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ACCURATE COMPUTATION OF THE PRODUCT INDUCED SINGULAR
VALUE DECOMPOSITION WITH APPLICATIONS*
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Abstract. We present a new algorithm for floating—point computation of the singular value decomposition (SVD)
of the product B"C, where B and C are full row rank matrices. The algorithm replaces the pair (B,C) with an
equivalent pair (B’,C') and then it uses the Jacobi SVD algorithm to compute the SVD of the explicitly computed
matrix B'"C’. In this way, each nonzero singular value & is approximated with some o + 6o, where the relative
error |§o|/o is, up to a factor of the dimensions, of order e{mina ¢p #2(AB) + mina gp #2(AC)}, where D denotes
the set of diagonal nonsingular matrices, k2(-) denotes the spectral condition number and ¢ is the roundoff unit of
floating—point arithmetic. The new algorithm is applied to the eigenvalue problem HMz = Az with symmetric
positive definite // and M. It is shown that each eigenvalue A is computed with high relative accuracy and
that the relative error |§A[/) of the computed approximation A + §) is, up to factor of the dimension, of order
e{minaep k2(AHA) + minpep £2(AMA)}. The new algorithm can also be used for accurate SVD computation
of a single matrix G that admits an accurate factorization G = B7C.

Key words. contragredient transformation, eigenvalue problem, product induced singular value decomposition,
relative accuracy, singular value decomposition, system balancing
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1. Introduction. In this paper, we study floating—point computation of the singular value
decomposition (SVD) of the product '

(1.1) A=DB7C, BeRP™ (CeRP*" rank(B)=rank(C)=p,
and floating-point solution of the eigenvalue problem
(1.2) HMz =Xz, H,M € R™*"™ symmetric and positive definite.

The singular value decomposition of the product of two matrices and the eigenvalue problem
(1.2) arise in a variety of applications. For instance, consider the time invariant linear system

(1.3) z(t) Ez(t) + Fu(t), =(0)==zo; (z({) € R™, u(t) € R™, E stable)
(L4)  yt) = Gs(t), (s(1) € RP).
By a change of state coordinates z(t) = T&(t), the reachability Gramian H and the observability

Gramian M (at ¢t = oo) changeto H = T-'HT"", M =T7 MT, respectively. In designing reduced
order model, it is of interest to find 7" that makes H and M diagonal, that is (cf. [27], [16])

It

(1.5) T'HT™" =T"MT = % = diag (0;).

The matrix T is called contragredient or balancing‘transformation, and it is the eigenvector matrix
of HM, that is, T-Y(HM)T = %2,

If H=LyLly, M = Ly L}, are the Cholesky factorizations of H, M, respectively, then the
eigenvalue problem (1.2) is equivalent to the singular value problem of A4 in (1.1) with B = Ly,
C = Lp. This follows from the similarity of HM = (LyLy)(LaL},) and (L, Ly)(LyLag).
Hence, if VEU™ = L Ly is the SVD of L, Ly, then T = Ly VX~ satisfies (1.5). '
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Fernando and Hammarling [16] use the SVD of A = B7C to define the product induced singular
value decomposition (IISVD) of the pair (B, C). They prove that there exist orthogonal matrices
U,V and W, nonsingular triangular matrix R, and quasi-diagonal matrices A and I' such that

(1.6) BT =U[CR,0)W", C™ =V[AR™",0]W".

Our goal is to compute the singular values of the product B”C' in relation (1.1), and the
eigenvalues of the positive definite pencil HM — Al with high relative accuracy whenever numer-
ically feasible. We consider high relative accuracy numerically feasible if initial uncertainties in
the matrices B and C, H and M induce small relative uncertainties in the singular values and the
eigenvalues, respectively. In that case we also say that the singular values and the eigenvalues are
well-determined by the data.

A desirable property of an algorithm is that it approximates the well-determined singular
values and the eigenvalues with high relative accuracy independent of their magnitudes. This is
important because in many applications it is of interest to compute even the smallest singular values
of a matrix with certain relative accuracy. For example, Laub et al [27] emphasize the importance
of computing small singular values accurately when a linear system is near-uncontrollable and
near—unobservable. :

The SVD computation of A = B”C in floating-point arithmetic is not straightforward because
the explicit computation of the product B”C may cause large perturbations of the smallest singular
values. The following example illustrates this. Let-£ # 0 and let

N L[ 1] e L[ 1-€ 14
an o= g]e=ggl 1] o=l T e

C' is orthogonal and the columns of B” are mutually orthogonal. However, if |£| is smaller than
the roundoff unit ¢, or if |{| > 1/e, the floating—point product B"C is exactly singular matrix.
Hence, the smaller of the two exact singular values, 01 = /2, 03 = v/2|¢| is perturbed to zero.

To avoid the computation of the matrix A = B7C, Heath et al [22] use a Kogbetliantz type
algorithm and transform B and C separately. This algorithm is theoretically equivalent to the
Kogbetliantz SVD algorithm applied to A = B"C. An elegant implementation of the algorithm
uses the QR factorization to transform B” and C to upper triangular form, and it preserves the
triangularity during the subsequent iterative phase, using suitable plane rotations. The convergence
in the iterative phase may be slow, especially in the case of multiple or clustered singular values.
The algorithm is backward stable and numerical experiments in [22] show that it usually has better
accuracy properties than the SVD computation of the matrix A = B"C.

In some cases, however, the algorithm from [22] produces similar errors as the computation of
the product B”C. To illustrate this, we use B and C from relation (1.7). In the phase of replacing
(B,C) by a pair (B1,C1) of triangular matrices (cf. [22, § 5, (1)]), the matrix B; is computed
by the QR factorization of the matrix B™ @, where C' = QC; is the QR factorization of C. Since
in this example C' = @, the algorithm computes the QR factorization of the numericaly singular
matrix B7C.

In -this paper, we propose a new approach. We replace the pair (B,C) with a new pair
(B',C") such that B"C and B'"C’ have the same singular values, and such that the SVD of the
explicitly computed floating—point matrix F = fI(B7C’) can be computed without introducing
large perturbations of the singular values of B™C. In the transition from (B, C') to F, we use row
scalings, the QR factorization with pivoting, and the matrix product. The SVD of the matrix F is
computed by the Jacobi SVD algorithm. We show that the computed singular values oy + 601 >
-+ > 0p+680, approximate the exact singular values 61 > --- > 0, > 0 with relative error bounded
by

(18) max 2% < fm,m, p)e((C)1BI ] + 16T 1),

i<i<p o0y
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where B, = diag (||B"ei||;1)B, C, = diag (||C7el|31)C, t denotes the generalized inverse, and
I| - |l denotes the Euclidean vector norm and the corresponding induced operator norm. Further-

more, K(C) is a constant bounded by HCJHQ and f(-) is a modestly growing function of the matrix
dimensions. An important feature that follows from relation (1.8) is that the new algorithm has
the same accuracy properties for all pairs {(Dy B, D;C), D1, Dy diagonal nonsingular matrices}.

We apply the new algorithm to the eigenvalue problem (1.2), using the Cholesky factors of H
and M in places of B and C| respectively. The computed approximations A;+6X; > -+ > A, +6),,
of the eigenvalues Ay > -+ > A, of HM satisfy

(L9) max 2 < ge s + v ),

where H, = diag (H;;)"'/?Hdiag (H;;)~'/?, M, = diag (M;)~/?Mdiag (M;;)~'/2, and g(n) is
a modestly growing function of the matrix dimension. Hence, the new algorithm is accurate if
the values of ||H; !||> and [|M,!||; are moderate. Using the perturbation estimates of Demmel
and Veseli¢ [8] and Veseli¢ and Slapnicar [36], we show that moderate ||H !||s and [|M 1|, are
also necessary for the computation with high relative accuracy. Furthermore, we show that the
computed eigenvalues A; + 6A;, 1 < ¢ < n, are the exact eigenvalues of the pencil (H + §H)(M +
6M) — M, with symmetric perturbations 6 H, §M such that |§H;;|/\/HiiHjj, |6 Mij|//Mis Mj;
are small for all ¢, j. The only condition for the high accuracy is that the floating—point Cholesky
factorizations of H and M are guaranteed to complete without breakdown.

