
Discovering Models of Software Processes
from Event-Based Data

Jonathan E. Cook and Alexander L. Wolf

Software Engineering Research Laboratory
Department of Computer Science

University of Colorado
Boulder, CO 80309 USA

{jcook,alw}@cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-819-96 November 1996

A version of this report to appear in
ACM Transactions on Software Engineering and Methodology

c© 1996 Jonathan E. Cook and Alexander L. Wolf

ABSTRACT

Many software process methods and tools presuppose the existence of a formal model of a
process. Unfortunately, developing a formal model for an on-going, complex process can
be difficult, costly, and error prone. This presents a practical barrier to the adoption of
process technologies, which would be lowered by automated assistance in creating formal
models.

To this end, we have developed a data analysis technique that we term process discovery.
Under this technique, data describing process events are first captured from an on-going
process and then used to generate a formal model of the behavior of that process. In this
paper we describe a Markov method that we developed specifically for process discovery,
as well as describe two additional methods that we adopted from other domains and
augmented for our purposes. The three methods range from the purely algorithmic to
the purely statistical. We compare the methods and discuss their application in an
industrial case study.

This work was supported in part by the National Science Foundation under grant CCR-93-02739 and by the Air
Force Material Command, Rome Laboratory, and the Defense Advanced Research Projects Agency under Contract
Number F30602-94-C-0253. The content of the information does not necessarily reflect the position or the policy of
the Government and no official endorsement should be inferred.

1 Introduction

A software process is a set of activities applied to artifacts, leading to the design, development,
or maintenance of a software system. Examples of software processes include design methods,
change-control procedures, and testing strategies. The general intent of a software process is to
coordinate individual activities so that they achieve a common goal.

The challenge of managing and improving the software process followed by an organization has
come to the forefront of software engineering research. In response, new methods and tools have
been devised to support various aspects of the software process. Many of the technologies, including
process automation [8, 9, 28, 48, 53], process analysis [36, 37, 40, 50], and process evolution [7, 38],
assume the existence of a formal model of a process in order for those technologies to be applied.

The need to develop a formal model as a prerequisite to using a new technology is a daunting
prospect to the managers of large, on-going projects. The irony is that the more a project exhibits
problems, the more it can benefit from the process technologies, but also the less its managers may
be willing or able to invest resources in new methods and tools. Therefore, if we intend to help
on-going projects by promoting the use of technologies based on formal models, we must seriously
consider how to lower the entry barriers to those technologies.

In that vein, we have explored methods for automatically deriving a formal model of a process
from basic event data collected on the process [25]. We term this form of data analysis process
discovery, because inherent in every project is a process (whether known or unknown, whether
good or bad, and whether stable or erratic) and for every process there is some model that can
be devised to describe it. The challenge in process discovery is to use those data to describe the
process in a form suitable for formal-model-based process technologies, and in a form that allows
an engineer to understand the model, and thus the process.

In general, this is a very difficult challenge to meet. To scope the problem, we have concentrated
our efforts on models of the behavioral aspects of a process, rather than, for example, on models
of the relationships between artifacts produced by the project, or on models of the roles and
responsibilities of the agents in the process. Any complete modeling activity would have to address
those other aspects of the process as well. To further scope the problem, we have restricted ourselves
to the discovery of finite state machine models of behavioral patterns.

In this paper we present three methods for process discovery, ranging from the purely algorithmic
to the purely statistical. The approach underlying the methods is to view the process discovery
problem as one of grammar inference. In other words, the data describing the behavior of a process
are viewed as sentences in some language; the grammar of that language is then the formal model
of the process. The methods have been implemented as a tool operating on process data sets [22]
and have been successfully employed in an industrial case study [23].

Although the methods are automated, they still require guidance from a process engineer who
is at least somewhat familiar with the particular process under study. This guidance comes in
the form of tuning parameters built into the methods, and from the selection and application of
the event data. The results produced by the methods are initial models of a process that can be
refined by the process engineer. Indeed, the initial models may lead to changes in data collection
to uncover greater detail about particular aspects of the process. The discovery methods therefore
complement a process engineer’s knowledge, providing empirical analysis in support of experience
and intuition.

We note that although our presentation of the discovery methods is done in the context of
software processes, the methods are applicable to other kinds of processes—and, more generally,
other kinds of behaviors—that can be characterized by event data. For instance, we have success-

1

fully applied the techniques to the discovery of operating-system-level interprocess communication
protocols. Our experience with the methods to date, however, has been mainly with software
processes.

The next section of the paper discusses the framework in which we define and analyze event
data. Section 3 gives a more complete statement of the discovery problem and outlines our grammar
inference approach. Section 4 provides needed background on grammar inference. The discovery
methods themselves are then described in Section 5. Section 6 presents a comparative evaluation
of the methods. Section 7 describes DaGama, the tool implementing the discovery methods. The
application of the methods in an industrial case study is reviewed in Section 8. Finally, we conclude
in Section 9 with a summary of our results, an overview of related work, and a discussion of future
work.

2 An Event-Based Framework for Process Discovery

Our work in process discovery rests on a behavioral view of software processes as a sequence of
actions performed by agents, either human or automaton, possibly working concurrently. Following
Wolf and Rosenblum [56], we use an event-based model of process actions, where an event is used to
characterize the dynamic behavior of a process in terms of identifiable, instantaneous actions, such
as invoking a development tool or deciding upon the next activity to be performed. The use of event
data to characterize behavior is already widely accepted in other areas of software engineering, such
as program visualization [45], concurrent-system analysis [6], and distributed debugging [10, 26].

The “instant” of an event is relative to the time granularity that is needed or desired; thus,
certain activities that are of short duration relative to the time granularity are represented as a single
event. An activity spanning some significant period of time is represented by the interval between
two or more events. For example, a meeting could be represented by a “begin-meeting” event and
“end-meeting” event pair. Similarly, a module compilation submitted to a batch queue could be
represented by the three events “enter queue”, “begin compilation”, and “end compilation”.

For purposes of maintaining information about an action, events are typed and can have at-
tributes; one attribute is the time the event occurred. Generally, the other event attributes would
be items such as the agents and artifacts associated with an event, the tangible results of the action
(e.g., pass/fail from a design review; errors/no-errors from a compilation), and any other informa-
tion that gives character to the specific occurrence of that type of event. In the work described
here, we do not make use of attributes other than time. This framework, however, is the basis for
more extensive analyses (see Section 9).

The overlapping activities of a process, then, are represented by a sequence of events, which we
refer to as an event stream. For simplicity, we assume that a single event stream represents one
execution of one process, although depending on the data collection method and the organization,
this assumption may be relaxed.

One can view a process execution as completely represented by an event stream containing
events from all of the possible event types that might be generated during that process. However,
the set of event types that are actually collected as data is usually smaller than this complete
set. There are several reasons why this might occur, but two obvious ones are that data about
a particular event type might be considered inconsequential or the data might be considered too
expensive to collect. For instance, events that occur off the computer, such as most staff meetings,
are likely to be more expensive to collect than events that occur on the computer, simply because
off-computer events would require manual, as opposed to automated, collection techniques.

For this reason, event data collected from an executing process can be viewed as a window onto

2

Process ModelEvent DataExecuting Process

Collection Inference

Event 1
Event 2
Event 3

Event 76
Event 77
Event 78

Figure 1: Process Model Discovery.

the execution. A discovered model can only account for those portions of the process for which
events are collected. Hence, just as for any other data analysis technique, the results obtained by
discovery methods strongly depend upon the content and quality of the data that are collected.
This issue is currently being investigated in the domain of software process [13, 23, 55, 56].

3 Problem Statement and Approach

Our goal in this work is to use event data, in the form of an event stream, collected from a
software process execution to infer a formal model of the behavior of the process. This framework
is depicted in Figure 1. We do not envision being able to infer fully complete and correct process
models, since this is in general an intractable problem. Rather, we aim to provide a process engineer
with some formal description of the patterns of behavior that exist in the process, as seen through
the collected execution event stream. An engineer can then use this information as a basis for
creating a more complete process model, for evolving an existing (possibly informal) model, or for
correcting some aspects of the execution.

What we seek to infer from the data are recurring patterns of behavior, specifically those
involving sequencing, selection, and iteration. For our purposes, finite state machines (FSMs)
provide a good starting point for expressing those patterns. By an FSM we mean a nondeterministic,
transition-labeled state machine [19]. The ability to discover the start and stop states of FSMs
is not of particular importance in this work, although in some cases it would be straightforward
(i.e., the states that have no incoming/outgoing transitions, respectively). We assume that the
process engineer can provide this additional context in the other cases, if such an identification is
of interest.

One could consider choosing a more powerful representation than finite state machines, such
as push-down automata or even Petri nets. The primary argument against this is that the more
powerful the representation, the more complex the discovery problem. Furthermore, it is not clear
the additional power is required in order to provide a useful model. More powerful representations
than FSMs are arguably better suited for prescribing a software process. On the other hand,
our experience has shown that FSMs are quite convenient and sufficiently powerful for describing
historical patterns of actual behavior [23]. The drawback to FSMs is that they have no inherent
ability to model concurrency. We address this issue in Section 5.5.

