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This thesis is concerned with the implementation of task-parallel
problems on distributed-memory computers. These problems are difficult to
implement efliciently in parallel for they are asynchronous and .unpredictéble.
A few languages and libraries have been proposed that are specifically de-
signed to support this kind of computation. However, one big challenge still
remains: to make those tools understood and used by scientists, engineers, and
others who want to exploit the power of parallel computers without spending
much effort in mastering those tools. Therefore, our primary goal is to make
parallel programming on distributed-memory computers easy to understand
and to make efficient parallel code éasy to design. To that end, we present
the PMESC programming paradigm and the PMESC library. The paradigm
provides a methodology for structuring task-parallel problems that allows the
separation of different phases in the computation. The library provides sup-
port for those phases that are application-independent allowing the users to
concentrate on the application-specific ones. We evaluate the portability, per-
fdrmance, and ease of use of the PMESC library by subjecting it to a suite of
tests in the context of different platforms and different examples. The tests

show good results for a wide variety of situations and library uses.
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CHAPTER 1
INTRODUCTION

As parallel computers become accepted as the only plausible way to
solve very complex or large pfoblems, it is becoming increasingly important
to develop tools that help programmers to take advantage of this computing
power. The reason why tools are so fundamental to parallel computing is that
paraﬂelism significantly complicates the development of code. The program-
rﬁer must now be concerned with many issues for which there are no direct
counterparts in sequential programming such as the number aﬁd interconnect-
ing topology of the processors, load distribution, and data sharing. In addi-
ﬁion,' the rapidly evolving technology of these computers makeé it 11écessary
to develop software that can be ported from one machine to another without
significant redesign.

Therefore, it is desirable to establish a machine-independent parallel
programming model that is efficient for different applications on different ar-
chitectures. Two comblementary approaches to achieving this goal have been
studled parallel languages [14, 15, 23, 31, 42, 53, 77, 91] and hbmnes that
expand existing standard languages [6, 7, 12, 15, 30, 36, 39, 41, 54 71, 90]. Ex-
tensive efforts have been directed in ~b9th‘directions, and significant advances
have been made. However, the results are still disappointing: a recent survey
ap] plied to a significant cross-section oi the parallel u‘ser’com-munity shows that

- users simply do not find the current ognemtmn of tools useful for their program
2



development needs [69]. They complain that tools are difficult to learn, tedious
to use,‘ and fail to provide the information that users nee,.d, The consensus is
‘that the inadequacy of the pé,rallel software is one of the reasons to blame for
* holding back the high-performance computing industry [67].

The big challenge 1s then not only to develép tools that are eflicient
-and portable but also to make them understood and widely used by engineers,
“mathematicians, and other scientists who really want to exploit the power of h
these cbmp.utersvwithout having to spend a great deal of time masteriné them.
Our contribution in that direction is in the category of library packages. In
particular, we want to address a kind of problem that is hard to implement but
for which little support has yet been provided. Our primary goals are efficiency,
portability, and ease of use. With this library, we do not intend to solve
the ‘software crisis’ délemma. Réthgr, our intention is to provide a working
prototype library that meets the ;‘eqxlix;élnéﬁts, of the Parallel Tools Consortium
(Ptools) [70] of being usable as a standalone environment as well as a buildingv
block for future integrated parallel programming environments. Furthermore,
because programming paradigms and techniques evolve, we prefer to present

it as a basis subject to future refinement and grow‘th; rather than as a final

product.

1.1 Motivation

Pal allel problems can be data—pmallel or task- pal allel or even a com-
bination of both Data- pala,llel problems p1esent a large domam that can be
‘decomposed into fine-grained units to be executed synchronously. Task-parallel
problems present a complex task-that can be decomposed into medium- to

coarse-grained units to be executed asynchronously. Some other profems can



be implemented efficiently by using a two-level subdivision that combines a
ta,sk—parallel-approach at the higher level with either a task- or a data-parallel -
approach at the lower one. Examples in this category are given by recent ap-
plications on heterogeneous computers. These are implemented by div;ding
very large scale problems into asynchfonous and heterogeneous subproblerris
that are assigned to the different computers. Each computer, in turns, uses
the appropriate approach on each of the subproblems. -

A high-level analysis of all these problems shows that their implemen-
tation on distributed-memory computers involves the same basic steps:

e First, find parallelism. It is necessary to define the. natural units of
parallelism. This step is usually called domaiﬁ decomposition in data-
parallel computations and partitioning in tasl%—parallel ones.

° Thig natuljal parallelism musﬁ take into consideration the limitations of
parallel computers, e.g., the ratio between communication and compu-
tation costs. Too little parallelism results in idle processors; too much
parallelism may result in high overhead associated with handling of the
short-lived units. Thus, it is sometimes necessary to combine short-
lived units into longer ones that are more convenient for distributed

~memory computers. The natural parallelism is thus transformed into
practical parallelism.

e Theunits must be assigned to processors. For some parallel algorithms,
static assign'mentr is appropriate while, for others; dynamic load bal-
ancing 1s needed.

e Iinally, if the units are not entirely independent, they need to share

information. This sharing is synchronous in data-parallel proplems and



asynchronous in task-parallel problems.



Although the high-level abstractions are basically the same, the actual
implementation of data- and task-parallel problems is completely different.
The strategies are different, the levels of' complexity are different, the degree
to which each one of the steps can be automated is different. Consequently, a
tool intended for one type of problem cannot be applied efficiently to the other
if it can be applied at all.

7 Although there has b_ee.'n a great deal of effort directed at I;roviding
general interfaces to solve data-parallel problems [31, 41, 54, 52, 53, 71, 77, 93],
up to this point only a few attempts have been made to develop general tools for
solving task-parallel ones. In fact, most of the software that has been de?eloped
for task-parallel problems is aimed at particular subsets of these problems such
as discrete optimization problems [30, 90], global optimizétion problems [88],
or p.a,rallel adaptive qﬁadrafcurre problems [51, 76]. The more general systems
that have been developed to date [23, 71] present other drawbacks. One of the
problems is that they require user experience. Another is that they restrict
the control that the programmer has over the parallel application, reducing
her ory his ability to increase the efliciency of a program using that tool. That
is, they hide parallelism from the programmer, rather than considering it a
fundamental ingredient of programming design.

Therefore, it is still necessary to provide the paraH:eI‘ programmer with
a tool to fully exploit the capabilities of distributed-memory computers to solve
task-parallel, asynchronous algotithms. The necessity is based on the fact that-
these types of problems are difﬁcult»to parallelize and even more difficult to

parallelize efficiently. This tool should provide support for some issues such as

e



partitioning, load balancing, termination checking, and communication, allow-
ing the programmer to concentrate on the application itself. This tool must

also be easy to use.

1.2 Our Approach
This research started with the implementation on distributed-memory
- MIMD computers of the bisection method for computing eigenvalues. (Re-
_fer to Chapter 6 for a description of the bisection procedure.) The problem
presents straightforward parallelism, but it is usually irregular and unpre- |
dictable. Therefore, it requires an adaptive approach that can dynamically
respond to the changes in the computation. Much relevant work in the area
of a,dapt_ive algorithms had been done by that time. One paper by Eager et
al. demonstrates that adéptive_algorithms that use‘dynamic load balancing
téchniques can, in fact, outperform static algorithms that use né redistribu-
tion at all. Also the thesis of S. Smith on “Adaptive Asynchronous Parallel
Algorithms in Distributed Computation” [88] identifies several problems in the
literature that, like bisection, exhibit irregular structure and require an adap-
tive approach. |
" At the same time, many tools were being developed to solve adaptive
algorithms [4, 52, 30, 31, 36, 41, 50, 71, 90, 93], However, most of those tools
were diliected at data-f)arallel problems. “Such tools spend a great deal of
- time on the partitioning of the domain. The‘y also imp]enienta synchronous -
approach as the c;nly way to achieve correct results. Therefore, the fype of
support that they provide cannot be applied efficiently to bisection or other
problems that are task-parallel. These problems do not need synchronization to

guarantee correctness, and so they can benefit from the use of an asyfichronous



approach.