The paper is organized as follows. In § 2, we give two illustrative low dimension examples In
§ 3, we analyze accurate computation of the SVD of the product B"C, and its application to the
computation of the ordinary SVD. In § 4, we give detailed analysis of a new algorithm for solving
the eigenvalue problem (1.2) with high relative accuracy. We derive relative error bounds for
eigenvalues and individual entries of the eigenvector matrix. In § 5, we present results of extensive
numerical testing of the new algorithm.

2. Two illustrative examples. Before we start with the presentation of the new algorithm,
we ‘analyze two simple but very instructive examples. In the first example, we illustrate the
sensitivity of the singular values of the product of two matrices and we show that it is not always
possible to compute the singular values with high relative accuracy. In the second example, we use
two—by—two matrices to introduce a simple technique that is used in the new algorithm.

EXAMPLE 2.1. Let B = [y] € R™*!, C = [z] € R™*'. The only singular value of B"C is the
inner product (z,y) = y"z. Thus, the perturbation analysis reduces to the analysis of the inner
product in presence of perturbations. The sensitivity of the inner product to relative norm-wise
perturbations is measured with the relative asymptotic condition number

p(z,y) = liminf{¢ : |(z + 62,y + 6y) = (=,y)| < &el(w, )], lI62]l2 < ellalla, [18ull2 < ellyll=},

introduced in [32]. Straightforward calculation yields (cf. [32])

o (&, by) + (b, y) + (b2, 6y)|
p(z,y) = limsup { =TER] o [16zll2 < ellzllz, 16yll2 < ellyll
~ lim Sup{ llll2léyllz cos £(z, 8y) _[|6ll2llyllz cos £(6z, y)
#=0 el(z, y)| el(z, y)l

l16{[2[|6yll2 cos £(dz, 59)
el(z, )|
20z llallyll2 _ 2
l(z,0)|  [cosL(a,y)|
The relative asymptotic condition number with respect to element—wise perturbations |§z;| <

eleil, 16y} < elyil, 1 <4< m can be defined as
pe(z,y) = liminf{¢ : |(z+8z, y+6y)—(x,y)| < &el(e,y)l, [62i] <elzil, |Swl < elwil, 1<i<m}.

Mﬂh<dwm,MMh<dwm}
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An easy calculation yields

(=, ly)

pe(z,y) =2 0] < p(e,y), where [zf; = [z, [yli = [gi], 1<i<m.

Hence, if the ranges of B and C' are orthogonal up to working precision, we generally cannot expect
to reveal any correct digit of the singular value of the product B C.

REMARK 2.2. Note that the singular values of BC7 in Example 2.1 (rm—1 zeros and ||z|2||y||2)
are perfectly well determined by B and C. This is easily seen because no perturbation §z, §y can
change the zero singular values and because p(z,z) = p.(z,z) = 2 for all £ € R™.

EXAMPLE 2.3. This example is based on the well-known normal equation example in the least
squares computation (cf. [3], [27]). Let

(2.10) B:[? ﬂ C=B, A=BC= {g ﬂ [? ﬂ:“ 1_:62},

If €2 < e, the floating—point approximation A of A is exactly singular. Hence, even an exact
SVD computation of A provides no useful information about the minimal singular value of A.
This difficulty with the explicit computation of the matrix A can be avoided if we slightly change
the approach to the problem. We use the fact that the singular values of the product B7C are
invariants of the transformation

(2.11) (B,C)— (B',C") = (T'BU, T-"CV), U,V orthogonal, T nonsingular.

Our goal is to find a pair (B’, C") which is suitable for accurate singular value computation of the
explicitly computed product B'7C”. For example, define Dp = diag (1/€,1) and compute the LQ
factorization with row pivoting of D" C,

e300 hali 4-[E )

Then B' = [(1) [1)] DpB = [é i] and C” are obtained by a transformation as in (2.11), and

1 0] V2 o0 V2 0
(2.12) A'=B'"C' = [ ] [ 2 2 ] = [ &2 _gi]
L1 i\/“é 5\/—5 \/5+ﬁ V2

From the perturbation theory of Demmel and Veseli¢ [8], it follows that the singular values of
the floating—point approximation A’ of A’ approximate the singular values of A’ to full machine
precision.

3. The SVD of the product B"C. In this section, we present the new algorithm for the
computation of the SVD of the product A = B”C, where B € RP*X™ C € RF*" are full row rank
matrices. In this case, A has p nonzero singular values, and the remaining min{m, n} — p zero
singular values can be deflated using the following procedure from [22]. Let

R
—as| ‘] o= re.0lac
be the QR and the RQ factorization of B” and C, respectively. Then

. RsRc O
BC:QB[ BOC O]Qc,

and the problem reduces to the computation of the SVD of the product RgRc. Heath et al [22]
choose the RQ factorization of C' to ensure that R¢ is an upper triangular matrix. They compute
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the SVD of the product RpRc by the Kogbentliantz—type algorithm that iteratively transforms
Rp and Rc.

Here we show that, in certain well-conditioned cases, we can safely replace the pair (B, C) by
an explicitly computed single matrix. We start with § 3.1, where we give perturbation estimates
for the singular values of the product B™C of full row rank matrices. In § 3.2, we describe the
new algorithm. In § 3.3, we prove that the new algorithm computes the singular values with high
relative accuracy. In 3.4, we derive sharp backward error estimate and use it to obtain an error
bound for the computed singular values. In § 3.5, we analyze the errors in the singular vectors. In
§ 3.6, we show that in certain cases the new algorithm can be used for accurate computation of
the SVD of a single matrix.

3.1. Sensitivity of the singular values. How the singular values of the product B"C
change if B and C are subject to small perturbations § B, §C? If we assume that B and C are full
row rank matrices and that §B and 8C are sufficiently small, then B 4+ 6B and C + 6C are also
full row rank matrices and we can consider only the perturbations &; > --- > &, of the p nonzero
singular values o1 > --- > 0, of B"C.

An application of the variational characterization to the singular values of the matrix

(3.13) (B+6B)"(C +6C) = B"C + (8B)"C + B"6C + (6B)"6C

does not always provide satisfactory error estimate because the bound

18Bll2 , I6CI: 1652 [I6C1l,

(3.14) |@—Msummwm(HMh b |WM|wm>’1Si5“

may be too pessimistic for 7; if |o;| < || B||2||C||2. Instead of (3.13), we use another representation
of the product (B + 6B)7(C + 6C), and then apply the variational characterization. 3

THEOREM 3.1. Let B € RP*™, C € RP*™ have full row rank, and let B = B+68B, C = C+6C
be perturbed matrices such that HBT(SBIlg < 1, ||CT6C'||2 <1l Ifor 2 - > Ominfm,a} and
G1 2+ 2 Omin{m,n} are the singular values of B"C and B7C, respectively, then, for.all i, either
o, =0; =0, or

(3.15) < |BT6B||> + |cT6C)2 + (| BT 6B|a||CT8C 2.

|7i — o]

Proof. Note that we can write B”C = (I+ BT6B)TBTC’(I+ C’]L(SC), and that for any nonzero
vector z and y = (I + CT(SC).?: it holds that y # 0 and

WECell < stsmlos + ctact 2 Col
E%%ﬁ > (- pteml - [fsc 2 Uk

Now an application of the variational characterization implies relation (3.15). [

REMARK 3.1. The proof of Theorem 3.1 is based on {18, Lemma 6.4 and Corollary 6.1] and
on [25, Problem 12 in § 3.3]. Similar technique is used in [10] for perturbation estimates for
the generalized singular values and in [28], [15] for development of an elegant theory of relative
eigenvalue and singular value perturbations.

COROLLARY 3.2. Let in Theorem 3.1, ll(&B)TeiHQ < EB“BTBZ'HQ, ||(5C)Tez[l2 < €C||Creil|2,
1 <1< p, and let

(3.16) B=ApB,, C=AcC,, where Ap =diag (||Be;ll2), Ac = diag (||C7e;l]2).
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Then, for all i, either o, = 6; =0, or

|6; — o3

(3.17) < (esl| Bl + ecl|Cl|ls + vresecl B2 1CT |12).

Proof. Relation (3.17) follows from Theorem 3.1 since BtsB = B™(BB")" 1B = BIABléB.