To develop our techniques, we have cast the process discovery problem in terms of another,
previously investigated FSM discovery problem. That problem is the discovery of a grammar for a
regular language given example sentences in that language [5]. This area of research historically is
referred to as grammar inference. If one interprets events as tokens and event streams as sentences

3

in the language of the process, then a natural analog becomes evident. There are, however, several
important differences, as we discuss in Section 4.

Beside grammar inference, there are other areas of computer science that could provide a possi-
ble foundation for process discovery. Two prominent ones are data mining and reverse engineering.
In the remainder of this section we briefly summarize how our problem and approach relate to these
two areas.

3.1 Data Mining

Data mining is the name given to the task of discovering information in data. Different methods
have emerged, targeting different kinds of data, such as relational databases, images, numerical time
series, and sequence data. The specialized methods take advantage of the nature of the specific
data to which they are applied.

Our kind of data is sequence data. For this kind of data, the long-established field of grammar
inference has provided the primary foundation for data mining techniques. We therefore present
our work using the terminology of this particular data mining method.

Recently, data mining has been placed in the larger framework of knowledge discovery [31]. In
this framework, the various data mining methods provide just a single step in the whole process of
information discovery [30].

3.2 Reverse Engineering

In reverse engineering, the goal is to recover the design of a system from its implementation.
Reverse engineering methods generally examine a low-level specification (i.e., the implementation)
and distill it into a high-level specification (i.e., a design) that captures information of help to an
engineer in understanding the system as a whole [21].

There is a superficial relationship between reverse engineering and process discovery in that we
are also trying to create a high-level specification, the process model. But rather than starting
from a low-level specification, we start from behavioral trace data.

4 Grammar Inference

The grammar inference problem can be informally stated as follows.

Given some sample sentences in a language, and perhaps some sentences specifically
not in the language, infer a grammar that represents the language.

In this section we present a formal definition of the problem of grammar inference, its theoretical
complexities, and a detailed look at work in this field that is applicable to the process discovery
problem.

4.1 A Formal Definition

We define the grammar inference problem using the following terms.1 Let Σ be the alphabet
of tokens, and Σ∗ be all possible sequences (sentences) over Σ. Then, we define a language L as

1This presentation is consistent with others in the field [5, 49, 52].

4

L ⊂ Σ∗, that is, L is a subset of sentences from Σ∗.2 A grammar G is a formalism of some class
(e.g., regular, context-free) that describes L; L is said to be in that class of languages.

We define ΘL as the infinite set of all pairs 〈s, l〉 from Σ∗ × {0, 1}, where l = 1 if s ∈ L and
l = 0 otherwise. Thus, ΘL is just Σ∗ tagged with whether each sequence belongs to L or not. We
call the sequence s in 〈s, l〉 positive if l = 1 (i.e., it is in L) and negative otherwise. ΠL is defined
as the possibly infinite set of all positive sequences, and ΓL is defined as the possibly infinite set of
all negative sequences.

For learning purposes, an algorithm needs some presentation of data. A complete presentation
is just a presentation of ΘL. A positive presentation is just a presentation of ΠL. A negative
presentation is just a presentation of ΓL. Note that any of these sets are or can be infinite, so that
an algorithm cannot use the whole presentation; yet, we cannot beforehand eliminate any single
sequence from the presentation. Because some of the sequences can be infinite themselves, any
theoretical analysis assumes only a presentation of finite sequences. A partial presentation is a
finite subset of a complete, positive, or negative presentation.

The grammar inference problem can now be stated formally as follows.

Given some presentation of all or part of ΘL, infer a grammar G describing L.

4.2 Previous Complexity Results

Gold’s “identification in the limit” was the first framework for analyzing the grammar inference
problem [34]. Identifying in the limit frames the problem in terms of looking at the complete
presentation of ΘL. If, after some finite presentation of pairs from ΘL, the algorithm guesses G
correctly, and does not change its guess as the presentation continues, then the algorithm is said to
identify G in the limit. Gold [35] showed that finding a deterministic finite state automata (DFA)
having a minimum number of states, given a presentation of ΘL, is NP-hard and, moreover, that it
is impossible given just a positive presentation using ΠL. In essence, the problem with using only
positive samples is that the algorithm has no way to determine when it is overgeneralizing.

Thus, this early result shows that learning the best grammar of L, even for relatively simple
classes (i.e., regular languages), is very difficult, and that learning from only positive examples is
strictly weaker than learning from both positive and negative examples.

The PAC model for learning concepts from examples was proposed by Valiant [54]. PAC stands
for “Probably Approximately Correct”. Probably is defined as within some probability 1− δ, and
approximately is defined as within some 1−ε of the correct solution. If a polynomial-time algorithm
can be constructed for some learning problem that, within some likelihood (δ) produces a solution
that is close (within ε) to the correct one, then that domain is PAC-learnable. Classes of boolean
formulas and decision trees, and some geometric and algebraic concepts have been shown to be
PAC-learnable. Results for grammars, including DFAs, are more negative, but less definite. As
Pitt reports:

If DFAs are polynomially approximately predictable, then there is a probabilistic poly-
nomial time algorithm for inverting the RSA encryption function, for factoring Blum
integers, and for deciding quadratic residues [49].

Angluin [4] phrases the learning problem in terms of an oracle. An algorithm can make a fixed set of
queries to the oracle, the basic two being “Is this string accepted by the correct grammar?” and “Is
this grammar equivalent to the correct grammar?”. This active model of learning is different from

2L = Σ∗ is not a very interesting language.

5

the passive presentations above; the algorithm has a certain amount of control over the information
it receives and uses, rather than just being given a set of data. Specifically, the algorithm can ask
questions to elucidate conflicts in the grammar. With this framework, Angluin gave a polynomial-
time algorithm for learning DFAs, and others have extended this to other classes of languages.

There is much work describing the computational complexities of various learning paradigms and
classes of languages or formulas. The survey by Angluin and Smith [5] is a broad look at inductive
inference learning. Pitt’s survey [49] is a good starting point for understanding the theoretical
complexities involved in learning regular grammars. Further theoretical work on language learning
is also available [2, 39, 43, 44, 51].

4.3 Practical Inference Techniques

There has been some work that has devised or used practical algorithms for grammar inference in
the analysis of real-world problem domains. One class of techniques represents a common paradigm
in learning from positive examples. The basic idea behind this class is to build a prefix tree machine
from the input data, where each sentence has a linear state-transition sequence that produces it.
Each linear sequence starts at the same start state, and shares states until that sequence diverges
from every other example sentence. Thus, the machine is a tree, the root being the start state, and
each state that has more than one out transition being a point where example sentences no longer
share a prefix.

For a set of data that covers a language (has examples of every behavior), any grammar for the
language can be shown to be contained in the prefix tree machine. This machine is then iteratively
merged according to some rules until a final state machine is output as the learned language.
Examples of this are the following.

• Ahonen et al. [1] describe a prefix tree method where states are merged based on previous
contexts. That is, if two states are entered from the same k-length contexts, then they are
merged.

• Angluin [3] merges states of a prefix tree based on a notion of k-reversibility, which restricts
the class of languages the algorithm can infer. While 0-reversible languages can be inferred
in near-linear time, higher k values cause the algorithm to be cubic in the length of the input.

• Bierman and Feldman [11] describe a prefix tree method where states are merged based on
k-length future behaviors. Although their method is not directly described as prefix tree
merging, it does fall into this class.

• Carrasco and Oncina [18] describe a statistical method for learning stochastic regular lan-
guages, based on state merging from a prefix tree, where states are merged based on statistical
likelihood calculations. Running time is maximally n3; however they claim actual times are
near-linear.

• Castellanos et al. [20] apply a method of this class to learning natural language translators.

Another class of techniques is directed more towards iteratively building up a regular expression
from the sequences, and then translating that into an FSM (if necessary). In this sense, these
algorithms make a pass through a sequence, find repetitive patterns, replace all occurrences with
the regular expression, then start all over until it is decided that they are done. Two examples are
the following.

6

• Brāzma et al. [15, 16, 17] have been able to construct fast algorithms that learn restricted
regular expressions. The restrictions they place on the inferred regular expressions are that
both the selection operator and the nesting level of iterations are limited and fixed. Although
the algorithm is in worst case cubic, in practice they report near-linear times. Moreover,
they have extended this work to handle noisy strings by treating the noise as an edit distance
problem, although currently they only allow for a single-token edit, not multi-token gaps.
Their work is geared towards analyzing biosequence (i.e., DNA/RNA and protein) data.

• Miclet [46] describes a method called the uvkw algorithm, where each pass looks for repetitions
of substrings (the vk), chooses the best candidate, and replaces it with an iteration expression.
The next pass is then started on the reduced string. This method is well-adapted for loops,
but has problems with the selection operator as well.

Miclet’s survey [46] describes several other techniques for inferring (N)DFAs from positive samples,
and is, in general, a good reference for practical inference techniques.

4.4 Inference Using Neural Nets

The neural network community has also looked at the problem of grammar inference from pos-
itive samples [27, 57]. The various methods all consist of defining a recurrent network architecture,
and then analyzing the hidden neuron activity to discover the states and transitions for the result-
ing grammar. The difference among these methods is how they inspect the hidden neurons to infer
state information. The most advanced techniques apply clustering to the neuron activations during
training, to help induce better state-machine behavior.