Nevertheless, some of the tools aimed at data-parallel problems did
provide some background useful in attacking task-parallel ones. In particular,
S. Baden developed a library (that evolved into LPARX) based on the sep-
aration of the execution process into three phases: partition, mapping, and
computation. The use of these abstractions and the analysis of the implemen-
tation of different task-parallel problems led us to a ne‘év,v< more flexible and
more general tAemplate: the PMESC paradigm.

| Our research focused then on the task-paréllel problems, the building
~ blocks that cdimpose them, and the strategies to implement those building
blocks. Many different algorithms and stvrategies had been proposed in the
literature. Howéver, the conclusioﬁs about which one to implement for the
library were Fnotv, definitive: some of them perform well on some problems, some
are better for other problems. The solution was to provide not one but several
strategies for the same programming issue so that the programmer could select
the ones that were more appropriate for the particular application.

The PMESC paradigm introduced in this thesis and the library based
on it are the 1‘65111@ of this research. The PMESC paradigm provides a mecha-
nism for structuring problems by separating the different programming issues
involved inrtheir~computa‘,tions. The PMESC library provides a set of build-
ing blocks that users put together‘to conform with the applications and the
machines. Both offer Vanrl environment that frees the prdgrammersvfrom deal-
ng with application-independent issues allowing them to concentrate on the

~application-specific ones. PMESC is intended for both the inexperienced and

-



the experienced programmer. It assists the inexperienced programmer in writ-
ing portable and quite efficient code within the context of a familiar language
"(Fo»rtran or C) :;nd without the burden of learning the machine architecture
details. It a,ssiéts the experienced programmer by providing a platform for

testing new applications and for comparing different strategiés.

1.3 Organization

The remainder of the thesié is organized as follows. Chapter 2 dis-
cusses paradigms in general, and the importance of recognizing them. It dis—‘ ‘
cusses related work and presents some examples. It also intrbduces the PMESC
paradigm as a “way of thinking” about implementations of task-parallel prob-
lems for distributed-memory computers. Chapter 3 examines the different
types of problems and the different approaches for parallelizing them. It shows

"how the PMESC paradigm applies to the differe-nt cases and presents i‘Hﬁstra—
tive examples of each case. Chapter 4 sets the ground for the PMESC library.
It describes the different strategies investigated in this research for embedding
of different topologies into different machine architectures, global combine op-
erations, termination detection, and dynamic load balancing.

Chapter 5 introduces the PMESC library. It discusses related work,
the motivations for developing a new ‘libra,ry, the library approach for handling
task-paraﬂel problemé7 and the modules that compose the library. Chapter
6 demonstx‘ates how to use the library in a variety Qf situations. It describes
in detail the ilﬁplement.a,tion of a suite of ex-’amples with the PMESC library. |
Chapter 7 examines the critéria to use to evaluate the portability, efficiency,
~and ease Qf use of PMESC. It begins the evaluation of the library by examining

. L TS
its portability and ease of use. Chapter 8 evaluates the performance that can



be achieved with the PMESC library. Chapter 9 compares PMESC with a
similar package called Charm. Finally, Chapter 10 presenis conciusions about

this work and topics for future research.

o



CHAPTER 2
"PROGRAMMING PARADIGMS

As experience in paralleling processing has grown, a number of para-
digms have ariseﬁ, each of which represents the structure of a particular pro-
gramming style or technique that can be efficiently applied to a particular class
of problems. Paradigms facilitate the efficient use of parallel computers for they
provide models that can be used to formulate the applications. Because the
essential computational structure of these techniques is already known, pro-
grammers only need to work on the problem specific details to produce-a new
program. ;

The purpose of this chapter is to emphasize the éigniﬁcance of para-
digms as progré.mming tools and to present a new paradigm. The chapter
is organized as follows. Section 2.1 discusses pal‘adigms in general. Section
2.2 presents some examples. Section 2.3 analyzes the viability of an universal
approach. Section 2.4 presents the PMESC paradigm. Section 2.5 describes

the PMESC programming model. Finally, Section 2.6 discusses the PMESC

framework.

2.1 Paradigms

" Paradigms are not actual algorithm_s, but rather they are problem
solving strategies that are frequently used in structuring the algorithms. Thus,
paradigms are the high-level méthodologies,‘skeletons, or frameworks that we

-
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-

recognize as common to many algorithms [57]. They represent thelgorithms
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in the same way as higher-order functions, i.e., functions that take functions
as arguments, represeut general computational framewo
functional programming languages [80]. Like higher-order functions, paradigms

do not concern themselves with the lowest level details of particular problems.

Instead, theyvca,pture the higher-level computational structure of whole classes

of algorithms. Implementations of particular problems are mere instanées of

these géneral skeletons.

An important feature of many paradigms is thét they enforce a mod-
ular style of programming that is highly beneficial in parallel prdcéssing‘. The
independence of the modules breaks the implementation process into several
smaller parts, each dealing with a particular task. The programmer may con- -
centrate on implementing each individually, without having to consider the
whole range of possibilities associated with the ‘implementation of the entire
code. This modularity makes programming not only easier and less error prone
but also more flexible as it allows changing of the modules without a great deal
of redesign.

Paradigms are useful tools for software developers for they allow the
recognition of 131;og1‘ammi11g issues that are common to many applications and
that are independent of the applications themselves. These abstractions facil-
itate the transfer of experience and knowledge from previous implemeﬁtations
as well as the reuse of code. In particular, paradigms encapsulate informa.tion
about useful c,ommuni'catioﬁ patterns.” Thus, they can be used to identify which
patterns are more useful and, therefore, should be well supported by computer
designers and software developers.

In the next section, we present examples of paradigms thal are suited

=
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while (tasks are available)

{

Get a task from queue;
Execute the task;
Place any newly created tasks on the queue;

}

Figure 2.1: Framework for the queue paradigms

for parallel programming on distributed-memory computers.

2.2 Examples of Paradigms
| A number of programming paradigms for parallel computation have
been presented in the literature [67]. In particular, the compute-aggregate-
broadcast (CAB) paradigm [57, 65, 66], the queue paradigms [16, 24, 95], the
divide-and-conquer paradigm [1], and the systolic paradigm [16, 65, 66]. We
_next describe these paradigms and provide an-example for each case. )
2.2.1 The queue paradigms. The queue paradigms provide
the abstractions to solve a common problem that arises when implementing
algorithms on distributed-memory computers: how to decompose the original
problem into subproblems or tasks and distribute them amo‘ng the processors.
These tasks, which can be dynamically created by each processor during pro-
gram execution, are stored in a queue. The procedure ‘can be represented by
the framework shown in Figure 2.1. (Note that this framework, like the rest
of the pseudo-codes in this thesis, represent code that runs on each one of the
processors. )
Depending on what processors store and handle the queue, the queue
paradigm can be centralized, distributed, and a combination of both [44]. Also,

depending on whether the tasks have been assigned different priorTges or not,
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the queue paradigm can be prioritized or non-prioritized [23]. In the centralized
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are ready for exegution. When a slave processor finishes a t@sk, it sends to
the master the new tasks that it may have created and asks for more tasks.
In the case of a priority queue, the master processor accumulates the tasks
in’ the queue according to their priorities and sends out the tasks with the
highest priorities first. Figﬁre 2.2 shows the framework for the centralized
 queue paradigm.

