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Abstract

This paper presents the PMESC library for managing task-parallel problems on distributed-
memory MIMD computers. Efficient parallel programming of task-parallel problems, where
the number and execution times of the tasks can vary unpredictably, demands an asyn-
chronous and adaptive approach. In such an approach, however, such fundamental pro-
gramming issues as load sharing, data sharing, and termination detection can present diffi-
cult programming problems. PMESC offers support for all of these issues in a portable and
efficient way while still allowing users to customize their codes. The library is based on a

model in which message passing and machine architecture are almost absent thus making
it accessible to a wide variety of users.
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1 Int.roduction

Many physical phenomena exhibit irregular and unpredictable behavior. The numerical meth-
ods used to study the mathematical models of such phenomena typically give rise to separate
computations evolving at different rates. These computations are nonuniform because they
depend on variant amounts of data or because they are composed of tasks whose number and
execution time change unpredictably. When the tasks can be carried out in parallel, compu-
tations of the latter sort are called irregular task-parallel. Examples of irregular task-parallel
methods include global optimization [44, 45], combinatorial optimization [1, 2, 21, 25, 37, 38, 46],
adaptive numerical quadrature [9, 13, 14, 15, 39, 40, 41], and the bisection method for comput-
ing eigenvalues of symmetric matrices [3, 6, 9, 29, 34]. An efficient approach to dealing with
these problems needs to be adaptive so that it can react dynamically to the changes occurring
during computation. However, dynamic approaches are difficult to implement on multiproces-
sors owing to the complexity of such issues as processor load sharing and termination detection.
The difficulty of writing dynamic programs is compounded by the need for portability if the
programs are to remain useful as parallel architectures change.

The time consuming and challenging process of producing codes that are both portable
and reasonably efficient is eased by the use of high-level parallel programming tools. Obvious
characteristics of a well-designed programming tool include efficiency and portability. Other
desirable features pertain to usability of the tool. First, the tool should be flexible. It should
provide a variety of approaches to handle the main programming issues, and it should provide
users with the freedom to choose between them easily as they tune their codes. Second, the
tool should be accessible to a variety of users. It should be usable by scientists, engineers, and
other non-computer scientists who want to use the advanced architectures without becoming
experts in the technical details of the machines.

In this paper, we introduce the PMESC library for managing medium- to coarse-grained
task-parallel problems on distributed-memory MIMD computers. The library supports a dy-
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grant DE-FG03-94ER25215, and the Intel Corporation.



namic, asynchronous approach that lets processors work independently as much as possible
while still maintaining an effective use of the computational resources.

PMESC meets the goal of flexibility by providing building blocks built on top of MPI.
These building blocks represent different alternatives to different programming issues. The
concept of providing changeable blocks to fit the requirements of unstructured computations
was pioneered by Charm [16, 30], a language originally designed for task-parallel computations.
Beyond that, however, the design philosophies of PMESC and Charm differ. While both tools
offer a variety of routines to handle such programming concerns as load sharing, exchange of
information, and program termination, PMESC alone allows the user to choose when and how
often every routine is invoked. In addition, only PMESC permits the user to change routines
at runtime as needed during the process of code development and testing. Furthermore, while
Charm is geared toward experienced users of parallel computers, PMESC is also accessible
by inexperienced programmers. It assists the less knowledgable user in writing portable and
reasonably efficient code without the burden of learning a new language, a complex interface,
or the machine architecture details. It assists the expert by allowing the reuse of code and by
providing a convenient platform for testing new applications, for comparing different strategies,
and for trying different virtual and real architectures.

A prototype of PMESC, implemented as a C library, runs on any platform that supports
MPI. (The embedding routines must be modified when PMESC is ported to an architecture not
yet supported.) We have tested it on the Intel iPSC/860, the Thinking Machines CM5, and the
IBM SP1. In this paper, we present computational results on those machines for the parallel
bisection problem. Performance achieved with this portable application shows considerable
gains with respect to the statically scheduled approach without significant programming effort.
For similar results on other application problems and for more results on the listed machines,
see [9].

The paper is organized as follows. In section 2, we characterize task-parallel problems
and present two examples. In section 3, we describe the PMESC paradigm that allows us
to recognize the different phases in the computation and to treat them as separate modules.
In section 4, we introduce the library based on the PMESC paradigm, and, in section 5, we
provide the specification of the library. In section 6, we present computational results and
discuss performance issues. Finally, in section 7, we summarize the main features of PMESC
and discuss some future work.

2 Background

Task-parallel problems present a complex task that can be decomposed into medium- to coarse-
grained subtasks for parallelization. These subtasks then can be executed asynchronously and
independently by different processors. If processors need to exchange some data or work, they
can usually do it asynchronously. Task-parallel problems can be regular or irregular. Regular
problems are those whose computational requirements can be estimated a priori. Their efficient
solution requires a static approach that partitions and maps work to the processors only once,
usually at the beginning of the execution. Irregular problems, on the other hand, are those
whose computational requirements cannot be estimated in advance. Their efficient computation
requires a more sophisticated approach that dynamically balances the non-uniform workloads
and asynchronously checks for termination.



Examples of irregular task-parallel problems can be found in computations involving some
type of tree search (among those are most of the examples listed in Section 1 of this paper.) This
type of computation is difficult to partition and map to a distributed-memory computer because
different branches of the trees may have different number of nodes and levels. In addition, the
trees evolve dynamically, making it impossible to achieve an efficient initial mapping of the
work among the processors. We next present two examples of task-parallel computations. First
is the parallel bisection problem, representing a case in which tasks can be executed in any
order and processors do not need to communicate during their execution. Then we describe the
traveling salesman problem, illustrating a different situation in which tasks are given priorities
and processors need to exchange information from time to time.

