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Abstract. We present two new algorithms for floating—point computation of the generalized singular values of a
real pair (A, B) of full column rank matrices and for floating—point solution of the generalized eigenvalue problem
Hz = AMz with symmetric, positive definite matrices H and M. The pair (4, B) is replaced with an equivalent pair
(A’, B'), and the generalized singular values are computed as the singular values of the explicitly computed matrix
F = A'B'~!. The singular values of I are computed using the Jacobi method. The relative accuracy of the computed
singular value approximations does not depend on column scalings of A and B, that is, the accuracy is nearly the
same for all pairs (AD;, BD;), with Dy, D arbitrary diagonal, nonsingular matrices. Similarly, the pencil H — \M -
is replaced with an equivalent pencil H' — AM’, and the eigenvalues of H — AM are computed as the squares of the
singular values of G = Ly Lz-ul , where Ly, L are the Cholesky factors of H', M’, respectively, and the matrix
G is explicitly computed as the solution of a linear system of equations. For the computed approximation A + §\
of any exact eigenvalue X, the relative error |§A]/X is of order p(n)e max{minaep k2 (AHA), mina ep s2(AMA)},
where p(n) is modestly growing polynomial of the dimension of the problem, ¢ is the roundoff unit of floating-
point arithmetic, D denotes the set of diagonal nonsingular matrices and k2 (-) is the spectral condition number.
Furthermore, floating—point computation corresponds to an exact computation with H + 6H, M + §M, where, for

all 4, j, |§H;;|/\/Hii H;; and |6§M;;|/\/M;;M;; are of order of ¢ times a modest function of n.

Key words. generalized singular value decomposition, generalized eigenvalue problem, Jacobi method, relative
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1. Imntroduction. In this paper, we propose two new algorithms for floating—point computa-
tion of the generalized singular value decomposition of a matrix pair

(1.1) (A, B) e R™*"™ x RP*"® rank (A) = rank (B) = n,
and for floating—point solution of the generalized eigenvalue problem
(1.2) Hz = XMz, H,M € R™" symmetric and positive definite.

The generalized singular value decomposition (GSVD) is introduced by Van Loan [55], [56], and
it naturally arises in applications like equality constrained least squares [56], [57], [7], the general
Gauss—Markov linear model [44], linear matrix equations [10], or, for example, the Kronecker
canonical form [37].

THEOREM 1.1. Let (A, B) € C™*" x CP*" and let m > n, ¢ = min{p,n}, r = rank (B).
There exist unitary mairices U, V and nonsingular X of dimensions m x m, p X p and n X n,
respectively, such that U* AX = X4 = diag (a1,...,an), oy >0, V*BX = Xp = diag (61,...,0,),
and By > - > B > fopr = = f = 0. [fa; = 0 forany j, r+1 < j < n, then
the set of generalized singular values of (A, B) is 0(A,B) = {¢ € R : ¢ > 0}. Otherwise,
c(A,B)y={a;/B; : i=1,...,7}.

If in Theoreém 1.1 the matrix B is square and nonsingular, the GSVD of (A, B) is equivalent to the
singular value decomposition (SVD) of AB~!, and if B = I we have the SVD of A. Furthermore,
the equivalence transformation with the matrix X diagonalizes the pencil A*A — AB*B, that

* Technical report CU-CS-815-96, Department of Computer Science, University of Colorado at Boulder.

t Department of Computer Science, University of Colorado, Boulder CO 80309-0430. (zlatko@cs.colorado.edu)
This research was supported by National Science Foundation grants ACS-9357812 and ASC-9625912, Department of
Energy grant DE-FG03-94ER25215 and the Intel Corporation. Parts of this work were presented at the symposium
Accuracy Issues in Eigenvalue Problems at the International Congress on Industrial and Applied Mathematics
(ICIAM 95) July 3-7, 1995 Hamburg, Germany, and at the XIII Householder Symposium on Numerical Algebra,
June 17-21, 1996 Pontresina, Switzerland. The author acknowledges financial support by SIAM (travel grant award
to the ICIAM 95) and by the Householder Organizing Committee.

1



2 Z.DRMAC

is, X"(A"A — AB*B)X is diagonal matrix. Hence, if the matrices H and M in relation (1.2)
are factored as H = A*A, M = B*B, we can solve the eigenvalue problem (1.2) implicitly by
computing the GSVD of (A B).

Van Loan notes that, if A*A and B*B commute, it is possible to choose X unitary. Hence,
if @ = [A*, B*]* has orthonormal columns, there exist unitary matrices U/, V and W such that
U*AW = X4 and V*BW = X are diagonal matrices and £4¥4 + £5Xp = I. This is the
cosine-sine decomposition (CSD) of the partitioned orthonormal matrix Q. The CSD is defined
by Stewart [51] and it is implicitly contained in Davis and Kahan’s paper [11]. Paige and Saunders
[46] remove the minor constraint m > n in Theorem 1.1, and reformulate the decomposition to
avoid the use of nonorthogonal transformations.

The relation between the GSVD and the CSD is the basis for two backward stable algorithms,
proposed by Stewart [51] and Van Loan [58]. If

oo o=[5]=[& ] 0= [3]-[4 V][I ]

are the QR factorization of G and the CSD of Q, respectively, with C = diag (¢;), S = diag (s:),

. then the GSVD of (4, B) can be written as U*A(RG'W) = S, V*B(RZ'W) = C, provided that
rank (G) = n. A nice property of this approach is that the generalized singular values {s;/¢;} can
be computed using only orthogonal transformations. It immediately implies that the computed
generalized singular values are the exact generalized singular values of (4 + §4, B + §B), where
the backward errors §4, § B are small in the Frobenius norm sense. More precisely, ||§A4||r/||Al|r
and ||6B||r/||B||r are bounded by the product of the machine roundoff unit e and a moderate
polynomial of the matrix dimensions. Shougen and Shuqin [49] use this approach for the solution
of the eigenvalue problem (1.2), where A and B are obtained as the Cholesky factors of H and M,
respectively.

Paige [45] generalizes the Kogbetliantz algorithm for SVD computation to matrix pairs and
gives an elegant implementation that initially transforms 4 and B to a pair of triangular matrices
and preserves the triangular form in the iterative phase by using suitable plane rotations. A
variation of Paige’s algorithm is given by Bai and Demmel [4]. This algorithm is also norm-wise
backward stable, and it is implemented as the LAPACK [2] procedure STGSJA().

Deichmoller and Veseli¢ [14], [13] and Drmac [21] use an implicit variant of the Falk—Langemeyer
method [26], [30] and show that, in certain well-conditioned cases, the generalized singular val-
ues of a pair (4, B) of full column rank matrices are computed with high relative accuracy. A
nice property of this method is that the relative accuracy of the computed generalized singular
value approximations is nearly the same for all pairs of the form (AD;, BD,), where D; and D,
are arbitrary diagonal nonsingular matrices. An important difference between this method and
the methods from [51], [58] and [45] is that, in this method, the elementary transformations are
nonorthogonal.

The possibility of usmg the SVD of 7' = AB™! in case of square nonsingular B is not conmdered ‘
to be-a numerically attractive approach. The main reason is that ill-conditioning of B with respect
to inversion may produce an inaccurate 7' in floating-point arithmetic. Our goal in this paper is
to show that the pair from relation (1.1) can be replaced, in a numerically stable and efficient
way, with an equivalent pair (A’, R) such that R is triangular and nonsingular and such that
the generalized singular values of (A4, R) can be accurately computed by computing the SVD of
the explicitly computed matrix ' = A’R~!. To obtain A’ and R, we use certain matrix column
scalings and the QR factorization with column pivoting. The matrix F is computed as the solution
of triangular systems of linear equations, and the SVD of F' is computed using the Jacobi SVD
algorithm. Using backward error analysis, we show that floating—point implementation of this
procedure is equivalent to exact computation with A + 64 and B + 6B such that, for all 7,

(1.4) Al < Fln R)elldeill, [18Beillz < o(p,mel| Bl
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where f(n, R) is usually a modestly growing function, and g(p,n) is a linear polynomial in p and
n. (In relation (1.4), e; is the ith column of the identity matrix I and || - ||2 denotes the Euclidean
vector norm. We use || - ||2 to denote the spectral matrix norm as well.) Furthermore, we show
that the generalized singular values oy > --- > o, of (A, B) are computed with an error bound of
the form
8] f f 2
max < f(n, R)Vnel|Ac|l2 + g(p, n)v/ne|| Bl [|2 + O(e?),

1<i<n o0

where A. and B, are obtained from A and B, respectively, by scaling their columns to have unit
Euclidean lengths. The symbol T denotes the MoorePenrose generalized inverse of a matrix. We

have two theoretical bounds for f(n, R). The first one guarantees that f(n, R) is moderate if HBI P
is such. The second one guarantees that f(n, R) is bounded by a modestly growing function of n,
independent of B. If we use strong rank-revealing QR factorization of Gu and Eisenstat [31], the
theoretical bound for f(n, R) is comparable to the Wilkinson’s bound for pivot growth in Gaussian
elimination with complete pivoting (see [62]).

