Examing the Difficulty with Thinking of
Functions as Data Objects:
Misconceptions of Higher Order Functions

Julie DiBiase

CU-CS-791-95

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

Pedagogical accounts in mathematics and computer scien‘ce education suggest that students
experience unusual difficulty in learning the concept of higher order function. This work lends
credence to such folklore through three investigatory protocols. First, traditional age students
(college) are tested on their concept of function. Next, this document recounts interviews with
experts in a variety of related disciplines. Lastly, young students (aged 10-14) are given exposure
to higher order functions through a computer programming based curriculum; two case-study
excerpts are included. From these investigations a systematic scheme of errors emerges. Results
are collated to form high-level conceptual models of function. It is suggested that these results

should be used to direct a revised pedagogy in the teaching of functions.

DIBIASE

INTRODUCTION
" >>> (define (double x) N (define (apply-to-5 f)
(* x 2)) (£ 5))

The above examples present two seemingly similar expressions in the Scheme
programming language. First, the function double is defined to take a single input, x, and
return the result of multiplying that argument by the number 2. In the second example, the
function apply-to-5 is defined to take a single argument, £, and return the result of calling
that argument on the number 5. Despite the symmetry of these two types of functions, a
surprising number of students have difficulty with the apply-to-5 function (DiBiase,
1995; Eisenberg, Resnick, & Turbak, 1987). While students readily accept the idea that
numbers can be arguments to functions, they do not naturally extrapolate to conceive that
functions can likewise behave as data objects. Determining exactly what accounts for this
conceptual resistance which has plagued students and educators of functional programming
was the original motivation for these investigations.

Functional data objects provide a robust and elegant means for expressing ideas in
many mathematics related disciplines. Unfortunately, educators in these areas report that
students uniformly experience serious pedagogical problems with this material. The
remainder of this work examines the exact nature of the misconceptions which motivate
students' difficulties. To further frame the problem, the next section begins by defining the
issue and providing some historical perspectives. Following that T will present the results
of some more recent related research. The bulk of this work will report on a number of
investigatory studies about students' concept of function; it will conclude with a discussion

of the results and their implications for educators.
BACKGROUND

Definition of Higher-Order Function
Informally, the main idea examined by this work is that functions! are manipulable as units
of data. This concept, central to the whole functional paradigm of computer programming,

can be traced back far into the historical foundations of computer science; for example, it is

1Although strictly speaking the terms "function" and "procedure” have a subtle semantic distinction in
functional programming, they are herein used interchangeably and indistinguishably. This
representation (versus alternative represenations, e.g. graphs or sets) is most appropriate in the turtle-
graphics environment used in this study.

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

at the heart of Turing's universal machine concept (Turing, 1937). As will be discussed,
this research has indicated that students consistently encounter difficulty with the notion of
functions as data objects (FD).

Under a more formal definition of FD (from (Stoy, 1977) on denotational semantics)

functions have the following four properties, common to all "first-class" data objects:

1. Can be named

2. Can be passed as argument to a function

3. Can be returned as the result of a function call
4. Can form complex data structures '

Differentiation is an example from basic calculus which embodies properties 1-3 above.
Consider the following example:

f(x) = 3x2
'(x) = bx

In this example, there are 3 functions:

e f is the function which takes one argument, a number, x, and returns a
number, the result of squaring x and multiplying it by 3.

* £' is the function which takes one argument, a number, x, and returns a
number, the result of multiplying x by 6.

e ' is the function which takes one argument, a function, £, and returns a
function, the result of differentiation. In other words:

This example represents the essence of what it means for functions to have object, or “first-
class” status, that is, the ability of a function (as in the derivative function) to act on another
procedure (as in the function 3x2 above) as an argument and return a new function as its
result.

The research reported in this thesis has indicated that properties 1-3 prove increasingly
difficult for students to grasp?. Property 1 is generally not difficult for students:
procedures, like any other data object, can have an associated name. In the case of
numbers, this is parallel to the notion that a number can be defined by a variable name.3
Property 2 represents more of a cognitive leap. Students in traditional computer science

curricula understand and even generate the notion that numbers can be passed as arguments

2Property 4 will not be examined by this work.

3Note however that Scheme semantics are an exception to the rule: in most programming languages, the
name of a function is inseparable from the function itself. For example, in LOGO typing the name of
a function of no arguments returns the result of calling the function and not the object it is bound to.

4

DIBIASE

to functions; the analog -- functional arguments to functions -- is more elusive, despite the
apparent symmetry:

>>> (define (apply-double-to x) (double x))

apply-double-to

>>> (apply-double-to 5)

10

>>> (define (apply-to-5 f£) (f 5))
apply-to-5 '

>>> (apply-to-5 double)

10

Property 3 is the most difficult for students to grasp. As will be discussed later in this
report, there are several causes for this, the most compelling of which is students' inability
to deal with FD anonymity. The following is an example of a function that returns another
function as its output. Note that the result object has no associated name:

>>> (define (create-subtracter n)
(make-procedure-object (x) (- x n)))

create-subtracter

>>> (create-subtracter 3)

#<PROCEDURE>

Below is a Scheme expression which combines properties 2 and 3. In several separate
studies (to be described later in this work) performed with both graduate and undergraduate
student Scheme programmers, over 50% answered incorrectly as to the outcome of the

expression, responding that the expression was not fully specified:

>>> (apply-to-5 create-subtracter)

The remainder of this report will examine in detail the nature of the misconceptions that
account for such high rates of error in regards to this and other FD problems. The problem
is first staged with some historical perspectives, followed by an initial analysis of students'
misconceptions and educators perceptions thereof. The heart of this work lies in the final
results section: a detailed case study analysis examining the genesis of younger students'

concept of function.

History of the Problem A

The problem in understanding functional data is as old as the history of computer science.
In 1842, Ada Augusta, Countess of Lovelace, considered the nature of the theoretical
machine then being proposed by Charles Babbage:

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

"In studying the action of the Analytical Engine, we find that the peculiar and
independent nature of the considerations which in all mathematical analysis
belong to operations, as distinguished from the objects operated upon and from

the results of the operations performed upon those objects, is very strikingly
defined and separated." (Babbage, 1842)

By clearly demarcating operations and data, Lovelace exhibited the same naive
understanding about operations (functions) which we will see in present day students of
function. Even Babbage himself admitted the importance of this issue while at the same
time acknowledging that, for him, it presented an unconquerable challenge (Babbage,
1842).