3.2. The algorithm. We now describe the new algorithm. Our goal is to achieve the relative
accuracy from Corollary 3.2, that is to compute accurate approximations of the singular values of
any product B"C' in which HBI“Q and []C’j”z are moderate. The basic idea of the new algorithm
is illustrated in Example 2.3.

ALGORITHM 3.3.

“Input B e RF*™ C e RP*", rank (B) =rank (C) = p.
Step 1 Compute Ap = diag (||B"e;l|2) and B, = Al‘;lB, C; = AgC.
Step 2 Compute the QR factorization with column pivoting of C7,

R

] , R upper triangular, @ orthogonal.
n—p,;p

C{H:Q[ o

Step 3 Compute the matrix F = BIIIR", using the standard matrix multiply algorithm.
Step 4 Use the Jacobi SVD algorithm, implemented as in [8], [9], to compute the SVD of F,

b
=V"FU.
Lo

Output The SVD of B"C'is

[ 2680 } =V (B"CYQU & In_p)).

3.3. Error bound for singular values. Consider now the floating—point error analysis of
Algorithm 3.3. We use the standard model of floating—point arithmetic,

(3.18) flla®b) =(a@b)(1+¢), fllVe)=Ve(1+Q), [E.[CI<e,

where a, b and ¢ are floating~point numbers, ® denotes any of the four elementary operations +,
—, - and =+, and ¢ is the round-off unit.

Let Ap, B, and C; be the floating—point approximations of Ag, B, and Cy, respectively. Then

(3.19) Ap=(I+9)Ap, ¥ =diag (%), |t <er(m)=(1+e)mD2_1,
and
(3.20) B, = AZ'(I+9)"YB+6B,.), |6B.|<e|B|

(3.21) C Ap(I +W)(C +8C,), [6C.| < elC].

Il

Since E’Zél = (B+éB.)"(C + éC.), the only singular value perturbation in Step 1 is caused by
small element-wise rounding errors.

In Step 2, we assume that the QR factorization is computed using Givens rotations. Using an
idea of Gentleman [17], we can derive rather sharp backward error bound for each matrix column.
More precisely, we have the following proposition. (Cf. [38], [17], [2], [10], [24].)

PrRoOPOSITION 3.4. Let X € R™*" m > n, and let the QR factorization of X be computed by
a sequence of Givens rotations in some prescribed order. Let all rotations be divided into g sets,
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where each set contains rotations that can be applied simultaneously to different pairs of matriz
rows. If the computation is performed in floating—point arithmetic, and if R is the computed
triangular factor, then there exist a backward error X and an orthogonal matriz Q' such that

X4iX = Ql[ g } where ||§Xei|l2 < eqr(m, n)|Xeillz, 1<i<n, eqr(m,n)< ((14+6)°~1).

For the usual column—wise ordering of Givens rotations we have p = m +n — 3. For some more
sophisticated strategies as, for ezample, in [31], for large m > n it holds that p ~ logym + (n —
1) log, log, m.

In Step 3, we use the standard matrix multiply algorithm. In that case, the floating point
product Z of an m x n matrix X and an n x p matrix Y satisfies (cf. [19])

(322)  Z=XY+E, |B<emu(n)X| Y], 0<emu(n) < (1+e)"t -1,

where the absolute value and the inequality are taken element-wise. Using double precision accu-
mulation, the bound for earar(n) can be reduced to O(1)e for all n < 1/e.
Using Proposition 3.4 and relation (3.22), we can analyze the product BJIIR" in Step 3 of Algo-
rithm 3.3. We first show that, under the assumption that C, is well-conditioned, the computation
of the matrix F in Step 3 is backward stable.

PROPOSITION 3.5. Let R be the computed triangular factor of the matriz Cy from relation
(3.21), and let nc = eqr(n,p)(1 + €) + €, where eqr(n,p) is defined as in Proposition 3.4. If

\/—UCHCTH2 < 1, and if F is the computed approzimation of the product BTIR™ in Step 3 of
Algorithm 3.3, then there exist an orthogonal matriz Q¢ and perturbations §B, §C such that

(3.23) : [F,Om n—p] = (B+6B)(C +6C)Qc
and such that, for all i,

14 €¢,(m)

Teilla < "eil|2, = — R R [loo + €,

16B)"eilla < nallB7eillz, mp = emm(p)g _%(m)(1+€)ll [B7H R [loo + &
I6C)eill < ncllC7eill,

where || - ||os is the matriz norm induced by the €., vector norm.

Proof. From Proposition 3.4, it follows that for some orthogonal matnx Q¢ and some pertur-
bation (6C1)7 it holds that

(CT + (60T = Qc| & |, where (6C1)"eillz < eqr(n, p)l|CTeills 1< i< p.
o)

Note that R is nonsingular. Using (3.22), we conclude that

(3.24) F=BINR +& |8 <emum(p)|BI|-1-|R|.
Hence,
(3.25) [F, Omn—pl = (Bl + ERTI")(Cy + 6C1)Qc.

From relation (3.24), we have, for all 1,

IER™ I eill2 < enrar(p) max [|Beillaf|T- [R7| - [R™7| - W7e; |y,
1<k<p

where || - |1 is the #; vector norm. Inserting ApAz! in relation (3. 25) and using (3.20), (3.21) we
obtain

(3.26) [F,Omnp] = (B" + (§B.)" + ER™TII"Ap)(C + 6C. + A6C1)Qc.



3 Z. DRMAC

Finally, note that, for all 7,

1Beills < =t (61 Ageill < cqn(n, p)(1 + )7l
- efz(m)

a

REMARK 3.6. Note that an estimate similar to Proposition 3.5 holds if the computed matrix
R is such that R = [L, O,_,], where L is lower trapezoidal p x r matrix with rank (L) = r < p.
In that case, we can replace R™ with L, and the computed matrix in Step 3 of Algorithm 3.3 can
be written as [F’, Oy nr] = (B + 6B)"(C + 6C)Qc. Furthermore, the factor || [R™!|- |R] || in
the definition of np is replaced with || || - ]ﬁ[ []1. (Here || - || denotes the operator norm induced
by the ¢, vector norm.) Note, however, that in that case we generally have no assurance of the
relative accuracy of the computed singular values.

COROLLARY 3.7. Let the assumptions of Proposition 3.5 hold. Furthermore, let oy > -+ > 0y

and 61 > - > &, be the singular values of B"C' and F, respectively. If, in addition, \/ﬁnBHBIHz <
1, then

5,’ — Oy
(3.27) max = < B + nllCll + Ensmel BIC o).

In the practice, the column pivoting in the QR factorization in Step 2 ensures that || [R™!] - | R| ||co
always remains bounded by a function of the dimension p. We pivot so that (cf. [4])

J
(3.28) RL>DRE, 1<i<j<p

In that case, the following proposition (cf. [10], [11]) shows that || |[R™!| - |R| ||e is moderate if

||Cr |2 is such.
PROPOSITION 3.8. Let the pivoting in Step 2 of Algorithm 3.3 be such that relation (3.28)
holds, and let R = diag (||R7ei||2) R, = R.diag (||Re:]|2). Then |R7Y| < /n|R:Y| and, thus,

(3-29) IR < VAl IR e A el D - Tleo -
Furthermore,
(3.30) 18 s < o2

‘ 1= /pncl|Crla

Proof. Note that |R;1];; < v/n —J + 1(R;;/Ri:)|R7tij. Relation (3 30) follows from Pr0p0~
sition 3.5 and Corollary 3.2. O
" REMARK 3.9. Relation (3.28) ensures that || [R™!|-|R] ||o is bounded by O(2"), independent
of C. Using the column pivoting of Gu and Eisenstat [20], this bound reduces to the order of the
Wilkinson’s O(n!*+(1/4)1987) hound for the pivot growth in the Gaussian elimination (cf. [37]). In
the practice, || |[R™Y| - |R| ||s is usually of the order of n. Similar bounds hold for the value of
Il IZ] - 1ZT] |11 in Remark 3.6.

REMARK 3.10. If m >> p, then we can improve the efficiency of Algorithm 3.3 by computing
the QR factorization of the matrix B{ (or B[H) If K is the computed triangular factor, then
F = KIIR™ (or F = KR"). The relative perturbation of the singular values, caused by replacing
B, with K| can be bounded by \/'ﬁeQR(m,p)HBj“g, cf. Proposition 3.4 and Corollary 3.2.