We apply a similar procedure for the solution of the eigenvalue problem (1.2): we replace
H and M with an equivalent pair H’, M’, then we compute the Cholesky factors A’ and B’
of H', M’, respectively, and, finally, we compute the SVD of the explicitly computed matrix
F = A’B'~'. We show that floating—point implementation of these operations is equivalent to
exact computation with the symmetric pencil (H + 6H) — A(M + §M), where, for all 4, j, the
values of |6H;;|/\/H;iH;; and |6M;;|/\/M;iM;; are bounded by e times a moderate function of
n. Furthermore, the eigenvalues A; > --- > A, are approximated with an error bound of the form

< h(m)e(IHT Iz + (1M l2),

where (Hs)z'j = Hz‘j/\/HiiHjj, (Ms)ij = Mij/\/Miiijy 1 S l,j S n, and h(n) is a modestly
growing function of n. The only condition for the element—-wise backward stability and the high
relative accuracy is that floating-point Cholesky factorizations of H and M are guaranteed to
complete without breakdown. Using the results of Demmel [15], Demmel and Veselié [17] and
Veseli¢ and Slapnicar [60], we show that floating-point solution of the eigenvalue problem (1.2) is
numerically feasible only if ||H;!|]> and ||M; }||2 are moderate.

We call the new algorithms tangent algorithms. For the sake of simplicity, let the matrix B in
(1.3) be square and nonsingular. Since, in relation (1.3), @1 = ARC_;1 and @9 = BRg-l, it follows
that Qle—l = AB~! = F and the SVD of F is, in a sense, a tangent decomposition of Q. Indeed,
if [X¥7,0]” = Q*FE is the SVD of F', then the CSD of the matrix @ in relation (1.3) is

(15) Q1 = Q[ B+ 247 }T, Q> = 5(1 +2)71/77,

where T = (I 4+ X2)/22*Q, is unitary. With a suitably chosen ordering of the singular values we
have C' = (I + 22)‘1/2, S = B, and we easily recognize sines and cosines expressed as functions
of tangents of certain angles. Recall that the mapping tan 8 — (sin 8, cos 6) is well-conditioned for
all 6. On the other hand, the mappings sinf — cos 6, sinf — tanf (cos§ — sind, cosd — tan @)
become ill-conditioned as sin 8 (cos §) approaches one.

The paper is organized as follows. In § 2, we give detailed analysis of the new algorithm for
the GSVD computation. We show that the new algorithm is backward stable and that it computes
with nearly the same accuracy the generalized singular values of all regular pairs (AD;, BDs),
where Dy, D are arbitrary diagonal nonsingular matrices. In § 3, we analyze the new algorithm
for computing the eigenvalues of the positive definite symmetric pencil H — AM. We show that
the new algorithm computes the eigenvalues with high relative accuracy and that the computed
eigenvalues are the exact eigenvalues of a symmetric pencil (H + §H) — A(M + §M), where, for
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all 4, j, the values of |6H;;|/\/H;;H;; and |6M;;|/\/Mi;M;; are bounded by e times a moderate
function of the matrix dimension. As a corollary of our analysis, we obtain sharp element-wise
backward stability of the Jacobi method for eigenvalue computation of symmetric positive definite
matrices. In § 4, we briefly analyze two similar algorithms for the solution of the generalized
singular value and the generalized eigenvalue problems (1.1) and (1.2). Finally, in § 5, we present
results of extensive numerical testing of floating point implementation of the tangent algorithm.
Our experiments show that the tangent algorithm software runs as predicted by the theory.

2. The GSVD of a regular pair (4, B). In this section, we describe and analyze in detail
the new algorithm for the GSVD computation. We consider a real matrix pair (4, B) € R™*" x
RPX" where rank (A) = rank (B) = n. Our goal is to approximate the singular values o, > >
on of (A, B) with high relative accuracy in floating-point arithmetic. In § 2.1, we analyze the
sensitivity of the singular values of (4, B). We show that, for certain small relative perturbations
that occur in floating-point computation, the relative error in the perturbed generalized singular

values is determined by ”AI”Q and HBillz, where A, and B, are defined by
(2.6) A = A.diag (||Ae;]|2), B = B.diag (||Beil|2)-

In § 2.2, we define the new algorithm, and in § 2.3, we analyze conditions for backward and forward
stability of the new algorithm. We show that the algorithm has nearly the same accuracy properties
for all pairs {(AD,, BD;), D;,D, diagonal matrices }. In § 2.4, we describe a modification of
the new algorithm and give sharp backward and forward error bounds. In § 2.5, we describe how
the Jacobi rotations can be used as a preconditioner for the new algorithm.

2.1. Sensitivity of the generalized singular values. Let (4, B) be a pair of full column
rank matrices. Our goal is to estimate how the generalized singular values oy > - > o, of (4, B)
change, if A and B are perturbed to A+6A, B+ 6B, respectively. We are interested in the relative
size of the perturbation, that is, we seck an uniform bound for |60;|/0;, 1 < i < n. The obtained
bound is used in the analysis of the new algorithm, where the perturbations §4 and 6B are the
roundoff errors. , ‘

In the following theorem, we use multiplicative representation of A + §A and B + 6B and apply
the variational characterization of the generalized singular values to estimate the relative distance
between the true and the perturbed singular values.

THEOREM 2.1. Let A € R™*", B € RP*™ have full column rank, let A = A+6A, B=B+6B
with [I&AAHIQ <1 ”6BBT”2 <l Ifoy>--->0, and &1 > --- > G, are the generalized singular
values of (A, B) and (fi,é), respectively, then

(2.7) max 17—l <(1<5AATH2+;1533T“2'
A S

Proof. Note that the assumptions of the theorem imply that A = (I+ 6AAT)A and B =
(I+ (5BBJ[)B are full column rank matrices. Furthermore, it holds, for all nonzero vectors z, that

lAzll2 1= 1644, _ |zl _ [|Asll> 1+ [l5AAT ],

(28) 1Bzllz 1+ |6BBY ||, ~ lIBzll2 = I1Bzll2 1 - |js8BY)|,’

and relation (2.7) follows from the variational characterization of the generalized singular values.
(Cf. [33], [34], [28].) O
Hence, if [|[6Al|2/||Allz and [|6B||2/||B||2 are sufficiently small, relation (2.7) implies

§A §B

59 5; — oy - ||A| Ifﬂz(A)Jr I;B| ’22@(3)
(29) T
1B]]2

N

k2(B)
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The error bound in relation (2.9) can be improved if information about 64, § B is refined.
COROLLARY 2.2. Let in Theorem 2.1 ||6Ae;i||2 < eal|Aeill2, |6 Beill2 < epl|Beill2, 1 < i < n,

and let g denote the mazimal number of nonzero enlries in any row of 6A and 6B. [f\/—€AHAcHz <

1, Vaes||Blll2 < 1, then

(2.10) max 7% quHA Hz:EBlchHz
e 1— 1B lov/es

Proof. Note that ||6AAT[|2 < \/leAHAIHg and |]6BBT”2 < \/§€B|[BI|]2, and apply Theorem
2.1.0

REMARK 2.3. A similar relative error bound is derlved by Demmel and Veseli¢ [17] under
assumption that ||0 Az|ls < ||Az||s, ||6Bz||2 < ||Bz||2 for all 2 # 0. For a more general theory, see
[52], [53], [43], 3], [39]-

REMARK 2.4. An advantage of the estimate (2.10) over (2.9) is seen from the relation {[Aillz <
k2(As) < v/nminp ka(AD), where the minimum is taken over the set of diagonal nonsingular
matrices (cf. [54]). Hence, k2(A.) is never much larger than k2(A), and it can be much smaller.
If §A and 6B are small rounding errors in the entries of A and B, respectively, an application of
Theorem 2.1 yields the following corollary.

COROLLARY 2.5. If in Theorem 2.1 |6A| < e4|Al, |6B| < ep|B|, where eal| |4] - |AT| |2 < 1,
esll 1Bl - 1BT| ||l2 < 1, then

(2.11) o ol eall 141 AT] (1o + esll BI- 1BT] llo
1<i<n T - 1_€B” IBI |Bﬂ“2

2.2. The tangent algorithm. The new algorithm has two major stages. In the first stage,
the pair (4, B) is reduced to a single matrix F. In the second stage, the algorithm computes the
SVD of F. We use the fact that the generalized singular values of (A, B) are invariants of the
equivalence transformation

(A, B) — (A',B") = (U AS, V" BS),

where U, V are arbitrary orthogonal matrices and S is an arbitrary nonsingular matrix. The pairs
(A, B) and (A’, B') are by definition equivalent.
ALGORITHM 2.6.
Input A € R™*" B € R?*", m > n, rank (B) = n.
Step 1 Compute Ay = diag (||Ae;|]2) and A. = AA;l, By = BAZI.

