 95-106.

Newton, J. (1995). Task-based interaction and incidental vocabulary learning: a case
study. Second Language Research, 11(2), 158-177.

Norman, D. A., & Spohrer, J. C. (1996). Learner-Centered Education.
Communications of the ACM, 39(4), 24-217.

Olson, J. S., Olson, G. M., Storrosten, M., & Carter, M. (1992). How a group-editor
changes the character of a design meeting as well as its outcome. In CSCW 92
Proceedings, (pp. 91-98).

Owen, D. (1986). Answers first, then questions. In S. W. D. D.A. Norman (Ed.)
User Centered System Design, New Perspectives on Human-Computer Interaction,
(pp. 361-375). Hillsdale, NJ: Lawrence Erlbaum Associates.

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.),
Constructionism, (pp. 1-11). Norwood, NJ: Ablex Publishing.

Papert, S. (1993). Mindstorms: Children, Computers, and Powerful Ideas. (2nd ed.).
New York: HarperCollins Publishers.

Piernot, P. P., & Yvon, M. P. (1993). The AIDE project: an application-independent
demonstrational environment. In A. Cypher (Ed.) Watch What I Do: Programming by
Demonstration, (pp. 383-401). Cambridge, MA: The MIT Press.

112

Pinker, S. (1979). Formal models of language learning. Cognition, 7, 217-283.

Pirolli, P. L., & Anderson, J. R. (1985). The role of learning from examples in the
acquisition of recursive programming skills. Canadian Journal of Psychology. 39, 240-
272. '

Quark Inc. (1996). QuarkXPress. Denver, CO.

Redmiles, D. F. (1993). Reducing the variability of programmers' performance
through explained examples. In INTERCHI '93 Proceedings, (pp. 67-73). New York:
ACM.

Repenning, A., & Sumner, T. (1995). Agentsheets: A Medium for Creating Domain-
Oriented Visual Languages. IEEE Computer, 28(3), 17-25.

Resnick, L. B. (1989). Introduction. In Knowing, Learning, and Instruction: Essays in
Honor of Robert Glaser, (pp. 1-24). Hillsdale, NJ: Lawrence Erlbaum Associates.

Richards, I. A., & Gibson, C. M. (1945). English through pictures. New York:
Pocket Books.

Rieman, J. (in press). A field study of exploratory learning strategies. ACM
Transactions on Computer-Human Interaction.

Rosson, M. B., Carroll, J. M., & Bellamy, R. K. E. (1990). Smalltalk scaffolding: a
case study of minimalist instruction. In J. C. Chew & J. Whiteside (Eds.), CHI '90
Proceedings, (pp. 423-429). New York: ACM.

Roth, S. F., Kolojejchick, J., Mattis, J., & Goldstein, J. (1994). Iteractive graphic
design using automatic presentation knowledge. In B. Adelson, S. Dumais, & J. Olson
(Eds.), CHI '94 Proceedings, (pp. 112-117). New York: ACM Press.

Selker, T. (1994). COACH: a teaching agent that learns. Communications of the ACM,
37(7), 92-99.

Sheppard, S. B., Curtis, B., Milliman, P., & Love, T. (1979). Modern Coding
Practices and Programmer Performance. IEEE Computer, 12(12).

Snow, C. E. (1986). Conversations with children. In P. Fletcher & M. Garman
(Eds.), Language Acquisition: Studies in First Language Development, (pp. 69-89).
Cambridge, England: Cambridge University Press.

Spohrer, J., Soloway, E., & Pope, E. (1985). A goal/plan analysis of buggy pascal
programs. Human-Computer Interaction, 1(2).

Stallman, R. M. (1981). EMACS, the extensible, customizable, self-documenting
display editor. ACM SIGOA Newsletter, 2(1/2), 147-156.

Totterdell, P. A., Norman, M. A., & Browne, D. P. (1987). Levels of adaptivity in
interface design. In H. J. Bullinger & B. Shackel (Eds.), Proceedings of INTERACT
87, 2nd IFIP Conference on Human-Computer Interaction, (pp. 715-722).
Amsterdam: North-Holland.

113

Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire, CT:
Graphics Press.
UserLand Software Inc. (1996). Frontier. San Francisco, CA.

Venolia, D. (1994). T-Cube: a fast, self-disclosing pen-based alphabet. In B. Adelson,
S. Dumais, & J. Olson (Eds.), CHI '94, (pp. 265-70). New York: ACM Press.

Vygotsky, L. S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.

Wiedenbeck, S. (1989). Learning iteration and recursion from examples. Int. J. of
Man-Machine Studies, 30, 1-22.

Wolfram Research Inc. (1996). Mathematica. Champaign, IL.

Appendix A
Summative Assessment Phone Interview Questions

How to answer a call from a
prospective user study participant

Tell them what it’s about

1. You will use a new kind of drawing software being developed at CU
to make some diagrams.

2. The experiment will last approximately three hours including a ten
minute break. .

3. Your screen will be videotaped, but not you.

4. The study runs from April 27 - June 1 in 3 hour slots. Early slots
may fill up quickly due to people leaving at the end of the semester.