2.1 Parallel Bisection

An example of an irregular task-parallel problem is given by the computation of the eigenvalues
of a matrix by the bisection procedure [4, 24]. The problem consists of computing some or all
of the eigenvalues of a symmetric, tridiagonal matrix 7 with subdiagonal elements different
from zero. The number of eigenvalues of 7 smaller than any real number A is equal to the
number of negative terms in the sequence of the determinants of the leading principal minors
of the matrix 7 — AI. This matrix property translates into a simple computational procedure
by which one can determine the number of eigenvalues of 7 in any interval as the difference
between the eigenvalue counts at the endpoints of that interval. ,

The sequential bisection procedure begins with an interval or set of intervals known to
contain the desired eigenvalues. It takes an interval containing at least one eigenvalue and
splits the interval into halves. It then determines the number of eigenvalues in each half by
computing the eigenvalue count at the interval midpoint. The process is applied recursively to
every non-empty subinterval until the length of the subinterval is less than a given threshold.
In that case, the midpoint of that subinterval is taken as a computed eigenvalue. Thus, the
bisection procedure can be associated with a tree, where the root corresponds to the initial
interval, the nodes to its subintervals, and the leaves either to computed eigenvalues or to
empty subintervals that are discarded. )

The bisection procedure presents a straightforward case for parallelization. If the initial in-
tervals containing the desired eigenvalues are distributed among the processors, each processor
can apply the sequential bisection procedure independently and asynchronously to each of its
assigned intervals. All non-empty intervals must be bisected, and the order does not matter.
However, there is a problem that may prevent parallel bisection from achieving optimal perfor-
mance: it is impossible to estimate the amount of work associated with the computation of the
eigenvalues until they are isolated in an interval. Therefore, any initial partition and assignment
of the work will probably end up with different processors having different workloads.

2.2 The Traveling Salesman Problem (TSP)

Another typical example of task-parallel problem is given by the computation of the TSP by
the branch-and-bound procedure. The problem presents a set {1,2,...,n} of cities connected
by a graph. An edge (i,j) of the graph represents the distance d;; between cities ¢ and j.
A tour is a traversal of the graph in which each city appears exactly once. A solution of the
traveling salesman problem is the tour of least cost. Thus, a solution is given by a permutation
o of the set of cities {1,2,...,n} that minimizes Y >;_; d; 5(;).-



The branch-and-bound procedure searches through a tree of partial solutions. Thus, like
bisection, it can be associated with a tree. In this case, the nodes of the tree represent partial
solutions to the given problem. They are generated by using a branching procedure which,
when applied to any problem P, either solves it directly or else derives a set of subproblems
such that the solution of P can be found from the solution of the subproblems. Thus, when a
branching procedure is applied to node v, it either determines that v is a leaf or else produces
the children of v. A leaf represents either a possible solution of the problem or an unproductive
partial solution, i.e., a partial solution that cannot lead to a solution. The solution of the
problem is given by the leaf with minimum cost.

Unlike the bisection case, the branch-and-bound method reduces the size of the search tree
dynamically. In fact, it uses a bounding procedure to prune those branches of the tree that
cannot produce a solution [25, 47]. It does so by defining a cost function ¢ that assigns a value
¢(v) to each node v based on the values of the nodes in the path from the root to v. The
bounding procedure is based on the monotonicity property of the cost function that states that
the cost of a subproblem of P is at least as large as the cost of P. This property ensures that
any subproblem with associated cost bigger than the cost of one solution can be ruled out.

Consequently, unlike the bisection case, a parallel branch-and-bound algorithm may not
achieve good speedup by merely keeping the processors workload balanced. It must also direct
the computation toward the branches of the tree with less cost. To that end, nodes are given
priorities according to the costs associated with them. Nodes with lower cost-should be given
higher priority because they are more likely to produce a solution.

The examples presented are task-parallel because the initial work can be split into smaller
pieces or tasks that can be executed asynchronously by different processors. A task consists of
- following one or more paths down the tree starting from a given node. Because these paths are
created dynamically, it is impossible to assign similar loads to all the processors at once. This
situation usually results in a poor distribution of work that needs to be fixed as the computation
evolves. To that end, processors need to activate load sharing mechanisms that transfer work
as necessary. v

In the next section we present an abstraction that allows us to recognize the different phases
involved in the computation of task parallel problems. Identifying these phases and providing
efficient computational techniques to handle them is the basis of the PMESC approach.

3 The PMESC Paradigm

A high-level analysis of task-parallel problems shows that their implementation on distributed-
memory computers involves the same basic components. Different components may be resolved
via different algorithms and may present wholly different programming issues. Some compo-
nents must be developed by the user while others can reasonably be supplied in a library. In
either case, codes for individual components are easier to implement and debug than is a mono-
lithic piece of code. Furthermore, separation into components promotes a modular design in
which the pieces or building blocks can be easily changed and reused. To that end, we present
the PMESC paradigm for structuring the algorithms that allows the separation of different
phases in the computation involving different programming issues.

The Partition-Map-Embed-Solve-Communicate (PMESC) paradigm is composed of
five phases bearing those names. The Partition phase splits a problem into subproblems. The



Map phase assigns (and reassigns as necessary) those subproblems to the set of processors
interconnected by some convenient virtual topology. The Embed phase embeds the virtual
topology or topologies used for the application into the actual machine architecture. The Solve
phase executes the subproblems. The Communicate phase takes care of the interprocessor
communication necessary to exchange information. The P, M, E, S, and C phases can appear in
any order and number. In the PMESC model, the identification of the phases is what matters,
not their sequence.

Figure 1 shows the PMESC phases in a task-parallel problem. First comes the Partition
phase with the initial subdivision of the work into units of work or tasks. This partitioning
must account for the limitations of parallel computers, e.g., the ratio between communication
and computation costs. Too little parallelism results in idle processors; too much parallelism
may result in high overhead associated with handling of the short-lived units. Thus, it is
sometimes necessary to combine short-lived units into longer ones that are more convenient for
distributed-memory computers.

The next phase is the Map phase, which distributes the units of work among the processors
of a convenient virtual machine. In the tree search examples of section 2, a convenient virtual
topology is a tree. The Embed phase takes care of embedding that tree into the actual machine.