Step 2 Compute the QR factorization with column pivoting, [ g ] =Q" B
Step 3 Compute F' = A.IIR™! by solving the equation FR = A.Il.
Step 4 Compute the SVD of F using the Jacobi SVD algorithm, [ g ] — VTR

Step 5 Compute the matrices X = AZ'TIR™'U and W = Q{ (L; ]O ]
—-n

V™A 1 (x,0)
Output The GSVD of (A, B) reads { W7 B }X = [ (1,0)" ]
The first three steps in Algorithm 2.6 can be implemented efficiently using the LAPACK [2] and the
Level 3 BLAS [19] libraries. In Step 1, we assume that A has nonzero columns. We show in § 5 that
zero columns of A (and the corresponding zero generalized singular values of (4, B)) can be deflated
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without error. The Jacobi SVD algorithm can be implemented as reliable mathematical software
using [17], [20]. Since Algorithm 2.6 computes the matrix X in factored form as X = AJ'IIR™!U,
it can optionally return X~ 1 as X~ 1=yUr RIITA 4.

2.3. Error analysis. Now we show that, in floating—point arithmetic, Algorithm 2.6 is nu-
merically stable. We use standard model of floating point arithmetic,

(2.12) Fllaob) =(@ob)(1+¢€), fl(Ve)=+e(1+(), [ IKI<e,

where a, b and ¢ are floating-point numbers, ® denotes any of the four elementary operations +,
—, - and +, and ¢ is the round-off unit. From relation (2.12) it follows that the Euclidean length
||2]]2 of a floating—point vector z € R™ is computed as

(2.13) FUll=llz) = llzll2(1 +€), el < ery(m) < (14e)mH2/2 1

Using double precision accumulation or compensated summation (cf. [32, Chapter 4]), the bound
for €¢,(m) can be reduced to O(1)e for all m < 1/e. Furthermore, using (2.12) and an elegant
technique of Gentleman, we can prove the following backward error estimate for the floating-point
QR factorization in Step 2 of Algorithm 2.6. (Cf. [64], [27], [5], [21], [32].)

ProposiTiON 2.7. Let the QR factorization of By € RPX"™ be computed by a sequence of
Givens rotations in some prescribed order. Let all rotations be divided into p sets, where each set
contains rotations that can be applied simultaneously to different pairs of matriz rows. IfR ts the
computed triangular factor, then there exist an orthogonal matriz Q' and a backward error By
such that

R

(B +8By) = Q'[ X } I8Beillz < cqrip.ml|Breslls, 1<i<n,
 where egr(p,n) < ((1+6€)® —1). For the usual column-wise ordering of Givens rotations we have
$ =p+n—3. For some more sophisticated strategies as, for ezample, in [{2], for large p > n it

holds that p ~ log, p + (n — 1) log, log, p.

Next we show that, in the case of moderate ]]BC [|2, the reduction of the pair (A4, B) to the single
matrix F is backward stable in a certain very strong sense.

THEOREM 2.8. Let in Algorithm 2.6 R and F be the computed floating—point approzimations
of the matrices R and F, respectwely Let np = eqr(p,n)(1 + €) + ¢, where egr(p,n) is defined

in Proposition 2.7, and let \/_UBHBc llo < 1 and ne|| |[R™Y|- |R| ||y < 1. Then there exist backward

[ ]) and (A + 84y, B + 6By) are equivalent.

perturbations § Ay and 6By such that the pairs (F, [O

Furthermore, it holds, for all i, that

er(M)[ R [RI | 1+es(m)
L—er(n)l| [R7Y - |R][[1 1 — ee,(m)
(2.15) [I6Bresll < msl|Beillz, 1B =eqr(p,n)(1+¢)+e,

(2.14)  [[6Aseilla < nalldella, na= (1+e)+e

whereveT(n) < ne. Hence, if \/ﬁﬂAHAIHQ <1l,and if 6y > --- >0, and 5y > --- > G, are the

generalized singular values of (A, B) and the singular values ofF respectively, then

|6: — il _ 77A||Acl|2+713|13 ll2
(2.16) max - <+/n .
| fsisn 0 L — y/nsl|Blls

Proof. Let A4, A. and B; be the computed approximations of Ay, A, and By, respectively,
and let R be the computed triangular factor of B;II, where II is the computed permutation. Then
there exist an orthogonal matrix Qp and a backward error § B; such that

(2.17) (B) + 6B = Qp [g] , 16Bieil|2 < eqr(p, n)||Bieill2, 1<i<n.
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Note that the matrix R is nonsingular. (Cf. relation (2.20) below.) Let F be the matrix computed
by solving the matrix equation FR = A_II in floating-point arithmetic. Using Wilkinson’s analysis
[63], we know that F satisfies the following equations

efF(R+6R®) = el AMI, 6B < (G—i+DelRyl, 1<i<j<n, 1<k<m.
Hence, FR— ATl = &, |&| <er(n)|F|-|R|, er(n) < ne, and we can write F as
F=(A, +6A)0R™", 64, =€EN".

An easy calculation shows that |§4.|( — ex(n)I|R™!| - |R|TI") < ep(n)|A. | -|R|TI". Since
I —ep(n)I|R!| - |R|I" is an M-matrix, we have

(2.18) 6Ac] < er(n)] Ac| (TR - |RIT")(I — ep(n)I|RY] - |RITT)~
From relation (2.18) it follows, for all 7, that

ex(n)|| |7 | |l
L=er(n)l| [R7']-R] [l

(2.19) ll6Aces]]2 < Jmax llAcex]l2

where max;<p<n ||Acer|l2 < T—%j On the other hand, since there exist small element—wise
- = 2

perturbations 6A., 8B, such that A, = (A + 64.)A7", |64.] < |4, and B, = (B + §B.)A7",
|6B.| < €|B|, we can write F and R, respectively, as

(2.20) [ g]

(2.21) F = (A+64)A7MIR™Y, 64y = 6A. + 6A.A 4.

QB(B+6Bb) H 6By = 6B, +(5B1AA,

Hence, F is the exact result of the computation (2.20), (2.21), and the estimates (2.14), (2.15)
follow from (2.17), (2.19). Relation (2.16) follows from Corollary 2.2. O ‘

From relation (2.15), it follows that relative norm-wise backward error in each column of B is of
the order of (p + n)e. On the other hand, the relative backward error in the columns of 4 is of
order of nel| [R™!| - |R| ||;. Moreover, if we use double precision accumulation, the bound for N
in relation (2.14) reduces to the order of €| |[R™]-|R||js. For comparison, computing the QR,
factorization of A, using Householder reflections, introduces backward error 64 such that, for all ¢,
[|6Aei||2 < O(mn) || Ae;l|2. Hence, for || |[R™1]- |R| |l1 not too much larger than mn, the bound in
relation (2.14) is comparable to the backward error bound for the Householder QR factorization.
We now show that the condition number

(2.22) Bu(R) = || 1R~ || |l

is usually of moderate size. A bound for the matrix |[R™!| - |R| generally depends on the column
pivoting in the QR factorization. From Theorem 2. 8, it follows that the column pivoting should
be chosen to minimize || [R~Y]-|&| ||;. In our 1mplementatlon of Algorithm 2.6, we use column
pivoting so that

j
(2.23) : Z z],1<z<]<n
k=i
cf. [9]. (Due to round-off, relation (2.23) holds up to small relative error which we ignore.) In the

next proposition, we use relation (2:23) to show that || |[R=1|-|R| |1 is modest if ||BI||2 is such.
Furthermore, we show that || [R™!|- |R| ||; is bounded by a function of n, mdependent of B.
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PROPOSITION 2.9. Let R be as in (2.23) and let R = R.diag (|| Res||2) = dlag (1R ei]|2) Ry
Then |R;'| < /n|R7Y|, and, hence, || [R7M (|2 < /Al |RZY ]2 and

Q24) R (Rl < ¥R < R < w2y — I
1- \/ﬁnBIch Hz

Furthermore, it holds || |R™Y| - |R| ||, < 2" — 1, independent of B.
Proof. From relation (2.23) it follows that |R;7 i <vVR—i+1,1< 4 <n, and that

- RTe;
I(Rr—l)ijlz ” ..EJHQIR 1|z] < /n —j+1 | ]JllR ll”, < ji<n.

“Rel“ |Rzzi

Hence, |R7Y| < \/n|R;!| and relation (2.24) follows from the properties of matrix norms and from
Corollary 2.2. Furthermore, from [24], [23] (see also [38]), we have

(2.25) |R™e; <

< [R ‘t(z) (i) = (20-2,20-3,...,2,1,1,0,...,0), 2<i<n.
Hence, it follows that, for all 7, |R™1|- ]Rle, < Zk (k) < (2nm12n=2 2, 1)7. 0

REMARK 2.10. In the practice, || |[R™|- |R] ||y usually behaves hke O(n) Gu and Eisenstat
[31] describe a column pivoting that can be used to replace the exponential factor 2" in Proposition
2.9 with Wilkinson’s O(n!+(1/9)1987) factor that bounds the pivot growth in Gaussian elimination
with complete plvoting Furthermore, note that B, = B (ABA_I) Ap = diag (|| Beil|2), and that

the bound for ﬂI(R) depends on B, and not on A = ABA . In fact, it follows from the analyses
from [59], [17] and the proof of Proposition 2.9 that an ill- conditioned A may only help to reduce
Bi(R).