These techniques are somewhat controversial, because many neural network researchers believe
one should not look inside the net to try to learn anything, but should only be concerned with the
input/output performance of the net. Nevertheless, this is a thread of research that is applicable
to our investigations.

4.5 Limitations of Grammar Inference

The grammar inference methods presented here look only at the tokens that make up the
language. For our purposes, this means that they are limited to operating on event types (be-
ing mapped to tokens), and ignore the potential information in event attributes. Thus, causal
relationships between event attributes cannot be deduced using grammar inference techniques.

Another limitation is that the methods generally do not support seeding the algorithm with
pre-known information about a model (or grammar). Often an engineer will know something about
the process under study, and may be able to formulate a skeleton of a model. It would be useful
to have methods that could be seeded with such partial information and then automatically infer
the details.

A final restriction is that the methods assume a single state machine. In the typical pro-
cess, activities generally occur concurrently, which produce an event stream that may have non-
deterministic orderings of events. In fact, an event stream could have interleaved executions of the
same process model, and separations of these executions might only be done by relating the event
attributes. We discuss the problem of discovering concurrent behavior in Section 5.5.

7

RCERCECRECRERCECRECRERCECRERCERCECRECR

Figure 2: Simple Event Stream Example.

5 Methods for Process Discovery

In this section we describe three grammar inference methods. Two of the methods predate
our work in process discovery, but required adaptation and, in some areas, significant extension
for process discovery. The third method is a new one that we have devised. After describing the
methods, we consider what it means to discover a “good” model and then consider the issue of
concurrency in the process.

Because we are dealing with data collected from process executions, we have only positive
samples with which to work. The methods can be characterized by the way in which they examine
those samples.

1. The RNet method is a purely statistical (neural network) approach that looks at the past
behavior to characterize a state. For this method we have extended an implementation by
Das and Mozer [27]. Our extensions allow this method to handle more event types (theirs
was restricted to two), and enable the easier extraction of the discovered model from the net.

2. The Ktail method is a purely algorithmic approach that looks at the future behavior to com-
pute a possible current state. We modified and then implemented the theoretical description
given by Biermann and Feldman [11] to make it less dependent on multiple sequences and to
extend it to handle noisy data. In addition, we added post-analysis steps that remove some
overly complex constructs that the basic algorithm tends to place into a discovered model.

3. The Markov method is a hybrid statistical and algorithmic approach that looks at the
neighboring past and future behavior to define a state. This method is a new inference
method.

To illustrate the three methods in this section, we use a simple process involving three types of
events—Edit, Review, and Checkin—that characterize a common set of activities associated with
a software artifact such as a design document. We use the sample process event stream shown in
Figure 2. In the figure, the three event types are abbreviated E, R, and C. All three of our methods
typically are given multiple samples to refine their results, but in this simple example we just give
them the one stream shown.

Two sequences of events are exhibited in the data, Edit-Review-Checkin and
Edit-Checkin-Review, reflecting two ways that the activities are carried out. This is a perfect
sample, in the sense that only those two sequences are present, with no extraneous “noise” in the
data. Of course, there are many different FSMs that could generate this sentence. What is impor-
tant is that the methods produce an FSM model that reflects the structure inherent in the sample,
namely the two sequences within the iterative behavior of the process. While such a simple example
may seem contrived, it involves the fundamental problem of identifying two different patterns over
the same event types.

8

Input
Layer

Hidden
Layer

Output
Layer

(a) (b)

Figure 3: Standard (a) and Recurrent (b) Neural Network Architectures.

5.1 RNet

In a standard feed-forward neural network, neurons are split into layers, with all the outputs
of the neurons in one layer feeding forward into all the neurons of the next layer (see Figure 3a).
Typically, there is a layer of input neurons, at least one layer of internal or hidden neurons, and a
layer of output neurons. For a given input to the input neurons, activation flows forward until the
output neurons are activated in some pattern. The network is trained by propagating the difference
between actual and desired outputs backwards through the network. This difference is referred to
as the learning error.

To this basic architecture, Das and Mozer have added a recurrent connection, which feeds the
results of the hidden layer directly back to the input layer (see Figure 3b). This lets the network
model an FSM by providing the “current” state—in the form of the activation pattern of the hidden
layer—as an input to the network. Now the output activity (i.e., the “next” state) is determined,
not just by the input, but also by the current hidden neuron activity. This recurrent network is
the inference mechanism of RNet.

Training takes the form of presenting a window of a specified length to the network, and having
it attempt to predict the next token. Learning error is only back-propagated through the network
after the whole window is presented. By sliding the window forward over the sample stream one
token at a time, each position in the stream is used in training. RNet therefore takes a historical
view of the sample stream, since the window focuses attention on events that precede the current
event.

Once the network is trained, the FSM representation is extracted from the network. This is
done by presenting the same or different strings to the network and observing the activity of its
hidden neurons. Activation patterns that are closely related are clustered into the same state.
Transitions are recorded by noting the current activation pattern, the input token, and the next
activation pattern. This information, collected over all input patterns, then represents the FSM
that the network has inferred.

The parameters to RNet are numerous and varied, and the realistic application of RNet
requires some knowledge of how neural networks operate and what can be expected from them.

9

2 C

1

E3

R

RC

E

Figure 4: FSM Inferred by the RNet Method for the Example Event
Stream of Figure 2.

The parameters are the following.

• Window size presented: controls the size of the locality that is used in learning.

• Number of hidden neurons: controls the level of detail in information (and thus an FSM) the
network can learn.

• Weight of the recurrent connection with respect to the forward connections: controls the
importance of the history of the network.

• Learning rate and momentum: control how fast the algorithm learns and the importance
given to the previous direction in learning.

• Weight of the clustering method: controls how strongly the network tries to cluster similar
states into one.

• Number of training iterations: controls the error threshold at which to stop.

It is beyond the scope of our work to fully evaluate all the dimensions. (In fact, many neural
network practitioners still refer to parameter setting as an “art”.) Our experience is that as one
becomes more familiar with RNet, its behavior with respect to certain parameters eventually can
be learned.

The Das and Mozer implementation is restricted to two-token languages, and is thus quite
limited. We extended the implementation to allow for an arbitrary number of token types, and also
enhanced the output of the network to more easily extract the complex models that result from
having multiple token types.

Figure 4 shows the FSM that RNet infers from the example stream of Figure 2. The method
successfully produces a deterministic FSM that incorporates both the Edit-Review-Checkin and
Edit-Checkin-Review loops. But it also models behavior that is not present in the stream, such
as an Edit-Review-Review loop and a Checkin loop. This shows the inexactness of the neural
network approach; even with a known perfect sample input, one cannot direct it to produce a
machine just for that stream.

An advantage of the RNet method is that, since it is statistical in nature, it has the potential of
being robust with respect to input stream noise (e.g., collection errors or abnormal process events).

10

Its disadvantages are that it is in general very slow, because of the training time required, and the
size of the net grows rapidly with the number of token types and the expected size of the resulting
model. The plethora of tuning parameters and the lack of guidelines in setting them are drawbacks
as well.

5.2 Ktail

The next method is purely algorithmic and based on work by Biermann and Feldman [11]. Their
formulation is given in terms of sample strings and output values for the FSM. Our formulation of
this algorithm does not make use of the output values and is thus presented as just operating on the
sample strings themselves. In addition, our method is less dependent on having multiple sample
strings, reduces the number of states in the resulting FSM, and provides a threshold parameter for
dealing with noisy data.

The notion that is central to Ktail is that a state is defined by what future behaviors can
occur from it. Thus, for a given history (i.e., token string prefix), the current state reached by that
history is determined by its possible futures. Two or more strings can share a common prefix and
then diverge from each other, thus giving a single history multiple futures. The “future” is defined
as the next k tokens, where k is a parameter to the algorithm. If two different histories have the
same future behaviors, then they reside in the same equivalence class; equivalence classes represent
states in the FSM.

The equivalence class is called the Nerode relation for the prefixes in the class, and the extension
that Ktail uses is to limit the Nerode relation to a fixed k-length future. Additionally, the definition
by Biermann and Feldman only examines the last k-length portion of the string (presumably because
they were interested in a large set of short strings) and the output function of the state machine.
We instead examine a k-length future from all points in an input string.

Formally, Ktail is defined as follows. Let S be the set of sample strings and let A be the
alphabet of tokens that make up the strings in S. Let P be the set of all prefixes in S, including
the full strings in S. Then p ∈ P is a valid prefix for some subset of the strings in S. Let p · t be the
prefix p appended with the token string t. We call t a tail. Finally, let Tk be the set of all strings
composed from A of length k or less. An equivalence class E is a set of prefixes such that

∀(p, p′) ∈ E, ∀t ∈ Tk, p · t ∈ P ←→ p′ · t ∈ P

This means that all prefixes in E have the same set of tails of length k or less.3 Thus, all prefixes
in P can be assigned to some equivalence class. It is these equivalence classes that are mapped to
states in the resulting FSM.