A century after Babbage's initial musing about a self-modifying engine, Turing outlined
the specifications for a machine which uses the specification of some other machine as data
(Turing, 1937). Turing's ideas were in fact an elaboration of the same function-versus-
object theme that is identifiable in Godel's technique of representing proof sequences as
numerals (Godel, 1931). By 1945, Von Neumann envisioned the machine which would
use calculation specifications (functions) as input. In Von Neumann's system -- the
underlying model still used in computational designs today -- functions take on the same
form as any other data object (Von-Neumann, 1945).

In present day computer science, functions and procedures provide the underlying
organizational structure for all programming languages. On top of the already critical
notion of function is the powerful notion of functional data. Sethi further describes this
phenomenon:

"The pure lambda calculus has just three constructs: variables, function
application, and function creation. Nevertheless, it has had a profound
influence on the design and analysis of programming languages. Its

surprising richness comes from the freedom to create and apply functions,
especially higher-order functions of functions.” (Sethi, 1989)

Functions are the very core of computer science as well as mathematics(Thomas & Finney,
1993) (Cajori, 1928) and physics (Aleksandrov, Kolmogorov, & Lavrent'ev, 1963). This
brief argument has hopefully confirmed that functional data is a is stimulating, perplexing

and important concept to great as well as novice thinkers.

The Difficulty with Function

Although clearly an important concept, history informs us that functions were likewise
perceived as notably difficult. This instinctual problem is perpetuated by current day
computer programming paradigms which neglect constructs for supporting functional

objects. Even some functional languages support a naive concept of function. For

DIBIASE

example, in Common LISP, the same symbol can be attached both to a function and a
value, necessitating the use of the LISP funcall primitive. As a result, procedures cannot
be directly abstracted in the same way that numbers can indicating, in some sense, a
different status (Winston & Horn, 1989).

A recent anthology published by the Mathematical Association of America dedicated
itself entirely to examining problems with the concept of function (Harel & Dubinsky,
1992) including (Sierpinska, 1992) citing the "widely reported and well known" student
difficulty with the concept. Sierpinska specifically notes how detrimental preconceptions
of function can be for conceptual development. In fact, this problem is most exaggerated in
the case where functions are operating as data objects. '

Insights into the concept of functional objects can be gained by probing mathematics'
most common element: the number.

"We shall see... that the "abstraction" of the number sequence from the things
counted created great difficulties for the human mind. We need only ask
ourselves: how would we count if we did not possess this sequence of
remarkable words, 'one,' 'two,' three,' and so on? ... [O]ne achievement of our

number sequence is its independence of the things themselves. It can be used to
count anything." (Menninger, 1969)

The challenges identified above relative to the genesis of the number system are parallel to
the problems we currently see from students of function. Early civilizations indeed had
difficulty with the transition from an "attribute” to an "object" concept of number—for
instance, the separation of the concept of "fiveness" from its object of cardinality (5 oxen,
5 fingers, etc.) (Menninger, 1969). Moreover, early civilization's concept of number
reappears developmentally in present-day children's initial concept of number (Hughes,
1986). The central challenge then, both for modern children and ancient adults, lies in
separating the objective and abstract nature of number from the "thing to be counted"
(Menninger, 1969). Aleksandrov points out that this difficulty with abstraction extended
beyond the number system: "In a completely analogdus way, certain peoples had no
concept of 'black’, 'hard', or 'circular’. In order to say that an object is black, they
compared it with a crow for example, and to say that there were five objects, they directly
compared these objects with a hand." (Aleksandrov, et al., 1963)

Unfortunately, while early civilizations outgrew (and children likewise outgrow) their
misconceptions of number objects, the same is not true for the "objectification" or
abstraction of processes. Menninger reports a similar historical difficulty in developing the
notion of arithmetic function. There is a noticeable absence of symbolic representations for
arithmetic operations despite the development of symbolic representations for quantities.

The concepts were functionally utilized but not formally represented: "The idea that a purely

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

abstract mark on paper can represent a change or alternation of some kind does not, it
seems, come at all easily" (Menninger, 1969). In present day education this reluctance
towards the symbolic recognition of "active entities" is reinforced in many basic ways,
including language: "...you might posit the class noun as those words that can be used to
identify the basic type of object." (Allen, 1987) One pertinent study of interviews with
Argentinean children aged 4-6 who had not previously experienced written language
revealed that the subjects intuitively believed that nouns could be described in written
words (e.g.. the word "Daddy" in "Daddy kicks the ball."), but the same was not true for
verbs (e.g. the word "kicks" in the same sentence) ((Ferreiro, 1978), sited in (Hughes,
1986)). '

Recently, many math educators have begun focusing their research on the concept of
function. Dubinsky and colleagues have postulated an epistemology of functions
(Breidenbach, Dubinsky, Hawks, & Nichols, 1992). According to the theory,
development of the concept of function occurs in three phases:

L. Action: the ability to plug numbers into an algebraic expression and calculate.

2. Process: dynamic transformation of quantities according to some repeatable
means. ‘

3. Object: the ability to perform actions on and transform the function itself.
(Dubinsky & Harel, 1992)

Several studies have targeted computer programming models as aids in the development
from action to process concept of function (Ayer, Davis, Dubinsky, & Lewin, 1993;
Breidenbach, et al., 1992; Cuoco, 1993; Cuoco, 1995) (Cuoco, 1993; Cuoco, 1995).
Little work has been done, however, to trace the development from process to object
concept of function. In one of the only such scenarios, a 14 year old subject participated in
a 12 week study in which researchers attempted to use a computer environment (with
which the student was already proficient) to examine the student's development from
process to object concept of mathematical function (Kieran, Garaicon, Lee, & Boileau,
1993). The study reports that the subject did not acquire an object concept of function.