In the last step of Algorithm 3.3, we compute the SVD of the matrix F. We use the Jacobi SVD
algorithm, that is, the Hestenes [23] implicit variant of the Jacobi algorithm [26]. Floating-point
implementation of the algorithm follows the lines of [5], [8], [9].
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The Jacobi SVD algorithm generates in floating—point arithmetic a finite sequence
(3.31) FOD = (F®) 4 sFONTE) | | =0,1,... 0—1 (FO = f),

where U®) 0 < k < £—1, are Jacobi plane rotations and 6 F*¥) 0 < k <{-1,are backward errors.
The final matrix £ is chosen so that the computed approximation of max; ; | cos A(F(e)e F®e; i)l
is bounded by some given tolerance tol. Due to rounding errors, the actual bound is somewhat
weaker, l.e.

(3.32) n}?xlcos L(FWOe;, F®e;)| < 7(m) = tol + O(me).

Usually, tol ~ me. The floating point values of the column norms of (¥ approximate its singular
values with high relative accuracy. The relative error is bounded by

plp—1)
1= (p—1)7(m)
The bound (3.33) is derived from the fact that in the QR factorization of the column scaled matrix
(&)
FY = F(‘)(A(‘))‘ =Q® [Ro } , A = diag (||F®e;]|2), it holds that

(3.33) epw(m,p) = (1+

T(m))(1 + €4,(m)) —

~ (& _ (&) -
oy #o = [T+ (RI=D 0] [&0] o < 1_“251“_ 1)11(m)r<m>,

and from the fact that each ||F(D¢;||, is computed with relative error bounded by eg,(m).
If 47 > -+~ > &, are the sorted floating—point values of the Euclidean column norms of F¥), then

the e1genvalues &1 > - > &, > 0 of F can be approximated by (cf. [§])

| - &l (k) 2
(3.34) X o < hip)e 2ax, k2(F7) + me + O(e%),

where h(p) is modestly growing polynomial and F® = F®)diag (JJF®e;|5)=t. Furthermore,
Demmel and Veseli¢ [8] observe that, in the practice, the condition number growth factor

B p F( )
(3.35) x(F) = 0r§k<£ ’:EF(O);

is never much larger than one. (See also [29], [12].) Hence, the accuracy of the Jacobi SVD
algorithm is determined by the condition number of the column scaled matrix F,

(3.36) Kko(F.) = nﬁcuznﬁjuz, where F' = F.Dp, Dp = diag (||Fei||s).

In the following proposition, we estimate xo(F.) and ]|F’jl|2 For the sake of simplicity, we consider
the exact matrix F.

ProposITiON 3.11. Let F', B, and R be as in Algorithm 3.3, and let F = F.Dp, Dp =
diag (||Fe;||2) and R = DrR, 1, Dr = diag (||R7eil]1). Then

(3.37) 1ES 2 < 0BTl B .

Furthermore,

(3.38) ka(F.) < /pk2(Br) min ko(DR).
D=diag
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Proof. Note that ||Fe;llz < [|R7ei[l1, 1 <i < p, and that FJ = D D' R7 I (BI)T. Hence,

1F ) < ||DFD,;1||2“R;11n2u3§||2. Let now ky(DR) = ming,_giae #2(DR). Then x3(FD) <
#2(B;)k2(DR), and relation (3.38) follows from the fact that (cf. [34])

(3.39) Ka(F.) < /b min  wy(FD).
D=diag

0

Hence, modulo an assumption that x(F) in relation (3.35) is moderate, the relative errors in the
singular values computed by the Jacobi SVD algorithm are of the same order as the uncertainty
caused by F — F.

We can modify Step 4 of Algorithm 3.3 and remove the dependence on X(l':') The modification
is simple: If F is square, apply the Jacobi SVD algorithm to G = ﬁr, else compute the QR
factorization F = WK and then apply the Jacobi SVD algorithm to G = K7.

The error analysis of this modification is based on Proposition 3.4 and the following proposition
(cf. [10], [11]).

PROPOSITION 3.12. Let F € RP*P and let the Jacobi SVD algorithm be applied on G =
FT. Let the stopping criterion (3.32) be satisfied by GO in the sth sweep. If one sweep can be
implemented in o parallel steps, as described in Proposition 3.4, then the matriz G(©) satisfies

GO = (G +8G)U, [6G) el < es@IGTeilla, 1< <p, es(p) < ((1+6e)= D8 _ 1y,

where U 1s certain orthogonal matriz. Furthermore, let the matriz F, from relation (3.36) satisfy
\/[)eJ(p)Hﬁ’ng <L Ifo} >-->6, and 61 > -+ > G, > 0 are the floating—point values of the
Euclidean norms of the columns of G, and the singular values of F, respectively, then

|o; — &

max T2l < (4 es N + 0 ) - 1,

where €y (p,p) is defined as in relation (3.33).
The importance of Proposition 3.12 is that it proves a very strong form of backward stability
of the Jacobi SVD algorithm: The norm-wise relative backward error in each column of F is small.

Hence, if Hﬁ’j“z is moderate, the singular values of F are computed with high relative accuracy.
Similarly, the QR factorization of F' introduces column-wise small backward error, see Proposition
3.4. If we combine Proposition 3.4 and Proposition 3.12, we conclude that the modified step is
equivalent to exact computation with small relative norm~wise backward errors in each column of
F.

REMARK 3.13. The efficiency and the accuracy of the modified Step 4 increase if the QR
factorization of F is computed with column pivoting, FP = WK. In that case, we have the
accelerated Jacobi SVD algorithm of Veseli¢ and Hari [35]. (See also [8].)

REMARK 3.14. The accuracy and the error estimates of Algorithm 3.3 can be further improved
using Jacobi rotations after Step 1 as follows (cf. [11]). Apply only a few steps of the Jacobi SVD
algorithm on C7 and apply the same rotations to By, to preserve the equivalence (cf. relation
(2.11) in Example 2.3). The threshold for skipping the rotation is set high, larger that 1/,/p, say.
After few rotations, scale the new matrices as in Step 1, and proceed with Steps 2-4. The goal is

to reduce ||C’J||g and, hence, to reduce the condition number of the row scaled matrix R. At the
same time, the spectral condition number of the row scaled new B, can be increased at most /P
times. This preconditioning ensures more accurate QR factorization of C{ as well as more accurate
computation of F and its singular values. After suitable scaling, a similar process can also be used

to reduce ”BIHQ
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3.4. Backward stability. Now we prove that Algorithm 3.3 with modified Step 4 is backward
stable, i.e. the matrix F(®) = (é(z))" in Proposition 3.12 is the result of exact computation with
some matrices B+ 6B and C'+6C where for each i, [|(§B)" e;||2/[|Bei|2 and ||(6C) eilla/||C  eil|
are bounded by € times a modestly growing function of matrix dimensions.

ProPOSITION 3.15. Let the assumptions of Proposition 3.5 hold, and let K be the computed
upper triangular factor in the floating—point QR factorization of F. Let the Jacobi SVD algorithm
be applied on G = I{’f, and let FO = (é(t))" be as in Proposition 3.12. Furthermore, let }%r,l =
diag (||R7e;]|1)" 1R and n(m,p) = eqr(m,p) + €1(p) + eqgr(m,p)es(p). There exist backward
perturbations §B, §C' such that the diagram in Figure 1 commutes. Furthermore, it holds, for all

ﬁogxténg
poin (€)
(B,0) Rl
Om-pp 0
backward exact computation
error

(B+6B,C+6C)
F1c. 1. Commautative diagram for the modified Algorithm.
i, that
(3.40) (6B) eilla < nallBeill2, [I(6C)eill2 < nellCTeills,
where ne is as in Proposition 3.5 and

14 eg(m)

i = s (L { s @I LR 1R s + 0, )L+ earae G| Bl } 4.