Once processors receive their tasks, they create a queue of tasks ready for execution. Because
the queue stores the tasks, its handling is represented by the Partition phase. Thus, partition
represents the process of selecting a task from the queue as well as that of storing a task in the
queue. This queue can be centralized—i.e., stored and maintained by a master processor—or
distributed—i.e., split into local queues stored and maintained by all the processors [32]. Figure
1 illustrates the distributed case because it represents the most scalable as well as the most
challenging approach to implement on distributed-memory computers.

In the distributed-queue approach, processors execute the tasks in their local queues. They
do so by taking a task from the queue and executing it, eventually producing new tasks that are
placed in the queue. The Solve phase represents the execution of those tasks. Processors may
also need to share some information. The TSP example depicts a situation in which is necessary
to exchange the solution of least cost found so far in order to prevent some processors from
working on unproductive branches of the tree. This interprocessor communication, necessary
to exchange data rather than work, is represented by the Communicate phase. The exchange
of tasks is always a Map phase.

The innermost loop continues as long as the processor is moderately loaded. A processor
can determine whether it is moderately loaded according to various criteria. In the framework
shown in Figure 1, a processor is considered moderately loaded when the length of its queue is
between some lower and upper bounds.

When a processor becomes overloaded or underloaded, the queue length exceeds the upper
bound or is less than the lower bound, respectively. In those cases, the processor activates the
load sharing mechanisms to transfer some work to or to get some work from another processor.
This is work redistribution and, therefore, it corresponds to the Map phase. The cycle repeats
until all of the local queues are empty.

The PMESC paradigm provides the programmer with a simple model for task-parallelism.
In the next section, we introduce the library that supports this model.



Initialize;

begin :
Partition; \* splits the work into tasks *\
Map; \* assigns tasks to processors using virtual machine *\
Embed; \* embeds virtual machine into real one *\
while (queues are not empty)
while (lower bound < local queue length < upper bound)
Partition; \* gets task from queue *\
Solve; \* executes task *\
if (exchange of data is necessary)
Communicate;
end
Map; \* reassigns work to processors ¥\
end
end

Figure 1: PMESC framework for task-parallel problems

4 The PMESC Library

PMESC is a programming tool designed to offer a set of implementation strategies to task-
parallel application programmers. It was developed by finding abstractions common to different
applications and introducing the routines that were necessary to implement them. Thus, it
provides a high-lével environment which focuses on the applications and their requirements. The
library fulfills those requirements by offering utilities at all levels of complexity from embedding
of virtual into real architectures to automatic load sharing as well as asynchronous exchange
of global information. An important feature of PMESC is that it frees the users from dealing
with the low-level details of the computation without hiding parallelism from them.

The library is composed of a set of routines that allows users to build a modular, easily
changeable interface between the problem and the machine. It is designed in two layers. At the
lower level, PMESC provides routines for embedding a virtual architecture into the real one,
and MPI provides routines for point-to-point message passing. At the higher level, PMESC
provides the high-level abstractions for handling the remaining programming issues including
task redistribution, termination checking, and so on. The low- and high-level routines together
form the basis for a flexible model of computation in which the underlying topology of the
hardware can be completely ignored. The user may call the low-level routines directly or may
avoid them entirely by programming only in high-level routines and allowing those routines to
call the low-level routines as necessary.

Each level of PMESC is distinct and independent of the other, with the higher level built
on top of the lower one. As a result of this design, we can port the library to a wide variety of
computers by taking a vertical “top-down” approach in which the low-level may need to change
while the high-level, built on top of it, does not. The user code, built on top of these levels,
should remain unchanged across different computers.

The PMESC library is an ongoing project. It was designed to meet the requirements pre-
scribed by Parallel Tools Consortium (Ptools) [35] of being usable as a standalone environment
as well as a building block for future integrated parallel programming environments. We ex-



pect to expand and modify the library in response to the development and evolution of new
paradigms and techniques.

4.1 Motivations for a New Library

Although there has been a great deal of effort directed at providing software for irregular data-
parallel computations [5, 7, 8, 22, 26, 28, 31, 36, 43], up to this point, only a few tools have been
developed specifically to address irregular task-parallel ones. Among them, the most complete
and mature product is Charm [16, 30]. Charm is a parallel programming system that supports
an explicitly parallel C- and C++-based language for data- and task-parallel computations.
For data-parallel computations, it provides static load sharing and induces data locality. For
task-parallel computations, it includes management of processes, support for prioritization and
information sharing and dynamic load sharing strategies. Charm allows machine independent
parallel programming over the class of MIMD machines —shared and non-shared memory. It
provides an environment where the user has to specify the creation of tasks or chares and
the communications between them explicitly, leaving the management of chares —load sharing,
scheduling, etc.— to the system.

PMESC borrows from Charm the explicit definition of the tasks and the choices of strategies
to use for some programming issues. However, Charm does not provide complete control to
users. Rather, it leaves some important decisions to the system, reducing the user’s ability to
finely tune the program while still using the tool. In contrast, PMESC is a run-time library
that allows programmers to decide which strategies to use and when to use them.

4.2 A Program for the Parallel Bisection Example

In this section, the use of the PMESC library is illustrated by a simple program for the parallel
bisection algorithm presented in section 2. Figure 2 depicts a pseudo-code for the sequential
version SeqBisection. This function calls itself recursively every time it finds an interval
containing eigenvalues. The process repeats until the length of the intervals is less than the
desired accuracy Threshold.

Figure 3 shows the task-parallel version of bisection using PMESC. It begins with the header
file pmesc.h that contains all the constants and variables needed by PMESC. In PMESC,
programmers have to create the parallel actions called tasks explicitly. Therefore, the next step
is to define those tasks. In the parallel bisection example, a task may consist of applying a
single step of the recursive procedure to an interval containing at least one eigenvalue. One can
think of this task as traversing a single level down the tree of intervals from one node to its
children. With the tasks identified, the programmer must define the variable type Task that
contains the data that a processor needs to execute a task. In this case, it is composed of the
endpoints of the interval to which bisection will be applied, the eigenvalue count at each of
the endpoints (which determine the number of eigenvalues in that interval), and a threshold to
decide when to stop the subdivision.