Based on Chi's theories of conceptual change (Chi, Slotta, & deLeecuw, 1994),
students’ misunderstandings about the object nature of function are not surprising. Chi
proposes that all entities in the world can be classified in one of three categories: Matter,
Processes, and Mental States. Chi proposes an "incompatibility theory" to account for why
students have trouble with certain science concepts: it lies in the difference between the
categorical representation that students bring to an instructional context and the ontological

category to which the science concept truly belongs. The more difficult entities to learn

DIBIASE

about are those that simultaneously embody more than one category and hence require
conceptual alternation, e.g. matter and process (or, conceivably, object and function).

To summarize, the development of children's concept of number seems to parallel the
evolution of the concept of number within the human species. The impetus behind both the
understanding of the concept of number and function lies in the ability to mentally
manipulate abstract data types as objects (Sfard, 1992). The following section describes
three types of experiments which were performed to empirically verify the notorious

difficulties that students experience with higher-order function.

RESULTS

Study 1: University Students of Functional Programming
Two distinct studies were performed using graduate and undergraduate students at the
University of Colorado. Subjects ranged in experience from those who had recently been
introduced to the Scheme programming 1anguage' to those who had just a minimal
knowledge of its syntax. This experiment was intended to study the problems and
misconceptions (as alluded to by iﬁstructors) of students in a standard curriculum.

Study 1A

The first study was performed on a sample of eleven students from three different but
comparable backgrounds. They were students who had recently completed a unit on
Scheme in an undergraduate programming language course (2), students of a graduate
artificial intelligence class that used LISP as a programming language (5), and students of a
graduate course in computer science for cognitive scientists that used Scheme as its
language (4). A summary of results to selected questions is presented in Table 2. Each of
the three questions summarized respectively relates to Properties 1-3 of first-class objects
(cf. Stoy). Individual responses are paraphrased where interesting.

Example 1 contrasts students' views of number and function as object. All students
correctly answered that the interpreter, when asked to evaluate the name number, would
respond with the number object 5. On the other hand, three out of seven students
responded that the interpreter would return an error when asked to evaluate the name
subtract-3. In all three cases, the misconception resulted from the incorrect assumption
that we were attempting to call the procedure and hence were missing the argument (this is
not an unlikely misconception: it is in fact what would happen in some programming

languages). What these students were missing was the notion, parallel to the case of

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

number, that we were simply asking the interpreter to look up a name and return the
associated object. In other words, students lacked an object concept of function.4

TABLE 1: NOVICE SCHEME PROGRAMMERS

Summary of results from a survey of novice Scheme programmers' aptitude for properties 1-3.

Sample Composition: exposure to some Scheme instruction and programming
Sample Cardnality: 11
Example 1:

Given: >>> (define number 5)

>>> (define (subtract-3 n) (- n 3))
Asked: >>> number
Answered: "s5" 10
* "error: need parenthesis” 1

Total wrong: 9% (1/11)

Asked: >>> subtract-3

Answered: "error: no argument" 5
function 5
"error: need parenthesis" 1

Total wrong: 55% (6/11)

Example 2:
Given: >>> (define (apply-to-5 f) (f 5))
Asked: - >»> (apply-to-5 -1+)
Answered: "4" 11
I Total wrong: 0% (0/11) I
Example 3:
. Give‘n: >>> (define (create-subtracter n) (lambda (x) (- x n)))
Asked: >>> (apply-to-5 create-subtracter)
Answered: function 4
"error: no argument” 2
“error: need 'x' to complete lambda (x) " 1
"error: no second function call for lambda (x)" 1
"error: apply-to-5 not defined"” 1
no answer 2

Total wrong: 64% (7/11)

| |
e —

4The "call" protocol common to some other programming languages is inconsistent with an object model.

10

DIBIASE

In the second example of this vstudy, all students answered correctly about the use of a
functional argument to a function (Property 2). ‘ A

The final example gave students the definition of a function which returned a function
as its result. They were asked to predict the result of an expression that both takes a
function as an argument and returns a function as its result. Half of the students correctly
answered that the output would be a new function. The other half of the students noted, in
one way or another, that the function call would return an error because something was
missing; one student went so far as to note thai it "need[s] 'x' to complete 1ambda (x)".
This example illustrates a common error. Students who get this class of problems wrong
uniformly explain their answers with some notion of incompletion: some missing piece of
data prevents the call from completing execution.

Study 1B
In the second study, 28 undergraduate programming language students were asked to write
a series of short Scheme functions as part of a homework assignment. The questions were
handed out after students attended two 1.25 hour introductory Scheme lectures which
specifically emphasized the object nature of function and presented illustrative examples.
Tables 2-4 outline some interesting results. ‘

Example 1 asks the students to redefine the semantically obscure car and cdr functions
to have the new names first and rest, respectively. The most succinet way to do this is

to merely rename the functions:
>>> (define first car)
The majority of the students solved the problem with the following code segment:

>>> (define (first 1) (car 1))

The first solution implies that students understand the concept that a function is a data
object which can merely be renamed (consider the parallel numerical example: given a
bound to 10, the way to equate a with b would be (define b a)). Instead, students
were unable to separate the function to be defined from its argument. So, students defined
a new function called first, which takes a single argument and then returns the result of
taking the car of that argument. In this sense, the property that a function does something
(to an argument in this case) takes precedence over the notion that a function is an object to
be manipulated.

Example 2 of Table 2 exemplifies Stoy's property 2: functions can be arguments to

other functions. Its asks that students write a function to "solve" two other functions.

11

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

TABLE 2: PROGRAMMING LANGUAGE UNDERGRADUATES, PART I

Summary of results for a Scheme homework assignment given to undergraduate students of
programming languages. These two questions test properties 1 and 3.
Sample Composition: Undergraduate Programming Language class: exposure to some
- Scheme instruction and programming under my instruction.
Sample Cardnality: 28
Example 1:
Question: Redefine car/cdr to first/rest in the most concise way possible.
Answers: re-named procedure 10
re-wrote procedure ‘
re-defined using args 13
no attempt 2
Total wrong: 64% (18/28)

Example 2:

Question: ~ Write a procedure, solutions, which, given two functions, will return |
all solutions to those two functions (i.e. points of intersection on a
graph) over a range of given values.