5. You will have to come to the Engineering Center on campus. The
exact location to be determined.

6. Pay is $45.

Ask them eligibility questions
If they do not qualitfy, thank them, and hang up.

1. Are you a University of Colorado student?
If they are either an undergraduate or graduate, proceed to question 2. Otherwise, they
do not qualify.

2. Have you used a Macintosh drawing program in the last 4 years?

Examples of Mac Drawing programs:

MacDraw, SuperPaint, Canvas, Freehand, Illustrator, ClarisDraw, the drawing
component of ClarisWorks, the built-in drawing tools in Microsoft Word.

If they have any level of experience, proceed to question 3. Otherwise, they do not
qualify.

3. Have you ever used the programming language SK8Script—a new
language being developed by Apple.

If they have never used SK8Script (very likely), proceed to question 4. Otherwise,

they do not qualify.

4. Do you know Chris DiGiano or his research?

If they do not know about me or my work proceed to the information
questions. Otherwise, they do not qualify.

116

Informational Questions for Participant #

The following information will be used to contact you for scheduling purposes.

1. Name:

2. Daytime phone:

3. Evening phone: _

4. Email address (if applicable):

Please tell us about your level of experience with various Macintosh drawing programs.
By drawing programs we mean software which lets you draw basic shapes like
rectangles and ovals and then allows you to move these around and change their
appearance.

5. Use the following numerical raﬁng scale to indicate your drawing
program experience.

(F.: You might have to remind them several times about this rating scale)

1 2 3 4
very somewhat not very not at all
experienced experienced experienced experienced

Experience level (1-4) | Drawing Program

1 2 3 4 | Canvas

1 2 3 4 | ClarisDraw

1 2 3 4 | Freehand

1 2 3 4 | Hlustrator

1 2 3 4 | MacDraw

1 2 3 4 | SuperPaint

1 2 3 4 | the built-in drawing tools in Microsoft Word
1 2 3 4 | the drawing component of ClarisWorks
1 2 3 4 | Other:

1 2 3 4 | Other:

1 2 3 4 | Other:

(OVER)

117

Please tell us about your programming background. By programming we mean
specifying an instruction or series of instructions to a computer typically by typing.
Programming languages fall along a spectrum of complexity from macro languages
found in spreadsheets to languages used by professional programmers such as C++.

6. Use the following numerical rating scale to indicate your
programming experience in various languages.

(F.: You might have to remind them several times about this rating scale)

1 2 3 4
very somewhat not very not at all
experienced experienced experienced experienced

Experience level (1-4) | Language

Ada

Algol
AppleScript
Assembler
AutoLisp
BASIC

C

C++
COBOL
Fortran
HyperTalk
Java

Lingo

Lisp
Mathematica
Newton Script
Pascal

Perl

PL1

Prolog
Scheme
SmallTalk
VisualBASIC
Other:
Other:
Other:

A SRR E SESENENESESESE O) SN SR SR CH SN SN SR SR GRS N SN N]
G2 L2 L0 L2 LY LY LY LY LY LY L LY L LY LY L LU LYWL L WL W WW

P e e e e e e b ek et bk e e e pd ek e e i o ok ek ek ek e
B R e e i i T T i S T SN SN SO N SN SN SN SO SO S SN DN S A

7. If you have ever programmed, how many years have you been
programming?

1 -3 years 3 -5 years 5-10 years over 10 years

Participants can expect me to call them within a week or so, to schedule
them.

I will call you, F., daily to get the latest information from people who
have called. Don’t bother to send me email.

Appendix B
Summative Assessment Demographic Questionnaire

Chart ‘n’ Art User Study
Entrance Questionnaire

Please answer the following questions by either circling one or more of the answers
provided or by filling in a blank.

L. What is your sex? Female Male

2. Approximately how old are you?
<15 15-25 25-35 35-45 45-55 55-65 >65
3. What is your occupation?
4. If you are a student, what year are you in school?
5. If you are not a student, who is your employer?
6. Do you consider yourself to be a graphic designer or graphic artist?
Yes No
7. If you answered Yes to the previous question, how would you rate your ability

to create graphics to be used in presentations compared to other graphic
designers or graphic artists? ‘

below average average above average
8. If you answered No to question 6, how would you rate your ability to create
graphics to be used in presentations?
below average average above average
9. How would you rate your experience with software for making charts and
graphs such as bar charts, pie charts, or x-y plots?
very somewhat not very not at all
experienced experienced experienced experienced
10. A program is a way to specify an instruction or series of instructions to a

computer typically by typing. Programming languages fall along a spectrum of
complexity from macro languages found in spreadsheets to languages used by
professional programmers such as C++.

Have you ever written a program for the Macintosh in particular?
Yes No

120

I1. If you answered Yes to the previous question, have you ever written a program
which draws graphics on the Macintosh, that is produces something other than
text on the screen?