The main code starts with the usual definition of variables. The program then invokes the
GetID and GetNumProc functions to get the processor id and the number of processors assigned
to the computation. The function PMESC_Init specifies the virtual topologies to be used for
the load sharing, termination, and communication procedures. These virtual architectures can
be changed at any time during the computation. In this particular case, an all-connected
topology is specified for load sharing and a tree for termination checking. None is specified for



Initialize:

a = left end of initial interval;

b = right end of initial interval;

ca = eigenvalue count at a;

cb = eigenvalue count at b;

Threshold = desired accuracy;

eigen-count = function that performs the eigenvalue count;

RecBisection (a,b,ca,cb,Threshold)

{
double mid; \* midpoint of interval [a,b] *\
int cm; \* eigenvalue count at mid *\

\* calls itself for every nonempty subinterval
until it finds an eigenvalue *\
while { | b - a | > Threshold)

mid = (a + b) / 2

cm = eigen-count (mid);

if (ca < cm and cm = cb) {
RecBisection (a,mid,ca,cm,Threshold);

else if (ca = cm and cm < cb) {
RecBisection (mid,b,cm,cb, Threshold);
}

else {
RecBisection (a,mid,ca,cm,Threshold);
RecBisection (mid,b,cm,cb, Threshold);

}

Figure 2: Pseudo-code for the sequential bisection procedure



#include “pmesc.h”

struct task {

double a; \* left endpoint of interval *\
double b; \* right endpoint of interval *\
int ca; \* eigenvalue count for a *\
int cb; \* eigenvalue count for b *\

double Threshold; \* desired accuracy *\
b
typedef struct task Task;

main(int argc, char **argv)

int my-id, num-proc, 1.b, U_b, queune-length, limit;
int signal = 0;

Task T;

LIFOq {q; \* defines LIF0 queue *\
PMESC._flag Bflag; '

GetID(&my-id); \* gets processor id *\
GetNumPr(&num-_proc); \* gets number of processors *\

PMESC—Init(AIIC,‘Tree, None, my_id, num_proc); \* specifies virtual topologies *\
Read 1.b and U_b; \* gets lower and upper bounds for queue *\
InitPart_and_-Map(my_id, num_proc);

while ( signal ) {
queue_length = DEQUEUE (&fq, &T, size_of_task);
while (I.b < queue_length < U_b) { \* processor moderately loaded *\
ParBisection (&fq, T); ‘
DEQUEUE (&fq, &T, size_of_task);  \* gets task from queue *\

}

if (queuve_length > U_b) { \* processor heavily-loaded *\
MAP_RaR (&fq, BUSY, tasks_to_send, size_of_task, my_id, num_proc, limit, & Bflag);
ParBisection (&fq, T);

if (queue_length < 1.b) \* processor lightly-loaded or idle *\ ,
signal = MAP_RaR (&fq, IDLE, tasks_to_send, size.of_task, my.id, num_proc, limit, &Bflag);

}
}

Figure 3: Pseudo-code for the main procedure corresponding to the parallel bisection example
using a distributed queue approach



communication because communication is not necessary. Next, the lower and upper bounds for
the queue, 1_b and U_b, are entered as parameters so that the user can try different values. Then
comes the InitPart_and Map function which makes processor ROOT read the initial interval
or intervals and pass them to the other processors so that they can create their first tasks. The
latter function corresponds to the initial Partition and Map phases of the PMESC paradigm
and to the Partition and Map functions of the PMESC framework depicted in Figure 1. The
PMESC_Init function corresponds to the Embed phase.

As Figure 1 indicates, after defining the tasks and assigning work to the processors, the
program enters a cycle including Partition, Solve, and Communicate phases as applicable.
The Partition and Solve phases appear in the program of Figure 3. (Partition,' Solve, and
Communicate appear in the program of Figure 5.) At every step of the cycle, the program
takes a task from the queue —using the PMESC Partition function DEQUEUE— and executes it
—using the Solve function ParBisection supplied by the user. Note that the DEQUEUE function
takes as an argument a pointer to the queue. This queue is represented as a structure LIFOq
which means that the Last task In is the First Out. The ParBisection procedure is based on
the sequential bisection procedure SeqBisection. ParBisection selects a task from the queue
and applies bisection to it. However, unlike SeqBisection, ParBisection does not call itself
recursively. Instead, it creates new tasks and places them in the queue. When ParBisection
finishes with the current task, it terminates. Figure 4 shows the pseudo-code corresponding to
this procedure. w

When the queue length is greater than the upper bound, the program calls the load sharing
routine. For this example, we assume a random, receiver-initiated approach. Therefore, the
routine to use is MAP_RaR with input parameter set to BUSY—for overloaded. When the
queue length is less than the lower bound, the program also calls the load sharing routine, this
time with the input parameter set to IDLE. In that case, the load sharing routine actively
searches for work, and, if it cannot find any, it automatically calls another routine to check for
termination. MAP_RaR returns -1 when it detects termination. Otherwise, it returns 0. The
process of transferring tasks between processors and, eventually, detecting termination is part
of the Map phase of the PMESC paradigm.

4.3 A Program for the Traveling Salesman Problem

In this section, we discuss the PMESC program for the traveling salesman problem presented
in section 2. Figure 5 shows the corresponding code. As in the bisection program, this code
follows the lines of the PMESC framework presented in Figure 1. Thus, for the sake of brevity,
we only discuss those aspects of the code that are different from the bisection example.

In this problem, a task consists of the branch and bound procedures to a given partial
solution. The cost of the partial solution, obtained by the bounding procedure, is taken as
the task priority. To perform a task, a processor needs the graph corresponding to the partial
solution and the cost associated with it. Thus, the structure Task contains an n X n matrix
(n being the number of cities) that represents the graph and an integer that contains the cost.
The matrix is generated by placing the cost ¢; ; in the position (i, ) if (4,5) is an edge in the
graph corresponding to the partial solution and 0 otherwise.