The last step in Algorithm 2.6 is computation of the SVD of F. We choose the implicit Jacobi
SVD algorithm because of its ability to compute very accurate approximations of all singular
values. Demmel and Veseli¢ [17] have shown that the Jacobi SVD algorithm is more accurate than
any other method that begins by reducing the matrix to bidiagonal form.

PROPOSITION 2.11. Let FOO = F| let 5, > > 6n >0 be the singular values of F', and let

(2.26) FO+D) = (F®) 4 sFONTE) | =0,1, ...

be the matrices computed by floating-point Jacobi SVD algorithm. In relation (2.26), U®) 4s the
plane rotation that transforms the columns (’“)e and F(")eq, where (p, q) = (p(k), q(k)) is pivot
position in kth step. The matriz §F*) is the backward error in kth step. Let

F®epy  FMeyr)
IF®epqusllz” [1FFeqqrlz”

where Q) is the left singular vector matriz of | F®e; o j & {p(k),q(k)} ). Let F® be the first
matriz in the sequence (F) k> 0) that satisfies

(2.27) P =1

01 1,n—2

],

(2.28) max | fl(cos £(F®Oe;, F®e))| < tol,
ZYJ
where tol &~ me is given threshold. If & > --- > &/, are the sorted floating—point values of the

Euclidean column norms of F(O), then

1<i<n 0y 1 —n7(m)

.,{_ 2
max 122 % (H%(m (1+ 2.5¢) H (1 +5.1v2¢|( Fc(lk)” 2)’(“2)) _

where max; ; | cos £(F®e;, F(E)ej)l < 1(m) = tol + O(me).
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Proof. The proof is based on perturbation analysis of a single floating—point Jacobi rotation.
For the sake of simplicity, we consider the Jacobi rotation that transforms the first two columns
of F'. (Any other pivot pair can be by error—free permutation transformed to the pair (1,2).) Let
t = tan ¢ be the computed approximation of the tangent of Jacobi angle. Let f; = Fey, fo = Fe,
be the pivot column pair. It can be shown that the computed columns fl(l) and fgl) satisfy

B0 AV = Ui+ s fo v sl 508 g [ D],
where

I65lle < 51l fillsy i= 1,2 FUQ+2)7) = (L4227 214 e), feo] < 256
Now, write the transformed matrix as F(1) = F/((1 +¢€.)I2 ® I,_3), where

e (Fash)| 00 M e n), sie=bf, =12 8Fa=0,i%12

The relative distance between the singular values of FO and F' is at most |e.|. It remains to
compare the singular values of F and F. Let F = [Fes,..., Fe,] = QDT™ be the SVD of F and
consider the matrix

cosqg sinqg

(2.29) Flon) = (P en)+sh)| 508 % el ).

We can equivalently consider the singular value perturbation of the matrix F(Iy ® T') to obtain
the singular value variation bound (cf. Corollary 2.2)

|66 ~ t ~ fi o
(2.30) max 0 < 5.1Ve|[(Foy, ) lay Fovya = [ -, L2, @],
Isisn 0i IeFessn If2ll2 I1F2]l2

Because of floating—point computation in (2.28), a somewhat weaker estimate

(2.31) n'iu}x| cos L(F®e;, F®e;)| < 7(m) = tol + O(me)

holds instead of (2.28), and the column norms of F®) approximate its singular values with a relative

error bounded by nt(m)/(1 — n7(m)). Finally, the Euclidean norm of the ith column is computed
- with a relative error not larger than e4,(m). O

The error bound in Proposition 2.11 is similar to the one of Demmel and Veselié [17], where the

matrix F*) = F®)diag (ilﬁ'(k)eiﬂg)‘l is used instead of ﬁ’c(lk,)ly,‘,z‘ Note, however, that
ICEE) s < ka(FP) < /minka(FOD),
while (see [18])
IF )Tl < 2L ) < VEminmo(FO(A @ T)),

where D denotes an arbitrary n x n diagonal nonsingular matrix, A denotes an arbitrary 2 x 2
diagonal nonsingular matrix, and 7" is an arbitrary (n — 2) x (n — 2) nonsingular matrix. Hence,

it is possible that [|(F%) )|l < [(F)T.

1,1,n—2

The use of ||(P~’c(ﬂ,,,_2)THg in Proposition 2.11 is possible because of the special structure of

the error matrices §F(¥). In the practice, the input matrix usually has initial uncertainty and the
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appropriate condition number is ”Fj“g Our next goal is to estimate the condition number of the
column scaled matrix F'. For the sake of simplicity, we consider matrices from an exact application
of Algorithm 2.6. The difference between condition number is of minor importance because it
contributes only to the higher order terms in the error bound.

ProrosiTION 2.12. Let A., R and F be the matrices from Algorithm 2.6 and let Ap =

diag (|[Feill2), Fo = FAR. Then |F[lo < |ApRll2l|Alll2, where [|AFRIl> < lldiag (||R™"e:ll) I 2]l

Proof. Set 7 = R“lAgl. Then F, = A.llZ, and we can use the variational characterization
of the minimal singular value omin(-) to obtain

Omi = mi M.— min “Acny”2 o'min(Ac)
(2.32) min(Fe) = r #HO [E - y#0 HZ"ly”z 2 “Z_IHQ .

This implies that HF}HQ < “AF’RHQHAZHQ. Furthermore, from

(Ap)ii =D (R riAcHel <3 IR e, 1<i<n,
k=1 k=1

it follows that

3
(2.33) 1271 <Rl Y IR eiy 1<i<i<n,
k=1

and, hence, [|Z7H |2 < [| 127 ||2 < ||diag (][R e:ll1)|R] ||2- O ,
CoROLLARY 2.13. If the matriz R in Algorithm 2.6 satisfies R% > 5% _. R%j, 1<i<j<n,
then

(2.34) 1F3 12 < V/at + D72NANIRE Iy, - Re = RD,
’;1’1}1,?7‘6 D = diag (|Ry;|) or D = diag (||Reil]), | - [l € {11, 1] N2, ] - lleo }- Furthermore, it holds

Vartl —3n — 4

Al

(2.35) HFJHQ <

Proof. The inequality (2.33) implies

(2.36) ‘ ]Z_llij < Z (
k=1

which together with (2.32) gives (2.34). Furthermore, the inequalities (Ap);; < [|R 1 e;|1, 1 < i <
n, and relations (2.25) and (2.33) imply

Rl RpMpi, 1<i<j<n,
Dy ¢

j—2
|Rij| \
14

1271y < R+ ) 2 <27 1<i<i<n,
k=0 '

= | Rl

and, hence, || [Z71] [|» < V4n*+T —3n —4/3. 0O
EXAMPLE 2.14. In the case n = 2, we have HFJHQ < \/6||AI|I2, and in the case n = 3, we
have [|FJ |2 < /27|l ..
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2.4. Modification of the tangent algorithm. The efficiency and the accuracy of Algo-
rithm 2.6 can be improved in two ways. First, if m > n, we can compute the QR factorization of
A, A = Q4sRa4, and then apply Algorithm 2.6 to the pair (R4, B). In this way, the matrix F' and
its SVD are computed more efficiently. Second, we can compute the QR factorization with column
pivoting of F', Fllp = QpRp, and then apply the Jacobi SVD algorithm to the matrix Rf. In
- this way, we apply the accelerated Jacobi SVD algorithm (cf. [59], [17]) which converges faster

than the Jacobi SVD algorithm applied to F'. Moreover, we obtain sharper bounds for forward and
backward errors. The new bound is based on Proposition 2.7 and its application to the sequence
of Jacobi rotations (cf. [21]).

PROPOSITION 2.15. Let the Jacobi SVD algorithm be applied to G € R**™, and let 61 > --- >
G be the singular values of G. Let the pivot columns be chosen so that one sweep (n(n — 1)/2
rotations with different pivot pairs) can be completed in p parallel steps, as described in Proposition
2.7. If the stopping criterion (2.28) is satisfied by G® in the sth sweep, then there exist a backward
error 8G and an orthogonal matriz U such that

GO = (G +6Q)U, ||(6G)7eill2 < er(n)]|GTesll2, 1<i<n, eg(n) < ((1+6e)="De 1),

If the matriz G, = diag (||G"e;||2) "' G satisfies \/_Ej(n)HGTHZ <1, and of 6} > -+ > &, are the
computed values of the Euclidean norms of the columns of GW, then
|5; — : iy Lt en(n)
o T < (1 +V/nes(n)||Gr HZ)——T(") 1,

where T(n) is as in Proposition 2.11.