Yes No
12. Are you currently using programming languages in your work?
Yes No
13. If you answered No to the previous question, how likely do you think it is that
you might use a programming language in your work in the next year?
very somewhat not very not at all
likely likely likely likely
14. How useful do you think programming languages are for your current job, or if
you are a student, for your current work at school?
very somewhat not very not at all
useful ~useful useful useful
15, How useful do you think programming languages could be for your work over
the next year?
very somewhat not very not at all
useful useful useful useful

Stop

Do not go on to the next page.

Appendix C
Summative Assessment Training Instructions

Chart ‘n” Art User Study
Introduction to Chart ‘n’ Art

What is Chart ‘n’ Art?

You are about to use a prototype drawing program called Chart ‘n’ Art for the creation
of custom charts, graphs, and diagrams which would be difficult to make in standard
graphing packages such as Excel, Cricket Graph, or DeltaGraph. I'll ask you to try and
do a number of simple charting tasks, but I'm only allowed to give you a small number
of preset hints.

Here’s an example of a custom chart.

Getting acquainted

First, I'd like you to become familiar with Chart ‘n” Art windows and tools. I’ll ask
you to draw and edit a some simple objects to form a chart.

The basic Chart ‘n’ Art screen consists of a menubar and a
collection of windows.

The Toolbox

The Chart ‘n’ Art toolbox contains a selection tool and a variety of drawing
tools

to create and editing diagrams. You can click on a tool to select it and draw a single
shape.

Double clicking locks that tool in place so you can draw many shapes of that
kind.

The Color Palette
Choose Green for now.

The Drawing Window

The Chart ‘n’ Art drawing window is where you create your diagrams. Inside the
window are X and Y axes, with the origin at their intersection. (no training condition:
ticks mark every 5 units)

Passive & Active conditions: Language Window

The Language Window is where Chart ‘n” Art presents information to you about its
programming language, SK8Script. This programming language can among other thing
help automate the creation of our chart and place chart elements more accurately.
Passive Traning Condition: For now, don’t worry about programming language
feedback.

122

Active Training Condition: Pay attention to the programming language information
which shows up here and other places on the screen. You’ll be using it soon.

Training Task 1: A few simple charts

I'd like you to start by making a simple column chart
1. Click the Rectangle tool icon in the Toolbox to select it.

2. Start drawing a rectangle from 20 units to the right of the origin that
is 60 high and 20 wide.

3. Start drawing a rectangle from 50 units to the right of the origin that
is 20 units high and 20 wide.

4. Start drawing a rectangle from 80 units to the right of the origin that
is 80 units high and 20 wide.

You will now create a line chart with three data points

1. Choose the Line tool in the Toolbox.

2. Draw a line from the origin to 50 units above the top of the first
column (your first data point.)

3. Draw a new line to 80 units above the top of the second column (2nd
data point).

4. Draw a final line from the end of the second line to 50 units above
the top of the third column (3rd data point.)

I'd like you to spruce up the line chart with some data point
symbols. ‘

1. Choose the Oval tool icon in the Toolbox.

2. Position the crosshair just above and to the left of the intersection of
the first two lines.

3. Draw an oval 5 units high by 5 units wide by dragging diagonally.
4. Draw another oval on top of the next intersection.

5. Draw one more over the end of the line chart.

Let’s change the colors in your column chart.
1. Click on the arrow icon in the Toolbox to choose the selection tool.

2. Click on the left-most rectangle of the column chart.

Eight small black squares or “handles” appear on the edges of the rectangle to indicate it
is selected. Don’t worry if you accidentally move the rectangle.

3. Click on the swatch of blue in the color palette.

123

Select the other two columns and give them the same color.
1. First, select the middle column.

2. Then hold down the shift key and click on the last column.

Handles appear around both the middle and right-most rectangles, indicating both
objects are selected.

3. Choose blue from the color palette.

Let’s try another color for all three columns.

1. This time, position the pointer above and to the right of the right-
most column.

2. Drag diagonally to enclose all three columns with a “marquee.”
All three columns are selected. This is another way to select more than one object.

3. Change the color to red.

The values | gave you for the columns were only approximations.
Now lets adjust them for their exact values.

1. Deselect by clicking outside your selection
. Select the left-most column.

2

3. The small black handles mark where you can click to resize it.

4. Position the pointer over the middle handle at the top of the column.
5

. Drag it down to the correct value: 55.

We also need to change its width to 30.
1. Drag the middle handle on the right side of the column.

2. It should line up directly beside the second column

Change the width of the middle column so it matches the first
column.

The last column needs to be adjusted horizontally and vertically.
1. Position the pointer over the handle in the top-right corner.

2. Drag diagonally down and to the right until it’s 75 tall and 30 wide.

124

I'd like you to drag the first column to the left so it is flush with
the Y axis.

Move it back to where it was before, but this time hold down the
shift key.

Notice the shift key constrains your dragging, so the object slides only left and right.
The shift key can constrain horizontally or vertically, depending on which direction you
first start dragging. A

Let’s move all three columns to the left simultaneously, so they
are next to the y-axis.
1. Select the columns.