In the distributed épproach, each processor maintains a local queue
of tasks ready for execution. Processors execute the tasks in their local queues
until the system becomes imbalanced. In that case, some work is transferred
to compensate for the uneven distribution. Figure 2.3 shows the framevyork
corresponding to this approach. N

Finally, the hybrid approach ﬁses éspects of both th;e centralized and
distributed ones. It occurs when storage and maintenance of the queue is
handled by different processors. An example of this case 1s called centralized
mediation [88]. In this paradigm, processors store their local queues locally as
in the distributed case. However, when a processor becofnes overloaded (i.e.,
when the iength of its local queue exceeds some threshold) it sends part of its
queue to a processor called the mediator. Likewise, when a processor becomes
idle or underloa&ed (i.e, when the length of its local queue is less than a thresh-
old) it réQuestS some work from the mediator. The mediator processor sends
the tasks received from overloaded processors to the underloaded processors
that requested them. A variation of this hybrid approach, that we caﬂe_d cen-

tralized controller, is intended to reduce the overhead of moving largg amounts



if (master processor)
f

1
while (queue is non-empty)

maintain the queue (based on p;iorities if necessary);
if (slave processor sends tasks) -

receive tasks;

add tasks to queue;

select tasks from the queue;
send tasks to processor;

}

if (slave processor requests tasks)

select tasks from the queue;
send tasks to processor;

}
} | .
send termination message to all processors;

}

if (slave processor)

while (termination message is not received)

{ . ‘ o

receive tasks from master processor; ) o

execute task;
send newly created tasks to master processor;

request more tasks;

Frigure 2.2: Framework for the centralized-queue paradigm

while (local queue is non-empty)
{
- select task from local queue;
execute task;
add newly created tasks to local queue;
if (a processor requests tasks)

send tasks-to processor;

}

get tasks from another queue;

}

Tigure 2.3: Framework for the distributed-queue paradig—fﬁ"

14
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of data to the mediator. Processors store their local queues but these are con-
trolled by the controiler. Processors keep 1t informed of all the tasks that they
- create and execute, but they never actually send tasks to the controller. When
the controller ciecides that a processor has to release some work, it sends a
message to that processor requesting that it transfer some tasks to another
designated processor. That way, the controller does not handle the tasks. It
only handles the information about them. ;

Fdr distributed-memory computers, a centralized queue and even a
hybrid queue result in non-scalable applications [56]. In contrast, the dis-
tributed queué paradigm supportsi an approach that keeps the queue struc-
ture and the communication necessary to maintain it distributed among the
processors and, therefore, seems to be more suitable for distributéd-memory
computers [56].

Instances of the centralized queue paradigm can be found in those
multiprocessor operating systems that follow a master/slave organization [28].
In this case, a designated central processor executes all the privileged opera-
tions while slaves perform jobs that are delegated by the master.

2.2.2 The CAB paradigm.  An example that illustrates clearly
how programming paradigms provide a method for structuring parallel com-
putation is given by the CAB paradigm. The CAB paradigm consists of three
phases: compute, aggregate, and broadcast. In the compute phase, each pro-
cessor executes its asskig'ned portion of the problem, producing-isome results.
The compute phase may differ widely from a,pplication to application. It may
be a very complex algorithm or just a few operations. In the aggregate phase,

the partial results are combined into a global result. In the broadgast phase,
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Initialize;
for i = 1 : number of cycles
begin {cycle}
Compute;
Aggregate;
Broadcast;

- end {cycle}

}

Figure 2.4: Frémework for the CAB paradigm

global information necessary for the next cdmpute phase is sent to each pro-
cessor. A CAB algorithm can be represented by the framework in Figure 2.4.

The aggregate phase is usually a tree-based gathering operation that
combines data from the processors, producing a global value [66]. This global
value, or some information based upon it, is sent to the processors in the broad-
cast phase. Processors then can proceed with the next compute phase. Thus,
this paradigm applies to those 'conhputations in stages that req-uii‘e syrichro—
nization at the end of each stage.

An instance of the CAvaa‘ra.digm is given by the parallel implementa-
tion of the Jacobi iterative method for solving Laplace’s equation on a rectamglgz
[65]. The example in [65] solves the electric field problem depicted in Figure
2.5. The domain is discretized by laying a mesh on top of it. The numerical
solution is obtained by computing the voltage V;; at the points (¢,7) in the
- mesh. To begin, an initibalwguess is computed for each point. Then, successive
~ iterations-compute a new value at each point as the average of the values of its
fmour neighbors. The itere;tive process terminates when the difference between
the new and the old value at every point is less than a given tolerance.

- Figure 2.6-depicts the pseudo-code for this problem. The compu'te

-~

. ' . had
phase comes first. It connects the processors in a mesh so that each processor



+100 v

i

-100 v

2 217
M_}_a I _-O

Pt LV +

-t t
=1y i+l +F i1 +F )

i+

0 on boundary

Figure 2.5: Electric field problem: A CAB algorithm
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computes a point of the discretized domain. Observe that in order to make the
approach independent of the computer architecture, problems are formulated
in terms of virtual machines ﬁhose processors are interconnected by virtual
communication channels. Virtual machines are possible because the meséages
are automatically routed from any processor to any other proceséor. For in-
stance, the natural virtual topology to uée for this phase is a mesh as processors
exchange their value me with their four neighbors. Then, they calculate the |
new value, V/;, by taking the average of the values r‘eceived. Finally, they com-
pute the difference between the new and the old value. The aggregate phase
comes next. It connects the processors in a virtual binary tree and computes
the global maximum of the differences between old and new values as follows.
Every processor fhat corresponds to a leaf of the tree sends its difference to its
~ parent. A processor that co1*resi3011ds to an internal node of fhe tree Qvaluétes
the maximum of its difference and its children’s differences and send it to its
parents. The root processor, i.e., the processor that corresponds to the root
of the tree, computes the global maximum. Finally, depending on the global
maximum, the root sends a message to the other processors which corresponds
to the broadcast phase. If the global maximum is less than the tolerance, the
root broadcasts a ferminaﬁon message. Otherwise, it broadcasts a céntinuation
message.

" In the CAB paradigm what is important is identification of the‘ phases
that compose any problem not the order in which they appear in the computa-
tion. Thus, the paradigm may also be Broadcast-Compute-Aggregate (BCA)

or any other combination of the three.



{

while (Continuation message received)

*+* Compute phase ***

Mesh(Neighbors); *Obtain neighbors in a mesh*
Exchange(V’s) with Neighbors;

NewV = (Vie1 j+Vig1,j+Vij-1+Vije1)/4

Dif = abs(NewV - V);

V = NewV;

} ,

*tt A goregate phase *¥**

Tree(Parent,Children); *Obtain neighbors in a tree*
if (internal processor)
Receive(Dif) from children;
Dif = max(Dif, Received Dif’s);
if (not root)
Send(Dif) to Parent;

}

*** PBroadcast phase ***
{
if (root)
{ -
if (Dif < Tolerance)
‘Broadcast (Termination);
else .
Broadcast (Continuation);

else
Receive Continuation or Termination message;

Figtfl'e 2.6: Pseudo-code for the Jacobi procedure

i
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2.2.3 The systolic paradigm. In this paradigm, a problem is
divided into subcomputations that are assigned to processors. The data flows
through the Processors until computation is completed. Systolic algorithms
present characteristics that make them similar to CAB algorithms such as
locality of communication and regular communication structure. However, the
key characteristic of these algorithms is the concept of flow of data.

A simple example of systohc algorlthm is given by the computa-.
tion of the matrix-vector multiply Ab = ¢, where ¢; = 37 "= a;;b;. Proces-
sors Po,...,Pu_y are virtually connected in a ring structure, and the matrix
A= [a,:j], 0 <1z,7< n — 1 is statically distributed by rows among the pro-
cessors. The elements of b flow through the processors, visiting all of them..
Initially, the i-th row of A and the i-th element of b are stored in the memory
of processor P;. At each step, a multiplication between an element of tlle row
of A and the visiting element of b is performed by each processor and accumu-
lated into a variable s; that stores the intermediate result of the inner bl‘OdUCt.
Then, the element b; is cyclically shifted to next processor in the ring. After n
steps, the ith element of vector ¢ is in processor P;. The process is illustrated
in Figure 2.7.

2.2.4 The divide-and-conquer paradigm. This paradigm is
well known in sequentiél and parallel computing. It apblies to problems that
can be divided into two or more smaller subproblems that can be solved inde-
pendently. Thé Subﬁrobléms are just smaller instances of the original problem,
and their results have to be combined to produce the final result. ‘Thus, the
pamd]gm can be mple%ented by a 1ecmswe plocedmc

Ina sequenmal computatxon the subproblems are solved sezjally. Each
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Figure 2.7: Matrix-vector multiply‘: A systolic algorithm
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subproblem is completely solved before starting with the next one. In a parallel
computation, the subproblems can be solved in parallel. Because the data and
‘the results are distributed among the processors, their combination requires
interprocessor communication.

An instance ofvthis paradigm is given by the divide-and-conquer al-
gorithm to multiply two dense n X n matrices AB = C’ using n? processors,
assuming that n is some ini;eger power of two. The processors are intyercon;’
nected by‘a, n X n mesh and labeled P; for 0 <1,7 <n—1. The matrices A and
B are initially distributed among the processors, with proéessor P;; containing
elements a;; and b;;.