Transitions among states are defined as follows. For a given state (i.e., equivalence class) Ei
and a token a ∈ A, the destination states of the transitions are the set D of equivalence classes

D =
⋃
E [p · a], ∀p ∈ Ei

where E [p · a] is the equivalence class of the prefix p · a. Intuitively, this says that to define the
transitions from Ei, take all p ∈ Ei, append a to them, and calculate the equivalence classes of
these new prefixes, which are the destination states of token a from state Ei. If |D| = 0, then this
transition does not exist; if |D| = 1, then this transition is deterministic; and if |D| > 1, then this
transition is nondeterministic. The transitions, if any, are annotated with the token a in the final
FSM.

3Tails of length less than k, down to zero, occur at the ends of strings.

11

1

2

R

3

C

4

C

E

5

E

6

C

7

C

R

R

8

R

Figure 5: FSM Inferred by the Basic Biermann-Feldman Algorithm (k = 2)
for the Example Event Stream of Figure 2.

5.2.1 Our Enhancements to the Basic Algorithm

While the Biermann and Feldman algorithm produces an FSM that is complete and correct,
it has certain tendencies to produce an overly complicated FSM. Figure 5 shows the FSM that is
produced by the algorithm, with k = 2, when given the sample data of Figure 2. The complexity
is that a loop in the data will be unrolled to a length of k. The unrolling arises because the
algorithm sees a change in the tail of the loop body at the exit point of the loop. This change
causes the last iteration of the loop to be placed in a separate equivalence class. Consider the
Edit-Review-Checkin loop. In the figure, this loop is represented by the path < 3, 1, 2, 3 > in the
FSM. But the last iteration through the loop has a separate representation as the path < 2, 4, 5 >.
A similar effect occurs with the Edit-Checkin-Review loop.

We improve the basic algorithm by automatically merging states in the following manner. If a
state S1 has transitions to states S2 . . . Sn for a token t, and if the sets of output transition tokens
for the states S2 . . . Sn are equivalent or strict subsets, then we merge states S2 . . . Sn. Intuitively,
this procedure assumes that if two (or more) transition paths from a state are the same for a length
of more than one transition, then the internal states of those paths should be assumed to be the
same and thus merged. In Figure 5, states 3 and 4 can be merged, states 6 and 7 can be merged,
and state 8 can be merged with the merged state 3/4, once 6 and 7 are merged.

This improvement, implemented in Ktail, results in a much cleaner FSM than that which
results from the basic Biermann-Feldman algorithm. The FSM produced by Ktail from the ex-
ample stream of Figure 2 is shown in Figure 6. Clearly, Ktail does a good job of discovering the
underlying loops in the behavior. The Edit-Review-Checkin loop is completely embodied in the

12

1

2

R

3/4/8

C

E

5

E

6/7

C

R

Figure 6: FSM Inferred by the Ktail Method (k = 2) for the Example
Event Stream of Figure 2.

transition path < 3/4/8, 1, 2, 3/4/8 >, while the Edit-Checkin-Review loop is completely embod-
ied in the path < 3/4/8, 5, 6/7, 3/4/8 >. Note that there is a point of nondeterminism in state
3/4/8 upon the occurrence of an Edit. This is because the algorithm sees two different behaviors
(i.e., tails) from the Edit event in the sample data.

In addition to reducing the complexity of the FSM, we add the ability to ignore noise in the
data. Assuming that noise is low-frequency event sequences, then an equivalence class with very
few members may be interpreted as a place where the k-length futures are erroneous. Thus, we
could decide that this equivalence class does not represent proper behavior and throw it away, not
allowing it to appear as a state in the final FSM. This formulation suggests setting a threshold on
the size of the equivalence class (in terms of the number of members), and then pruning all classes
less than that size. Pruned equivalence classes will not appear in the resulting state machine, and
potential transitions to them will also not appear. This pruning mechanism is implemented in the
Ktail method.

5.2.2 Evaluation

If the noise threshold is greater than zero, then we cannot guarantee the correctness of the
resulting FSM with respect to the input data. On the other hand, with the noise threshold set to
zero (i.e., we assume that there is no noise in the data), Ktail necessarily produces an FSM that
can recognize all sample input data. This is because every position in the set of input strings belongs
to some equivalence class, and is thus mapped to some state in the state machine. Since equivalence
classes share k-length subsequent behaviors, the transitions from each state are guaranteed to satisfy
each position in the set of input strings that is in that equivalence class. Moreover, the sequence of
equivalence classes for the positions in an input string is the production path in the FSM for that
string.

Since we only merge states that have similar output behavior when reducing the FSM, this
transformation has no effect on the correctness of the resulting FSM. It only (possibly) reduces the

13

number of spurious states that the FSM contains.
Ktail is controlled in its accuracy by the value of k; the greater the value, the greater the

length of the prefix tails that are considered, and thus the more differentiation that can occur in
states and transitions. Note that as k increases, this algorithm monotonically adds states, and
complexity, to the resulting FSM. If k is as long as the longest sample string, then the resulting
FSM is guaranteed to be deterministic, but deterministic FSMs can result from much smaller values
of k, depending on the structure of the sample strings. It is not always the case that the most
interesting and informative FSM will result from k being large enough to generate a deterministic
FSM. To the contrary, points of nondeterminism in the resulting FSM might signify important
decision points in the process, where the decision will determine the path of execution.

An advantage of Ktail is that it is parameterized by the simple value k, so the complexity
of the resulting FSM can be controlled in a straightforward manner. A disadvantage is that its
simple approach to noise thresholding may not be tunable enough to be robust in the presence of
significant input stream noise.

5.3 Markov

The third method, a hybrid of algorithmic and statistical approaches, is one that we devised.
The method uses the concept of Markov models to find the most probable event sequence produc-
tions, and algorithmically converts those probabilities into states and state transitions. Although
our method is new, there is previous work that has used similar methods. For example, Miclet and
Quinqueton [47] use sequence probabilities to create FSM recognizers of protein sequences, and
then use the Markov models to predict the center point of new protein sequences.

A discrete, first-order Markov model of a system is a restricted, probabilistic process4 represen-
tation that assumes:

• there are a finite number of states defined for the process;

• at any point in time, the probability of the process being in some state is only dependent on
the previous state that the process was in (the Markov property);

• the state transition probabilities do not change over time; and

• the initial state of the process is defined probabilistically.

In general, the definition of an nth -order Markov model is that the state transition probabilities
depend on the last n states that the process was in.

The basic idea behind the Markov method is to use the probabilities of sequences of events. In
particular, it builds event-sequence probability tables by tallying occurrences of like subsequences.
The tables are then used to produce an FSM that accepts only the sequences whose probability
and number of occurrences are above user-specified cutoff thresholds. Markov thus proceeds in
four steps.

1. The event-sequence probability tables are constructed by traversing the event stream. (In the
current version of our implementation of the Markov method, only first- and second-order
probability tables are constructed.) In addition, counts of event sequence occurrences are
tallied.

4Here the term “process” does not refer to “software process”, but rather to the standard meaning given in the
terminology of Markov models.

14

Table 1 shows first- and second-order probability tables for the event sequence of Figure 2. For
instance, as given by the third row of the second-order table, the event sequence Review-Edit

is equally likely to be followed by a Review or a Checkin, but is never followed by an Edit.

2. A directed graph, called the event graph, is constructed from the probability tables, as fol-
lows. Each event type is assigned a vertex. Then, for each event sequence that exceeds the
probability and count thresholds, a uniquely labeled edge is created from an element in the
sequence to the immediately following element in that sequence.

Consider event sequence Review-Edit-Checkin, which occurs three times in the event stream
and whose entry in the second-order table is 0.50. For a count threshold less than 3 and a
probability threshold less than 0.50, edges are created from vertex R to vertex E and from
vertex E to vertex C.

3. The previous step can lead to over-connected vertices that imply event sequences that are
otherwise illegal. To correct this, over-connected vertices are split into two or more vertices.
This is done by finding disjoint sets of input and output edges for a vertex that have some
non-zero sequence probability, and splitting the vertex into as many vertices as there are sets.

Consider vertex C. After the previous step, edges exist from C to E and from E to C. However,
sequence E-C-E, permissible under this connectivity, has a zero probability (see row 8 of the
second-order table). Thus, vertex C is split into two C vertices, one having an edge to E and
the other having an edge from E to it. This avoids the illegal sequence E-C-E.

4. The event graph G is then converted to its dual G′ in the following manner. Each edge in G
becomes a vertex in G′ marked by the edge’s unique label. For each in-edge/out-edge pair of
a vertex in G, an edge is created in G′ from the vertex in G′ corresponding to the in-edge to
the vertex in G′ corresponding to the out-edge. This edge is labeled by the event type.

In Figure 7, vertex 5 and its edges are constructed from an edge labeled “5” in the event graph
that connects vertex C to vertex E.

The graph G′ constructed in the last step is an FSM. This FSM can be further reduced by merging
nondeterministic transitions. Specifically, Markov can produce states where more than one tran-
sition from the state is annotated with the same event, but where this nondeterminism is not useful
because the next states’ behaviors are non-conflicting; nondeterministic transitions only make sense
if they resolve a conflict in some way. Thus, for the nondeterministic transitions from a state, if
their destination states’ output transitions are non-conflicting (that is, they accept a disjoint set
of events), then these states are merged and the set of nondeterministic transitions becomes one
transition.