The process begins with a single partial solution, i.e., with a single task. Qur implementation
of the InitPart_and Map function makes a designated processor, ROOT, execute the original
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ParBisection (LIFOq *fq, Task *T)

{
Task T1;
double mid; \* midpoint of interval [a,b] *\
int cm; \* eigenvalue count at mid *\

\* creates a Task for every nonempty subinterval it finds *\
\* Tasks are placed in queue *\
if (| T.b- T.a| > T.Threshold) {
mid = (T.a + T.b) / 2;
cm = eigen-count (mid);
if (T->ca < ecm and cm = T->cb) {
T->b = mid;
T->cb = cm;
ENQUEUE (fq, T, size_of_task);

else if (T->ca = cm and cm < T->cb) {
T->a = mid;
T->ca = cm;
ENQUEUE (fq, T, size.of_task);

}
else {
T1l.a = mid;
Tl.ca = cm;
T1.b = T.b;
Tl.cb = T.cb; :
ENQUEUE (fq, &T1, size_of_task);
T.b = mid;
T.cb = cm;
ENQUEUE (fq, T, size_of_task);
}
}

Figure 4: Pseudo-code for the ParBisection function
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task, create new tasks, and assign a task to each one of the processors. Again, InitPart_and Map
corresponds to the initial Partition and Map phases.

Because tasks are given different priorities, the queue is defined as PRIORity rather than as
LIFO. Also, in order for all the processors to share some of the high priority tasks, they must
exchange tasks periodically. Thus, the main loop breaks not only when the processor becomes
overloaded or underloaded but also when accum reaches a given threshold. Other ways to deal
with the balancing of prioritized tasks are discussed in [9, 12, 11, 27, 33, 42]. Load balancing
is always a Map phase.

Another characteristic of this example is the use of the routine COMM_Up to exchange the
value of the upper bound. This bound is determined by the least cost of the solutions found so
far and can be updated every time a new solution with lesser cost is found. The communica-
tions necessary to perform the updates correspond to the Communicate phase of the PMESC
paradigm. For this phase, processors may use a virtual topology that is different from the
one used for the load sharing mechanisms. This virtual topology is specified in the PMESC
initialization call PMESC_Init which represents the Embed phase.

5 Specification

The PMESC library is composed of a set of routines that address different issues involved in
the implementation of task-parallel computations. These routines are classified according to
the programming phase in the PMESC paradigm for which they provide support. Thus, the
routines that handle the task queue structure make up the Partition module, the routines that
take care of balancing the load and checking for termination comprise the Map module, the
routines that match virtual into real architectures compose the Embed module, and the routines
that take care of handling interprocessor communication make up the Communicate module.

In this section we provide a specification of PMESC. We also discuss the choices we made
in selecting the strategies to attack each issue efficiently.

5.1 Handling the Task Queue

In task-parallel applications, queues are used to store the tasks. Queues can be centralized or
distributed. Centralized queues are maintained by a master processor while distributed queues
are maintained by all the processors. So far, the library provides support only for distributed
queues because they permit more scalable applications than do centralized queues. Queues can
also be non-prioritized and prioritized. PMESC offers a queueing strategy for both cases. In
the former, the last task queued is the first out (LIFO). In the latter, the highest priority task
is the first out.

A LIFO queue is appropriate for problems such as bisection where tasks can be executed in
any order without affecting either the correctness of the results or the overall performance. On
the other hand, a priority queue is recommended for problems such as the TSP where tasks are
assigned different priorities.

PMESC provides routines for the creation of the task queue structure, dynamic allocation
and deallocation of memory for this structure, addition of tasks to the queue, selection of tasks
from the queue, and partition of the queue structure.
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#include “pmesc.h”
#define n \* number of cities *\
struct task {
double Graph[n][n]; \* matrix of costs *\
double cost; \* task priority *\
};

typedef struct task Task;

main(int argc, char **argv)

{
int my_id, num_proc, l_b, U_b, queue_length, limit;
int signal = 0;
int accum = 0;
Task T;
double bound = INFINITY; \* pseudo-global variable
containing the best solution found so far *\
PRIORq {qg; \* defines priority queue *\
PMESC_flag Bflag; :
GetID(&my_id); \* gets processor id *\
GetNumPr(&num_proc); \* gets number of processors *\
PMESC_Init(AllC, Tree, Tree, my.id, num_proc); \* specifies virtual topologies *\
Read 1.b and U_b; \* gets lower and upper bounds for queue *\

InitPart_and-Map(my.id, num_proc);

while ( signal ) {
queue_length = DEQUEUE (&fq, &T, size_of_task);
while (ILb < queue_length < U_b &&
accum < Thr) {

TSP (&fq, T);
COMM._Up (my.id, num_proc, &bound, value); \* updates pseudo-global variable bound *\
accum—++; '
DEQUEUE (&fq, &T, size_of_task); \* gets task from queue *\

} v

if (queue_length > U_b) \* processor heavily-loaded *\
MAP_RaS (&fq, BUSY, tasks_to_send, size_of_task, my.id, num_proc, limit, &Bflag);
TSP (&fq, T);
COMM_Up (my.id, num_proc, &bound, value); \* updates pseudo-global variable bound *\

if (queue_length < 1.b) \* processor lightly-loaded or idle *\
signal = MAP_RaS (&fq, IDLE, tasks_to_send, size_of_task, my.id, num_proc, limit, &Bflag);

if (accum > Thr-1) { . \* exchanges high priority tasks *\
MAP_RaS (&fq, PRIOR, tasks_to_send, size_of_task, my.id, num_proc, limit, &Bflag);
TSP (&iq, T); A
accum = 0;

}

}
}

Figure 5: Pseudo-code for the main procedure corresponding to the parallel traveling salesman
example using a distributed queue approach
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5.2 Dynamic Load Sharing

The basis of the solution of task-parallel problems is the creation of tasks to be executed
in parallel. The actual gains in performance depend heavily on their efficient distribution
among the processors. The load sharing routines are responsible for the assignment of tasks
to processors so that the system resources can be utilized efficiently. By load sharing we mean
the reallocation of tasks to keep the computational workload distributed, rather than evenly
distributed, among the processors. This approach is reasonable as the tasks sizes are mostly
uneven and are usually unknown.