. Answers: correct 12
no use of functional arguments 2
incorrect use of functional arguments 6
no attempt 8

Total wrong: 57% (16/28)

Example 3:

Question: Write make-nth-getter, a procedure which, given a referent, n,
creates a procedure which returns the nth element of a list.

Answers: correct 15
“no use of lambda
"not different from get-nth-elt" 2
wrong use of lambda 6

(define (mng (lambda (n) (gne x n)))

Total wrong: 46% (13/28) ' '
mm

Although almost all students who tried the problem used functional arguments (this
requirement was included in the problem specification), many showed an incorrect use of

functions within the body of the procedure:

(if = £(n) g(n)

12

DIBIASE

This type of shift in notation from scheme programming to standard mathematics was not
observed in the same students' solutions to other problems in the homework.>

In Example 4 (Table 3), students were given an equation for approximating first
derivatives; they were asked to write a derivative function in Scheme which, given some
function, returned the approximation (literally, not symbolically) for the first derivative.
Students were also provided with examples of how the function they were to write would
work. For example:

>>> (define (cube x) (* x (* x x)))
cube

>>> (cube 4)

64

>>> ((derivative cube) 4)

48.0012

The derivative procedure provides an elegant example of functional objects in Scheme
since the process of taking the derivative of a function involves both using functions as
input and returning functions as results. The Scheme code for programming a derivative
function is a direct translation of the approximation given in Example 4 of Table 3:

>>> (define (derivative f)
(lambda (x) (/ (- (£ (+ x 0.0001)) (f x)) 0.0001)))

Despite the sample executions that students were given, nine of twenty-eight students
did not think they needed to use lambda (i.e. generate a new function); despite the ease of
translation from the mathematical notation to Scheme, seven more students didn't even
attempt the problem. In Example 5 they were required to write a second derivative function
(the solution to which is to doubly apply the first derivative function); a total of eleven
students did not even attempt-the problem. Example 6 is yet an order of magnitude more
difficult than Example 4: it asks the student to write a procedure which creates derivative
procedures of any order. So, (derivative-maker 4) would return a fourth-derivative
procedﬁre. Only nine of the twenty eight students correctly answered the question. One
student even noted that the question could not be answered since "you can't pass in an

equation.”

SAt first glance, it appears that the data from Tables | and 2 imply that property 1 is in fact more difficult
than property 2; results presented in the next section will show that this'is not a correct assessment. The
oddity of the results so far stems from two sources: (1) Example 2 'of Table 1 was a very simple
demonstration of property 2 and most students had already been exposed to an analogous problem, and (2)
- Example I of Table 2 was judged harshly in that the 13 students who gave a correct answer that did
emphasize the object nature of function were marked incorrect.

13

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

TABLE 3: PROGRAMMING LANGUAGE UNDERGRADUATES, PART II

Summary of results for a Scheme homework assignment given to undergraduate students of |
programming languages. These questions test properties 2 and 3.

Example 4: , “

Question: ~ Write a function which returns the first derivative of a given function
using the following approximation:

DI1(x) =~ [F(x+h) - F(x)]/h], where h small , e.g. .0001 "
Answers: correct 12

no use of lambda -9

(define (derivative fun x) ...) . "

no attempt 7

Total wrong: 64% (16/28)

Example 5:

Question: How could you write a second derivative procedure?

Answers: correct 7
no use of lambda 3
need another formula 1
use nth-derivative function 1
wrapped ex(ra lambda 5
no attempt 11

Total wrong: 71% (20/28)

Example 6:

Question: Write a procedure to create derivative procedures of any order.

Answers: correct A
no use of lambda 1
wrong body 5
use function-applied-n-times 1
"can't pass in an equation” 1
"don't understand the question" 1
no attempt 11

Perhaps the most difficult problem in the set asked students to use function-
applied-n-times (a function which repeatedly applies another function to an argument
for a specified number of applications) to redefine the derivative-maker procedure from
question 6 (Table 4: Examples 7-8). To correctly complete this question, students need to
understand that it is possible to have a function, function-applied-n-times, which

takes another function (in this case, derivative) and a number, n (in this case, the order

14

DIBIASE

of the derivative), as its arguments and returns a function, derivative-maker, which

takes a number, n, as its argument and returns an unnamed function which essentially

takes the nth-derivative. The six students who attempted this problem answered it
correctly. This study hopes to shed light on why a problem like Example 8 scared 22
students away from even attempting it.

TABLE 4: PROGRAMMING LANGUAGE UNDERGRADUATES, PART III

Summary of results for a Scheme homework assignment given to undergraduate students of
programming languages. These are the most difficult questions testing property 3.

Example 7:

Question: ~ Write a function which applies another function to its argument n
times (function-applied-n-times).

Answers: correct 4
correct with helper 5
bad body 3
no lambda 3 l
incorrect function call 3
no attempt 10
Total wrong: 68% (19/28) [or 86% (24/28)] I
Question: Use function-applied-n-times to redefine derivative-maker. I
Answers: correct 6
no attempt 22
Total wrong: 79% (22/28

Summary

L]

Students are very comfortable with the notion of naming functions.

Students show some tendency to stray from an object concept of function when they
begin passing functions as arguments.

Students have notable trouble writing functions that create other functions. As users of

these functions, students often mistake correct code for erroneous based on the idea that

it is "missing" some critical piece of information.

15

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

Study 2: Expert Interviews with Instructors of Function

In an attempt to further verify the folklore surrounding functional data, experts from a
variety of disciplines were interviewed about how they perceive and purvey the concept.
All subjects were University of Colorado instructors in math, physics and computer science

who had taught some form of the concept in a graduate or undergraduate classroom setting.

Interview 2A: Artificial Intelligence

Folklore in the functional programming community resoundingly agrees: students have a
hard time with the idea that functions can be manipulated as data objects. One Al
instructor, when asked to characterize student misconceptions, simply had this to say:

"Well... I haven't really ever pushed them to see how much they've learned because I figured
they'd never really get it at a deep level anyway."

‘The pedagogical miscommunication between students and instructors of functional objects
seems to create frustration from both ends of the learning channel.