- Consider the case that n = 2. Each processor multiplies the elements
it has, e.g., Poo computes agoboo, P11 computes ay1by1, and so on. Then, each
processor sends its a;; value to the néxt processor in the same row and its b; ;
value to the next processor in the same column. Every processor multiplies
the newly received values and adds the result to the previous one to obtain the
element ¢;; of matrix C.

For the general case, the algorithm splits each-n x n matrix and
converts it into a 2 x 2-matrix whose elements are & x 2 submatrices. That
way, it can apply to this matrix the same technique used for the case n =2.
(The only difference is that, in this case, the elements of the 2 x 2 matrix are
submatrices.) The procedure splits the matrix recursively until the submatrices
~are 2 X 2. 7

The execution of a divide-and-conquer algorithm can be associated
with a dynamically evolving tree of processes that has to be traversed down

for the subdivision of the problem and then up for the computation_gf the final
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result. The algorithms are basically synchronous for it is not possible to solve

T T 1 (G E R Uy i
ally plobleill wiuiiouu llavilpg colnpicucu i

Most paradigms presented in this section (except for the queue para-
digms which do not specify) provide support for developing problems that are
synchronous. However, we will see that there are other kinds of problems
for which no synchronization points are necessary. Moreover, synchronization -
should be eliminated in these problems for it introduces a source of unnecessaiy
overhead. It is necessary to find a more general methodology to address a
wider specfrum of problems. The paradigm that we iintroduce in this chaptef

is intended to fill that hole.

2.3 A General Paradigm

A number of general programming techniques have emerged that help
users té design and implement parallel applications. Each one is well suited to
a certain type of problem but is inappropriate for others. A natural question
is whether it is possible to create a universal technique, le., a paradigm that
could be applied without restriction to solve any parallel problem on any par-
allel machiﬁe. Un'fortu,nat’ely,“this seems to be anfi‘mpossible goal as different
types of computers and problems require different approaches for paralleliza;-
tion. Furthermore, the provision of a single, universa;l programming fram‘ework
j 18 i11com1)étib].e with the goal of efficiency. |

In his book “Algorithmic Skeletons: Structured Managemen{ of Par- ~
‘a,lle‘l Computation” [16], M. Cole i)roposes an alternative solution: to build a
new system that he calls the skeletal machine. This so-far-imaginary sys-

tem would present not a single skeleton but a collection of independent ones.
: : "=
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In this system, the user would be presented with a menu listing the avail-
able skeletons. The user would select the skeleton that is- appropriate for the
problem at hand as well as the language in which she or he wants to specify
the procedures. The syst'em would respond by displaying the generic program
that describes the structure of the skeleton in the chosen language. Finally,
the system would ask the user to provide problem specific details of the data
sfructures and procedures so that it can turn the generic skeleton into the user
application. |
Although the notion of an abstract machine based on algorithmic
skeletons is in an embryonic state, we believe that gathering a collection of
‘paradigms is of fundamental importance if we want to take a first step in
making parallel computers more accessible to a wide range of users. Most
existing systerhs, either languages or libraries, provide no methodology to deal
with parallel problefns. ~Our approach is to propose a new paradigm and a
library that is based on that paradigm. That way, we can providé both the

methodology and the tool that implements it. We next present that paradigm.

2.4 The PMESC Paradigm

Parallel programming on distribu’ied—memory computers involves sev-
eral sources of difficulty. Among them is the task of pbroblem decomposition
or identification of pardﬂelism. It is nécessary to identify the processes tllét
»éan operate concurrently in order to achieve a solution. Thé second problem
is that ofvrdistribution, the physical realization of the parallelisﬁl identified 1n
the decomposition phase. We must siaecify a mapping from processes into the
available processbrs and indicate tllevi‘ldeclla.llisxns by which the mapping can

R -
be performed dynamically if necessary. Processors must then excecute their
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assigned work. In the most favorable situation, the decomposition and distri-

i1l lead to a situation in whic

o 1
ATl vV s ivay L0211 wWilleld

bution 1 processors have received a
~ fair amount of work and can proceed with the execution until complete. How-
ever, in most cases, processors will need to communicate either to share some
data or to share some work. It is necessary to consider the mechanisms by
which both kinds of sharings are to be performed. Because these mechanisms
are so different we rather treat them as two separate problems. Finally, another
problem to consider is the separation of the applications from the underlying
characteristics of the hardware.

To better deal with all of these issues, we present a new program-
vming paradigm. It is called Partition-Map-Embed-Solve-Communicate
(PMESC), and it is composed o’f five phases bearing those names. The Par-
tition phase splits a problemv into subproblems, the Map phase distributes
those subproblems among the virtual graph of 7procéséors intercor;neéted by
some convenient virtual topology, the Embed> phase embeds the virtual in-
terconnecting topology of the processors into the actual machine architecture,
the Solve phase performs the computation necessa‘r.y to solve the subproblems,
“and the Communicate phase takes care of the interprocessor communication.
These phases becérﬁe the building blocks of distributed algorithms. To better

understand the building blocks of this paradigm we next describe the compu-

tational model to which it applies.

2.5 The Computational Model
Distributed-memory computing consists of partitioning the work into
units of work or tasks and assigning those tasks to the processors. Data is

—-

shared through message passing instead of through common mema&y. Let us
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assume a set of tasks 7' and a set of processors P = { P, Py,...,P,1}. Let
us call (P, M) a graph whose vertices P are connected by edges M, M being
a set of pairs of processors. Let the graph (P, M ) represent the physical inter-
- connecting topology of the processors, i.e., the actual machine architecture.

The problem is represented in terms of a graph (T, ), whose vertices
correspond to the tasks in 7' and whose edges, G, correspond to their commu-
nication requirements. The graph of tasks (7, G) is ma,ppe‘:wdyonto the set of.
| processors (P, M ). Thus, a program for that problem consists of a graph (7', G)
and a mapping function thatVassigns those‘ tasks to the processors. In some
cases, a program consists of multiple graphs, as tasks and their communication
| ‘requ’irements evolve and change with the computation.

However, this model is still incomplete. We need to make it more
flexible in order to deal with two seemingly conflicting goé,ls: ‘efﬁcien_cy and
portability. On one hand we want to separate the application from’the machine
architecture, i.e., the low-level details of the parallel computation from t}(le
high-level ones, to achieve portable code. However, this approach may be
very inefficient. On the other hand, in order to develop highly efficient code we
need to program the’computér explicitly, matching the data-dependency graph
- of tasks (7, G) with the physical interconnection topology of the processors
(P, M). Of course, the main drawback of this approach is that it is not portable.

In order to be able to choose any variation between high efficiency and
maximal portability, so;ne experiénced'ptogr’a,m"mers introduce a third graph
(P, V) which corresponds to the set of processors interconnected by some vir-
tual topology. Under this new mogiel, a program consists of the graphs (7', &),

(P,V), and (P, M) and two mapping functions: one that assigns tagks to the
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processors interconnected by some convenient virtual topo'logy and the other
that maps this virtual machine into the real machine architecture.

The programming model supported by PMESC provides the freedom
of chobsing between maximal efficiency and portability. The programmer can
program the computer explicitly, matching the data-dependency topology of
the tasks with the interconnection topology of the processors or assume a
virtual architecture and embed it into the actual one. The first choice, which
allows the writing of higlﬂy efficient but non-portable code, corresponds to
the case when no virtual topology is used, i.e., (P, V) = (P, M). The second
choice, which allows the writing of portable but possibly less efficient code,
corresponds to the case when the code is designed on a virtual machine that
changes dynamically at the designer’s convenience.

In the next section we present the PMESC framework that we use as

the backbone to develop distributed implementations.