THEOREM 2.16. Let the assumptions of Theorem 2.8 hold, and let R be the computed upper
triangular factor in the floating-point QR factorization of . Let the Jacobi SVD algorithm be
applied on G = RF, and let F(O) = (G(“‘T, where G\9) is as in Proposition 2.15. Purthermore, let
R, = diag (||R™te||1) R and let

~ er(n)Bi(R
U(R): T( ) 1( )~ .
1- eT(n)ﬂl (R)
There exist backward perturbations §A, 6B such that the diagram in Figure 1 commutes. Fur-

(2.37) n(m,n) = egr(m, n) + e5(n) + eqr(m, n)es(n),

floating
point [ F® I
(A,B) (o |-[a]
backwafd exact equivalence
€rror transformation

(A+6A,B+6B)
Fic. 1. Commutative diagram for the modified algorithm.
thefmore, it holds, for all ¢, that
(2.39) I64cillz < malldesllz, 118Beills < nallBedll
where np s as in Theorem 2.8 and

1+ eg,(m)
1 552( )

(Note that the assumption rank (A) = n is not necessary for the backward error estimate in relation
(2.39).) Hence, if \/HﬁAHAIHg <1, and if oy > -+ > oy, are the generalized singular values of

(2:39) ia = (L&) {a(R) + n(m, )| Rrslly (14 0(R)) } +e.
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A,B) and ifey > --- > 3’ are the sorted floating—point values of the Fuclidean norms of the rows
1 n g
of F(‘E then ,

g —
(2.40) max 19—l 1+ Varallallls 1+ eq,(n)

-1
1<i<n o 1*\/_1]B“BTH l—nr(n) ’

where 7(-) is defined in Proposition 2.11.
Proof. From Proposition 2.7 and Ptoposition 2.15 it follows that

[%”] = QR(F +6F), F® = U(Rp + 6Rp),

where QF and U are certain orthogonal matrices and the backward errors §F and §Rp satisfy
16Fe;|l2 < eqr(m,n)||Feilla, |6Rpes]|2 < es(n)||Rreill2, 1 < i <n. Hence,

F U O . N . §R
{O ]:[O Im“n]Q;(F+6F’), 6F’:6F+QF[ OF],

where, for all i, ||6F'e;||> < (eqr(m, n) + e5(n) + eqr(m, n)es(n))||Fei|la. Furthermore, with the
notation from the proof of Theorem 2.8, we have .

20 D .
F2V AU O N or (A, 4 6A0TR-!, 64, = £T7 + 65 R
0 O In,|@F ‘

where, for all i and ¢ such that I"e; = e/,
il

185" RII" esl2 < (eqr(m,n) +es(n) + eqr(m, n)es(n) Y || Fexlla| Rii.

k=1
Note that, for all &,
(2.41) [Feell: < max ||(A0+ E)eslol| R exls
<jign
l+e ()51 (R) =
(2.42) < Toen(m) (1 + W) IR exllr.

On the other hand, as in Theorem 2.8, we can write

6] = QBB+ 6B, 5Bl < contp Bl 1< <,

where Qp is an orthogonal matrix. Hence, the matrix F'(¥) is the result of the following computa-
tion:

AD = (A4 64, +6ALALNATY, BWY = (B+6B. +6B1A)ALY
R ()R
[0] = QBB(l)H]
F® U o ; .
{:Om—nn} = [O Im_n]QFA(l)HR 1’

where |6A.| < e|A|, [6B.| < €|B| and, for all i,

1+€£2( )

H(SA AA 2”2 5[2( )

(1+ &) {n(R) + n0m, ml| el (14 0(R)) } [l el
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In other words, the matrlx F () is the result of a tangent algorlthm with input matrices A +6A, +
6A,AA and B +6B + (SBlAA

REMARK 2.17. From the analysis in § 2.3 and from Theorem 2.16, it follows that the backward
and forward error bounds for Algorithm 2.6 are nearly the same for all matrix pairs (AD;, BD,),
where D, and D, are arbltrary diagonal nonsmgular matrices. Furthermore, since Rr 1 is invariant
under row scaling of R, the behavior of | R 1|1 is similar to the behavior of 8;(R) (cf. Remark
2.10).
Let us state, without proof, the following interesting corollary of Theorem 2.16.

COROLLARY 2.18. Let A € R™*", m > n, and let the SVD of A be computed using the
following Jacobi SVD algorithm of Veseli¢ and Hari [59)]:

Step 1 Compute the QR factorization with column pivoting of A, AIl = Q4 [ o
Step 2 Apply the Jacobt SVD algorithm to the matriz G = R,.

If GO is defined as in Proposition 2.15, then there exist orthogonal matrices Q € R™*™ and
U e R™" and a backward error 6 A such that

RA}_

@or =] 12 ewrsan,

where, for all i, |[6Ae;||2 < (eqr(m, n) + es(n) + eqr(m, n)es(n))||Ae;||2.

2.5. Preconditioner for the tangent algorithm. The accuracy and error estimates of
Algorithm 2.6 can be further lmproved by preconditioning. The aim of precondltlonlng 1s to

reduce || |R™!|-|R| ||1 by reducing HB |2 (cf. Proposition 2.9). We can reduce HBC |2 using Jacobi
rotations that simultaneously transform A, and B; in Step 1 of Algorithm 2.6. The motivation
for using Jacobi rotations is their ability to reduce the condition number of the column-scaled
matrix (cf. [35], [36], [25], [17]). This property of Jacobi rotations is the crucial factor in the high
accuracy of the Jacobi SVD algorithm, see [17]. We apply one sweep (n(n —1)/2 rotations), where
the pivot pairs are chosen using de Rijk’s pivot strategy, see [12]. The threshold for the application
of the Jacobi rotation is set higher than the usual O(pe) value. For example, we can choose to
apply Jacobi rotation only if the computed cosine of the angle between pivot columns is larger

than 1/y/n (say). Since our algorithm achieves high relative accuracy for moderate HB!L ll2 (cf.

Corollary 2.2), we expect that, in that case, the reduction of ]|BI|[2 is such that || |[R™Y| - |R] ||
can be considered to be bounded by a moderate polynomial of n. This computation is especially
effective if [|Biey|ls > -+ > ||Bien]||2 because in that case one sweep of Jacobi rotations with
de Rijk’s pivoting behaves like the modified Gram~-Schmidt orthogonalization, see [21]. The new
computed pair of matrices is given as input to Algorithm 2.6. If J is the product of the Jacobi
rotations used to reduce the condition number of the column scaled matrix B;, then the matrix
A, is changed to A.J. Let (4.J). be the matrix A.J with columns scaled to have unit Euclidean
norm. Using [54], we conclude that ko((A4.J).) < \/ﬁnz(Ac). Hence, the possible growth of the
condition number of the column scaled matrix A.J is moderate.

REMARK 2.19. We can first compute the matrix R and estimate 8;(R) using an 0(n?)
condition estimator. When the computed estimate of B1(R) is larger than some given tolerance,
we apply Jacobi rotations to R instead of B..

REMARK 2.20. If “BI“Q is so large that our analysis cannot guarantee relative accuracy, then
the preconditioning step is replaced with an algorithm from [22]. The algorithm from [22] replaces
(A, B) with an equivalent pair (4’, B') such that the condition number of the column scaled matrix

B’ is moderate, and the condition number of the column scaled matrix A’ is not much larger than
KQ(AC).

3. Eigenvalue computation of positive definite pencils. In this section, we consider the
generalized eigenvalue problem

(3.43) - Hz=AMz, H and M n x nsymmetric positive definite matrices.
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We present an algorithm that replaces the eigenvalue problem with the GSVD computation of the
pair (Lg, Las) of the Cholesky factors Ly, Ly of H and M, respectively. The GSVD of (Lg, Lyr)
is computed using an algorithm similar to Algorithm 2.6.

REMARK 3.1. In some applications, certain factors A and B of H and M, respectively, can
be derived directly from the application that leads to the eigenvalue problem (3.43). In that case,
we can solve the eigenvalue problem (3.43) without having to compute the matrices H and M.
Sometimes, this implicit formulation is the most important step in the overall solution process, see
(48], [8], [56].

In § 3.1, we analyze the sensitivity of the eigenvalues in relation (3.43). We describe the set of
positive definite pencils for which the eigenvalues can be computed with high relative accuracy in
floating—point arithmetic. The details of the new algorithm are given in § 3.2. In § 3.3, we analyze
the numerical properties of the new algorithm and we show that it attains the optimal accuracy
described in § 3.1.

3.1. Sensitivity of the eigenvalues. If H and M in (3.43) change, how do the eigenvalues of
H—MM change? We are particularly interested in § H and §M that naturally arise in floating-point
computation. Such 6H, 6 M include element-wise perturbations that satisfy

(3.44) I(SH,']'] < 6!H§j|, I(SM”[ < 6]M,‘j'.

A more general example comes from floating-point Cholesky factorization: the computed Cholesky
factor Ly of H satisfies (cf. [15], [17])

FoE |0 Hij]

3.45 Lyly=H+6 X — e
(3.45) wly=H+6H, ma S
Using double precision accumulation, the bound for ¢ (n) can be reduced to O(1)e for all n < 1/e.