Interview 2B: Programming Languages

The instructor from the undergraduate programming language class studied in Experiment

IB was interviewed about the chronology of his personal concept of function and how he

has used his own learning experiences to influence his communication with students:
Coming from an electrical engineering background, I was reluctant to use functions in any ways in
which I couldn't directly visualize the resulting assembly code. So how are things different now
that I'm an "expert” on these concepts? Understanding the underlying details at an "instinctual”

level, I can manipulate the abstractions with confidence, and avoid the need to explicitly "translate”
the abstractions to lower level concepts.

Certainly many students have problems when first presented with higher-order functions, just as
they have trouble with other abstractions such as type parameterization. The students who are
having more difficulty, have great trouble verbalizing their conceptualizations. To them higher-
order functions and other abstractions seem to be very mysterious entities, and they attempt to deal
with them by copying examples, much like applying formulae by rote. To try to assist students
in understanding higher-order functions, I draw on my own experience that mental visualizations to
explain the underlying mechanisms of the abstractions are helpful for achieving a comfortable
working understanding of the abstractions.

In this case, the professor describes how he has drawn upon the personal methods which
he previously employed to unify his own conceptualization of higher-order function in

order to assist his students in making a similar cognitive transition.

Interview 2C: Calculus
Among mathematicians, rhetoric about functional data was almost identical to that in
computer science. One professor of calculus had the following to say about his personal

and professional experience with functions as data objects:

16

DIBIASE

Interviewer: Did you or do you now have the notion that it's a piece of data?

Mathematicianl: Oh yeah, I mean once you do group theory you get well used to the idea that

you want to think of things abstractly in terms of objects and your objects are functions - that's

& 1s s Py Far o N Y I LY N1 PSP RS) AU SR K3 N
dandy. You learn to combine them and multiply them and treat INENL JUST LKE your elemeniury

objects.

I: You're teaching calculus now - do you feel like your students have a good concept of this?
M1: No. They don't have a prayer.

It is perhaps interesting to note that even as M1 speaks of his own impressions of functions
he only ascribes to them properties which are "like" those of elementary objects; he never
says that they are elementary objects. ‘

Interview 2D: Group Theory

A professor of group theory (M2) describes personal struggles similar to his students':
I can understand why this is hard because sometimes I have a problem with this myself... I came
face-to-face with the problems people have seeing functions as input, or output, in teaching

Fourier analysis where functions are both. Students uniformly get confused because you're not
processing numbers, but functions.

Even as an instructor of group theory, which hinges on the notion that functions are data,
M2 admits his own confusion with the concept. Further, when the definition of the create-
subtracter procedure® was presented to M2, his behavior modeled that of the novice
Scheme programmer:

Well, you couldn't use create-subtracter because you don't know what x is yet.

This represents an instantiation of a dilemma that was previously alluded to: the missing
variable problem. In this case, the subject notes that a variable has been used in the body

of the procedure which has not been declared as an argument. '

Interview 2E: Physics »
In this interview, a physics graduate student and teaching assistant was questioned (P1).
She was asked to reflect on the notion of a function as a piece of data from a physicists

perspective:

Well, you know, of course physicists apply functions to functions all the time. The method of
substitution is one example of this, where a huge hairy block like Cos(Sqri(X-Y"2)) will just get
called Z to ease calculation. But you know what is occurring to me about the way that physicists
use functions as objects is that it isn't fully divorced from the understanding of a kind of hierarchy
in which objects of functions are not equal in standing to functions. I think what keeps this intact

6Recall: (define (create-subtracter n) (lambda (x) (- x n)))

17

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

as an understanding is that though you may toss around functions as objects, every function still
has an object, whereas objects don't. I think that this may be an almost ineradicable bias in the
mind of a typical physicist, and I might even go so far as to say that it is fundamental and
justified... it is jarring and disturbing to see functions without their objects. It feels like an
unfinished sentence.

P1 was then asked to describe her personal experiences learning about functions as objects:

Well, I think that the first introduction I would have had to this idea would have been algebra, and
methods like substitution: X + ¥ = /2 but X = A + B. That's when you start learning that
sometimes there's more than meets the eye. That "objects" like X may have a more complex
identity than just something numerical.

In that sense, calculus is not the real beginning of these concepts, but it is certainly a place
where that point gets driven home. But I maintain that there is a distinction in the mind, or maybe
just my mind, between functional objects and just plain objects. In the first case, there's still
something to "put in". I clearly remember having functions taught to me in this way: There is a
little black box factory. Something enters the factory from the left and gets spit out on the right,
transformed by a relation that was written underneath the factory on the blackboard. Techniques
like taking the derivative are seen as making modifications to the factory.

Lasﬂy, P1 comments on the general state of functional objects in physics:

Let's go back to quantum: there are operators, they operate on functions, these functions may be
functions of other functions, and on down the line, but somewhere down that line is a plain old
object, 3 meters or .06 joules or something like that. This goes back to what I was saying earlier,
physicists are happy to treat functions like objects, to operate on functions to produce other
functions, but this is not actually a radical equalization between functions and objects.

Summary
* Conjectures that this was an area of great difficulty for students were confirmed.

« Suspicions that this was an area where pedagogy was not sufficient to match the difficulty
of the task were confirmed.

* Experts describe a personal ontology of function which historically or even still currently
supports a naive model of functional objects.

» Instructors report frustration with students' perceived inability to learn these concepts.

Study 3: Case Studies of Younger Students
Interviews with instructors of functional data indicated that even at their advanced level of
knowledge there was some confusion and misconception about functional data. One
question which immediately arises is: how much of one's ability to conceptualize functions
as data is hindered by other contradictory information which has "cognitively accumulated"
over time? For example, is the average student of functional programming at a
disadvantage for already having, most likely, become proficient at programming in another
paradigm which neglects constructs for functional data objects?

In order to explore this question, this research studied the unfettered experiences of pre-

high school students. 18 case studies were performed in order to judge younger students'

18

DIBIASE

- impressions of and abilities with functional objects (for a complete account, see (DiBiase,
1995)). Subjects worked one-on-one with an instructor while learning SchemePaint
(Eisenberg, 1991), a graphics-enhanced version of Scheme (Eisenberg, Clinger,
Harheimer, & Abelson, 1990). Data was collected from the students in two ways:

1. Written questionnaires. Students were periodically required to complete questionnaires
that tested their acquisition of certain concepts.