2. Drag them to the left.

Let’s add more columns' to your chart.
1. Select the right-most column.
2. Choose duplicate from the Edit menu.

3. Drag the new column to a into position beside the other columns.

To save time, we can duplicate more than one shape at a time.
1. Select the last two columns.

2. Choose Duplicate from the Edit menu.

3. Drag them into place.

To make lots of shapes you can use the Duplicate Special menu
command.

1. Start by selecting the last column.
. Choose DuplicateSpecial from the Edit menu.

2

3. Enter 3 into the number of copies box.

4. Enter 30 into the horizontal box to place the copies 30 units apart.
5

. Enter 0 into the vertical box to keep the copies on the Y axis.

Suppose we want to spread out the columns in the chart.

1. Drag the right-most column 40 units to the edge of the axis (around
the 360 point on the axis).

2. Select all of the column by surrounding them with a marquee.

3. Choose Distribute Horizontally from the Arrange menu.

125

Finally, let’'s add a background to the chart.

1. Choose the rounded rectangle tool from the toolbox.

2. Draw a rounded rectangle just outside the X and Y axis that
encompasses all the elements in your chart.

3. Select it. '

4. Choose Send To Back from the Arrange menu to assign it to the back
most layer of your drawing.

Passive & Active conditions: Language Window

Training Task 2: Creating bar charts from data sets

Active Training Condition: Try and use the language as much as
possible to make things exact and to help automate repetitive
tasks. ‘

Data menu: Data Set 1
Erase your previous drawing using the Erase command from the View menu.

Draw a column chart depicting the information in Data Set 1.

1. Start the first bar at the origin

2. Make the bars 20 units wide

3. Use Duplicate Special to create the remaining rectangles in your chart
4

. About bars 20 units apart (usually the same or a little bit bigger than
the width)

w

and the length of each bar equal to its corresponding value in the data
set.

. Draw the bars as accurately as possible

1set1 =

Laddid

126

Data menu: Data Set 2

Without erasing the drawing, change the length of the bars to reflect the
information in Data Set 2.

Active Training Condition: Remember, try and use the language as much as
possmle to make things exact and to help automate repetmve tasks.

Now make the bars 10 wide instead of 20.

Data menu: Data Set 3

Without erasing the drawing, change the length of the bars to reflect the
information in Data Set 3.

Active Training Condition: Remember, try and use the language as much as
possmle to make thmgs exact and to help automate repetltlve tasks.

127

Now make the bars 15 wide instead of 10.

Data menu: Data Set 4
Now erase the drawing and create a new bar chart for Data Set 4.

Start by creating the first bar, then use Duplicate Special to create the
remaining copies.

Make the bars about 10 wide and 12 apart.
Active Training Condition: Remember, try and use the language as much as

possible to make things exact and to help automate repetitive tasks.

REERARERE SaTR AR

@ i

<give hint here only when stuck and user has at least tried 5 bars by hand>

Appendix D
Summative Assessment Introduction to Disclosure Mechanisms
and the Language Window

Chart ‘n” Art User Study
The Language Window

The Language window is where you often see hints and suggestions for using Chart
‘n’ Art’s programming language. As you have probably already noticed, many
operations you perform with the mouse cause CNA to reveal or “disclose” to you how
to achieve the same effects with its language.

All conditions:
Start a new drawing by choosing Erase Drawing from the View menu

Create a new oval in the center of the drawing

Note the mouse text

When you release the mouse CNA elaborates on that information

The lines in normal type contain actual programming. Text in italics offers an
explanation in English of what the expression above it does. More later...

Select the oval
Note the object label

Change its color to Yellow

Note the disclosure.

Make that oval slightly wider by dragging the right-middle handle

Note the multiple alternative language expressions

Create another oval and select it
Note the selection disclosure

CNA provides a list of expressions which define various
properties of the oval.

They show values that represent the current state of things on the
screen. Note there’s a lot of them. Try scrolling down the list

Select them both
Note the object label shows how to refer to both at the same time

The selection disclosure now shows expressions for both ovals
which define the similarities and differences between properties
of these ovals.

130

Scroll down and check them out.

The history pane at the bottom allows you to review expressions which have
already been disclosed

ordered from top to bottom where the bottom-most entry is the
most recent expression shown.

Click on the most recent history entry at the bottom (make Oval)

The expression and any additional information appear now in the
white pane.

When write enabled: (active condition in training, all in performance)

Click on the entry for changing the colof to Yellow.
The white pane is editable. Change the word Yellow to Green.

Press the Execute Line button

Enter an expression from scratch
Clear

Type in the text at the bottom of the history by refer to the other
Oval and use the Pink color.