Figure 7 shows the inferred FSM that Markov produces from the example stream of Figure 2.
As with Ktail, Markov infers an FSM with exactly two loops: the Edit-Review-Checkin loop as
the path < 5, 3, 4, 5 > and the Edit-Checkin-Review loop as path < 2, 3, 1, 2 >. The difference is
that Markov produces a deterministic FSM. Notice, too, the existence of what can be interpreted
as a start state (6) in the FSM produced by Markov. This is a result of using the single sample
input that begins with the token Review.

5.3.1 A Bayesian Extension to the Markov Method

Markov uses the frequencies of event sequences directly in its tables as forward probabilities of
these sequences occurring. But there is some argument that Bayesian probabilities, which reverse

15

R C E

R 0.00 0.50 0.50
C 0.54 0.00 0.46
E 0.42 0.58 0.00

R C E

RR 0.00 0.00 0.00
RC 0.00 0.00 1.00
RE 0.50 0.50 0.00
CR 0.00 0.00 1.00
CC 0.00 0.00 0.00
CE 0.33 0.67 0.00
ER 0.00 1.00 0.00
EC 1.00 0.00 0.00
EE 0.00 0.00 0.00

Table 1: First- and Second-order Event-sequence Probability Tables for
the Example Event Stream of Figure 2.

2

3

E

4

R

1

C

5

E

C

R6

R

Figure 7: FSM Inferred by the Markov Method for the Example Event
Stream of Figure 2.

the probabilities, would be better. Using the frequencies directly as probabilities can be affected
by the occurrences of the events. For example, if the second event of a two-event sequence occurs
very often in an event stream, then the frequency of that sequence might be high simply by chance.
A Bayesian calculation can account for this.

We have implemented a Bayesian transformation in Markov that is selectable as an option.
This transformation takes the forward probability tables built in the standard Markov method,
and converts them in place using Baye’s Law:

P (A|B) =
P (B|A)P (A)

P (B)

Note that all components of the right-hand side are in the forward probability tables. The Bayesian
probabilities replace the forward probabilities, so that when Markov looks up the probability of
the sequence RC, for example, it is now using the Bayesian probability instead.

16

To date, we have not intensively explored the Bayesian extension in the presence of thresholding,
but have not yet seen radically different results from the regular Markov methods. It is available,
however, for those who believe that Bayesian probabilities are better.

5.3.2 Evaluation

As with Ktail, if the noise threshold used with Markov is greater than zero, then we cannot
guarantee the correctness of the resulting FSM with respect to the input data. But with the
threshold set to zero, Markov will create an FSM that accepts all the sample input data. For
input stream S, consider the subsequences SNi of length N at position i, and SNi+1 of length N
at position i + 1, where N is the Markov order of the Markov algorithm producing M . The
algorithm specifically includes production paths for all sequences of length N or less, so SNi and
SNi+1 are necessarily produced by M . Thus, SN+1

i , by the union of the two above, is also produced
by M . Induction proves that all of S is then producible by M .

Markov is more robust in the presence of noise in the event stream than the Ktail method.
Moreover, the level of this robustness can be easily controlled by the process engineer through the
probability threshold parameters. These parameters can also be used to control the complexity of
the discovered model from large amounts of data, ignoring low-probability sequences, even if they
are not the result of noise.

5.4 “Goodness” of a Model

In general, for a given set of sample inputs, there are an infinite number of possible models that
can be constructed. Our goal, of course, is to construct a good model. But how do we do this? To
answer the question, we must first understand the meaning of “good”.

Theoreticians consider an FSM to be good if it is both accurate and minimal. By accurate they
mean that the FSM accepts all legal sentences in the language and rejects all illegal sentences. For
our purposes, accuracy implies that we are modeling all and only the behaviors of the process. By
minimal, theoreticians mean that the FSM contains the fewest number of states necessary.

Accuracy and minimality are, in a sense, in conflict. The simplest way to achieve accuracy is to
create an independent path through the FSM for each sample input, which typically means a high
degree of redundancy. The simplest way to achieve minimality, on the other hand, is to create a
single state with self-transitions for each possible input token. As mentioned in Section 4, Gold [35]
showed that both positive and negative samples are required to construct an accurate and minimal
model. Moreover, the samples must be complete in that they fully cover the possible inputs.

In the domain of process discovery, where typically we have only positive samples and those
samples represent only a proper subset of all possible behaviors, this definition of “good” is not
particularly useful. Thus, for our purposes, a “good” result from a discovery method is one that:

• fully accounts for the sample behaviors it is given, subject to constraints on noise in the data;

• successfully identifies patterns made up of sequencing, selection, and iteration; and

• does not needlessly complicate the patterns identified with extra states and transitions.

In the discussion of the methods above we pointed out places where these criteria are satisfied and
where they are violated.

Our approach to compensating for deficiencies in the basic methods is to provide tuning param-
eters to the process engineer. In addition, the tool that implements process discovery, described in

17

Section 7, not only makes it possible to apply the methods and control them through parameter
settings, but also makes it possible for the process engineer to refine the model through operations
that merge, split, create, and delete states and transitions. In our experience with the process
discovery tool, one instance of which is described in Section 8, we have found that the combination
of parameters and manual refinement are a straightforward means to develop reasonable process
models.

A final point concerning the goodness of a model has to do with the significance of the discovered
states. A state arises simply from the commonality of events causing the entering and exiting of
the state. It is left to the process engineer to interpret the meaning of the state within that
context. In doing this, it would be useful for the process engineer to try to relate the states in
the discovered model to, say, the states of various artifacts as they are manipulated in the process.
Such a correlation may provide further insight into the nature of the process.

5.5 Concurrency

Software processes typically involve concurrent behavior, arising from one or more agents per-
forming multiple simultaneous activities. Our representation of the behavior as event streams
imposes an artificial ordering of the events stemming from independent activities. Moreover, our
methods infer an FSM model, which is inherently sequential. How, then, can we deal with concur-
rency in software processes?

The critical issue comes down to finding a way to separate out the causally unrelated events in
the event stream. Once that is done, we can account for the concurrency by extending the model
to, for example, communicating finite state machines [14].

One approach is to make use of event attributes, such as the identifier of the agent and/or artifact
associated with an event. We could preprocess an event stream to separate it into substreams
involving particular agents or artifacts and then apply the methods to those individual substreams.

Another approach is to view concurrency as randomly interleaved sets of event streams. The
concurrency then manifests itself as “noise”, in the sense that the sequencing of the events will
contain some randomness. At a boundary point between the concurrent streams, the concurrency
may result in low-probability sequences. Given proper settings of thresholds in the algorithms,
these sequences will be ignored. The resulting FSM may even be disjoint, actually consisting of
separate state machines for each concurrent agent. If one interprets each disjoint machine as having
its own thread of control, then the algorithm has, in fact, discovered concurrent processes from the
data.

Neither of these approaches has been fully investigated or implemented. These and other
approaches are subjects of future work. Yet despite this shortcoming in our current technique, the
discovery tool proved useful when applied in the industrial case study described in Section 8.

6 Evaluation of the Discovery Methods

In this section we briefly compare and evaluate the three discovery methods with respect to
several important characteristics, described below. Our evaluation is based on experiments that
were conducted on a benchmark developed by the software process community referred to as the
ISPW 6/7 process problem [41]. The process involves a software modification and testing activity,
and is illustrated in Figure 8. Details of the experiments are described elsewhere [22, 25]. Here, we
summarize the results (see Table 2).

We compared and evaluated the methods against the following characteristics.

18

Schedule Tasks

Modify Design

Modify Code

Modify Test Package

Test Unit

Start

Schedule
Modify Design

Comm
CCB Order

[A]

Modify
Design

Comm
ChgDes

[B]

Modify
Code

Schedule
Modify Code

Comm
ChgCode

[F]

Schedule Modify
Test Package

Modify
Test Plans

Comm
ChgTest

[L]

Module
Change Complete

End

Comm
Done

[S]

Review
Design

Mod
Design

[C]

Comm
Design_OK

[E]

Comm
Design_!OK

[D]

Compile
Code

Mod
Code
[G]

Comm
Compile_!OK

[H]

Sanity
Test

Comm
Compile_OK

[I]

Comm
Test_OK

[K]

Comm
Test_!OK

[J]

Modify Unit
Test Package

Mod
Test Plans

[M]

Mod
Test Case

[N]

Test
Unit

Comm
Tests_Ready

[O]

Comm
Tests_!OK

[R]

Comm
Tests_OK

[Q]

Exec
Test Case

[P]

Figure 8: ISPW 6/7 Benchmark Process.

Accuracy. Both Ktail and Markov are guaranteed to generate an accurate model for the data
they are given, if their noise thresholds are set to zero. If their noise thresholds are set above
zero, then this guarantee does not hold. RNet, being purely statistical, cannot in any case
be configured to satisfy this guarantee.

Speed. The numbers in Table 2 are approximate, intended to show relative speeds of the methods.
Ktail and Markov are comparable, but RNet is considerably slower. This slowness is due
mainly to the large amount of required training.

Tunability and Usability. These two characteristics are quite related, because often the more
tunable something is, the more complicated is its interface. In this respect, it seems that
RNet is overly tunable, or at least it takes too much knowledge of neural networks to establish
reasonable initial settings. Ktail and Markov, being only tunable in a few dimensions,
might be overly restrictive, but using them is straightforward.