2.6 The PMESC Framework

Figure 2.8 depicts the PMESC framework. The framework shows at
a high-level the phases involved in the implementation of a parallel problem.
First comes the identiﬁcation of the units of work, 1.e.; the Partition phase.
These units may be created either at the beginning of the execﬁtion or dy-
namically as the execution evolves. In the next step, units are assigned to the
Processors. This step corresponds to the Map phase. Upon assignment of the
woi‘k,rprrocessors begin éxecut’ion; This step corresponds to the Solve phaée of
the PMESC paradigm which may vary widely from problem to problem. Some-

times, some interchange of work may be necessary to keep the load balanced,

—
—~
-
-
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{

Partition;
Map;
begin {cycle}
Solve;
Map; (to balance loads if necessary)
Communicate; (to share data if necessary)
end {cycle}
Communicate;

}
Figure 2.8: Framework for the PMESC paradigm

and this step corresponds to the Map phase. Also, in some applications, in-
terprocessor communication may be necéssary to share information: This step
corresponds to the Communicate phasé. The process répeats in a cycle until
the work is compléted. At the end, processo'rs may communicate to gather the
partial results. The PMESC phases can appear in any order and number. In
the PMESC paradigm, the identiﬁcation of the phases is what matters, not
their sequence.

In the next chapter, we describe different categories of parallel prob-

lems and show how the PMESC paradigm applies to all of them.



CHAPTER 3
A TAXONOMY OF PARALLEL ALGORITHMS

In this chapter, we describe the diﬂereﬁt categories of problems that
exist and the different approaches for their resolution on distributed—memor‘y
computers. For each approach, we present illustrative examples and discuss
the PMESC phases. The chapter is organized as follows. Section 3.1 presents
a classification of the problems: data-parallel vs. fask—parallel, regular vs.
irregular. Section 3.2 categorizes the approaches for parallelization: static,
quasi-dynamic, and dynamic. Sections 3.3, 3.4, and 3.5 analyze each one of
these approaches in the context of different examples. These Asections also show

how the PMESC pafadfgm applies to the different approaches.

3.1 The Problems

Two categories of problems can be distinguished in parallel comput-
ing: data and task-parallel [47]. Fach of these ca‘tAegories can be classified as
regular or irregular.

3.1.1 Data vs. tésk parallel.  Data parallel computétions are
t‘hose that present a large data domain that can be decomposed into subdo-
‘Mains to be assigned to the processors. Because rdat'a dependencies are st}rdng,
adjacent subdomains are usuélly a‘sksignred to neigihbori'n’g pArocessors (in ther
actual machine.) Thus, locality is an important characteristic of these prob-
lems. The subdomains can be executed in parallel by performing the same

computation on each. However, processors must exchange data p&iodically
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and synchronously in order to achieve correct results. Models that represent
this type of problem are SIMD (Single Instruction, Multiple Data) and SPMD
(Single Program, Multiple Data). -
| In contrast, task parallel computations do not necessarily have a large
data structure but rather a large task that can be partitioned into asynchronous
subtasks to be assigned to the processors. Different subtasks may involve
“different computations; These tasks are self-contained for they do not need the
outcome of other tasks. Eventually, processors may need to exchange some data
or work, but they can do it asynchronously. Because the tasks are essentially
uncoordinated and because the communication between them (if any) is not
significant (compared to the data-parallel case), locality is not an issue for these
problems. Task-parallel problems can be represented by the SPMD model and
the MPMD (MultipleVProgl_*abm,_ Multiple Data) model.

Observe that some applications may involve the two paradigms, data-
and task-parallel. An example is given by a problem where the number of
subproblems is less than the number of processors available. In thatvcase,
more than one processor is dedicated to solving the same subproblem. The
original problem is then subdivided twice. At the higher level, the problem
is split.coarsely into a convenient number of subproblems. At the lower-level,
the éubproblems are split finely among the processors in a group. The first
subdivision is task-parallel while the second one is data-parallel. Another,
more challenging case is presented by those large scale applications that are
being implemented on heterogeneous computers. In this case, the original
problem may be split into heterogeneous subproblems that are a,ssigned_to

the different computers, following a task-parallel approach. Eacly gpmputér,
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in turn, applies the appropriate paradigm —data- or task-parallel— to the
corresponding subproblems.

3.1.2 Regular vs. irregular. Data- and task-parallel problems
can be regular or irregular. Regular computations are those whose computa-
tional requirement can be determined or at least estimated a priori. In contrast,
the computational requirement of irregular computations becomes evident only
during their execution. Irregularity appears in some data pérallel computations
when it is difficult (if not impossible) to make an a priori partition of the data
~structure in such a way that each processor receives roughly the same amount
of work. Irregularity appears in task parallel computations because the number
of tasks and usually their computz{tion times vary during program execution

in an unpredictable manner.

3.2 The Approaches to Parallelization

Different types of problems may require different approaches for their
efficient implementation on distributed-memory coinputers. These approaches
can be classified as static and adaptive. The latter can be qvua‘si—dynamic and
dynamic [93]. In this section, we briefly describe each one of these categories
and the differences between them. |

‘The static approéch splits and assigns work to the proceésors without
any regard for the system state. This subdivision is made only once, usually
at the beginning of the execution, and it is based on information that the -
progra.rrimer has about the app_libati’on[ For that reason,A it is well suited to
regular computations. Adaptive methods are an interesting alternative to this
stl'a,igiltfoyxva.l‘cl approach. They apply to those computations that are irregular

and for which no a priori estimates of load distribution are possib¥. In this
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case, 1t 1s only during program execution that different processors can become
responsible for different amounts of work. Adaptive approaches are especially
well-suited for these problems because they react to the variations in the system
state, concentrating efforts on those areas that look more promising and making
work transfer decisions to keep the loaa balanced.

Adaptive approaches can be quasi-dynamic and dynamic. Quasi-
dynamic approaches apply to those computations that are synchronous and
predictable in stages and that require periodic load balancing checks to achieve
good performance. Dynamic approaches apply to those computations that are
asynchronous and unpredictable and that require continuous, instead of peri-
odic, load balancing checks. | |

In the remaining sections of this chapter we analyze each category

in more detail, present some examples, and show how the PMESC paradigm

applies to each one of them.

3.3 The static approach

The static approach can be successfully applied to those problems that
exhibit regular structure. Because these computations allow one to get an a
prioﬁ estimate of the workload, they can be efficiently ﬁartitioned and mapped
to the processors at the beginning of the execution. This initial pa.rtition_a‘nci
assignment of work achieves good load balance and no adjustments need to be
made to improve the efficiency of the parallel implementation.

3.3.1 Exam;r)l'ebz bléck matrix-;/éctor multiply.- An Aexa,mpl.e
of the static approach is given by the block matrix-vector multiply Az ’: b,
where the matrix size 19 a multiple of the number of processors. [34]. igure 3.1

illustrates how the matrix A is divided into p = number of process3ts blocks
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and the blocks assigned to the processors. FEach processor then computes its
assigned portion of the vector b iu roughly the same amount of time.

Static problems are not necessarily so simple. Many complex, static
problems can be found on data parallel compﬁtations such as the solution of
some PDE problems. In this case, the efficiency of the static implementa-
tion dei)ends heavily on the use of a good partitioning strategy for domain
decomposition and also on an efficient mapping strategy to assign th¢ different
subdomains to the processors. Many researchers have been working on efficient
strategies for domain decomposition of PDE problems [37, 38, 84, 85]. Also,
very good results have been obtained for efficiently mapping the subdomains
onto the processors [8, 9, 11, 47, 63].

3.3.2 Applying PMESC to static problelﬁs. Figure 3.2 illus-
trates how PMESC applies to static problems, In the diagram, the horizontal
axis represents the processors and the vertical axis represents time. Thus, each
column corresponds to the execution time spent by each processor. Connected
columns represent phases in the computation involving some communication.
For the static approach the diagram is very simple. There is an initial parti-
tion of the work into units. This procedure may run on a single proéessor or in
parallel, depending on the application. Then the mapping prdcedure assigns

those units to the processors connected by some convenient virtual topology

e.g., ring, binary tree, etc. The virtual topology is embedded into the actual
machine a1;cllitecture' —é.g., l;ypercube: mesh. Next, each processor proceeds
independently with its assigned part of the computation. In the matrix-vector
multiply example, the Solve phase consists of performing the dot product of the

assigned rows of A with z. At the end, processors may communicag to collect

-
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Figure 3.1: Block matrix-vector multiply
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the partial results. For this phase, they may use a different virtual topology.