2. Session transcripts. SchemePaint allows one to save a computerized transcript of a
user's interaction with the interpreter; after each session, researcher observations were
integrated with session transcripts.

The following sections present excerpts from two of the 18 case studies: they were
selected because they are representative of the consistent errors observed among the
majority of students.

Case Study 3A: Brooke ‘

Brooke was a 10 year old female in 5th grade. She had no prior programming experience.
One of her first tasks was to write a standard turtlé—graphics—like geometric procedure
which could make a hexagon:

(define (hexagon side)
(repeat 6
(fd side)
(rt 60)))

(hexagon 20)

I proposed to Brooke that we might like to modify the sides of the hexagon to do
things other than just go forward. I drew examples of six-sided figures that had varying
shapes on each side. In this polygon, the standard hexagon from above has been permuted
through the addition of a functional argument which specifies the movement of the turtle as
it draws the sides of the shape (as opposed to the original numerical argument which
specified the size of a side). I showed Brooke an example similar to the following figure

which shows a six-sided shape with "zigs" for sides:

19

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

(hexagon zig)

I asked her to write a procedure that could achieve this or any number of other similar
“effects, keeping the side length constant. Brooke worked out the problem by hand on a
dry-erase board. She spent about five minutes deliberating and modifying seeking very
little instructor assistance along the way. Below is a transcript of her modification process,
with student-teacher interaction included: ’

STEP 1:

line 1 (define (hexagon 20)
line 2 (repeat 6

line 3 (£d 20)

line 4 (rt 60)))

[Brooke: “This isn’t right. I'm just thinking”]
STEP 2: [working on line 3 above for STEP 2-4]
(? 20)
STEP 3:
(fd pro 20)
STEP 4:
(pro 20)
[At this point I informed her that she was doing well. She seemed stuck for a
few minutes, so I also told her she could ask for a hint. She did so, and I told
her to think about how the computer would know what “pro” was.]

 STEP 5: [line 1]

(define (hexagon pro 20)

20

DIBIASE

I told her she was close, and asked her how she would use the procedure. In
trying to come up with a correct invocation, she realized her mistake and
completed the correct version.]

FINAL:

(define (hexagon pro)
(repeat 6
(pro 20)
(rt 60)))

Brooke's initial errors are representative of typical errors of novice programmers
dealing with functional arguments. Students have a hard time divorcing the idea of a
variable function from the specific instantiation of a function in an example. Above,
Brooke was aware that she needed to add a variable (in this case, pro) which represented
the abstraction of the functional argument to move the turtle along the side of the six-shape.
However, she was reluctant to let this abstraction stand alone, in.the absence of some
instance of function (in this case, £a). Instead of a half-way function like Brooke's, many
students exhibit even less resolvable behavior by omitting the pro variable entirely re-
writing a function to work just for the example argument (e.g. zig). Still others define a
pro argument to the function, which still using some actual value (e.g. zig 20) in line 3
above.

Summary o _
* Initial observations indicate that students of functional arguments to function have
difficulty transitioning from concrete to symbolic representations of function.

Experiment 3B: Hector

The subject of this case study, Hector, was a 7th grade male with some limited
programming experience in the C language. He learned basic Scheme in a fairly accelerated
fashion. The following description is from the latter part of his work after he has already
mastered properties 1 and 2 through repeated exposure to them.

After about ten hours of work with SchemePaint, Hector was informed that his task
was to build a “library” of SchemePaint functions which performed manipulations on
color-objects. Color objects are complex data structures composed of three integer values,
0-65000, each representing the relative intensity of red, green and blue in a particular color.
He was first asked to write a series of color transformation procedures which, when given
a particular color-object , make a new color-object with increased or decreased amounts of

red, green, or blue. The following is an example of two of the six procedures that he
wrote:

21

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

>>> (define (darken-red color-object)
(make-color-object
(+ (get-red color-object) 1000)
(get-green color-object)
(get-blue color-object)))

>>> (define (lighten-red color-object)
(make-color-object

(- (get-red color-object) 1000)
(get-green color-object)
(get-blue color-object)))

Hector wrote four other similar procedures: darken-green, lighten-green,
darken-blue, lighten-blue. He was then asked to note that {darken, lighten)-
{red, green,blue} were nearly identical; based on this observation he was asked to
change the six procedures into three procedures. This task entails turning the {+, -}
operator into a procedural argument (property 2). For example:

>>> (define (change-red direction color-object)
(make-color-object
(direction (get-red color-object) 1000)
(get-green color-object)
(get-blue color-object)))

Hector was then asked to write a number of other functions which operated in a similar
fashion, that is, given a color-object as input, perform some manipulation on the color and
return a new and different result color object. After completing this task, he was asked to
write a program which, when given a color-object and any two of his 15 transforms,
sequentially applies the two transforms to the old object and returns a new color. This task

also involves correct understanding of property 2. The following was his initial attempt:

>>> (define (apply-transforms color—object transforml transform2)
(transforml)
(transform2))

This represents an incorrect use of procedural arguments. Although Hector correctly -
reasoned that he needed to pass in two transforms and a color-object as arguments, the
body of the code is non-functional: he forgot to indicate that the transforms must
themselves take the color-object as an argument when invoked, i.e (transforml color-
object). This represents an instantiation of a common confusion about the role played by
functional arguments to functions. After running the procedure, Hector quickly realized
what he did wrong, but it is interesting to note his initial instincts nevertheless.

His next task required a conception of property 3: this was the first time Hector was

required to generate such ideas. He was asked to write a procedure called compose which,

22

DIBIASE

given two transforms (t1, £2), creates a new procedure which, when applied to a color-

object, returns the result of applying t1 and t2 to a given object. The correct solution is:

>>> (define (compose tl t2)
(lambda (color) (t2 (tl color))))

Upon contemplating the task, he incrementally exhibits three stereotypical misconceptions:

L. “That is the procedure we just wrote.” This statement indicates a misconception about
the object-ness of procedures. Hector does not conceptualize the procedure’s ability to be
returned as an object, hence he misconstrues this as identical to the previous task (apply-
transforms) which emphasized knowledge of the more common ontology of procedures
as active, applicative entities.