19

Feature Ktail Markov RNet

Accuracy possible possible unlikely

Speed 101 sec 101 sec 103 sec

Tunability two params few params many params

Usability easiest easy hard

Robustness to Noise moderate good good

Table 2: Comparison of Discovery Methods.

Length of Markov Ktail
Event Stream Time (s) Size (KB) Time (s) Size (KB)

312 4.61 670 1.07 386
625 4.74 701 2.10 432
1250 5.07 780 5.26 533
2501 5.62 917 16.30 736

Table 3: Time and Space Requirements Versus Event Stream Lengths.

Robustness to Noise. Both the Markov and RNet methods have the potential of being good
at inferring models in the presence of collection errors and abnormal process events. Ktail
has some ability, in its equivalence class size threshold, but we regard it as less configurable
to handle noisy data streams.

Based on this comparison, Markov and Ktail are seen to be superior to RNet. We next take a
closer look at the performance characteristics of Markov and Ktail.

Table 3 shows the performance of Markov and Ktail over different event stream lengths,
but with the same number of event types. Both show a linear time relationship to the stream
length, but Markov’s coefficient is so low that the increase in running time is almost negligible,
whereas Ktail shows significant increase in running time. Still, both of the methods show good
performance. As for space usage, both increase slightly for longer stream lengths, yet neither shows
extreme space requirements.

Table 4 shows the performance of Markov and Ktail over different numbers of event types,
keeping the stream length constant at 625 events. Markov displays non-linear time and space
relationships to the number of event types processed, while Ktail performs much better.

It is evident from tables 3 and 4 that Ktail is affected by event stream length, while Markov

Number of Markov Ktail
Event Types Time (s) Size (KB) Time (s) Size (KB)

20 1.03 432 1.51 426
40 4.74 701 2.10 432
60 13.90 1304 2.24 433

Table 4: Time and Space Requirements Versus Number of Event Types.

20

Figure 9: User Interface of DaGama.

is affected by the number of event types. This is what we would expect, since Ktail processes
each event position in the stream as being in some equivalence class, and Markov process tables
of probabilities of event type sequences.

7 DaGama: The Discovery Tool

The methods described in this paper have been implemented in a tool called DaGama.
DaGama is fit into the Balboa data analysis framework [22], which provides standard data and
user interface management capabilities. RNet was adapted from an implementation by Das and
Mozer [27], while Markov and Ktail were implemented especially for DaGama. All three meth-
ods produce FSMs in a format compatible with the dot graph layout system [42]. Thus, DaGama
provides an end-to-end solution, from event data input to a visual display of the discovered process
model.

The user interface of DaGama is shown in Figure 9. It allows one to select event streams,
choose a discovery method, specify the method’s parameters, and run the methods to produce
discovered process models. The discovered model is displayed in a Balboa process model viewer.
The model can then be edited using operations that include merging nodes, creating/deleting nodes,
creating/deleting edges, naming/renaming nodes, and splitting nodes.

21

The discovered models can also be saved to a file for use by other tools. One such tool that can
read Balboa process model files is Endeavors, which is a process model design and execution tool
developed by a research group from the University of California at Irvine [12].

8 Employing the Discovery Methods in Practice

The DaGama discovery tool was used in an industrial process case study conducted at AT&T
Bell Laboratories (now Lucent Technologies). This section reviews the use of the discovery methods
in that case study, which provides real-world evidence for their utility. The full details of the study,
its results, and its significance are presented elsewhere [23].

8.1 The Overall Study

The study focused on a change request process for a large telecommunications software system.
In the process, a customer reports a problem (resulting in the creation of a so-called CAROD ticket
to track the problem), the problem is assigned to a developer (resulting in a modification request
tracked by a so-called MR), the developer performs and tests a fix, and the fix is sent out to the
customer. Although the prescribed process was documented by the organization, it was not strictly
enforced. Thus, the actual process executions were highly variable, even though there was some
notion of an abstract model to be followed. It was, fundamentally, a real , industrial, human-based
process.

An execution of the process that resulted in the fix being accepted by the customer was consid-
ered a successful execution of the process, while an execution resulting in the fix being rejected by
the customer was considered an unsuccessful execution. The goal of the study was to statistically
identify specific process behaviors that correlated with the acceptance or rejection of the fix and,
thus, the success or failure of the process. By gathering event data on the process from historical
data sources (tool logs, version control logs, databases, and the like), we were able to reconstruct
event streams for 159 executions of the process, 18 of which resulted in a rejected fix. Each event
stream consisted of approximately 32 events. Product and non-event-based process data were also
collected, and were measured for correlation with the outcome of the fix.

The correlation of behaviors was performed using a process validation technique [24]. The
technique compares event data collected from a process execution to a formal model of the process
in an effort to measure the deviation of actual process executions from the intended execution.

The correlation measurements were first performed using a process model derived from the
documentation of the prescribed process. It was shown that this model did not capture even half
of the behavior that was being exhibited in the process executions. Thus, we applied DaGama in
an effort to construct a model that better represented the true behavior of the process. In essence,
DaGama was used to elicit a “canonical” behavior from the data, against which deviations of
particular executions could be measured. That this was just one step in the study reflects the
nature of the knowledge discovery process—discovery of a model (i.e., data mining) is a single step
in the larger process of understanding the real world through data analysis [31].

8.2 Discovering a Process Model

Although each individual process event stream was relatively small, the number of streams
and their variability made it practically impossible to construct a model by hand that would have
represented the behavior seen in the data. Furthermore, a model that describes all of the behavior
seen in the executions is not practical either, since it then is not an abstraction of the process, and

22

P-value Sig Test Accept Pop.(N=141) Reject Pop.(N=18)
Measure (2-tailed) (W) Mean Std Dev Mean Std Dev

SSD 0.41 0.82 0.56 0.22 0.61 0.23
NSD 0.00 3.65 24.49 83.90 59.96 95.82

Matched Events 0.79 0.27 21.15 16.25 21.39 8.55
Missed Events 0.10 1.63 7.18 2.90 8.28 3.16
Extra Events 0.27 1.11 7.71 5.74 10.17 7.77

Blocks of Missed Events 0.49 -0.68 3.48 1.51 3.22 1.52
Blocks of Extra Events 0.74 -0.34 4.20 1.91 4.22 2.34

Table 5: Correspondence Metrics for the Discovered Process Model.

would be so large as to be incomprehensible. Thus, the task for DaGama in this study was to find
the general patterns of behavior entrenched within the data as a sound starting point for a process
engineer to construct an accurate and useful model.

Figure 10 shows the model and model fragments that Markov produced using two different
threshold settings. The low threshold setting, with probability cutoffs at 0.2 and sequence count
cutoffs at 3, gives more detail than is desirable, as shown in Figure 10a. Conversely, the high
threshold setting, with probability cutoffs at 0.4 and sequence count cutoffs at 5, results in just the
major recurring patterns in the data, as shown in Figure 10b. Notice that in the high threshold
result, the patterns are disjoint—the patterns that Markov found do not have any direct event
occurrence to relate them. This is not an error, but simply how the process behaves.

From these model fragments, a complete model was produced by merging, deleting, and mod-
ifying some of the states. This was done by hand (using DaGama), and underscores the point
that the discovery techniques alone will not automatically create a completed process model, but
provide a good starting point for the critical role played by the process engineer. Figure 11 shows
the final model that was produced using the initial model provided by DaGama as a basis.

The final model has 27 states, where those in Figure 10 have 47 and 41, respectively. Thus,
some of the behavior was merged together and simplified. For example, state 6 in Figure 10b has a
transition to itself labeled with the code-checkin event, indicating that more than one code-checkin
can occur in a row. Because of the variability of the data, Markov left some states separate from
this one, but still having code-checkin events with a transition to state 6. Thus, these states can
be merged together without changing the behavior of the model, in terms of accepting one or more
code-checkin events in a row.

Note that depending on how the process engineer decides to compose the final model, the
model may violate patterns found in the data. It is the process engineer’s job to create a model
that abstracts away insignificant dependencies, and that reflects the important behaviors of the
process.