: \wm
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Iligure 3.2: Diagram for the static approach

“Initialize;

begin {
Partition;
Map;
Embed;
Solve;
Communicate;
[Embed;]
}

end

Figure 3.3: PMESC phases for the static approach =gm
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3.4 The Quasi-Dynamic Approach

- The quasi-dynamic approach applies ti
tions for which comuputa;vtional efforts should be concentrated on different parts
of the domain during different parts of the execution. These variations occur
slowly enough that imbalance appears in a gradual énd predictable way. Thus,
periodic, instead of continuous, remappings of work are necessary. The remap-
ping of work occurs at convenient s.ynchronization points in 1;he coinputation
that distinguish different stages. After each stage, the Work estimate of the
next stage can be determined. According to that estimate, the work is redis-
tributed and mapped among the processors. Each stage is composed of the
following steps:

e the domain is decomposed into subdomains,

o the set of subdomains is mapped into the set of processors,

‘e each processor runs the application on its assigned portion of the do-
main,

o cach processor transfers work —if necessary— to keep the load bal-
anced. Transfers are synchronous. They may be global, i.e., involving
all the processors or non-global, i.e., invovlviﬁg only neighboring pro-
Cessors. 7

o processors exchange data —if necessary. This exchange 1s also syn-
chronous.

After each st.ag'e, a new domain deCoinposition is considered, and another stage
begins.
3.4.1 Example 1: a fast N-body problem. DIxamples of

quasi-dynamic applications are found in computational fluid dywamics and
. = ’
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particle physics. For instance, the following example originally presented in
[3, 4] describes the flow of a fluid by computing the motion of a set of particles
over a series of timesteps. These particles, which move under mutual inter-
action, congregate and disperse irregularly around the domain unpredictably
with time. Because computational effort is associated with the number of par-
ticles, it is impossible to make a static distribution of work that keeps the load
balanced. A |
The particles move under the influence of a potential which may be
computed in two parts: a global part and a local part. Because the iocal at-
tractions are physically more important than the global ones, we can ignore the
global part. rI.‘herefore, communications only involve neighboring processors.
To partition the two-dimensional problem, a mesh is laid on top of
- the computational domain. Each meshbox contains the particles that lie.in
the region covered by the box. A uniform way to partition the work consists
of splittiﬁg the domain into rectangular regions and assigning those regions to
the processors. However, this approach is very inefficient because the number
of particles in each box varies over the mesh and so does the amount of worlk
associated with each box. Figure 3.4 illustrates a situation where the domain
is decomposed into 16 rectangular regions to be assigned to 16 processors. Be-
cause particles are nonuniformly distributed in space, some processors become
overloaded while others are idle.
- Figure 3.4 also shows a better partitioning strategy that sphf‘s the
domain into irregularly sized regions that have roughly the same amount of
particles and so require similar computational times. This strategy compen-

sates for the uneven distribution of work and can substantially wgprove the
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T =125 [Eff = 0.809]

Figure 3.4. Uniform (top) vs. adaptive (bottom) partitioning of the domain
into 16 subdomains. At the depicted time each subdomain’s share of the work-
Joad is shown in the subdomain assigned to it, normalized to 1000 units of total

work. Source [4]. : : - S
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efficiency. However, it only solves the problem for a while. As time passes,
particles move, redistributing themselves around the domain as illustrated in
Figure 3.5. Theréfore, partitioning and mapping of work must be periodicaﬂy‘
reconsidered. Otherwise, some processors would become overloaded while oth-
ers would be idle waiting.

Because particles move slowly in time, their redistribution is a gradual
process thafc only involves neighboring processors. Therefore, load balancing
in this case is non-global. It is also synchronous in ordér to guarantee correct
results. If mapping were asynchronous, then it would be possible for some
particles to be in different positions on different processors at the same time.
Consequently, results would be nondgterministic.

Thus, in the quasi-dynamic approach, the computation is divided into
stages which are separated by- synchrbnization points. At the end of each stage
a new partition and mappiﬁg of work are considered based on the estir;w,tes
of the workload for the next stage. This type of approach is reasonable when
the irregularities appear gradually. There is enough predictability about the
problem structure to be sure that lqa.d balancing will improve the situation for
a certain amount of time.

- '3.4.2 Example 2: adaptive irregular multigrids.  There are
some PDE problems where the computational effort needs to be concentrated
on some regions of the domain. Becau$e the domain is discretized by a mesh,
tilel‘e.al‘e some vré‘gioms where the mesh needs to be more refirred than others. |
Because the location of these regions is not known in advance, adaptive irregu-
1@1‘ grids that allow localized refinement are necessary. In particular, there are

some methods called adaptive multigrid methods, where the donvain may be
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Figure 3.5. Dynamic distribution of the particles into 16 subdomains. Source
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discretized by a hierarchy of grids that have different resolutions [52]. As the
computation goes on, the collection of gridé may be changed from coarser to
finer by applying the refinement proceduré.

The adaptive solutions to these irregular problems attempt to balance
the load periodically,bremapping the 'adapfing grids as they change. - These
changes are called grid refinements, and they separate the computation‘ into
stages. In each stage, the partitioning consists of the decomposition of the
grid into units (aggregates of nodes). The mapping of those units into the set
of processors consists of thé identification of the units that can be executed
simultaneously —i.e., those units that do not have dependencies or temporal
precedence constraints —and the subsequent distribution of them among the
Processors. |

The optimal load distribution for each stage 1<; determined by mini-
miiing the estimateci parallel execution time of that stage. For grid-oriented
applications, the computation load for the next stage can be predicted reliably.
The mapping procedure assigns computation and communication costs to the
units, and these values are used as input parameters to some approximate
cost function. | Several optimization algorithms are proposed 1in the literature
based on the minimization of the estimated parallel execution time of the next.
stage. Among them, recursive bisection, orthogonal bisection, and 91mulated
annealing are commonly used in many PDE implementations. Any of these
procedures requires global synchroniza‘tion points. 7 7

3.4.3 Applying PMESC to quasi-dynamic problems. An
important characteristic of the quasi-dynamic approach is that it applies to

.
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problems in which the variations in the load distribution occur gradually. Be-
cause these changes happen slowly and pre
check periodically and corrected with anticipation. The Solve phase, then, can
be structured in between the periodic checks.

The two .prévious examples can be represented by the diagram in
Figure 3.6. It shows how the computation 1s divided in stages, each With its
corresponding Partition, Map, Embed, Solve and Communicate procedures.
Again, the horizontal axis corresponds to the processors and the vertical to the
execution time.

The first procedure in Figure 3.6 corresponds to the Partition phase.
In the quasi-dynamic approach, it represents the domain decomposition. In
‘the diagram, partition appears as a global procedure, but it may also run se-
‘quentially on a single processor, depending on the metho~d used. Then comes -
the mapping proceaure. It éorresponds to the initial assignment of work to the
processors as well as to the subsequent reassignments needed to keep the load
balanced. These reassignments are always synchronous to guarantee determin-
1stic results.

In the particle example, mapping 1s non-global, i.e., it involves neigh-
boring processors only. In the multigrid example, mapping is global. Data
dependencies are strong in these problems, and so processors exchange not
only some work but also somé data. This exchange 15 éssociated with the
Coinmuni»catépha,sé. In both examplbes the virtual topology uéed is a mesh.
Thus, the Embed phase‘represents the embedding of the mesh into the actual

machine architecture.

-,
b
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Figure 3.6: Diagram for the quasi-dynamic approach
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Initialize;
for i = 1 : number of stages

bcsxu {stage}
Partition;
Map;
Embed;
Solve;
Communicate;

end {stage}

end

Figure 3.7: PMESC phases for the quasi-dynamic approach

After partitioning, mapping, and commﬁnicatiﬁg, pProcessors can pro-
ceed independently with their computations for a while. These computations
correspond to the Solve phase that continues until the system becomes imbal-
ancéd again. In that cése, redistribution of work is necessary, and a new stage
begins! The process repeats until computation is completed. Figure 3.7 shows

the PMESC phases for the quasi-dynamic approach.
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3.5 The Dynamic Approach

There is another kind of unpredictable computation for which no
stages can be distinguished and no a priori estimates of load distribution are
possible. Dynamic approaches are especially well-suited to these problems
because they assume no prior 'knowledge of the workload and allow work re-
distribution at any time. Thus, like quasi-dynamic approaéhes, dynamic ones
are also adaptive. Like qﬁési—dynamic approaches, they eval;uate the changes
in the system state in ofder to make work transfer decisions. However, unlike
quasi-dynamic. approaches, they make these evaluations continuo_usly rather
than periodically, interleaving remapping with computation.