A necessary condition for relative accuracy of the eigenvalues of H — AM is that the positive
definiteness of H and M is not changed by §H and §M. Demmel [15] shows that smallest ¢ in
(3.44) such that H + 8 H is singular is between ||H;!||;'/n and ||H[ |5}, where H, = AgHAy,
Ay = diag (H;;)™'/2. Furthermore, it is shown in [15] that, in the case ||H || > 1/, there exist
rounding errors (|6 Hyj| < €| H;j|) such that H + §H is not positive definite, and that if [|H ||, <
1/(nec(n)) the Cholesky factorization is guaranteed to succeed in floating—point arithmetic.
Hence, in this section we make a reasonable assumption that the matrices

(346) Hs = AHHAH, and Ms = AMMAM,

<ec(n), ec(n) <(n+5)e.

where Ay = diag (H;;)~ Y2, Ay = diag (Mn')"l/2, have inverses bounded by a modest constant
(in the spectral norm). '

THEOREM 3.2. Let H and M be positive definite and let Xy > --- > X, be the eigenval-
ues of H — AM. Let 6H and 6M be symmetric perturbations such that ||(§H ),|l2||H ]2 < 1,
16M)sl2| MY |2 < 1, where (8H)s = AgSHAR, (§M)s = Ap6MAps. If Ay > -+ > X, are the
ergenvalues of (H + §H) — MM + §M), then

i = Al (IEH)sllol [ H Ml + [[(M)s|[afl M |2

(347) O W L= [[(6M)s]|2]|M; ]2

Proof. Let Ly, Ly be the Cholesky factors of H and M, respectively. Note that we can write

2
(3.48) H+6H =Ly (\/I + L;,HSHL;[) s

because || Ly SHLY |l2 < [(6H),||2llH |2 < 1. If we factor M + §M in the same way, we can
consider the generalized singular values of the pair

(VT + L SHLy Ly, \J1+ Ly M L3 Liy).
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Using the proof of Theorem 2.1, we conclude that, for all 7,

_ -1 -T 3. -1 -7
(3.49) 1 ||L§15HL;_;TI|2 < Ai < 1+ HLfIléHL}-ITHZ .
L+ [[Lyp 6M Ly ll2 = A = L= ||Ly MLy ||,

]

If 6H is as in relation (3.45) and (6H); = AgéHAg, then max;; [(6H)sli; < ec, and we
conclude that the right-hand side in relation (3.47) is less than one if max{||H; (|2, ||M |2} <
1/(3nec). For similar results in the case of symmetric definite scaled diagonally dominant pencil
H — AM see [6]. In the next theorem, we use the results of Veseli¢ and Slapnicar [60] to show that
the bound (3.47) is sharp.

THEOREM 3.1. Let H and M be as in Theorem 3.2, and let k > L. If for all e < 1/x and all
symmetric perturbations as in (8.44) the eigenvalues Ay > ---> A, and Ay > -+ > X, of H — AM
and (H +6H) — M(M + 8M), respectively, satisfy

A = A

(3.50) 11;1?31 — < ke,

then max{|| H! ||z, [|M;7!2} < (1+ &)/2.

Proof. Let 6H = O and [6M;;] < €|M;;], 1 <4,j < n. Then M + §M must remain positive
definite and, for all € < 1/k, M7 2 < (1 + €)/(2¢) (cf. [60, Lemma 2.20]). This implies
1M 2 < (1 +k)/2 (cf. [60, Corollary 2.23]). Now choose M = O and [6H;;| < e|Hyjl,
1<i,j<n. 0O

3.2. The algorithm. Perturbation analysis in § 3.1 shows that floating—point Cholesky fac-
torization is a numerically stable way to replace the eigenvalue problem (3.43) with the GSVD
problem. In the following algorithm, we exploit that stable relationship by combining the Cholesky
factorization with an accurate generalized singular value computation by Algorithm 2.6. ‘

ALGORITHM 3.3.

Input Symmetric, positive definite matrices H and M.

Step 1 Compute Ay = diag (H,'i)—l/2, Hy,=AgHAg,and My = AgMAg.

Step 2 Compute the Cholesky factorizations A" A = H,, R"R = II" M; 11 (with pivoting).
Step 3 Compute F' = AIIR™! by solving the equation FR = AIl.

Step 4 Compute the SVD of F using the Jacobi SVD algorithm, £ = V7 FU.

Step 5 Compute X = AgIIR™1U.
Output X and ¥ satisfy HX = M XX?.

In Step 4, we compute the SVD of F by an application of the Jacobi SVD algorithm to the matrix
F7. In that case, the Jacobi SVD algorithm computes the SVD as UY = F7V, where V denotes
the accumulated product of Jacobi rotations and UY is the limit matrix. Since for the eigenvector
matrix X we need only the matrix U, there is no need to accumulate the Jacobi rotations. Since
the accumulation of Jacobi rotations is about 40 percent of overall computation in the Jacobi SVD
algorithm, this procedure is more efficient than the Jacobi SVD computation of the matrix F.
We also note that we can obtain an upper triangular F' if we modify Step 2 and Step 3 as follows:
Step 2° Compute the Cholesky factorization with pivoting R R = II” M;II, and then the Cholesky
factorization of " H,II, ATA = II" H,11.
Step 3’ Compute FF' = AR™1.

3.3. Error analysis. Let now ﬁ's and M; be the computed approximations of H, and M,
respectively, where the diagonals of H, are explicitly set to one. Then there exist backward errors
6H. and § M, such that

Hy = Ag(H +8§H)Ag, My =Ap(M+6M.)Ay,
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where, for all 4, j, (6H.);; = 0 and

1+¢
(3.51) [6H|i; < er1|Hijl, lléMelij <e|Myl, er < (1——:)57—2_ -1

On the other hand, the computed Cholesky factors A and R satisfy
(3.52) ATA = H,+6H, |[6H,];; <ec(n),
(3.53) R'R = T (Mi+6M)I, [6Miyj < ec(n)y/(Mr)i(M:);5,

where ec(n) is as in relation (3.45). Hence,

ATA = Ap(H+6H, + A SHAF ) A, |AFSHAR | < ec(n)/HiHj;,
NIRRT = Apg(M+6M, + AZ'SMIA) Ay, |AZSMAG < ec(n)(1 + e1)/Mi M;;.

Now, using Theorem 3.2 we obtain the following error bound.

PROPOSITION 3.4. Let Ay > - > A, be the true ezgenvalues ofH AM and let /\1 - > :\
be the squared singular values of the ezact product AIR™! , where A and R are the computed (upper
triangular) Cholesky factors in Step 2 of Algorithm 3.3. Then

X=Xl
(3.54) . v < né¢(n)

27l + (1M

1~ néc(n)|[M 2’ Ec(n) = ec(n) + €1 + ec(n)ey,

where ec(n) and ey are as in relation (3.45) and (3.51), respectively. Using double precision
accumulation in the Cholesky factorization, the bound (3.54) can be reduced to O(ne)(||HY||2 +
M 2) for alln < 1/e.
If we compare the bound (3.54) with the estimates in § 3.1, we conclude that the accuracy is about
the best possible we can expect in floating—point computation. Next we show that the eigenvalue
approximations computed in Step 3 and Step 4 of Algorithm 3.3 satisfy an analogous error bound
as in Proposition 3.4.
THEOREM 3.5. Let F be the computed floating—point value of the matriz AIR™! and let
R,1 = diag (||[Re;||1)R. Furthermore, let the Jacobi SVD algorithm be applzed to the matriz

"G =F7 and let 'O = (G(Z))T where G(l) s as in Proposition 2.15. Let /\1 > > )\ be as in
Proposition 3.4, and let X} > .. > )\’ be the floating—point values of the squared Euchdean norms
of the rows of the matriz F(e) Then, for all i,

X — X 1+eg(n)
. v L L —2at ) ]
(3.55) ‘ % 1 m) ~ b

where 7(-) is as in Proposition 2.11 and

VA all A NBolR) | 2y o o /T T ea(m)
g T VAT Rl

n=er(n)

with Bo(R) = || |[R™Y|-|R| ||2. Furthermore, there ezist symmetric backward errors §Hy and 6 M,
such that F'O is the result of exact computation with the matrices H + §Hy and M + My, and
such that

_10Hyi; |8 M i
max —=——==—= < f(n)e, max ————= < O(ne),
%] \/H“H“ ( ) ) \/Miiij ( )

where f(-) is a modestly growing function of matrix dimension.
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Proof. From Proposition 2.15 and Theorem 2.8, it follows that }?'(‘;) is the result of exact
application of the Jacobi SVD algorithm to the matrix F/ = AIIR™! + ER~! + 6 F, where

€l <er(m)|F|-|RI, ||§Fei]ls < es(m)I(ADR™ + ER Veilln, 1< i< n.
The matrix #” can be written as
=(I+QANR™Y, Q=EN" A~ +§FRITA™!,
where |

R AR
= er(ll [R] 1R[]

(3.56) €07 A2 < ex(m)I A" lol] [A] ||z

Furthermore, using relation (3.52) and an estimate similar to (2.41), (2.42), we have

(3.57) |FRIT A~ |p < 147 lv/m max 185 Re; |z
J
< A Vs () max 3| Ferlls| R
T k=1
- er(n)By(R) A
< |4 1”2\/5€J(n) (1+m) 1ngagn|lAea||2|er,1Hl
< VA el allies (LS

7(n)Bi(R)

Now, an application of Theorem 2.1 and Proposition 2. 15 implies relation (3.55).