Depending on the amount of system state information used, load sharing mechanisms can
vary from simple to complex ones. Eager et al. [19] show that simple dynamic load sharing
strategies that use small amounts of information yield performance close to that expected from
more complex approaches. Therefore, PMESC provides simple mechanisms that collect very
small amounts of information and use it in very simple ways.

Depending on how the control is distributed among the processors, load sharing strategies
can be centralized, hierarchical, distributed or hybrid [17, 13, 18, 20, 23, 14, 32, 45]. In general,
centralized and even hybrid strategies are easy to implement but they do not scale well [32]. For
that reason, the PMESC library supports distributed strategies that let each processor manage
its own load.

The PMESC strategies for load sharing are referred to as Random, Threshold, and Ring.
The Random strategy distributes tasks to processors selected at random. A selected processor
accepts the tasks only if its local queue is below some threshold. Otherwise, the tasks are
transferred to another randomly selected processor. To avoid instability, the number of times
a task can be transferred is restricted by using a transfer limit [19)].

Threshold is a variant of the random strategy that selects a processor at random and probes
it to determine whether a transfer of some tasks to it would put its queue length above a given
threshold. If not, the tasks are transferred to that processor. If so, another processor is selected
at random and probed in the same way. This continues until either a destination processor
is found or else the number of probes exceeds a probe limit. Eager et al. show that the

performance of this strategy is insensitive to the choice of probe limit [19].
l The Ring strategy assigns tasks among the neighbors in a ring. It also imposes a transfer
limit. The strategy may be useful for those platforms in which the cost of communicating
between distant processors can be high.

Load sharing strategies come in two different versions: sender- and receiver-initiated. In
the sender-initiated approach, heavily-loaded processors send out some work without it being
requested. In receiver-initiated strategies, idle or lightly-loaded processors send out a request
for more work. In the latter case, work is sent only upon request. Studies show that both,
receiver- and sender-initiated approaches for load sharing are better than the static approach.
They also show that the receiver-initiated approach outperforms the sender-initiated one at
high system loads and that the sender-initiated approach is preferable at light to moderate
system loads [18].

5.3 Termination Detection

Termination detection is a difficult programming issue in distributed-memory computers. This
is particularly true in computations where processors work asynchronously and tasks migrate
among them for load sharing. PMESC provides an efficient routine based on the prefix algorithm

14



[9]. It assumes that processors are connected by a virtual tree, but it can use any other
virtual topology that is appropriate for a combine operation. (When a new virtual architecture
is added, however, corresponding Embed routines must be developed for the library.) Each
processor keeps a count of the messages it has sent to request work minus the messages received
asking for work. When a leaf processor becomes idle, it sends a termination message with this
count to its parent. When an internal processor becomes idle, it checks if it has received the
termination messages from its children. If so, it adds its children’s counts to its own count and
passes this value upwards. The process repeats until it reaches the root. The value that the
root obtains by adding its own count to its children’s count represents the overall amount of
messages sent minus messages received. If this value is zero, all the processors have finished,
and the root then broadcasts a termination message. Otherwise, there is at least one requesting
message that was sent but not received before the message count was passed. In that case, the
root proceeds until it receives a new count. When the processors that received the uncounted
messages finish their work, they pass a new count on to their parents. This algorithm takes only
2log,y(p) steps to complete. Refer to [10] for a complete discussion of this and other strategies.

5.4 Asynchronous Sharing of Information

In task-parallel computations, processors do not synchronize. Thus, if they need to share some
information, they must define a pseudo-global variable. To implement a pseudo-global variable,
each processor has its own copy of the variable in its local memory. To keep the copies updated,
processors exchange their values from time to time. There are two different ways to update
pseudo-global variables: centralized and distributed [9]. In the centralized case, processors
communicate their pseudo-global values to their parents in a tree but only update them when
they receive a new value from the root. Thus, to complete an update, the tree is traversed twice:
once from the leaves to the root and then again from the root to the leaves. In the distributed
case, processors communicate their values to their parents and update them along the way. The
latter approach allows processors to use new information coming from their children without
having to wait until it comes from the root.

PMESC implements centralized and distributed approaches. Although more costly, the
centralized approach must be applied to those cases in which the information needs to be
accumulated by a central processor (like a global sum.) The distributed approach, on the other
hand, is more convenient in cases in which the partial results can be used. The TSP presents
an example in which the distributed approach can be used because the variable shared is a
minimum (i.e., the least cost of the solutions found so far.) Any partial minimum, if better
than the processor’s own, is valid and so should be used quickly to prune the unproductive
branches of the search tree.

5.5 Embedding

Another fundamental task in the implementation of a parallel algorithm is the embedding of
virtually connected processors into a given architecture. Considering embedding as an inde-
pendent procedure allows one to program on a virtual machine, thereby hiding architectural
details from the application. Thus, if the programmer is concerned with efficiency and the high
communication costs that the algorithm may incur, he or she should try a virtual topology of
processors that can be efficiently mapped onto the actual machine. PMESC provides efficient
embedding routines that exploit the hardware characteristics while keeping them hidden from
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the user. So far, the library includes algorithms for embedding rings, trees, and arrays onto the
supported platforms.

6 Numerical Results and Performance

PMESC provides support for task-parallel computations using a static or dynamic approach. In
the former, the initial work is partitioned and assigned to the processors only once. Processors
then create their local queues of tasks, execute all the tasks in their queues, and terminate.
There is no communication among them except at the beginning (to distribute the work) and
at the end (to gather results.) Because the interprocessor communication is so scarce, the
overhead associated with this approach is minimal. The situation is different in the dynamic
case. Besides executing tasks from their queues, processors continuously check their loads,
dynamically transfer tasks to keep them balanced, and asynchronously check for termination.
The overhead associated with these issues can be considerable. Therefore, the dynamic approach
should only be considered for irregular cases. The question is how irregular a problem must be
in order to justify the overhead associated with the dynamic approach.