This time hit the Enter key to execute
If you have multiple lines to execute, you must drag a selection

Can cut and paste within the language window

Appendix E
Hints Given to Subjects during the Summative Assessment

color
> 30

ss
chart

Chart ‘n” Art User Study
Hint List

(typically 2 min. threshold, 4 min. when checking manual,

train-
ing

or if about to completely abandon strategy)

Language interface explanations

italics indicate an English language explanation of the command
above

object labels show how to refer to one or more objects

selecting one or more objects discloses a set of “defining”
expressions

history items can be reviewed

history entries can be reused

you can edit what’s in the white pane of the language window

to execute a line with the keyboard, hit the enter key

to execute programming expressions which span multiple lines,
first select all the lines

can cut and paste between data and language windows (after 5
manual text entries)

option-L generates line continuation character

arrow keys can be used to scroll horizontally

Strategy hints

create the first shape, then use Duplicate Special

doing something by direct manipulation can often get the system to
disclose related language expression

selecting a single object can provide useful information about what
you can do to it with the language

disclosures from selecting > 1 objects (say by dragging a marquee)
can provide useful hints for doing things to multiple shapes at a
time (after 5 bars manually)

to get information on referring to subsets of shapes, try selecting
very specific subsets

it is usually easier to create a shape and then adjust its properties
later

change width with right-middle handle provides simpler way of
looking at things

change height with top-middle handle provides simpler way o
looking at things :

don’t have to use language

132

Language hints

every item in

{} around lists

bounds = {left, top, right, bottom}

every item whose height <20 in ..NOT every item in ... whose
height < 20

‘make’ creates a new shape; it does not update an old one

height and top are different things

don’t spell out math terms like ‘<*, ‘=°

Miscellaneous

to Duplicate Special, enter the # of ADDITIONAL copies

your drawing doesn’t look quite right according to the my screen
snap (when users think they’re done)—might be off by one

Appendix F
Summative Assessment Short-Answer Test

Chart ‘n” Art User Study
Written Language Questions

Chart ‘n’ Art provides a textual programming language for automating the creation of
charts and graphs, and helping you place drawing elements more accurately. Almost
everything you do with the mouse has equivalent commands in the programming
language.

Even if you have never seen Chart ‘n’ Art’s language try and answer the following
questions. If you don’t know the answer, please make your best guess.

1. a. Please describe the kinds of operations in Chart ‘n’ Art’s language. Operations in
a programming language are analogous to verbs in English.

b. Give examples:

2. a. Please describe the kinds of operands, or things which can be operated on, in
Chart ‘n” Art’s language. Operands in a programming Ianguage are analogous to
- nouns and noun phrases in English.

b. Give examples:

3. a. How do you combine together operations, operands, and other language
elements to form Chart ‘n” Art commands? Combining operations and operands is
like forming a sentence in English.

b. Give examples:

Stop

Do not go on to the next page.

Appendix G
Summative Assessment Multiple-Choice Test

Note: questions for the actual test were printed one-to-a-page to prevent subjects from
refering back to previous questions.

Chart ‘n” Art User Study
|| Multiple Choice Language Questions

Please check your answer for each of the following questions.

oy

Chart ‘n” Art is designed to teach you about its programming language while you
are drawing. How helpful did you find Chart ‘n’ Art’s programming language
instruction?

a. very helpful
b. somewhat helpful

not very helpful

0O 0O

d. not at all helpful

[\

How much do you think you learned from Chart ‘n’ Art’s programming language
instruction?

D a. a lot
D b. some

D ¢. not very much

D d. not at all

136

Please check the correct answer for each of the following questions about Chart ‘n’

Art’s programming language. Even if you have never seen the language, please make
your best guess.

Which expression refers to the border color of a shape?

a. frameColor

b. lineColor

I e

C. penColor

E =N

Which expression refers to the coordinates of the rectangle bounding a
shape?

a. bounds

b. boundsRect

] L) O

C. frame

5. Which expression refers to the thickness of the border of a shape?

a. frameSize
b. lineSize

C. penSize

nliislin

=)

Which expression refers to the interior color of a shape?

a. fill

b. fillcColor

L] OO

C. paintColor

7. Which expression refers to the thickness of a line?
[:} a. lineSize
| | b. linewidth

[:] C. penSize

137

8. Which expression refers to the coordinates of the center of a shape in a
drawing window?

E a. center

b. location

i__J

a:j C. position

9. Which command is used to create a shape?

D a. draw
]i] b. make
D C. new

10. Which expression refers to the window where the graphics appear?

D a. DrawingWindow
D b. DrawWindow

D C. FrontDrawing

11. Which expression refers to shapes created by the tool selected in the
palette above?

D a. Box
D b. Rect

D C. Rectangle

138

12. Which expression refers to shapes created by the tool selected in the
palette above?

D a. RoundedRect
D b. RoundedrRectangle

D Cc. RoundRect

13. Which expression refers to shapes created by the tool selected in the
palette above?

D a. Ellipse
D b. oval
D c. Ovoid

139

14. Which expression refers to shapes created by the tool selected in the
palette above?

D a. Line

D b. LineSegment

:} C. Segment

15. Which expression refers to shapes created by the tool selected in the
palette above?

r:] a. ClosedPolygon

D b. Multiline

D Cc. Polygon

140

10
= X
& >

=0y -

AL e

1 =

ARRNREN L 3 LLLLL Lrnad

H LN 1 ¥ H F ¥ R ¥ Tt
o A0 Qi [N Tedd

16. Which expression refers to distance x in the above diagram?
E a. right

D b. rightEdge

DC.XMaX

8%3 o A

4]