8.3 Measurements Using the Discovered Model

This final model was then used to perform the process validation [24], and to correlate process
behavior with the outcome of the process, namely an accepted or rejected fix. Table 5 shows the
measurements and statistical tests for the discovered model.5 One aggregate validation metric,

5In the table, SSD and NSD are the names of two aggregate validation metrics. Matches are where events in
the process exactly matched the model. Missed events and extra events are where the execution and model deviate.
Blocks indicate runs of missed or extra events, and are measured because they may indicate a serious period of

23

1

19

carod-create

22

carod-dcreated

10

55

mr-smitsys

11

6

carod-abstract

12 carod-solved

5

carod-update

50

mr-asnmymr

carod-custdue 33

carod-update

9

code-checkin

3

carod-closed

13

mr-integrate

57

mr-asnmymr

73

mr-smit

code-checkin

16

code-checkin

70

mr-test-plan

72

mr-smit

mr-smit mr-test-plan

mr-smitsys

18

37

mr-createmymr

38

mr-acceptmr

26

28

carod-dupdated

21

carod-response

carod-dupdated

23

carod-inhouse

carod-dupdated

carod-inhouse

carod-dupdated

36

27

carod-closed

4

carod-delivered

carod-update

carod-dupdated

29

carod-solved

carod-dupdated carod-update

32

carod-custdue carod-custdue

34

35

carod-update

58

mr-killmrnm

mr-acceptmr

40

mr-assign

mr-assign

51

mr-asnmymr

68

69

code-checkin

43

carod-response

49

mr-asnmymr

code-checkin

mr-asnmymr

code-checkin

mr-approve

mr-asnmymr

60

62

mr-killmrnm

carod-solvedmr-asnmymr

64

65

code-checkin

code-checkin

mr-smit

mr-smitsys

66

67

code-checkin

code-checkin

code-inspect

code-checkin

mr-integrate

71

mr-smit

(a)

1

17

carod-create

18

carod-dcreated

10

3

carod-abstract

11

carod-update 20

carod-dupdated

carod-update

13

2

carod-closed

carod-delivered

14

27

mr-createmymr

29

mr-acceptmr

15

7

mr-smit

16

mr-createmymr

19

21

carod-response

23

carod-dupdated

22

carod-dupdated

24

25

carod-dupdated

carod-inhouse

30

mr-acceptmr

28

mr-acceptmr

31

mr-assign

33

mr-assign

35

mr-asnmymr

32

6

code-checkin8

mr-approve

code-checkin

code-checkin code-checkin

34

mr-asnmymr

36

37

mr-asnmymr

carod-closed

38

39

mr-asnmymr

mr-approve

40

5

mr-killmrnm

41

code-checkin

42

mr-smit

43

44

mr-smitsys

mr-asnmymr

9

mr-smit

(b)

Figure 10: Process Models Discovered using Low Thresholds (a) and High
Thresholds (b) in the Markov Method.

24

1

3

carod-abstract

14

12

mr-smit mr-test-plan

15

mr-asnmymr

19

21

carod-response20

mr-killmrnm

4

carod-create

5

carod-dcreated

carod-dupdated

6

carod-inhouse

7

mr-createmymr

carod-response

mr-createmr-createmymr

8

mr-acceptmr

mr-acceptmr

9

mr-asnmymr mr-assign

mr-asnmymrmr-assign

10

code-inspect

28

code-checkin

11

code-checkin

code-checkin

mr-smit mr-test-plan

13

mr-test-planmr-smit

mr-smitsys

mr-smit

16

mr-bwmbuilt

18

mr-approve

17

mr-acptsys

mr-approve

mr-integrate

22

carod-solved

mr-asnmymr

23

carod-closed

24

carod-delivered

25

carod-update27

carod-dupdated

26

carod-custdue

mr-asnmymr

carod-update

code-inspect

code-checkin

Figure 11: Final Process Model after Refinement.

NSD, measures a very significant difference between the level of correspondence between the dis-
covered model and the accepted-fix and rejected-fix populations. Moreover, it indicates that the
accepted-fix population matches the model more closely, leading one to suspect that the deviations
were inappropriate.

It was also found that the discovered model reflected a much greater amount of the process
behavior than the prescribed process model documented by the organization—about 65%, compared
to 40% for the prescribed model. More importantly, the discovered model was useful in showing the
areas of behavior that were statistically different between the successful and unsuccessful process
executions. This seems to indicate that the model captured something important about the process.

Overall, DaGama and its discovery techniques proved their applicability to real-world process
data by contributing to the formulation of a process model that usefully abstracted the actual
process executions and captured important properties of the process behavior.

deviation.

25

9 Conclusion

We have described three methods of process data analysis that can be used to produce formal
models corresponding to actual process executions. This analysis supports the process engineer in
constructing initial process models. Based on our early experience with these methods, we conclude
that the Ktail and Markov methods show the most promise, and that the neural-network-based
RNet method is not sufficiently mature to be used in practical applications. Of course, more
experiments are needed to fully explore the strengths and weaknesses of all three methods.

Process discovery is not restricted to creating new formal process models. Any organization’s
process will evolve over time, and thus their process models will need to evolve as well. Methods for
process discovery may give a process engineer clues as to when and in what direction the process
model should evolve, based on data from the currently executing process.

While we have focused here on the use of these techniques for generating formal models, we also
believe that they are useful in visualizing the data collected on a process. An engineer simply may
be interested in a way to better understand the current process, as captured by the event data.
Discovering patterns of behavior, such as those represented by a finite state machine, may be of
help.

We are unaware of any work, other than our own, aimed specifically at investigating techniques
for discovering process models from process execution data. Nevertheless, there are three efforts,
besides the general data mining work mentioned in Section 3.1, that are at least somewhat related.

1. Garg and Bhansali [32] describe a method using explanation-based learning to discover as-
pects and fragments of the underlying process model from process history data and rules of
operations and their effects. This work centers on using a rule base and goals to derive a gen-
eralized execution flow from a specific process history. By having enough rules, they showed
that a complete and correct process fragment could be generated from execution data.

2. Garg et al. [33] employ process history analysis, mostly human-centered data validation and
analysis, in the context of a meta-process for creating and validating domain specific process
and software kits. This work is more along the lines of a process post-mortem, to analyze by
discussion the changes that a process should undergo for the next cycle.

3. Madhavji et al. [29] describe a method for eliciting process models from currently executing
processes. The method is basically a plan for how a person would enter a development
organization, understand their process, and describe the process in a formal way. There is no
notion of automation or tool support.

There are several directions that future work in process discovery might take, including the
following.

• The discovery methods could be seeded with partial information about a model derived from
documentation, rather than data. This would take advantage of a process engineer’s existing
knowledge of a process. Both Ktail and Markov would seem to naturally allow this, just
by initializing them with equivalence classes and probabilities, respectively. A related issue
to seeding is making the methods interactive, allowing the user to dynamically control the
result.

• The techniques for accommodating concurrency in event streams, discussed in Section 5.5,
could be implemented and evaluated.

26

• Extension of the discovery methods to infer models other than FSMs could be explored. Work
in the area of grammar inference has involved the learning of more powerful grammars, such
as those for context-free languages. But such models do not naturally fit software process.
Petri nets or rule bases are a more appropriate direction for the software process domain.

• Small improvements to the visualizations of the process data created by the discovery tool
could significantly help the process engineer better understand a process. For example, one
could draw transitions with a thickness relative to their probability in the Markov-discovered
model, or draw states with a shading relative to the size of the equivalence class in Ktail.

• The parameters to the methods could be more fully studied to provide the process engineer
with assistance in selecting parameter values. This would reduce the trial-and-error itera-
tion that the process engineer must go through to apply the discovery methods. We have
implemented a graphical viewer of the probabilities in the Markov method to help guide
parameter selection, and a similar tool would be useful for Ktail.

We intend to explore these and other areas, and to continue improving the practicality and useful-
ness of these process discovery methods.

Acknowledgments We appreciate the many helpful comments on this work provided by
Clarence (Skip) Ellis, Dennis Heimbigner, David Rosenblum, Lawrence Votta, and Benjamin Zorn,
as well as the anonymous reviewers of this paper.

27

REFERENCES

[1] H. Ahonen, K. Mannila, and E. Nikunen. Grammatical Inference and Applications, volume 862 of
Lecture Notes in Artificial Intelligence (subseries of LNCS), pages 153–167. Springer-Verlag, New York,
1994.

[2] D. Angluin. Inductive Inference of Formal Languages from Positive Data. Information and Control,
45:117–135, 1980.

[3] D. Angluin. Inference of Reversible Languages. Journal of the ACM, 29(3):741–765, July 1982.

[4] D. Angluin. Learning Regular Sets from Queries and Counter-Examples. Information and Computation,
75:87–106, 1987.

[5] D. Angluin and C.H. Smith. Inductive Inference: Theory and Methods. ACM Computing Surveys,
15(3):237–269, September 1983.

[6] G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, and J.C. Wileden. Automated Analysis of Concur-
rent Systems with the Constrained Expression Toolset. IEEE Transactions on Software Engineering,
17(11):1204–1222, November 1991.

[7] S. Bandinelli, A. Fuggetta, and C. Ghezzi. Software Process Model Evolution in the SPADE Environe-
ment. IEEE Transactions on Software Engineering, 19(12):1128–1144, December 1993.

[8] S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza. SPADE: An Environment for Software Process
Analysis, Design, and Enactment. In A. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Software
Process Modeling and Technology, pages 223–248. Wiley, 1994.

[9] N.S. Barghouti and G.E. Kaiser. Scaling Up Rule-based Development Environments. In Proceedings
of the Third European Software Engineering Conference, number 550 in Lecture Notes in Computer
Science, pages 380–395. Springer-Verlag, October 1991.

[10] P. Bates. Debugging Heterogenous Systems Using Event-Based Models of Behavior. In Proceedings of
a Workshop on Parallel and Distributed Debugging, pages 11–22. ACM Press, January 1989.

[11] A.W. Biermann and J.A. Feldman. On the Synthesis of Finite State Machines from Samples of Their
Behavior. IEEE Transactions on Computers, 21(6):592–597, June 1972.

[12] G.A. Bolcer and R.N. Taylor. Endeavors: A Process System Integration Infrastructure. In Proceedings
of the Fourth International Conference on the Software Process, pages 76–85. IEEE Computer Society,
December 1996.