In this section, we discuss some experiments that answer this question and show the effi-
ciency and flexibility of PMESC. First, we show that the dynamic approach outperforms the
static one even on problems that are slightly irregular. Second, we illustrate how PMESC al-
lows users to tune their codes. We show how different choices of load sharing strategy, lower
and upper bounds for the queue length, and granularity, can improve the performance. We
use the bisection example for our experiments because it can be easily adapted to represent
different situations by just changing the matrix type or size. The results of these experiments
are representative of those for a variety of other task-parallel problems including the TSP. For
more experimental results, see [9].

6.1 When the Dynamic Approach Outperforms the Static One

Our experiments show advantages of the dynamic over the static approach on problems that
present different “degrees” of irregularity. The degree of irregularity of a problem is given by the
level of difficulty in making an even distribution of the work among the processors. The more
unpredictable and unevenly distributed the computation is, the higher its degree of irregularity.

The bisection procedure applied to the test matrix [1,2,1] that has 2’s on the diagonal and

I’s on the subdiagonal illustrates a highly irregular case. The eigenvalues of this matrix, given

by

iT .
/\i=2(1+005n+1), i=1,...,n,

where 7 is the size of the matrix, tend to concentrate at the endpoints of the interval [0,4] as
n increases. The case n = 10* is definitely irregular as most eigenvalues are concentrated but
still computationally different. Figure 6 shows the distribution of the eigenvalues in the interval
_[0,4]. Problems that present this characteristic are difficult to partition efficiently because no
matter how the initial interval is distributed among the processors, most of the work is likely
to be assigned to a few processors.
Figure 7 shows the execution time of each processor using the static and dynamic approaches
to compute all eigenvalues of the matrix [1,2,1] for n = 10* with PMESC on the CM5. In this
case, the initial interval is partitioned into equally-sized subintervals that are assigned to the

16



1200 T T T T T T T

1000+ 4

8001 : 1

6001 4

Eigenvalue distribution

400} 4

200 b

0 1 1 L A 1
0 0.5 1 1.5 2 2.5 3 3.5 4

Initial interval

Figure 6: Spectral distribution of the matrix [1,2, 1] of order 10,000

processors. The figure shows that, in the static case, a few processors receive considerably
more work than the rest. These heavily loaded processors continue their computations long
after the remaining processors have finished their computations and become idle. As the total
time is determined by the slowest processor, the dynamically scheduled program, which keeps
the processor loads better balanced, finished faster. Indeed, the figure shows that the dynamic
approach outperforms the static one by a factor of more than one half.

Note that processors are not synchronized in the dynamic approach. However, because
they do not terminate until they receive the termination message (broadcast by the processor
that detects termination) their times usually differ by only a few seconds. Figure 8 shows that
the advantages of the dynamic with respect to the static approach remain, independent of the
matrix size.

The parallel bisection procedure applied to a random matrix illustrates a less irregular case
than that represented by the matrix [1,2,1]. The random matrix has uniformly distributed
random elements between -1 and 1 in the diagonal and subdiagonal. Figure 9 shows that
the random matrix presents a more evenly distributed spectrum than does the [1,2, 1] matrix.
However, Figure 10 shows that, in spite of the more even distribution of the work, the results
obtained for the random matrix on the CM5 also favor the dynamic over the static approach.
Because the random matrix eigenvalues are more evenly distributed than those of the [1,2,1]
matrix, the initial distribution of work does a better job in the former than it does in the
latter. Dynamic load sharing improves the initial distribution of the work for the random
matrix but not as dramatically as in the [1,2,1] case. Figure 11 compares the dynamic and
static approaches applied to random matrices of different sizes.

Thus, the experiments show that the dynamic approach outperforms the static one even in
problems that are slightly irregular. In the next section we present another experiment that
illustrates the PMESC approach to improving the efficiency of a program.
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Figure 7: Execution times for each of the 32 processors under the static and dynamic ap-
proaches to solve bisection for the [1,2, 1] matrix of size 10,000 (on the CM5.)
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Figure 10: Execution time for each of the 32 processors under the static and dynamic ap-
proaches to solve bisection for the random matrix of size 10,000 (on the CM5.)
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Figure 11: Total execution times for the static and dynamic approaches applied to random
matrices of different sizes (on the CMS5.)

6.2 Achieving Efficiency with PMESC

PMESC is based on the idea that no single strategy can be optimal for all of the problems or
on all of the machines. The PMESC approach to coping with this problem consists of providing
a set of reasonably easy-to-use and easy-to-change strategies so that the user can decide which
ones are more suitable for the particular application at hand. Some decisions can be made
a priori by studying the problem and its characteristics. However, some other decisions can
only be made after running the program and analyzing the results. Thus, high efficiency is not
an attribute that can be guaranteed the first time the user runs an application with PMESC,
especially if little is known about the behavior of the application in advance.

PMESC provides a set of flags (PMESC_flag) that allow users to obtain useful informa-
tion and, based upon that information, to make changes at runtime. For instance, a flag
PMESC_flag.req set after a call to MAP_PrR indicates that the number of failed requests for
work have reached a given limit. (PMESC_flag and limit are output and input parameters,
respectively, of the Map routines.) The user may ignore this signal or make the changes neces-
sary to correct the problem. A possible solution is to change the load sharing routine. Another
solution is to make the processor wait a certain amount of time and then proceed with the
execution. If the code is written using this information and considering all of the alternatives,
the changes can be executed without having to modify, recompile, or rerun the code.

There are different programming decisions to make when trying to improve the efficiency
of a PMESC application. Among them are the frequency of load sharing calls (controlled by
the queue lower and upper bounds), the load sharing strategy (controlled by the load sharing
routines), and the granularity (controlled by the size of the tasks.) We next discuss the various
programming options.
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Figure 12: Efficiencies achieved with PMESC for the [1,2,1] and random matrices of order
10000 using the sender-initiated approach on the iPSC/860.