Hence, if 01 > --- > o0, are the singular values of B"C' and if 61> 2> 0

» are the sorted
floating—point approzimations of the Euclidean norms of the rows of F(), then

5 — ail

(3.41) e —— 1+ ﬁﬁBHBrTll?)(l + ﬁnC!|CJ||2)(1 +epw(pp) —1,

where €y is defined in relation (3.33), and provided that \/ﬁﬁBHB:{]]Q < 1.
Proof. From Proposition 3.4 and Proposition 3.12, it follows that

{fg} = Qn(F +6F), FO =U(K +6K),

where Qp and U are certain orthogonal matrices and the backward errors §F and 6K satisfy
NI6Fe||2 < eqr(m, p)||Feills, |[6Kesll2 < es(p)||Keill2, 1 < i < p. Hence,
F® U O 1 onm ooy - 5K
[ o ]_ [O Ty QF(F+8F"), §F'=6F + Qp E

where, for all i, ||§F/¢;||s < (eqr(m,p) + es(p) + eqr(m, p)es(p))||Fe;l|s. Furthermore, with the -
notation from the proof of Proposition 3.5, we have

ﬁ(e) U o T (DT D—TTYT[T =TT DT
[ o ]_[0 [m-p]QF(B,JFSR " + 66 R-TIM)IRT,

where, for all ¢ and ¢’ such that I"e; = ¢;/,

I6F' RN eslla < (eqr(m, p) + 5(p) + eqr(m, p)es(p)) . | Fexllz| (R e,

k=i’
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Note that ||Fe|ls < (1 + enn(p)) maxi<;<p |BZe;ll2llR7ekll1, 1 < k < p. Hence, the backward
error 6 B, defined by

(6B.)" = ER™TIT + 6F'R™TII",

satisfies, for all 7,

6B ells < emmp)yg I A1 1R] o
1+e¢ P ~ ~
+ n(m,p)(1+ SMM(P))T:;:: > IR el | (R )karl.
M) p=gt

(Note that [|R7eg |1 |(R™ " )ier| = |(R7])kir].) On the other hand, as in Proposition 3.5, we can write
IR, 0] = [C1+6C1]Qc, where Q¢ is an orthogonal matrix and [|(6C1)7e;]]2 < eqr(n, p)||CTeill2,
1 < i < p. Hence (cf. the proof of Proposition 3.5)

[ F© op’n_p]
Onm—pyp (0]

0 - X o AiA L RoleA

[g I ] QTF(B:AB + (5Br)TAB)(ABICI + ABl(SC]_)QC,
m-p

U 0]

.= [O I -—p] Q;‘(BT + (5Bejr + (5Br)TAB)(C +6C, + Aéléél)QC

where, for all 7,
1(6B,)7 Ageslla < [(6Br) eill2(1 + el BTesll2,  (1(6C1)T Ap esll> < eqr(n, p)(1 +€)[|C7ei ).

O

3.5. Error bound for singular vectors. In this section, we consider the errors in the
singular vectors computed by the Jacobi SVD algorithm. Our analysis is based on the results from
[8]. We include it here for the sake of completeness.

For the sake of simplicity we consider a simple singular value ¢; of F' with corresponding left
and right singular vectors v;, u;, respectively. Furthermore, we restrict the size of perturbation
6F' to ensure that the jth singular value ¢ + é0; of the perturbed matrix F'+ 8 F remains simple.
In this way, the perturbed matrix has unique singular vectors ¥;, #;, that correspond to o; + 60;.
Important condition number that determines the accuracy of a singular vector approximation is
the relative separation (gap) in the set of singular values of F, introduced in in [8] as follows:

DEFINITION 3.16. Let.oy,...,0min{m,n} be singular values of a nonzero m x n matriz. The
relative gap of o; is defined by :
los — o]

v(oi) = 0‘22? ot 0;

Our analysis is based on the following perturbation estimate from [8, Corollary 2.17].

ProPoSITION 3.17. Let F' = F Af be an mx n full column rank matriz, Ap = diag (|| Fei||2),
and let F+6F = (F.+6F")Ap. Letv; and uj be the left and right singular vectors of F', respectively,
and let U;, 4; be the corresponding left and right singular vectors of F + 6F. If

(3.42) 6= 18FJsl|Fd[l> < I}%
then

Vn—1/26

O)((X = 8)y(a;) = 6)

(3.43) max{[|uj — @lla, [Jv; = ¥jll2} < i
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In the Jacobi SVD algorithm, the limit matrix Feo = limg—oo F*) = VI is the left singular vector
matrix scaled by the diagonal matrix of the singular values. In the practice, the matrix F,, is
replaced by a matrix with nearly orthogonal columns. In the next proposition, we estimate how
the scaled columns of such a matrix approximate its left singular values.

PROPOSITION 3.18. Let FF = F.Ap e R™**, FIF, = I+ FE, and let

V2| EllF 1_2((Ar)jj)

(3.44) 6= 1-21ElF  21+7((Ar)s5)’

where the relative gap Y(-) is computed in the set of the singular values of Ap. Then there ts a left
singular vector v; of F' such that

(3.45) llo; — Frej]la < vn—1/28

~ (1=8)((1=8)¥v((AF)jj) = 6)

Proof. For simplicity and without loss of generality we take j = 1. Let F, = Q(I + Z) be the
QR factorization of F,. Note that = is upper triangular with Z;; = 0, hence F.e; = Qe;. From
E = Z4E7 + Z7Z, using the continuity of the Cholesky factorization of F F, (cf. [13, Theorem
2.1]), we conclude

Iy < e
T 14+ /1-2|E|F
Now write F as F' = (Q + 6Q)Ap, Q = Q=, and apply Proposition 3.17. O
REMARK 3.19. In Proposition 3.18, we use ||E||r instead of ||F||2 because, in the Jacobi SVD

algorithm, we estimate || E||; by ||E||2 < [|E|lr < v/n(7+O(me)), where 7 is the stopping criterion
threshold. Using [13] we can estimate ||Z||2 also by

2¢n|El2

+V/1-42[ Bl

(346) Il < - cn = 1/2+ [logy ],
provided that ||E||» < 1/(4c2).
The following proposition estimates norm—wise errors in computed left singular vector approxima-
tion V + 8V ; v
PROPOSITION 3.20. Let V + 6V be left singular vector approzimation, computed in step {) of
Algorithm 3.3. Let the stopping criterion with threshold T be satisfied afier exactly s sweeps of some
strategy. Furthermore, let one full sweep be divided into p steps, where for 1 <t < g the t-th step
consists of simultaneous application of r(t) rotations with disjoint pivot indices. Let F&1) denote

a floating—point matriz obtained aftert such steps in the s-th sweep, and let 0'5”) > > a,(f’t)
be the singular values of F(5). If for all (s,t)

Font o)
4e/2r(0) (FOO) 2 < ——L
1+ (")

then
& JIBn =8 nls:t)
(347) ||6Ve]||2 < (s,1) eV 10 (s tg)n (t,8) (s,t)
s=1t=1 (1 - 4677 ' )((1 - 4577 ’ )7(0"] ) - 457] 4 )
(3.48) i Von?2—nrt'

| (1= 20 7)((1 = V2 ) (|[F®e;12) — vant')
(349) + et (eI Tert -1,
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where n'*) < \/2r(t) [l(ﬁ’("t)):rl]g, 7 < 74+ 0(me), and the relative gap v(||F®e;||5) is computed
with respect to the singular values of diag (||F&e;||,). ,

Proof. Let U(*:!) be product of computed Jacobi rotations in the ¢th step of the sth sweep.
Since all rotation involved in U(**) have mutually different pivot indices, floating—point application
of UG can be represented as

F(S,t'f'l) = (ﬁ(’!t) + 6ﬁ(57t))U("vt)’

where ||§F(diag (”F(S*’)QHQ—I)HQ < 4e\/2r(t). Under the assumptions of the proposition we
can apply Proposition 3.17 for all (s,t). This gives the right hand side of the inequality in (3.47).
The contribution (3.48) is due to application of Proposition 3.18 to the final matrix F&#). Note
that the O(me) correction of 7 is due to possible underestimation of 7 in floating-point arithmetic.
Finally, the contribution (3.49) bounds errors caused by column scaling of F(&#) in floating—point
arithmetic. O

REMARK 3.21. For the row—cyclic strategy, @ = 2n — 3, which means that estimate in
Proposition 3.20 contains an O(n?) factor, while the estimate in [8] contains an O(n®/?) factor.
Since in practice the number of sweeps is bounded by a constant, this is an O(y/n) improvement
over [8]. Another improvement by an O(y/n) factor is possible using the results of Mathias [30].