Now we show that the matrix £ is a backward stable function of H and M. In other words,
there are small backward perturbations § Hy, § M; such that F® is the result of exact computation
with the matrices H + 6 Hy, M 4+ 6 M. To prove this, first note that the matrix £’ can be written
as

= (A+8A)IR™, §A=¢EN" +6FRI",

where, for all ¢,

i _ —— [ _er(m)Ai(R) es(n)|| Rr )y
6 Aei]|z < Ca = /1+ec(n) (1 = er ()b R) + n —eT(n)ﬂl(fi)>

Hence,
(A+6A)(A+68A) = Hy+ 6H, + 8H., |6H!|;; <2/1+ec(n)Ca + 2.
(Note that A + 64 is not triangular.) If we define
§Hy = 6H.+ AR SHAG + AF6HIAG,
My = 6M.+ AZ'SMIAG

then, for all 4, j,

[5Hbiz'j < (ey +€C(n)+2v 1+ec(n)a +<A)V H;;Hjj, l‘SMbItJ < (e +€C(")<1+51))v M;;,

and F(® is the result of an exact computation with the matrices H + § Hy and M + 6§ M;. Note
that the backward errors are given element-wise and that the error in M is O(ne), while the error
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in H contains an additional factor that depends on ||R, 1[|2. The discussion in § 2.3 indicates that
the backward errors in H can be taken as f(n)e, where f(n) is a moderate function of n. O

Next we show that the relative error bound in Theorem 3.5 is newer much larger than the
bound in Proposition 3.4, and that it can be much smaller. For the sake of simplicity, we use the
following notation: For an arbitrary matrix Y and a positive definite matrix Z we define the scaled
matrices Y, Y, and Z, by

Y = Y.diag (||Yeill2) = diag (||[Y7es]|2)Yy, Z = diag (Zi;)"/?Z,diag (Zi;)'/2.

Define 6H = 6H, + AF'SH, A, §M = §M, + AR '6M; A5;! and note that

(3.58)  R'R= (" AgID)II" (M + §M)TI(II" Ag1T)
and |
(3.59) I(RTR)TH Iz = [|RZHI3 = (M + 8M)7 2.

Furthermore, since R is computed with complete pivoting, we can use relation (2.23) and Propo-
sition 2.9 to conclude that || |[R71| ||2 < +/n|| |R7Y] ||2. On the other hand, it holds that

(360) (R ARI 2 = RSB [l < nll [RZY (2 < na“\/ll(MJr SM)TH 2

Hence, we can bound [|ENI” A~Y||; in relation (3.56) by

er(m)VII(H + SH) oM + 6M)J Mz

(3.61) |ET7 A-1|J; < n? MIEllICeE
L—er(n)|| [R7Y]-|R| |2

Similarly, since ||R,1]1 < n?||R;Y|2, the quantity |8 FRII"A~||p in relation (3.57) can be
bounded by ‘

(362) PRI A | < 19 (n)y /T4 eo(m) AL S Il + 63D,
= er(wll [R]- | I

Note that in Algorithm 3.3 we can use preconditioning as described in § 2.5. Also, note that we
can first compute the Cholesky factorization of M; without pivoting, and then compute the strong
rank-revealing QR factorization [31] of the computed Cholesky factor. In this way, we can improve
the bounds for 4, (R) and || R, 1]];.

As a corollary of Theorem 2.16, we obtain the following strong element-wise backward stability
of a variant of the Jacobi algorithm for eigenvalue computation of symmetric positive definite
matrices. : -

COROLLARY 3.6. Let H be an n x n symmetric and positive definite matriz, and let the
eigenvalues of H be computed by the accelerated Jacobi algorithm (cf. [59], [17]):

Step 1 Compute the Cholesky factorization with complete pivoting, I" HII = GGT.
Step 2 Compute the SVD of G using the Jacobi SVD algorithm.

Let the Cholesky factorization complete without breakdown, and let G® be as in Proposition 2.15.
Then there exists a backward perturbation §H such that G(GW)" = T (H + §H)I, where

mjx% < ec(n) +2e5(m)(1+ () + (es(n)(1 + ec(n)))’ ~ O(ne).

Hence, the accelerated Jacobi algorithm computes the eigenvalues of a symmetric posttive definite
matriz with a symmetric backward error § H such that max; ; [6Hy;|/v/HiiHj; < O(ne).
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4. Other tangent algorithms. There are two algorithms in the literature that influenced
the development of Algorithm 2.6. The first one is given by Lawson and Hanson [38] and it is also
mentioned by Van Loan in {56].

ALGORITHM 4.1.

Step 1 Compute the QR factorization with column pivoting, [g] = @7 BII.

Step 2 Compute Frg = AIIR™! and the SVD of Frg, [g] =VTFrgU.
Step 3 Compute X =IIR™U, W = Q g IO .
Step 9 o

The difference between Algorithm 2.6 and Algorithm 4.1 is is illustrated in the following example.
EXAMPLE 4.2. Let a be small parameter, || < £/2, and let

a=[y o) m=r=[t ) sieise =3

Then the matrices Frgy and F, computed by Algorithm 4.1 and Algorithm 2.6, respectively, are

L1 =g ldo
FLH:AR-lz[f %ffi] F=|V2 2_2&},_

Note that rounding errors of order |a| can make the matrix Frpy exactly singular, and that the
floating—point approximation of Fpy contains no information about «. On the other hand, the
matrix £ defines the generalized singular values of (A, B) as well as the pair (A, B) does.

The second algorithm is a variant of an algorithm of Martin and Wilkinson [40], described
by Barlow and Demmel [6]. Barlow and Demmel consider a scaled diagonally dominant pencil
H — MM, where M is positive definite. More precisely, H = Ag(Jug + Ng)Ag, M = Apy(I +
Nu)Apr, where Ay and Ay are diagonal scalings, |Jg| = I, Ng and Njs have zero diagonals
and [Nz, [ Nalz < 1.

ALGORITHM 4.3.

Step 1 Compute Ay = diag (M;;)~%/2, Hy = AgHAp, Ms = Ay M Ay
Step 2 Compute Hy = II" H1II, My = II" M, 11, where II is permutation such that
1H2|11 S e S |H21nn~
Step 3 Compute the Cholesky factorization R™ R = M.
Step 4 Compute K = R~"H5R™! and the eigendecomposition of K.
It is shown in [6] that, for sufficiently small || Nas||2, the matrix K is also scaled diagonally dominant.
However, the condition on || Nas||2 is so restrictive that I+/Nps has to be almost diagonal. Algorithm
4.3 is also analyzed by Wang [61], where both H and M are positive definite.

5. Numerical examples. Before we start with presentation of results of extensive numerical
testing of tangent algorithm software, we briefly discuss some issues of reliable implementation.
In the first step of Algorithm 2.6, we first simulate scaling by checking the range of || Be;||2/|| Aeill2,
i = 1,...,n. If necessary, B is implicitly replaced with 8B, where a constant 3 is chosen to
prevent overflow and to avoid underflow without causing overflow. FEach column Be; of B is
scaled by B/||Ae;||2, using the LAPACK’s [2] SLASCL() procedure. If the ith column of A is
zero, the corresponding column of B is not scaled. The QR factorization is performed by the
LAPACK’s SGEQPF() procedure. The columns of B that correspond to zero columns of A (if
any) are permuted to the front of the array B, the remaining columns of B are free columns (cf.
[2]). Instead of SGEQPF() we can use, for example, the strong rank-revealing QR factorization
of Gu and Eisenstat [31]. For more reliable QR factorization one can use Householder reflectors
with row pivoting or Givens QR factorization with careful implementation of plane rotations.
This is important if the matrix has differently scaled rows. For more details see [47], [38]. For
triangular system solution we use the Level 3 BLAS [19] procedure STRSM(). Instead of STRSM()
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we can use the SLATRS() procedure [1]. Jacobi SVD computation is implemented as in [17], [20].
Here we note that the floating—point Jacobi SVD computation without modifications from [20]
generally depends on x3(Ap), if k3(Ar) is sufficiently large (of the order of overflow threshold).
The following example illustrates this. :

ExXAMPLE 5.1. Let A = [a1,a3], |Jai]la = 10'°, [las|lz = 10719 (a1, a2) = 1/2, and let B =
diag (107'°,10'%). In this simple case, we have F' = [fi, fo] with [|f1]|2 = 102° and [|f2]l2 = 10—20,
The Jacobi rotation that orthogonalizes f; and f, is computed by

_ A3 =113 sign ¢
CE = ) drvize

Thus, cot2¢ ~ —10*°, tan ¢ ~ —107°/2. Hence, fl(cot 2¢) overflows and fl(tan ¢) underflows.
Using the denormalized value fl(tan ¢) does not fit into the error analyses [17], [50], [41]. Moreover,
if fl(tan ¢) = 0 due to underflow, then the Jacobi procedure may not convérge. Note that a small
Jacobi angle ¢ does not necessarily mean that pivot columns are nearly orthogonal.