2. “You can’t do it; the [result] function wouldn’t have a name.” This statement is
illustrative of the common difficulty that students have with anonymous objects. The
function Hector was asked to write would return a nameless object, unusable without other
context. Recall that earlier in the curriculum he had the same difficulty with anonymous
color-objects (the result of all the transform procedures he wrote). This reaffirms the
theory that the difficulty is not just with anonymous procedure-objects, but anonymous
objects in general. As stated earlier, this distinction was previously unobserved since most
functional languages have only one type of anonymous object - functional. The use of
SchemePaint (and hence different sorts of anonymous objects) has pointed to a more global
misunderstanding.

3. “You can’t do that; its missing a variable.” This statement is identically uttered by
nearly all students attempting to grasp property 3. He is referring to the fact that the new
procedure will require a color-object as an argument, and we have not provided this data
anywhere when we create the procedure. This is what we have previously referred to as
"the missing variable phenomenon."

Summary)) ‘ .
* Students have trouble with the notion that a functions as anonymous objects.

» Students have trouble with functions which do not bind all their variables at runtime.

DISCUSSION

Historically and currently, then, research from students and educators indicates the

following principle of general categorization:

Properties 1-3 [cf. Stoy] of functional data objects represent strictly increasing levels of
difficulty for students. Specifically:

i. Property I is not generally problematic. Students, if anything, have more difficulty

assigning names to numerical data than procedural data. In fact, functional data "feels" like
it is required to have a name in order to have meaning whereas students are comfortable

with the independent (and notably abstract) existence of numbers. Still, understanding that

23

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

the name subtract-3 would represent a function just like the name number represents a
number was not completely transparent for students (see Example 1: Table 1).

sy e P B P
ii. L TOPEFLY £ IS iiore

difficult for students. Beyond that, without the same practice with operating on functions
that students possess for operating on numbers, the quandary of functions as arguments
reduces to an experiential one. Both linguistically and mathematically, subjects are more
accustomed to treating numbers as the default computational unit. Early in their computer
programming experience, students are able to assign symbolic variable names to numbers:
the same is not true of functions (see Experiment 3A: Brooke). As described by P1,
functions are not units in and of themselves without arguments. Recall that programming
language students reverted to a more mathematical notation that includes the argument

inserted in (as opposed to just juxtaposed with) the function (see Example 2: Table 2).

iii. Property 3 is most difficult. Lambda expressions, functions which return other

functions as result objects, create many problems for students. In addition to the two
specific errors relating to missing variables and anonymous objects (Experiment 3B:
Hector), lambda expressions also prdve difficult because statement semantics are obscure
and suggest few fruitful analogies (of what significance is the word 1ambda to a student
unfamiliar with the calculus of same name?). '

The above outlined details of misconception represent pieces of a larger cognitive
puzzle. These pieces can be fit together to produce various models of conception (similar
in vein to (Chi, et al., 1994)). Many other projects have undertaken the task of specifying
mental models, particularly in relation to concepts in the physical sciences (Gentner &
Stevens, 1983). This work takes a similar approach to "mental modeling". Figure 1
exemplifies two ontological pictures, borrowed from (Eisenberg, et al., 1987). The
complete ontology of data stresses the notion that there are two kinds of things: objects and
names for objects. Objects come in different types; those types have certain shared and
different properties. The naive model paints a different picture: procedures are their own
sort of entity, different and removed from data objects. They are characterized solely by
their property of "activity"; they are not independent units but rather they are incomplete
without numbers to manipulate. These models are consistent, respectively, with students
who answer accurately and inaccurately to applicative questions about functional objects in
Scheme. It is claimed that while the incomplete ontology prevails, so do naive biases
about the role that functions can play in a language. Thorough and complete understanding

of the specific errors outlined in the previous section depends upon a incorruptible

24

DIBIASE

cognitive ontology. Figure 2 summarizes the difference in status for functions under both a
complete and a naive cognitive model. In Figure 2a, the correct model, the world is made
up of data objects; data objects can be of many different types. In the naive model (Figure
2b), the world is made up of data and procedures. In the latter case, procedures are
assigned some special status such that they are not candidates to be data objects.

“correct" ontology:

OBJECTS

Properties:
Can be named as variables.
Can be passed to procedures as arguments.
Can be returned from procedures as results,
Can be stored in compound data structures.

VARIABLE
NAMES

Properties: Used as names
for objects.

NUMBERS
Properties: Can be added, multiplied, etc.

PROCEDURES
Properties: Can be applied to objects.

"naive" ontology:

PROCEDURE
NAMES

PROCEDURES

Properties: Active - eager to run.

Properties: Used as names Incomplete - needing "parts.”

for procedures.

OBJECTS

VARIABLE

Properties: Can be manipulated by procedures.
NAMES

NUMBERS
Properties: Can be added, multiplied, etc.

Properties: Used as names
for objects.

Figure 1. Correct and Naive Ontologies of Functional Data
This diagram, borrowed from (Eisenberg, et al., 1987), describes students' naive and
expert concepts of function in Scheme.

This naive ontology is preconditioned in a number of ways. For example, most
imperative computer languages -- the paradigm used most often to introduce students to
programming -- lack the constructs to support functions as first-class objects. Even natural

language makes a clear distinction between nouns ("person, place or thing") and verbs

25

MISCONCEPTIONS OF HIGHER ORDER FUNCTION
("action words"). Chi points out that conceptual category change is most difficult when

the naive categorizations are deeply rooted through this type of persistent, consistent and
recapitulated support system (Chi, et al., 1994).

the worl,

data ' procedures

procedure
objects

color
objects
number ’

objects

procedure number
objects objects

Figure 2: High ILevel Model of Functional Data

This figure describes the difference in status for functions under a correct (a.), and a naive
(b.) cognitive model.