3.6. Application to the ordinary SVD computation. The basic idea of Algorithm 3.3
1s to reduce the computation of the SVD of the product of two matrices to the ordinary SVD of a
single matrix. Now we show that in some cases we can use Algorithm 3.3 to compute an accurate
SVD of a single matrix. The application of Algorithm 3.3 to SVD computation of a G € RMxn,
m > n, is based on the following two important observations in [6]. First, floating—point LU
factorization with complete pivoting

(3.50)  PiGPy=LAU, LER™ U ERP™, Ly =U;, 1<i<p=rank(G),

usually computes very accurate factors L, A and U, and, if rank (G) can be determined exactly, the
singular values of LAU approximate the singular values of G with high relative accuracy. Second,
the values of H[ﬁ“g and Hlﬂ”g are moderate. -
Hence, for an accurate SVD of G, it remains to compute the SVD of the product LAU. This
approach is especially attractive if the LU factorization of G can be computed with small element—
wise relative errors as, e.g., in the case of network oscillator matrices where even the rank decision
can be made correctly, see [14]. To compute the SVD of LAU, we use Algorithm 3.3 with B = L7,
C=AU.

ALGORITHM 3.22.
Input G e R™*", m > n.
Step 1 Compute the LU factorization with complete pivoting, PiGPy = L(AU) = LU.
Step 2 Compute Ay = diag (||Le;||2) and L, = LAZl, Ui = ALU.
Step 3 Compute the LQ factorization with row pivoting, II"U; = T'Q.
Step 4 (Optional) Compute the QR; factorization L.II = KR.
Step 5 Compute I = L IT (optionally, F = RT') using the standard matrix multiply algorithm.

z ] =V'FW.

Step 6 Use the Jacobi SVD algorithm to compute the SVD of F, [ o

Output The SVD of G reads

[ pINe> On—-p,n—p

0 ]:«KWUHGUMXW@Qw»,

REMARK 3.23. Note that F' = (K7 P1)G(P.Q"), which means that Algorithm 3.22 can be
considered as an implicit way to precondition G by pre~ and post-multiplication by orthogonal
matrices.
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"The following error bound is a corollary of the analysis from § 3.3.

COROLLARY 3.24. Let rank (G) = p and let L, € R™ P and U; € RPX" be the computed
(full rank) factors in Step 2 of Algorithm 3.22, and let 61 > --- > G, be the ezact singular
values of the product LU, =G+ 0G, with 8G being the backward error in the first two steps
of the algorithm. Furthermore, let T', R and F be the computed approzimations of the matrzces
T, R and F, respectively, and let U, = diag (||U]eil|2)"'01, (L.). = L.diag (|| L. eill2)7t, Teq =
Tdiag (||Teill)~. If & 220 G, are the singular values computed in Step 6 by applying the

Jacobi SVD algorithm to F7, then

| o
(35) max B (114wt - 1,

where 0 < gy < \/[_)€QR(n,p)”l~],:"”2 bounds the relative perturbation from the L@ factorization in

Step 3, 0 <y < \/ﬁeQR(m,p)H(ic)Z“g bounds the relative perturbation from the QR factorization
in Step 4, 0 < n3 < epm()|| |[R-|T|- 1T~ - |R™| ||2 bounds the relative perturbation from the
floating-point matriz product in Step 5, and, finally, 0 < 9y < /Pes(P)|| L7 T2/ (1 = ns)
bounds the relative error in the Jacobi SVD algorithm. We also assume that in relation (3.51)
maxi<i<a i < 1.

The result of Corollary 3.24 is attractive because it gives closed relative error bound that depends
only on condition numbers of the matrices Lc, U, and Tc 1. All relevant condition numbers can
be estimated using, e.g., LAPACK’s SPOCON() procedure [1]. Note that the bound (3.51) does not
depend on the condition growth factor in the Jacobi SVD algorithm.

4. The eigenvalue problem of the product HM. In this section, we apply the aﬁalysis
from § 3 to the eigenvalue problem

(4.52) HMz = Az, H,M € R**" symmetric and positive definite.

It H=LygLy, M = Ly L} are the Cholesky factorizations and if L5 Ly = VEUT is the SVD of
L% L, then the matrix T = Ly VE~1/2 satisfies

(4.53) Tt=27 2T, TTPHT " =T"MT =%, and HMT = TX2.

Hence, the Cholesky factorization of H and M, followed by the SVD of the product L7 gLy gives
the solution of the eigenvalue problem (4.52) and the solution of the balancing problem (1.5) for
the linear system (1.3), (1.4). It is important to note that the balancing problem (1.5) can be
solved using the SVD of L}, Ly without computing the Gramians H and M. More precisely, we
can use an algorithm of Hammarling [21] to compute the Cholesky factors Ly and Las of H and
M directly from the dual pair of the Lyapunov equations (cf. [27], [16])

(4.54) EH+HE =-FF", E'M + ME=-G"G..

In § 4.1, we analyze the sensitivity of the eigenvalues of HM to small clement-wise relative
perturbations §H, §M and we describe the set of positive definite pencils HM — A for which the
eigenvalues can be computed with high relative accuracy in floating-point arithmetic. In § 4.2, we
use the natural connection between the eigenvalue problem (4.52) and the IISVD of (Lg, L) to
define a new algorithm for eigenvalue computation and in § 4.3 we prove that the new algorithm
is capable of achieving the high relative accuracy predicted in § 4.1. In § 4.4, we analyze errors in
the computed eigenvectors.

4.1. Sensitivity of the eigenvalues. Let H and M from relation (4.52) be given with initial
uncertainties 6 H, 6 M such that

(4.55) |0Hij| < e|Hyjl, [6Mij| < e|Myjl; 1< 4,5 <n,
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or, more generally, such that

(4‘56) ‘5Hi]“ < ex/H,','Hjj, |5Mij] < €\/Mi,'ij, 1<4,5<n.

Our goal is to estimate the relative accuracy to which the eigenvalues of HM are determined by
the data (H and M). ‘

THEOREM 4.1. Let H and M be n x n real symmetric and positive definite matrices, and let
6H, M be symmetric perturbations as in relation (4.56). Furthermore, let

(457)  H, = diag (H;;)"*/*Hdiag (Hi;)~Y?, M, = diag (Mi;)~"/*Mdiag (M;;)~/2,

and let 2ne max{||H; |2, [|M7 Y2} < 1 If Ay > - > A, and Ay > --- > X, are the eigenvalues
of HM and (H + §H)(M + 6 M), respectively, then

[ — A ~ |6H ;) ~ 6 M|
4.58 < 6vrn(||H T — M — ).
( ) 1?%); A,’ - \/—n(” s Hznil,?x1/HiiHjj || Hzrl'il?x\/Miiij)

Proof. Let H = (Lg + 6Lg)(Ly +6Lyg)", M = (Lapr + 8La)(Lar + 8Lar)" be the perturbed
Cholesky factorizations. Using an estimate from [13], we can write

8 Hij
Li+8L = Lu(I+Ta), Calls < Vnl i o max 2281
, ’ ity
-1 |6 M|
Ly +6Ly = Lu(I+Tx), [|Tullz < V20||M; Y] max ———=tae.
8,J M,jiij

Hence, the eigenvalues of (H +6H )(M + 6M) are the squares of the singular values of the product
(I +Ty)" Ly Lay(I+ Tar) and Theorem 3.1 implies that, for all 4,

(4.59) (1= [IPall2)(1 = ITarllz) < 4/ 55 < (14 [Tallo)(1 + ([T aell2)-

?

o=

]

We conclude that perturbations of the type (4.55), (4.56) cause small relative perturbations
of the eigenvalues of HM — I, if ||[H || and ||M[!||> are moderate. Or next theorem, based on
the results from [36], shows that moderate ||H ||z and ||[M[ 1|2 are also necessary for accurate
eigenvalue computation in the presence of the perturbations (4.55), (4.56).

THEOREM 4.2. Let H and M be as in Theorem 4.1, and let k > 1. If for alle < 1/k and all
symmetric perturbations as in (4.55) the eigenvalues Ay > -+ > A, and Ay > ---> X, of HM and
(H+6H)M + 6M), respectively, satisfy :

‘ _ |Ai — i
(4.60) X T < ke,
then max{||H |, 1M 12} < (1+w)/2.