The dyna;mic approach is asynchronous as it allows each part of the
computation to proceed independently of the other parts. It applies to those
applications that can be split into parts that are as autonomous-as possible.
Therefore, the approach is especially appropriate for task parallel computa-
tions, where tasks vary dynamically in size and number.

Examples of problems that need a dynamic approach can be found in
those computations involving some type of tree search [35]. This type of com-
putation is difficult to partition and map to a distributed-memory computer N

“because different branches of the tree may have different number of nodes and
levels. In addition, trees evolve dynamically, making it impossible to achieve
an efficient initial mapping of the work among the processors'. Combinatorial

“search methods, for instan‘cke', are complex, dynamic techniques used to so’live
problems that arise in such fields as artificial intelligence [96]. They consist of
associating a rooted tree with a given problem. The execution of the-algorithm

corresponds to a search in that tree to find the goal leaves. A lealgepresents
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either a solution of the problem, i.e., a goal leaf, or an unproductive partial
solution, i.e, a partial solution that cannot lead to a solution. The nodes of
the tree are generated by using an expansion procedure, which applied to any
problem P, either solves it directly or derives a set of subproblems such that
the solution of P can be found from the solutions of its subprbblems. Thus,
when an expansion procedure is applied to node v, it either determines that v
is a leaf or producés the children of z}.- The search recursively expands nodes
until a set of leaves is identified as the desired s§lutions of the problem.

An efficient parallel implementation of a tree search must be adaptive
and asynchronous, i.e., dynamic [48, 74, 75]. It needs to be adaptive in order to‘
redistribute the subtrees as necessary to keep the load balanced. It also should
be asynchronous in order to exploit the facts that tasks are independent and
that little communication is required between the processors executing those
tasks. In the next sections we discuss some Séél’gh problefns and the dynamic
algorithms to solve them. We will see that a parallel search must address the
issues of partitioning and distributing the work among the processors, solving
the subproblems associated with the nodes, sharing some information, and
embedding the tree into the actual machine architecture. Therefore, we will
see that they are PMESC algorith;ns.

3.5.1 Example 1: backtrack search.  There is a class of dy-
namically created probleﬁus that can be solved by backtrack search [96]. Back-
track search is a search thfough a tree of partial solutions. When a partial
solution cannot lead to a solution, it is necessary to terminate the unproduc-
tive search and backtrack to a point where another partial solution can be

e
-
-
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started. One example of backtrack search is given by the eight queens prob-
‘lem. This problem consists of finding all possible arrangements of eight queens
on a 8-by-8 chess board in such a way that no queen can attack another, i.e.,
no two queens can be on the same row, column or diagonal of the board.

The backtrack search method generates partial solutions consisting

- of the arrangement of some queens so that no two of them can attack each
other. Given a partial solufion, it may be exteﬁded by placing another queen

. at the first available row in such a way that the newly placed queen does not
attack the others. If such an arrangement is not possible, it means that the
partial solution cannot be extended to a solution, and therefore it is neceséary
to backtrack. Backtracking is done by rerﬁoving the last queen placed on the
board and éontinuing with other possible'placements the;t' have not yet been
attempted. This process repeats until all possible arrangements of the eight
queens on the board are found. '

3.5.2  Applying PMESC to parallel backtrack search. The
execution of the backtrack search is based on the node expansion op'eration.
When this operation is applied to a node v, it either determines that v is a leaf
or generafc‘es the children of v. The node expansion operation éan be applied
simultaneously to several subtrees, which makes backtrack search especially
suited for parallelism. Thus, to parallelize the backtrack search we need to
assign a subtree to each processor. Good speedup can be expected if the
ProCessors are kept busy with nodes to expand. In other words, speedup can be
‘obtained by keeping the load balanced. A parallel backtrack search procedure

can be described as follows:



49

Partition: The root is expanded by creating a set of frontier nodesz
i.e., nodes that have been generated but not expanded.

Map: The frontier nodes are distributed among tvhe Processors.
Partition: Each processor creates a queue of nédes ready for expan-
sion.

Map: A processor is busy if its local queue of nodes is non-empty.
vOtherwise, it is idle. A processor is overloaded if its queue length is
greater than a given threshold. A load balancing strategy must be
applied to redistribute the load if necessary.

Solve: The assigned subtree is traversed by the node expansion oper-
ation. Each node expansion operation generates more frontier nodes
which are added to the local queue.

Communicate: The ﬁngl solutions, i.e., the goal leaves, are gathered .
at the end of the execution.

Embed: The logical structure of the tree is mapped onto the physical

machine.

Thus, parallel backtrack search can be described in terms of the five basic

building blocks: Partition, Map, Embed, Solve, and Communicate.

3.5.3 Example 2: branch-and-bound. In parallel backtrack

aﬁlgorithms7 each subtree can be searched without any knowledge of the outcome

of other subtrees. However, this is not the case for all search algorithms. There

18 a,nothrelj ‘method that uses the outcomes of other searches not to find the

solution of the problem but rather to achieve good performance. This method,

called branch-and-bound, uses a global bound to prune those branches of the

tree that cannot produce a solution [89, 96]. It defines a cost function ¢ which

el
-



assigns a value ¢(v) to each node v based on the values of the nodes in the
path from the root to v. The solution of the problem is given by the leaf with
the minimum cost function. An example is the traveling salesman problem
(TSP). This problem consists of a set {1,2,...,n} of cities connected by a
graph. An edge (i,‘ 7) of the graph represents the distance d;; between cities
z and j. A tour is a traversal of the graph in which each city appears exactly
once: A solution to thé traveling salesman problem is the tour of least cost.
Thus, a solution is given by a permutation o of the set of cities {1,2,...,n}
that minimizes Y -, d;'a(,-)v.

A branch-and-bound procedure consists of two parts bearing those
names. The bounding procedure computes lower bounds on the costs asso-
ciated with each subproblem. Thus, to bound a problem A the bounding
procedure solves a simpler problem B. In the TSP case, A represents the min-
imization préblém subject to the constraint that the tour must have only one
cycle, while B represents the same minimization problem with the tour allowed
more than one cycle. Thus, if the solution S of B contains only one cycle, then
S is also a solution to problem A. Otherwise, the cost associated with S is
used as a lower bound on the solution to A.

The branching procedure takes a solution S that contains more than
one cycle and breaks the smallest cycle by deleting one edge. Let us call D the
smallest cyclein S and ey, ey, ..., ¢4 its edges. The branching procedure creates
subproblems-A4; by deleting edge ¢, for 1 =1,... ;d. The pfocesé 1‘épéats until
all the leaves are found. Leaves correspond to subproblems that can be solved
directly, i.e., tours that contain 0?11)7 one cycle. Then, a solution to the original

problem can be found by solving the subproblems corresponding tgghe leaves



and taking the solution of least cost.

When a leaf is found, its cost is used to prune the tree. This is done
based on the monotonicity property of the lower bounds that states that the
lower bound of a subproblem of P is at least as large as the lower bound of
P. This property ensures that any subproblem with associated cost bigger
than the cost of one solution found does not lead to a feasible solution, and,
therefore, it can be ruled out.