CONCLUDING REMARKS

Minimally, the results of this study should attract the attention of the functional
programming and mathematics education communities. For years, proponents of
functional programming have seemed frustrated and confused about lack of acceptance of
functional programming within the larger computer science community. In a Turing award
lecture almost two decades ago, John Backus, an avid fan of functional programming,
called conventional programming languages "fat and flabby" (Backus, 1978). Yet,
functional programming has never gained the momentum its supporters feel it deserves.
This study of functions as objects can perhaps provide some pointers into the nature of this
problem.

The novice programmer's standard introduction to functional programming is rife with
contradiction and lacking familiarity. Research has indicated that tools which enhance
‘mental imagery in concept formation may assist students of function (DiBiase, 1995) in
their transition from process to object (cf. Dubinsky); very recently, there has been some

attention to visual language tools which support functional data objects. However, this

26

DIBIASE

paper does not advocate any single pedagogical solution. Rather, it is intended as a call to
attention for both the functional programming and mathematical communities. The ideas
-presented in this work, while illuminating a real pedagogical problem, also may open the

door for a wider audience to take interest in both disciplines.

As demonstrated, different forms of the functional data problem underlie many
important concepts in math, computer science, and physics. It is the hope of this work that
the taxonomy of errors which has emerged will cause mathematics and computer science
educators to more formally address the inadequate pedagogy around higher-order functions

and seek practical solutions.

REFERENCES

Aleksandrov, Aleksandr, Kolmogorov, Andrei, & Lavrent'ev, Mikhail (Ed.). (1963). Mathematics: Its
Content, Methods, and Meaning. Cambridge: MIT Press.

Allen, James (1987). Natural Language Understanding. Menlo Park: Benjamin-Cummings.

Ayer, Thomas, Davis, George, Dubinsky, Ed, & Lewin, Philip (1993). Computer Experiences in Learning
Composition of Functions No. Clarkson University. '

Babbage, Charles (1842). Notes on the Analytical Engine. In P. M. a. E. Morrison (Eds.), Charles Babbage
and His Calculating Engines: Selected Writings by Charles Babbage and Others (pp. 225-295). New
York: Dover Publications, Inc.

Backus, John (1978). Can Programming Be Liberated from the von Neumann Style? A Functional Style
and Its Algebra of Programs. Communications of the ACM, 21(August), 613-641.

Breidenbach, Daniel, Dubinsky, Ed, Hawks, Julie, & Nichols, Devilyna (1992). Development of the
Process Conception of Function. Educational Studies in Mathematics, 23, 247-285.

Cajori, Florian (1928). A History of Mathematical Notation. La Salle, Illinois: Open Court.

Chi, Michelene, Slotta, J. D., & deLeeuw, N. (1994). From Things to Processes: A Theory of Conceptual
Change for Learning Science Concepts. Learning and Instruction, 4, 27-43.

Cuoco, Al (1993). Constructing Functions from Algebra Word Problems No. Education Development
Center.

Cuoco, Al (1995). Computational Media to Support the Learning and Use of Functions. In A. diSessa, C.
Hoyles, & R. Noss (Eds.), Computer and Exploratory Learning Berlin: Springer.

DiBiase, Julie (1995) Building Curricula to Shape Cognitive Models: A Case Study of Functions as Data
Objects. Ph.D. thesis, University of Colorado, Boulder.

Dubinsky, Ed, & Harel, Guershon (1992). The Nature of the Process Concept of Function. In G. Harel &
E. Dubinsky (Eds.), The Concept of Function Mathmatical Association of America.

Eisenberg, Michael (1991). Programmable Applications: Interpreter Meets Interface. SIGCHI Bulletin,
27(2), 68-83.

Eisenberg, Michael, Clinger, Willam, Harheimer, Anne, & Abelson, Harold (1990). Programming in
MacScheme. San Francisco, CA: The Scientific Press.

Eisenberg, Michael, Resnick, Mitchel, & Turbak, Franklyn (1987). Understanding Procedures as Objects.
In G. M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical Studies of Programmers: Second
Waorkshop (pp. 14-32). Norwood, NJ: Ablex Publishing Corp.

Ferreiro, Emilia (1978). What is in a Written Sentence? A Developmental Answer. Journal of Education,
160, 25-39.

" Gentner, Dedre, & Stevens, Al (1983). Mental Models. Hillsdale, NJ: Lawrence Erlbaum Associates.

Godel, Kurt (1931). On Formally Undecidable Propositions of Principia Mathematica and Related Systems.
New York: Dover.

27

MISCONCEPTIONS OF HIGHER ORDER FUNCTION

Harel, Guershon, & Dubinsky, Ed (Ed.). (1992). The Cbncem of Function: Aspects of Epistemology and
Pedagogy. ‘

Hughes, Martin (1986). Children and Number: Difficulties in Learning Mathematics. Oxford: Basil

Blackwell.

Kieran, Carolyn, Garaicon, Maurice, Lee, Lesley, & Roileau, Andre (1993). Technology in the Learning of
Functions: Process to Object? In Psychology of Mathematics Education, 15 . Asilomar Conferenc
Center: Monterey.

* Menninger, Karl (1969). Number Words and Number Symbols: A Cultural History of Numbers. New
York: Dover Publications.

Sethi, Ravi (1989). Programming Languages: Concepts and Constructs. New York: Addison-Wesley.

Sfard, Anna (1992). The Case of Function. In G. H. a. E. Dubinsky (Eds.), The Concept of Function
Mathmatical Association of America.

Sierpinska, Anna (1992). On Understanding the Notion of Function. In G. H. a. E. Dubinsky (Eds.), The_
Concept of Function Mathmatical Association of America.

Stoy, Joseph S. (1977). Denotational Semantics: The Scott-Strachey Approach to Programming Laneuage
Theory. Cambridge: MIT Press.

Thomas, George B., & Finney, Ross C. (1993). Calculus and Analytic Geometry (8th ed.). Reading:
Addison Wesley.

Turing, Alan (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. In
Proceedings of the L.ondon Mathematical Society, 42 (pp. 433-460).

Von-Neumann, Jon (Ed.). (1945). First Draft of a Report on the EDVAC. New York: Springer-Verlag.

Winston, Patrick Henry, & Horn, Berthold Klaus Paul (1989). LISP (3rd ed.). New York: Addison-Wesley.

o2

[¢]

28