17. Which expression refers to distance x in the above diagram?

a. height
[]

D b. top

D Cc. topEdge

141

H

S0 -

§

¢ ¢ g] INERERN
bl RN L ¥ 3 LR H SEREERSN RN

A4 a0 120 160

18. Which expression refers to distance x in the above diagram?

D a. horizontalSize

D b. width

D C. xSize

£
RN
X
S
)
LA T £ : { pataates LhAd :
T IRME B PRI ¥ ST T
» BN & 120 e

19. Which expression refers to distance x in the above diagram?

D a. height

D b. verticalSize

D c. ySize

142

120 -

20. Which expression refers to distance x in the above diagram?

D a. left

[] b. leftEdge

D c. xMin

: £ RN £ 4 RERN]
T Y ? t \

]
U &l 120 15

21. Which expression refers to distance x in the above diagram?
D a. bottom
D b. bottomEdge

D Cc. height

143

22. Which expression will draw a rounded rectangle and make its interior
color green?

D a. make Green RoundedRect
D b. make RoundedRect fillColor: Green
|] ¢ make RoundedRect whose fillColor = Green

D d. set fillColor Green to make roundRect

23. Which expression refers to rectangle number 1 in the drawing window?

D a. find DrawWindow, Rectangle, 1
:‘ b. Rectangle 1
:] C. Rectangle 1 in DrawWindow

D d. Rectanglel

Suppose you drew a rectangle and two ovals shapes into a BLANK drawing window
in the order a, b, ¢ as shown below.

@

®

24. Which expression refers to shape @ ?

4. Rectangle 0 in DrawWindow
b. Rectangle 1 in DrawWindow

C. Rectangle 3 in DrawWindow

RN

d. the Rectangle in Drawiindow

144

25. Which expression will draw a yellow rectangle with a blue border?

[:] a. make Rectangle {fillColor: Yellow, frameColor: Blue}

[:} b. make Rectangle whose fillColor = Yellow and whose -
frameColor = Blue

[:} C. make Rectangle with fillColor Yellow with frameColor Blue

[:} d. set frameColor Blue of set fillColor Yellow of make Rectangle

26. Suppose X refers to a single shape. Which expression will make that shape 50
units wide by 100 units tall?

[:} a. assign the size of X to {50,100}
[:] b. set the size of X to {50,100}
[:] C. setSize X, 50, 100

[:] d. size of X = {50,100}

Suppose you drew a rectangle and two ovals shapes into a BLANK drawing window
in the order a, b, ¢ as shown below.

@

®

27. Whic expressmn refers to the collection consisting of the two objects@

and
[:} a. every Oval in DrawWindow
[:} b. Oval 1 and Oval 2 in DrawWindow
[:] C. Oval 1 in DrawWindow and Oval 2 in DrawWindow
[:j d. oval {1,2} in DrawWindow

145

28. Suppose X refers to a rectangle centered at {100, 100}. Which expression will
change that shape’s location so that its center is now at {0,0}?

|] a move X by {-100,-100}
[:J b. move X to {0,0}

[:] C. position X at {0,0}
[:] d. setPosition X, 0, 0O

Suppose you drew a rectangle and two ovals shapes into a BLANK drawing window
in the order a, b, ¢ as shown below.

®

29. Which_expression refers to the collection consisting of the two objects@
and ?

[:} a. every other item in DrawWindow
[:} b. Rectangle 1 and Oval 2 in DrawWindow
[:} C. Rectangle 1 in DrawWindow and Oval 2 in DrawWindow

[:} d. {Rectangle 1 in DrawWindow, Oval 2 in DrawWindow}

30. Suppose X refers to a single shape. Which expression will make that shape’s
interior color red?.

a. assign the fillColor of X to Red
r:] b. fillColor of X = Red
[:} C. set the fillColor of X to Red

[:] d. setFillColor X, Red

146

Suppose you drew a rectangle and two ovals shapes into a BLANK drawing window
in the order a, b, ¢ as shown below.

@

®

31. Which express refers the collection consisting of the three
objects @ @ and

D a. all shapes in DrawWindow

D b. all the items in DrawWindow

D C. DrawWindow contents

D d. every item in DrawWindow

32. Suppose X refers to a single shape. Which expression will make that shape
100 units wide?

B a. assign the width of X to 100

D b. set the width of X to 100

D . €. setWidth X, 100

D d. width of X = 100

33. Suppose XX refers to a collection of shapes. Which expression will make the
border color of each one of those shapes be pink?