6.2.1 Changing the load sharing routine

To illustrate this issue, let us again consider the parallel bisection example. Figure 12 shows
the efficiencies obtained as a result of applying PMESC using the Random sender-initiated load
sharing approach to both matrices, [1,2,1] and random, on the iPSC/860. The experiments
show efficiencies ranging from 60% in the worst case to 99% in the best case.

These efficiencies can be improved in the random matrix case (when using more than 16 pro-
cessors) by changing the load sharing strategy from sender- to receiver-initiated. This alteration
Jjust amounts to changing the load sharing routine from MAP_RaS$ (for Random sender-initiated)
to MAP_RaR (for Random receiver-initiated.) Figure 13 shows the efficiencies obtained on the
iPSC/860, for the random matrix, with the sender- and receiver-initiated approaches.

However, the results obtained for the random matrix cannot be extrapolated to other cases.
In fact, the Random sender-initiated approach yields better performance than the Random
receiver-initiated one when applying the bisection procedure to the matrix [1,2,1]. Figure 14
compares the efficiencies achieved in the [1,2,1] case on the iPSC/860 using both approaches.

Observe that those results are predicted by the theory developed by Eager and his col-
leagues [18]. They conclude that receiver-initiated strategies outperform sender-initiated ones
in heavily-loaded systems, while the opposite is true in moderately- to lightly-loaded systems.
The [1,2,1] matrix case corresponds to the lightly-loaded system. Most eigenvalues are con-
centrated in a few processors while the rest are underloaded. In contrast, the random matrix
case corresponds to a heavily-loaded system. Eigenvalues are more evenly distributed than in
the [1,2,1] case, and most processors are busy most of the time. It was expected then that
the sender-initiated approach would be more suitable for the [1,2,1] matrix while the receiver-
initiated one would be better for the random matrix.

Changing the load sharing routine is not the only resource the user has to improve the
efficiency of the application. We next analyze other alternatives.
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Figure 13: Efficiencies achieved with PMESC for the random matrix of order 10000 using the
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Figure 15: Eigenvalues computed by each of the 32 processors using different values of thé
parameter U_b when applying bisection to the [1,2, 1] matrix of order 10,000 (on the SP1.)

6.2.2 Changing the frequency of the load sharing calls

The performance of an application can also be improved by changing the frequency of the
load sharing calls. We can easily control this frequency by varying the input parameters [_b
and U_b that represent the lower and upper bounds of the queue length. To illustrate the
tremendous impact of this simple change in the performance, we perform an experiment that
consists of varying the upper bound U_b in the bisection example. Figure 15 shows the different
distributions of work obtained when applying bisection to the matrix [1,2,1] of order 10,000
using 32 processors on the IBM SP1 with values of U_b varying between 20 and 2. The value
U-b = 20 corresponds to the static approach in which no load redistribution occurs. Decreasing
values of the parameter U_b results in more frequent calls to the load sharing routine. Thus,
the lower the upper bound is, the better balanced the workload is.

6.2.3 Controlling granularity

The grain size is defined as the average computation required by the tasks. PMESC is a library
for moderate to coarse grain sizes. Tasks that are too short create an unnecessary overhead that
may harm the performance of the application. Grain sizes can be selected based on previous
experience and results. For instance, in the parallel bisection example, we defined a task as
the traversing of a single level down the tree of intervals. The computation time required for
this action depends on the matrix size. If this partitioning creates a large number of short-
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ParBisection (LIFOq *fq, Task *T)

{
Task T1;
double mid; \* midpoint of interval [a,b] *\
int cm;  \* eigenvalue count at mid *\

\* creates a Task for every nonempty interval it finds *\
\* rather than storing all the Tasks, it continues with one until an eigenvalue is found *\
while (| T.b- T.a'| > T.Threshold) {
mid = (T.a + T.b) / 2;
cm = eigen-count (mid);
if (T->ca < cm and cm = T->cb) {
T->b = mid;
T->cb = cm;

else if (T->ca = cm and cm < T->cb) {
T->a = mid;
T->ca = cm;

}
else {
Tl.a = mid;
Tl.ca = cm;
T1.b = T.b;
T1.cb = T.chb;
ENQUEUE (fq, &T1, size-of-task);
T.b = mid;
T.cb = c¢m;

Figure 16: Pseudo-code for the ParBisection function with larger grained tasks

lived units, then it is convenient to define a new task. A larger task may consist of applying
bisection to a non-empty interval, then to one of its non-empty subintervals and so forth, until
an eigenvalue is computed. This new task can be thought of as traversing a single path from
a given node in the tree to one of the leaves. Figure 16 shows the ParBisection routine that
computes the new tasks.

7 Conclusion and Future Directions in PMESC

The PMESC library is a tool designed to fulfill the needs of task-parallel application program-
mers. It provides users with the means to implement their problems using a dynamic and fully
asynchronous approach without having to deal with the complexities associated with such an
approach. The library is based on a parallel processing model in which explicit message pass-
ing and machine architecture are almost absent. This model facilitates the programmers’ task
because it matches the way that they envisage their applications.

Code written with PMESC is portable across any platform that supports PMESC. The
library itself is portable, with minor or no changes, to any machine that supports MPI. Our
numerical results show that PMESC also meets the goal of efficiency: the dynamic approach is
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efficient even when applied to slightly irregular problems. Furthermore, the experiments show
that the library meets the goals of flexibility and ease of use by allowing users to tune their
codes through small changes of parameters and routines. We illustrate how users can easily
try different strategies for load sharing by just changing the mapping routine, how they can
control the overhead associated with load sharing by altering the lower and upper bounds for the
queue length, and how they can control the grain size by modifying the tasks that are executed.
Moreover, an important feature of PMESC is that all of these changes can be performed at
runtime,

The library is expected to grow in response to the needs of the users. Future additions
include a hierarchical strategy for load balancing that implements a centralized approach at
the lower level and a distributed approach at the higher level with changing machine size. This
strategy will allow users to scale their applications not only up but also down. Some other
issues to be considered include support for fault tolerance and support for obtaining system
state information to make decisions regarding load balancing instead of the queue length criteria
presently used.
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