Proof. Let 6H = O and |§M;;| < €|M;j|, 1 < i,j < n. Then M + §M must remain positive
definite and, for all € < 1/k, [[M; !z < (1 + €)/(2¢) (cf. [36, Lemma 2.20]). This implies
1M |2 < (14 K)/2. Now choose §M = O and |6H,;| < €|Hy|, 1 <4, <n. D

4.2. The algorithm. The floating-point Cholesky factorizations of H and M are equivalent
to the exact factorizations with symmetric backward perturbations 6 H, 6M which satisfy (4.56)
with € = ec(n) < (n + 5)e, see [8]. Hence, if we use the computed Cholesky factors as input to
Algorithm 3.3, we can compute the eigenvalues of HM with a relative error bound similar to the
one from Theorem 4.1. Tt is more efficient, however, to perform the first two steps of Algorithm
3.3 implicitly, during the initial Cholesky factorizations. More precisely, we can use the following
algorithm.
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ALGORITHM 4.1.
Input H, M € R"*” symmetric and positive definite.
Step 1 Compute Ay = diag (Hii)~1/2 and H, = AgHAgy, M; = A;,lMA;Il.
Step 2 Compute the Cholesky factorizations BB = H,, CC™ = II" M1 (with complete pivot-
ing).
Step 3 Compute the matrix F' = B"IIC using the standard matrix multiply algorithm.
Step 4 Use the Jacobi SVD algorithm, as described in § 3, and compute the SVD of F, X = V™ FU.
Step 5 If needed, compute T' = A};-IBVE‘UQ, T-1=x2-1207C"II" Ag.
Output The matrices T, T~! and T satisfy

T"MT =T 'HT " =%, HMT =T%? MHT " =T""%%

For the computation of the eigenvector matrix 7' we need only the left singular vector matrix

V. This means that in the Jacobi SVD algorithm in Step 4 we need not to accumulate the Jacobi

_ rotations (the matrix U). If we use the modified Step 4 (cf. § 3) then we apply the Jacobi SVD
algorithm on F'™ and the matrix V is now the accumulated product of the Jacobi rotations. Hence,
the price for better error estimate (cf. Proposition 3.12) in this case is extra work to accumulate
the Jacobi rotations.

It is possible, however, to use the modified Step 4 and favorable error bounds from Proposition
3.12, and without the need to accumulate Jacobi rotations. First, note that in Algorithm 4.1
Z =T = AgTICUE™/? is the eigenvector matrix of M H. Next, note that U and V generally
are not unique. Without loss of generality, we use U and V as generic symbols for the right and
the left singular matrix of F, respectively. Hence, if we apply the Jacobi SVD algorithm to F7,
then V denotes the accumulated product of Jacobi rotations and F7V = UX is the limit matrix.
This means that the eigenvectors of M H can be computed using the modified Step 4, and without
accumulating of Jacobi rotations. So, for T' = Z~7 we simply apply the modified algorithm to
(M, H) instead of (H, M).

4.3. Relative error bound for eigenvalues. Consider now floating—point errors in Algo-
rithm 4.1. For the sake of simplicity, we first introduce some useful notation. For an arbitrary
symmetric positive definite matrix X and an arbitrary matrix Y we define X,, Y, and Y, as follows:

X, = diag (Xi)~ Y% Xdiag (Xi5)~Y?, Y = diag (]|[Ye;||2)Y, = Y.diag (1Y esl]2)-
Let H, and M, be the computed approximations of H; and My, respectively. Then
O, = Ag(H +§H)Ag, M= A (M +6M)AZ,
where, for all 4, 7,

o 1+e¢
(4.61) i |5He|ij < EllHiji; |5M3|ij < 51|M5j|, g1 < (1—_5—)373 - 1.

On the other hand, the computed Cholesky factors Band C satisfy

BBT = ];134—5]?13, Iéﬁsh'j §€c(n),

CC™ = W (My+6M)I, [6Mlij < ec(n)\/(My)i(My);;,

where ec(n) < (n+ 5)e (cf. [8]). Hence,

BB™ = Ag(H+6H. + A 6HAG YA, |AGSH, AR < ec(n)/HiH,;,

NCCTI™ = AR (M +6M, + AgsMiAR)AR, |ApéMiAg| < ec(n)(l +e1)/MiMj;.

Now, using Theorem 4.1 we obtain the following error bound.
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PROPOSITION 4.2. Let Ay > --- > A, be the true eigenvalues of HM and let A > > > An be
the squared singular values of the exact product BTIIC, where B and C are the computed Cholesky
factors in Step 2 of Algorithm 4.1. Then

Ai — X
(4.62) ' max l-—/\—'—! < 6v2n(ec(n) +e1 +ec(n)e)(|H; 2 + 1M Hl2)-
sSisn i

Using double precision accumulation in the Cholesky factorization, the bound for ec(n) can be
reduced to O(1)e for alln < 1/e.

Consider now the errors in the eigenvalues obtained from the singular values of the computed
product in Step 3.

PROPOSITION 4.3. Let F be the floating—point product B™IC and let C, ; = Cdiag (|Ce;ill)~ .
Furthermore, let the Jacobi SVD aIgomthm be applied to the matriz F7 and let F(l) satisfies the
stopping criterion (3.32). Let X1 > -+ > A, be as in Proposition 4.2, and let /\’ > X, be the
squared singular values of the matriz F(‘) Then, for all 1,

(4.63)

where

0= exm(@ 1B 1B lall IC1-1C Iz + VRl BT 2IC e (R)(1 + enmm (n) V1 + ec(n).

Proof. From Proposition 3.12 and Proposition 3.5, it follows that F®) is the result of exact
application of the Jacobi SVD algorithm to the matrix F’ BT UC +E+6F, where F = BTIIC+&
and

€] < exrar()|BTIIIC], [|6F€ills < es()[(BTHC + Eeill2, 1< i< n.
The matrix F/ can be written as -
Fr=I+QBIC, Q=¢EC'I"B™" +§FC~I"B™7,
where
(4.64) €GBl < earar (M B lol] [B] (1211 IC1- 1C] 12
and

FC= B lp < 1B 2/ max 1850~ esll

< 1B leviies(n) max 37 [[Ferll2l(C sl
e &
< 1B avAes(m)(1 + e (m) e anejninc%u [(enib]
k=j
< né-lnzﬁw(ma+eMM(n>>;gja;nuéwnzncc,lul
(4.65) < VBRI e ()1 + eanne(m)V/ I+ ec(n).

On the othér hand, from Theorem 3.1 it follows that

‘ l:\ - ‘ 2
(4.66) Zax < 2|92 + 122
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0
Now we show that the relative error bound in Proposition 4.3 is newer much larger and that
it can be much smaller than the bound in Proposition 4.2. Define §H = 6H, + A"léH A;I ,

SM = 6M. + AgéM; Ay and note that
CC™ = (AR I (M + §M)I(II" A1)
and [|[(CCT); |2 = |IC Y2 = ||(M + 6M)71|j5. Furthermore, since C is computed with complete
pivoting, it holds (up to small relative error which we 1gnore) that
~ ] ~
CZ>> C%, 1<i<j<n,
k=1

and from Proposition 3.8 it follows that || [ || < v/l |C 2| |J2. On the other hand,

467)  ICI- 1 2 = HCel - IC M M2 < mfl IC7H 12 < nm\/H(M +6M)7H 2.

Hence, we can bound ||EC~'II" B~7||, in relation (4.64) by

1EC=17 B |3 < n2epar(m)/lI(H + 8H); lall(M + 6M); |-

Similarly, since ||C~';11H1 < nl|Cr Y]y < n¥2|Cr Yy, the bound (4.65) for ||§FC~'I" B~7||p can be
replaced with -

ISFCHI Bl < n?es(m)(1+ earar(m)V/T+ et/ +8H); Hal|(M + 6M); .

REMARK 4.4. Note that C7C' = C~ 1(C'C")C’ represents one step of Rutishauser’s LR algo-
rithm. It is well known that an LR step has nontrivial diagonalizing effect; see [33], [35], [8]. Hence,
we may expect that [[(C7C); Y|z < |[(M 4+ 8M); Y|z Finally, since [|CY|, = VICT OV Ya,
and since moderate UM Y||2 is necessary for accurate computation, we can take the factors
1IC]-1C~ ||z and ||C 1“1 as moderate functions of n.