D a. for i = every item in XX
frameColor of 1 = Pink
next

D b. map the frameColor of XX to Pink
D C. set the frameColor of every item in XX to Pink

D d. setFrameColor XX, Pink

147

34. Which expression will hide each rectangle numbered 1 through 10?

[:] a for i =1 to 10
hide Rectangle i in DrawWindow
next

[:} b. loop i from 1 to 10 {hide Rectangle i in DrawWindow}
[:} C. map hide over Rectangle 1 through 10 in DrawWindow

z:} d. repeat with i from 1 to 10
‘ hide Rectangle i in DrawWindow
end repeat

35. Suppose XX refers to a collection of shapes. Which expression will make the
interior color of each one of those shapes be orange?

[:} a. for i = every item in XX
fillColor of i = Orange
next

[:] b. map the fillColor of XX to Orange
E:} C. set the fillColor of every item in XX to Orange

[:] d. setFillColor XX, Orange

36. Suppose XX refers to a collection of shapes. Which expression will hide each
shape in that collection?

[:} a. dolist XX with i {hide i}

[:] b. for i = every item in XX
hide 1
next

[:] C. map hide over XX

[:} d. repeat with i in XX
hide 1
end repeat

148

37. Suppose XX refers to a collection of shapes. Which expression will make each
one of those shapes 100 units tall?

D a. for i = every item in XX
height of 1 = 100
next

D b. map the height of XX to 100
I:I C. set the height of every item in XX to 100

D d. setHeight XX, 100

38. Which expression refers to all of the red shapes in the drawing window?

D a. all the Red items in DrawWindow
D b. each item of DrawWindow with fillColor Red
D C. every item whose fillColor = Red in DrawWindow

D d. the Red contents of DrawWindow

39. Suppose XX refers to a collection of five line segments. Which expression will
make the thickness of each of those lines correspond to the values
1, 3, 4, 6 and 7, respectively?

D a. map the lineSize of XX to everything in {1, 3, 4, 6, 7}

D b. set the lineSize of every item in XX to every item in -
{1, 3, 4, 6, 7}

E C. setLineSize XX, {1, 3, 4, 6, 7}

D d. values = {1, 3, 4, 6, 7}
for 1 = every item in XX
lineSize of 1 = values [1]
next

149

. Suppose XX refers to a collection of shapes. Which expression will align the

left-most edge of each shape with the y-axis?

a. alignLeft XX, O
b. align the left of every item in XX to 0
C. map the left of XX to 0

d. set the left of every item in XX to O

. Suppose XX refers to a collection of five shapes. Which expression will make

the right-most edge of each of those shapes be positioned to
correspond to 50, 100, 125, 300, and 360, respectively?

a. map the right of XX to everything in {50, 100, 125, 300, 360}

b. set the right of every item in XX to every item in {50, 100, -
125, 300, 360}

¢c. setRight XX, {50, 100, 125, 300, 360}

d. values = {50, 100, 125, 300, 360}
for i = every item in XX
right of i = values [1i]
next

The End

Appendix H

Detailed Results from the Summative Assessment

Table H-1. All pair-wise differences between conditions generated using Scheffé
post-hoc tests of ANOVAs of short-answer, multiple-choice, and final program
scores. For each comparison, the table lists the mean difference, the 95%
confidence level, and the p-value. Low experience subjects are those familiar with at
most one programming language (E0-1). High experience subjects are those
Jamiliar with at least two languages (E2+).

Active Training -

Active Training -

Passive Training -

Passive Training No Training No Training

Mean Mean Mean

Diff. +/- p Diff. +/- p Diff. +/- p
Short Answer |1.20 0.94 .0106 |[1.75 0.94 0.0003 |[0.55 0.94 .3299
Low Exper. 1.96 0.96 .0003 |1.86 0.96 0.0005 [-0.10 1.04 .9661
High Exper. ...0:23 215 9531 |1.43 2.15 0.2114 /1.20 1.86 .2309
Multiple Choice |12% 16% .1463 |19% 16% 0.0150 |7% 16% .5372
Low Exper. 20% 15% .0104 |[15% 15% 0.0489 |-5% 17% .7416
High Exper. .12%...537% ..9845 |21% 37% 0.3178 |18% .82% .3002
Final Program |1.05 1.02 .0432 |0.45 1.02 0.5262 |-0.60 1.02 .3267
Low Exper. 1.36 1.14 .0198 |0.66 1.14 0.3215|-0.70 1.24 .3309
High Exper. 0.87 2.22 .5549 |0.37 2.22 0.8953 |-0.50 1.92 .7634

Table H-2. All pair-wise differences between conditions generated using t-tests of
short-answer, multiple-choice, and final program scores. For each comparison, the
table lists the mean difference, the 95% confidence level, and the p-value. Low
experience subjects are those familiar with at most one programming language (E0-
1). High experience subjects are those familiar with at least two languages (E2+).