[13] M.G. Bradac, D.E. Perry, and L.G. Votta. Prototyping a Process Monitoring Experiment. IEEE
Transactions on Software Engineering, 20(10):774–784, October 1994.

[14] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. Journal of the ACM, 32(2):323–
342, 1983.

[15] A. Brāzma. Algorithmic Learning Theory, volume 872 of Lecture Notes in Artificial Intelligence (sub-
series of LNCS), pages 260–271. Springer-Verlag, New York, 1994.

[16] A. Brāzma and K. C̆erāns. Algorithmic Learning Theory, volume 872 of Lecture Notes in Artificial
Intelligence (subseries of LNCS), pages 76–90. Springer-Verlag, New York, 1994.

[17] A. Brāzma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the Automatic Discovery of
Patterns in Biosequences. Technical Report TCU/CS/1995/18, City University (London), December
1995.

[18] R.C. Carrasco and J. Oncina. Grammatical Inference and Applications, volume 862 of Lecture Notes in
Artificial Intelligence (subseries of LNCS), pages 139–152. Springer-Verlag, New York, 1994.

[19] J. Carrol and D. Long. Theory of Finite Automata. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

28

[20] A. Castellanos, I. Galiano, and E. Vidal. Grammatical Inference and Applications, volume 862 of Lecture
Notes in Artificial Intelligence (subseries of LNCS), pages 93–105. Springer-Verlag, New York, 1994.

[21] E.J. Chikofsky and J.H. Cross II. Reverse Engineering and Design Recovery: A Taxonomy. IEEE
Software, 7(1):13–17, January 1990.

[22] J.E. Cook. Process Discovery and Validation through Event-Data Analysis. Technical Report CU-CS-
817-96, University of Colorado, University of Colorado, Boulder, Colorado, November 1996.

[23] J.E. Cook, L.G. Votta, and A.L. Wolf. A Methodology for Cost-Effective Analysis of In-Place Software
Processes. Technical Report CU-CS-825-97, University of Colorado, University of Colorado, Boulder,
Colorado, January 1997.

[24] J.E. Cook and A.L. Wolf. Toward Metrics for Process Validation. In Proceedings of the Third Interna-
tional Conference on the Software Process, pages 33–44. IEEE Computer Society, October 1994.

[25] J.E. Cook and A.L. Wolf. Automating Process Discovery through Event-Data Analysis. In Proceedings
of the 17th International Conference on Software Engineering, pages 73–82. Association for Computer
Machinery, April 1995.

[26] J. Cuny, G. Forman, A. Hough, J. Kundu, C. Lin, L. Snyder, and D. Stemple. The Adriane Debug-
ger: Scalable Application of Event-Based Abstraction. In Proceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, pages 85–95. ACM Press, May 1993.

[27] S. Das and M.C. Mozer. A Unified Gradient-Descent/Clustering Architecture for Finite State Ma-
chine Induction. In Proceedings of the 1993 Conference, number 6 in Advances in Neural Information
Processing Systems, pages 19–26. Morgan Kaufmann, 1994.

[28] W. Deiters and V. Gruhn. Managing Software Processes in the Environment MELMAC. In SIGSOFT
’90: Proceedings of the Fourth Symposium on Software Development Environments, pages 193–205.
ACM SIGSOFT, December 1990.

[29] K. El Emam, N. Moukheiber, and N.H. Madhavji. An Evaluation of the G/Q/M Method. Technical
Report MCGILL/SE-94-11, McGill University, 1994.

[30] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD Process for Extracting Useful Knowledge
from Volumes of Data. Communications of the ACM, 39(11):27–34, November 1996.

[31] U. Fayyad and R. Uthurusamy. Data Mining and Knowledge Discovery in Databases. Communications
of the ACM, 39(11):24–36, November 1996.

[32] P.K. Garg and S. Bhansali. Process Programming by Hindsight. In Proceedings of the 14th International
Conference on Software Engineering, pages 280–293. IEEE Computer Society Press, May 1992.

[33] P.K. Garg, M. Jazayeri, and M.L. Creech. A Meta-Process for Software Reuse, Process Discovery and
Evolution. In Proceedings of the 6th International Workshop on Software Reuse, page [need pages],
November 1993.

[34] E.M. Gold. Language Identification in the Limit. Information and Control, 10:447–474, 1967.

[35] E.M. Gold. Complexity of Automatic Identification from Given Data. Information and Control, 37:302–
320, 1978.

[36] R.M. Greenwood. Using CSP and System Dynamics as Process Engineering Tools. In Proceedings of the
Second European Workshop on Software Process Technology, number 635 in Lecture Notes in Computer
Science, pages 138–145. Springer-Verlag, September 1992.

[37] V. Gruhn and R. Jegelka. An Evaluation of FUNSOFT Nets. In Proceedings of the Second European
Workshop on Software Process Technology, number 635 in Lecture Notes in Computer Science, pages
196–214. Springer-Verlag, September 1992.

[38] M.L. Jaccheri and R. Conradi. Techniques for Process Model Evolution in EPOS. IEEE Transactions
on Software Engineering, 19(12):1145–1156, December 1993.

29

[39] S. Jain and A. Sharma. Algorithmic Learning Theory, volume 872 of Lecture Notes in Artificial Intel-
ligence (subseries of LNCS), pages 349–364. Springer-Verlag, New York, 1994.

[40] M.I. Kellner. Software Process Modeling Support for Management Planning and Control. In Proceedings
of the First International Conference on the Software Process, pages 8–28. IEEE Computer Society,
October 1991.

[41] M.I. Kellner, P.H. Feiler, A. Finkelstein, T. Katayama, L.J. Osterweil, M.H. Penedo, and H.D. Rombach.
Software Process Modeling Example Problem. In Proceedings of the 6th International Software Process
Workshop, pages 19–29, October 1990.

[42] E. Koutsofios and S.C. North. Drawing Graphs with Dot. AT&T Bell Laboratories, October 1993.

[43] S. Lange, J. Nessel, and R. Wiehagen. Algorithmic Learning Theory, volume 872 of Lecture Notes in
Artificial Intelligence (subseries of LNCS), pages 423–437. Springer-Verlag, New York, 1994.

[44] S. Lange and P. Watson. Algorithmic Learning Theory, volume 872 of Lecture Notes in Artificial
Intelligence (subseries of LNCS), pages 438–452. Springer-Verlag, New York, 1994.

[45] R.J. LeBlanc and A.D. Robbins. Event-Driven Monitoring of Distributed Programs. In Proceedings of
the Fifth International Conference on Distributed Computing Systems, pages 515–522. IEEE Computer
Society, May 1985.

[46] L. Miclet. Syntactic and Structural Pattern Recognition: Theory and Applications, volume 7 of Series
in Computer Science, chapter 9: Grammatical Inference, pages 237–290. World Scientific, New Jersey,
1990.

[47] L. Miclet and J. Quinqueton. Syntactic and Structural Pattern Recognition, volume 45 of NATO ASI
Series F: Computer and Systems Sciences, pages 153–171. Springer-Verlag, New York, 1988.

[48] B. Peuschel and W. Schäfer. Concepts and Implementation of a Rule-based Process Engine. In Pro-
ceedings of the 14th International Conference on Software Engineering, pages 262–279. IEEE Computer
Society, May 1992.

[49] L. Pitt. Analogical and Inductive Inference, volume 397 of Lecture Notes in Artificial Intelligence
(subseries of LNCS), pages 18–44. Springer-Verlag, New York, 1989.

[50] M. Saeki, T. Kaneko, and M. Sakamoto. A Method for Software Process Modeling and Description
Using LOTOS. In Proceedings of the First International Conference on the Software Process, pages
90–104. IEEE Computer Society, October 1991.

[51] Y. Sakakibara. Efficient Learning of Context-Free Grammars from Positive Structural Examples. In-
formation and Computation, 97:23–60, 1992.

[52] Y. Sakakibara. Grammatical Inference: An Old and New Paradigm. Technical Report ISIS-RR-95-9E,
Institute for Social Information Science, September 1995.

[53] S.M. Sutton, Jr., H. Ziv, D. Heimbigner, H.E. Yessayan, M. Maybee, , L.J. Osterweil, and X. Song.
Programming a Software Requirements-specification Process. In Proceedings of the First International
Conference on the Software Process, pages 68–89. IEEE Computer Society, October 1991.

[54] L.G. Valiant. A Theory of the Learnable. Communications of the ACM, 27:1134–1142, 1984.

[55] L.G. Votta and M. Zajac. Design Process Improvement Case Study Using Process Waiver Data. In
Proceedings of the Fifth European Software Engineering Conference (ESEC’95), number 989 in Lecture
Notes in Computer Science, pages 44–58. Springer-Verlag, September 1995.

[56] A.L. Wolf and D.S. Rosenblum. A Study in Software Process Data Capture and Analysis. In Proceedings
of the Second International Conference on the Software Process, pages 115–124. IEEE Computer Society,
February 1993.

[57] Z. Zeng, R.M. Goodman, and P. Smyth. Learning Finite State Machines with Self-Clustering Recurrent
Networks. Nueral Computation, 5:976–990, 1993.

30