We finish the elgenvalue analysis with an important observation. We show that the matrix
F® in Proposition 4.3 is backward stable function of H and M. In other words, there are small
backward perturbations §Hj, §M; such that F(® is the result of exact computation with the
matrices H + 6 Hy, M + §M,. To prove this, first note that the matrix F” can be written as

- F'= (B +(6B))IC, [[(6B)"eill2 < (s,
where (5 < \/1+ec(m)(enm (M) IC11C7 [l + es(m)(L+ epar(m)IC7 1 11). Hence,

(B+6B)(B+6B) = H, + 6H, +6H,, |6H!];j <2/T+ec(n)ip + (2.

If we define
§Hy = 6H.+ AR SHAGR + AZ'SHIAG,
§My = &M, + AgéM:Ap,
then, for all 7, j,
[6Hpli; < (€1+€C(")+2v1+€c(" (B +(B) VHiHjj,
[6Myli; < (e1 +ec(n)(1+e1))/MiMjj,
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and F'(®) is the result of an exact computation with the matrices H +§Hj, and M + 6M;. Note that
the backward errors are given element—wise and that the error in M is 0£ne ), while the error in H
contains an additional factor that depends on || |C]-|C~"|||; and on ||CS |12 However, Remark
4.4 indicates that the backward errors in H can be considered as f(n)e, Where f(n) is moderate
function of n. (Note that we can use the strong rank-revealing QR factorization [20] of C' to
obtain f(n) comparable with the Wilkinson’s pivot growth factor in the Gaussian elimination with
complete pivoting.) An important corollary of this backward stability analysis is the element-wise
backward stability of the accelerated Jacobi algorithm for eigenvalue computation of symmetric
positive definite matrix M. In that case, H = I, 6 Hy = O, and the backward error is element—wise
O(ne), see [11].

4.4. Error bound for eigenvectors. For an error estimate for the eigenvector matrix, we
use the formula T = A;IIBVE'U2 from Step 5 of Algorithm 4.1 and the results from § 3.5. As in
§ 3.5, we assume that the eigenvalues of H M are well separated and that they remain simple in the
presence of floating—point errors. For simplicity, we let Ly denote the computed product A;B.
In that case we can write Ly = (I + Ty)Ly, where Ly is the Cholesky factor of H, and 'y is
bounded as in Theorem 4.1, with e & O(ne). (Note that in Algorithm 4.1 we can equivalently first
compute the Cholesky factorlzatlon H = Ly L} and then define B = AgLy. )

PROPOSITION 4.5. Let V +6V be as in Proposition 3.20, and let T be the floating—point value
of the product LH(V + 6V)E 12 where & = diag (0j + b0;) is the matriz of the singular values
computed in Step 4 of Algorithm 4.1. Then for Tj; #0

503 )

(4.68) Ty = Ti; (1 + Y21+ €5)(1+ €9)(1 + ng),

where |e;;] < e, €] < (1+€)? -1, and

T2 + (L + Tall2)lI6Vesll2 +earn (M)(L + [[6Vej]12)]
|cos Z(e] Ly, Vej)

(4.69) Imi| <

Proof. Note that
Tij = (e] Lu(I+Tu)(V + 8V)e; + Eij)(oj + 803) 72 (1 + €D)(1 + €;5),

where (0 +60;)"/2(14€19)), [€)] < (1+€)%—1, is the computed value of (o; +60;)" /2, |eij| < e
are small rounding errors, and E is the error from matrix multiplication, |E| < eppr(n)|Ly(I +
7)1 [(V + 8V)|. The rest of the proof is a tedious computation which we omit. O

5. Numerical tests. Numerical testing of Algorithm 3.3 is similar to testing of the general-
ized singular value computation algorithms i in [11]. For the readers convenience, we give detailed
description of the test.

5.1. Test matrix generation. We generate random matrices B, and C, with given kq(B,)
and k2(C,), and apply scalings B = AgB,, C = AcC,, where Ap, A¢ are random diagonal,
nonsingular matrices with given spectral condition numbers. Recall that the subscript r means
that the matrix has unit rows. The 4—tuple (k2(B;), k2(AB), k2(Cr), k2(Ac)) takes all values from
- the set

C= {nijkl = (1015?10]',1016)101) : (ijvk:l) €EIxJxKxLC N4}7

where 7,7, K, L are determined at the very beginning of the test and kept fixed. For each fixed
Kijkl, we generate a set of test pairs using the LAPACK’s DLATM1 procedure [7] as follows. We
let the 4—tuple (s, g0, pwr, pav) of distributions of the singular values of (B,, A, Cy, A¢) take all
values from the set

M= {pirjn = (par, o, i)} C©Prx Py x Py x Py C {£1,..., £6}%
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 where the sets of indices Py, ..., P4 contain admissible values of parameter MODE in the procedure
DLATM1. For each fixed (K11, ftirj/z) We generate random pairs using random number generators
with distributions chosen from the set R C {U(—1, 1) U(0,1),N(0,1)}. For each fixed distribution
X € R we generate a set £X - of different pairs, with the cardinality of £ st jian being
fixed at the beginning of the test. "Each test pair is generated in double precision and its generalized
singular values are computed using a double precision procedure. The generalized singular values
computed by double precision procedure are then taken as reference for single precision procedure
that runs on original pair rounded to single precision.

A random matrix B = Ag B, with given ko(B,) and x2(Ap) is generated using the following
algorithm. (Cf. [19, P.8.5.3 and P.8.5.4], [8], [11].)

ALGORITHM 5.1.
1. B := diag (b;;), where b1y, ...,b,, are generated using DLATM1() from [7] with parameters
chosen accordingly to the current node in € x M x R.
2. B:=---(Ui(---(UyBVy) - )V;) - - -, where U;, V; are random plane rotations.
3. B:= - (Wi(---(W1B)-- )) where Wi, k= 1,... are plane rotations designed to equilibrate
the rows of B. On output, all rows of B have about the same Euclidean length.
4. The diagonal matrix Apg is generated by DLATM1() with parameters chosen accordingly.
5. B:= AgB.
Before PSVD computation, both &9(B;) and k2(C;) are computed using singular values computed
by LAPACK’s SGESVD() procedure applied to B, C,, respectively. Computed condition numbers
are compared with desired values in &;;51. The two sets of values usually differ by a small factor
(cf. [11]).

5.2. Test results. All tests were done on an Intel 486DX processor. We used Microsoft
Fortran Power-Station with improve floating-point consistency compiler option.

EXAMPLE 5.2. We use our double precision procedure as reference for testing our single

precision procedure SGPSVD(). We do not use preconditioning explained in Remark 3.14. For each
test pair (B, C), we compute

16|
ax
O'EU(B c) o
max{ka(Br), k2(Cy)}’

6(B,C) =

where ¢ and o + 6o are the double and the corresponding single precision approximations of a
singular value of B”C. Our analysis predicts values 6(-) of order of single precision roundoff unit.
The input parameters for the test are

I = {1,...7}, K=1,

J = {4,812,810}, £={3,5,7,9,11},
M {(5,4,-5,3),(3,—4,5,-3),(4,5,3,—4)}, R = {U(=1,1),U(0,1), N(0,1)}.

l

For each node of C x M x R we perform three tests on randomly generated pairs. This makes the
total of 33075 test pairs.

In Figure 2, we display the values of 6(-,-) for all test pairs. In Figure 3, we display in logm scale
the values of

|60

(4, k) = maxmax max max —, (i,k)eI xK.
e M (B’C)EUxeng')‘(i,‘u Y o€o(B,C) O

Note that relative accuracy depends on max{xs(B,), k2(Cy)}, and not on k2(Ap), ka(Ac).
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F1e. 2. The values of 6(B,C) for all test pairs (B,C). Note that the values of 8(-,) below 1078 indicate that
max{xz(Br}, k2(Cr)} overestimates the real condition number.

| I
)] -+ o
L L /

|
()
L

log10(rel. error)

condition of C condition of B

F1c. 3. The logarithms of mazimal relative errors e(i, k) (= logyg e(i, k) & the minimal number of correct digits
for all test pairs (B,C) with kp(Br) = 10%, ka(Cr) = 10%) for (i,k) € T x K. Note that (i, k) & 7 — max{s,k}, as
predicted by the theory. .
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