Active Training - Active Training - Passive Training -
- Passive Training No Training No Training
Mean Mean Mean
Diff. +/- p Diff. +/- p Diff. +/- p
Short Answer | 1.20 0.93 .0142 | 1.75 0.81 .0002 0.55 0.65 .0943
Low Exper. 1.96 0.81 .0005 |1.86 0.81 .0005 |-0.10 0.85 .7924
High Exper. 0.28...2:29..:8116 11.43 2.18 .1575 .1:20 ..0.80 .0085 .
Multiple Choice| 12% 13% .0625 | 19% 13% .0065 7% 13% .2728
Low Exper. 20% 12% .0046 | 15% 14% .0046 -5% 12% .3966
JHigh Exper. 2% ...34%...8746 |21%..33%. 1732 |18% _23% .1071
Final Program | 1.05 0.74 .0079 | 0.45 0.81 .2557 -0.60 0.94 .1952
Low Exper. 1.36 0.76 .0025 | 0.66 0.98 .1665 |-0.70 1.19 .2110
High Exper, 0.87 1.78 2790 | 0.37 1.86 .6458 -0.50 1.64 .5016

152

Table H-3. T-tests of all pair-wise differences between question topics for each
condition. For each comparison, the table lists the mean difference, the degress of
freedom, the t-value, p-value, and 95% confidence intervals.

Mean Diff. DF t-Value P-Value 95% Lower 95% Upper

Vocabulary, Syntax: .095 58 1.972 .0534 -.001 .191
Total

Vocabulary, Syntax: .226 18 2.956 .0085 .065 .387
No Training

Vocabulary, Syntax: .047 18 .680 .5052 -.099 .194
Passive Training

Vocabulary, Syntax: .011 18 137 .8925 -.151 172
Active Training

Vocabulary, Semantics: .140 58 3.198 .0022 .052 .228
Total

Vocabulary, Semantics: .173 18 2.381 .0285 .020 .325
No Training

Vocabulary, Semantics: .152 18 2.360 .0298 017 .287
Passive Training

Vocabulary, Semantics: .097 18 1.187 .2506 -.075 .268
Active Training

Syntax, Semantics: .046 58 .857 .3950 -.061 1562
Total

Syntax, Semantics: -.054 18 -.677 5072 -.220 113
No Training ;

Syntax, Semantics: .104 18 1.301 .2097 -.064 273
Passive Training

Syntax, Semantics: .086 18 979 .3406 -.099 272

Active Training

Table H-4. All pair-wise differences between conditions generated using Scheffé
post-hoc tests of ANOVAs of scores for three types of questions on the multiple-choic
test. For each comparison, the table lists the mean difference, the 95% confidence
level, and the p-value.

Active Training - H Active Training - Passive Training -

i Passive Training No Training No Training
i Mean Mean Mean
Diff. +/- p Diff. +/- p Diff. +/- p

Vocabulary 01 05 0.165 .2721 0.084 0.165 .4286 i-0.021 0.165 .9469
Syntax. 50.142 0.217 .2550 0.300 0.217 .0053 :0.158 0.217 .1886
Semantics i0.160 0.211 .1649 0.160 0.211 .1649 :0 . .

153

Table H-5. All pair-wise differences between conditions generated using t-tests of
scores for three types of questions on the multiple-choic test. For each comparison,
the table lists the mean difference, the 95% confidence level, and the p-value.

Active Training - Active Training - Passive Training -
Passive Training No Training No Training
Mean Mean Mean
Diff. +/- p Diff. +/- p Diff.)
Vocabularyi0.105 0.13 .0993 i0.084 0.15 .2400 -0.021 0.13 .7331
Syntax. 0.142 0.18 .1085 :0.300 0.18 .0021 0.158 0.18 .0758
Semantics :0.160 0.18 .0739 :0.160 0.18 .0739 i0 . .

Table H-6. Means for the multiple-choice test scores grouped by question topic and
condition. The “Raw” scores are those which include all valid questions on the test.
The “Adjusted” scores are those which exclude 11 questions potentially influenced
by the disclosures exercises. For each mean the table lists the 95% confidence,

standard error, and standard deviation.

Raw Adjusted
i No Passive Active No Passive Active
! Training Training Training : Training Training Training
Vocabulary Mean | 45% 43% 54% 37% 35% 47 %

Conf. Level 11% 8% 11% 12% 7% 12%

Std. Err. 0.049 0.036 0.049 0.052 0.029 0.054
g Deve b Q01580018 0185 ¢ 0:1684 0,098 0169
Syntax Mean 23% 38% 53% 20% 30% 41%

Conf. Level 13% 14% 13% 14% 10% 14%

Std. Err. 0.059 0.060 0.059 0.060 0.043 0.063
_Std. Dev. 0.186 0.189 0.187 0.189 0.137 0.198
Semantics Mean 28% 28% 44% 13% 13% 30%

Conf. Level 12% 12% 15% 13% 13% 18%

Std. Err. 0.053 0.053 0.065 0.056 0.056 0.082

Std. Dev. 0.169 0.169 0.207 0.177 0.177 0.258
Overall Mean 34% 41% 53% 30% 33% 44%

Conf. Level 10% 10% 10% 10% 7% 11%

Std. Err. 0.043 0.043 0.045 0.044 0.033 0.048

Std. Dev. 0.136 0.135 0.143 0.140 0.103 0.151

154