We test the accuracy properties only of Algorithm 2.6. Testing of Algorithm 3.3 for diagonalization
of positive definite pencils is not presented because Algorithm 3.3 is based on Algorithm 2.6. We
do not use the preconditioning from § 2.5.

tan¢g =

5.1. Test matrix generation. We generate random matrices A, and B, with given ka(A.)
and k2(B.), and apply scalings A = A,As, B = B.Ag, where A4, Ap are random diagonal,
nonsingular with given spectral condition numbers. The 4-tuple (k2(A.), k2(A4), k2(B.), k2(AB))
is chosen from the set

C = {kijrr = (10°,107,10%,10") : (i,j,k, 1) €T x T x K x £ C N*},

where 7,7, K, £ are determined at the very beginning of the test and kept fixed. For each fixed
Kijkl1, we generate a set of test pairs, using the LAPACK’s DLATM1 procedure [16] as follows. We
let the 4~tuple (pr, pj/, prr, pv) of distributions of the singular values of (Ac, A, Be, Ap) take all
values from the set ‘ :

M= {/_[.iljlklzl = ([,Lz‘l’ujly/lk!,ﬂp)} g ’Pl X 7)2 X 'P3 X P4 g {:hl, .. .,‘_‘t6}4,

where the sets of indices Py, ..., P4 contain admissible values of parameter MODE in the DLATM1 pro-
cedure. For each fixed (Kijki, pharjrx ) we generate random pairs using random number generators
with distributions chosen from the set R C {#/(—1,1),24(0,1), N(0,1)}. For each fixed distribution
X € R we generate a set 8,%“].“’“‘,],,’:,“ of different pairs, with the cardinality of S’%(i_‘ikh/‘i’j’k’l’ being

fixed at the beginning of the test. This makes a total of
= [Z] T IK] L] M)

different classes and 7[] |€,§<‘jkh#i,jlk,l,| different pairs. Each test pair is generated in double
precision and its generalized singular values are computed using a double precision procedure. The
generalized singular values computed by double precision procedure are then taken as reference for
single precision procedure that runs on original pair rounded to single precision.
A random matrix A = A.A4 with given ka(4,) and k3(A4) is generated using the following
algorithm. (Cf. [29, P.8.5.3 and P.8.5.4], [17], [50].)

ALGORITHM 5.2,

1. A := diag (ai;), where ay1,...,an, are generated using DLATM1() with parameters chosen in
accordance with the current node in € x M x R.

2. A= (Us(--- (U1 AVy) - - -)V}) - - -, where U;, V; are random plane rotations.

3. A= ((---(AW1)-- )W) - - -, where Wy, k = 1, ... are plane rotations designed to equilibrate

columns of A. On output, all columns of A have about the same Euclidean length.
4. The diagonal matrix A4 is generated by DLATM1() with parameters chosen accordingly.
5. A= AAA : .
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Before the GSVD computation, both x2(A.) and k3(B,) are computed using the singular values
computed by LAPACK’s SGESVD() procedure applied to A, B., respectively. The computed
values are used in theoretical estimates for the relative error in the computed singular values. The
computed condition numbers are comparable with the desired values in Kijki-

5.2. Test results. The tests in Example 5.3 and Example 5.4 were done on an Intel 486DX
processor. We used Microsoft Fortran Power—Station with the improve floating—point consistency
compiler option. The computation in Example 5.5 was done using Sun Fortran on a SUN SPARC
20 workstation.

EXAMPLE 5.3. In this example, we use LAPACK’s DGGSVD() procedure [2] as reference for

testing our procedure SGGSVT(). The input parameters for the test are

T = {2,3,5,7}, J=1{3,4,7,8}, K={2,4,6,7}, £L=1{2,3,6,7},
M = {(5,4,-5,3), (3,-4,5,-3)}, R={U(-1,1),U(0,1),N(0,1)}.
In Figure 2, we display the quotients between the computed spectral condition numbers of the

generated matrices A., B, and the desired values of ky(A,.), k2(B.). All values are in the interval
(0.383,11.277). This figure confirms that test pairs with desired condition numbers are used.

Example 5.3 (m = 20, n = 20, p = 20)
10 T T T T T T T

K_2(B_c)/10%k
3.
T
1

@

k_2(A_c)10A,
3

1
1 0 L b 1 L 1 i 1
o] 1000 2000 3000 4000 5000 6000 7000 8000

test matrices

Fic. 2. The values of nz(Ac)/IDi, #2(Be)/10% for all generated test matrices.
For each fixed point of condition x distribution mesh ¢ x M we compute

|60
o(AB) o
e(Ki,j;k,U/l’i’,j’,k’,l’) —_ max 060( ) .
ABye e, maluald)n(B)}
gkl Mgyt
JeR i Iy

Our analysis predicts the values of €(-) of the order of single precision roundoff unit times a moderate
function of the dimensions. The computed values of €(k; ; & 1, fti' j/ k' ,17) are given in Figure 3.

An increase of k3(A4), k2(Ap) with fixed ko(Ac), k2(B:) does not impact the accuracy of
SGGSVT(). This property is not shared by DGGSVD(). While SGGSVT() runs in accordance with
error estimates from § 2.3 for the values of k3(A4), k2(Ap) as large as 1016, the double preci-
sion procedure DGGSVD() often returns inaccurate generalized singular values, as k2(A4), k2(Ap)
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Example 5.3 (m = 20, n = 20, p = 20)

-7

10 T T T T T
. - R
. .
. “ . . . Ad
; - F R
- . . . k4 f .. ‘q‘
) v, ~ . . . .
£ e S .
c ..
2 ‘ . * ° 0
= . - .!._ . .
g R A A
o . R T SO .
S 107 S ol LI - J
1=3 . .
[ -~ . .
o y v
5 -
e
10—9 1 1 L 1 1
0 100 200 300 400 500 600
test pairs

F1c. 8. The values of e(s; k1, it jo gt 1) Mazimal value of €() is less than 7.25 1078, The values of e(+)
below 1078 indicate an overestimate of the condition number.

approach 106, Therefore, in our next example, we use a double precision implementation of
Algorithm 2.6 (DGGSVT()) as reference for SGGSVT().
EXAMPLE 5.4. In this example, the input parameters are

I = {1,...,7}, K=1,
J = {2,4,6,8,10,12,14,16}, £ = {3,5,7,9,11,13,14,16},
M = {(5,4,-5,3),(3,-4,5,-3),(4,5,3,-4)}, R = {U(-1, D,U(0,1),N(0,1)}.

For each node of C x M x R we perform three tests on randomly generated pairs. This makes a
total of 84672 test pairs. In Figure 4, we display, in log,, scale, the values of

)
(%, k) = maxmax max max I—U—l, (i,k)eZI x K.
T Mol & _ o€0(A,B) O

Kkl Bl gyt
Note that the relative accuracy of the computed generalized singular values depends on
max{ka(Ac), k2(B:)}

and not on k3(Ay), KQ(AB).‘ Hence, the approximaté number of correct digits in the computed
generalized singular values is roughly —log,,&(i, k) ~ 7 — max{i, k}. The behavior of the actual
error in the computed values indicates that the error bound in Corollary 2.2 is sharp.

ExXAMPLE 5.5. In this example, we take m = p = 200 and n = 100 and
I = {2,...,6}, K=1,

J = {2,4,6,8,10,12,14,16}, £ =J,
M {(5,4,-5,3),(3,-4,5,-3),(~5,5,3,—5)}, R = {U(=1,1)}.

Il

It

For each combination of these parameters, we generate one test pair. This makes the total of 4800
test pairs. We monitor the size of the backward error in the columns of 4 by evaluating the value
of Bi(R) = || |[R™'|-|R| ||;. The computed values of B1(R) and the maximal relative errors in the
computed generalized singular values are given in Figure 5. (Note that ,Bl(fﬁ) can be efficiently
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Example 5.4 (m=20, n=20, p=20)

—4\“.“4__.:,4

~log10{eps(i,k))

|
o]
Vi

[
[«
Yy

8
k=log10(condition B_c) 0 1 i=log10(condtion A_c)
Fic. 4. The logarithms of the mazimal relative errors in the computed generalized singular values

(—logig (i, k) & the minimal number of correct digits for all test pairs (A, B) with ky(Ac) = 10, rp (Be) = 10%).
Example 5.5 (m = 200, n = 100, p = 200)

80 T T L— T LB L T Ly
) 1] .
60 PR ' * ~

- : . .

oc . * M " . ) . *

=40F T . * co ' cot . HN 1 e

SO L L e . 8 P

a ‘, - :’ : i 4 T

20 3 L] “‘ ‘ ."‘ o + B
0 1 1 L - b 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Test pairs

107"

10-2 b
§107 1
4

_4
é’ 10 . 1
210° = |
6 0 ‘ .
10 e 1

1
4

—
o

i 1 i i i i i3 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Test pairs

Fi1c. 5. The values of B1 (R) and the mazimal relative errors in the computed generalized singular values for
all test pairs.

estimated using the procedure SPOCON() from LAPACK.) In Figure 6, we display the values of
log,q (2, k).
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Example 5.5 (m=200, n=100, p=200)

24

|
W
L

A

log10(eps(i,k)}

5T

k=log10(condition B_c) 2 2 i=log10(condition A_c)

Fic. 6. The logarithms of the mazimal relative errors in the computed generalized singular values
(—logyg £(i, k) = the minimal number of correct digits for all test pairs (A, B) with xa(Ac) = 10%, ko (Bc) = 10%).
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