3.5.4 Applying PMESC to branch-and-bound search. A
parallel branch-and-bound algorithm not only has to distribute the subprob-
lems among the processors but also must ensure that processors do not waste
their time exploring unproductive subproblems. Therefore, unlike the paral-
lel backtrack search, a parallel branch-and-bound algorithm may not achieve
good speedup by merely keeping the load balanced. Another difference from
the backtrack search is that, in branch-and-bound alg“orithms, the order in
which nodes are expa;nded matters. Thus, nodes are given priorities according
to the costs associated with them. Nodes with lower cost have higher priorities
because they are more likely to produce a solution. A priority queue must be
maintained to implement these problen‘m so that the node with the highest pri;
ority can be easily found. The branch-and-bound algorithm can be described
as follows: |

e Partition: The root is expanded by creating a set of frontier nodes.
‘e Map: The frontier nodes are disfrjbuted e;inong the processors.
o Paftition: Processors maintain a priority queue of nodes ready for

_expansion.

ait
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e Solve: Each processor expands the node of least expensive cost it has
available in the queue.
¢ Communicate: An updated bound for the cost is maintained by each
processor based on the solution of least cost that the processor knows
so far. Upon finding a goal leaf, a processor sends a message to the
other processors so that they can update their bounds. This is essential
to discarding unproductive work.
e Embed: The logical structure of the tree is mapped onto the physical
machine.
Thus, the parallel implementation of thé branch-and-bound search can be rep-
resented by the PMESC paradigm. |
3.5.5 Applying PMESC to dynamic problems. The dia-
gram in Figure 3.8 illustrates how PMESC applies to problems implemented
with a dynémic approach. There is an initial partition and assignment of Wérk
to thejprocessors using a convenient topology. This topology is embedded into
the real machine architecture. Because this type of appr'oach applies to task-
parallel computations, processors split the work into units or tasks and store
them in a queue from where they select them, one at a time, for execution.
Processors execute the tasks asynchronously and independently until they be-
come V‘overloaded or idle, in which case they activate the mapping procedure in
order to transfer some tasks. Processors having some work to give away split -
their ibCa’l Qﬁeuéf; and send ovne part to another PrOCessor. Becaﬁse the send is
asynchronous, the sending processor can proceed with execution immediately.
In some applications, the dynamic approach involves interprocessor

communication, e.g., branch-and-bound. Communication is also asgaghronous
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and can occur either during the execution or at the end or both. Commu-
nication corresponds to a procedure that distributes or gathers information
that processors may need. In the backtrack procédure, communication oc-
curs at the end of the execution to gather results. In the branch-and-bound
procedure, communication occurs during execution to update the bound that
processors use to prune some branches of the tree and to concentrate on the
most promising ones. However, communication is asynchroﬁous. That is what‘
distinguishes these problems from the quasi-dynamic ones. Figure 3.9 shows
how the overall system performance can be improved by shuffling some work
from the heavily loaded processors to the idle processors via repartitioning and
remapping. ‘Note that the time t; in Figure 3.8 is less than the time ¢ in Figure
3.9. In a real situation, t; can be substantially less than .

Figure 3.10 shows a high-level pseudo-code for the dynamic approach
based on the PMESC phases. This template shows that mapping and com-
munication between processors, if necessary, are performed independently of
the algorithm {tself, i.e., the Solve phase. Thus, the Solve phase is always a
sequential procedure which not only makes programming easier but also allows
the reuse of sequential code.

A final aspect involved in the solution of dynamic problems is the
termination checking. Because processors work a.synchronously,—idle processors
néed to check whether to continue searching for work or terminate. To that end,
an idle"prbcessof activates the mechanisms for;load balancihg and these invoke,
if necessary, the termination checking procedure. For that reason, termination

checking is considered part of the Map phase.
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Figure 3.9: Diagram for the dynamic approach (after load balancing)



. Initialize;
Partition;

while (distributed-queue is non-empty)
begin {cycle}
Partition;
Solve;
if (communication is required)

{

Communicate;
Embed,;
end {cycle}
Map;
Embed;
end,;
Communicate;
Embed;

Figure 3.10: PMESC phases for the dynamic approach
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3.6 Conclusion

In this chapter, a taxonomy of the problems is presented in an attempt
to provide a common terminology as well as to identify the approaches to
parallelizing those problems. The taxoﬁomy given allows the classification of
the parallel problems and the approaches for parallelization aécording to a small
set of salient features. This classification is also important to characterizing and
understanding the different progfamming tools and to' identify aréas worthy of
additional effort.

We present applicétions in each category and analyze their implemen-
tations. We show that the PMESC template can be applied to the different
approaches. However, although the PMESC phases are the same, their im-
plementation is different. We study the main programming issues involved in
each one of the PMESC phases and identify the building blocks that compose
those phases. Because the purpose of this thesis is to develop a library for
the particular class of task-parallel probléms, our next step is to find efficient

algorithms to implement those building blocks. We describe those algorithms

in the next chapter.



CHAPTER 4
COMMUNICATION AND EMBEDDING ALGORITHMS

Chapter 3 describes a category of problems that have irregular struc-
ture and can benefit from the use of adaptive asynchronous parallel algorithms.
These algorithms involve complex programming issues whose eflicient imple-
mentation is crucial to achieving good performance. This chapter presents a
collection of strategies tﬁat we use in this thesis to address the issues of in-
terprocessor communication and embedding of virtual into real architectures.
The chapter describes several strategies proposed in the literature as well as
our own ones, developed to improve the functionalities of existing mechanisms
or their results.

This chapter is organized as follows. Section 4.1 presents different al--
gorithms for embedding some commonly used virtual topologies into the avail-
- able real architectures. Section 4.2 reviews the issues concerning the implemen-
tation of load balancing strategies. Section 4.3 covers different ways to detect
termination of asynchronous processors. Section 4.4 describes an algorithm for
efficient broadcasting and gatherihg. Section 4.5 analyzes an appkroétch to main-
tain “global” information in a distributed environment. Chapter 5 discusses

how these strategies are actualiy used to implement the PMESC library.

4.1 Embedding Algorithms

Tlie programming approach that we adopt does not require that pro-
v ' ‘ -3
grammers formulate their computations to fit the physical communication links
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of the prdcessors exactly. Instead, programmers can design their codes in terms
of virtual processors and virtual communication channels _that connect themn,
i.e., a virtual machine. It then becomes necessary not only to embed that vir-
tual machine into the real machine afchite’cture but also to embed it efficiently
to avoid excessive network traffic. In this section, we describe the algorithms
for efficiently embedding some virtual topologies. In particular, we discuss the -
embeddings of riﬁgs, trees, and arrays (uni- and bi-dimensional) onto hyper-
cubes, meshes, and fat trees. We selected those virtual topologies because they
are widely used in all kinds of scientific applicatioﬁs._ In éome cases, we provide
different variations of a virtual topology depending on the real machine archi-
tecture. For instance, we provide a spanning tree for the hypercube, a tree of
spanning trees (i.e., a spanning tree along each dimension) for the 2-D mesh,
and a quaternary tree for the fat tree. )

4.1.1 Embedding trees into hypercubes. A Spénning tree |
can be embedded into the hypercube by using the algorithm presented in [79].
Because the neighbors’ ids (identifiers) differ in exactly one bit, spanﬁing trees
can be spawned by toggling successive bits of the binary representation of the
‘processors’ ids. Bits can be toggled in any order, i.e., least significant bit first or
most significant bit first. We illustrate the case in Which the least significant
bit is toggled first. In this case, the first level of the tree has the processor
0%-11, where 0%7! represents d — 1 concatenated zeroes and d is the hypercube
dimension. This processor is the root of the spanning tree. The 7t level of -
the tree contains processors whose most significant bits through bit ¢ 4+ 1 are
zero while the i* bit is one. Each processor located at. the level 1 spawns one

child of level ¢ 4 1, one of level 7 + 2 and so on through level d. Tke 1‘esi11ting



60

tree for a hypercube of dimension 4 is depicted in Figure 4.1. The algorithm
is represented in Figure 4.2.

4.1.2 Embedding treesinto 2-D meshes.  An extension of tﬁe A
algorithm shown in Figure 4.2 for hypercubes can be used in the 2-D mesh case.
This algorithm, presented in [5], embeds a spanning tree along one dimension
and then‘ along the other, using the roots of the spanning trees corresponding to
the first dimension és nodes of the spanning trees correéponding to the second
dimension. In the mesh, every processor is identified by a single ﬁumber in the
range from zero to one less than the number of processors. This enumeration
increases from left to right and from top to bottom. However, in order fto
find the neighbors of a processor in a virtual tree, it is necessary to identify
this processor by its coordinates in the mesh. Each coordinate represents a
dimension.. The one-dimensional bl'ocedure shown in Figure 4.2 can then be
applied to the coordinates in each dimension one at a time. The algorifhm
is depicted in Figure 4.3. It shows how the two-dimensional coordinates are
computed and how they are used to embed a tree in each dimension.

- 4.1.3 Embedding quaternary trees into fat trees.  The to-
kpc‘)logy of the CM5 is a quaternary fat tree. Figure 4.4 shows the intercon-
nection pattern. Processors are located at the leaves of the tree. The internal
nodes of the tree represent the data network, which provides point-to-point
data communications between processors. This network is composed of several
router chips. Each router chip is conne cted to four child chips and elther two
or four parent chips.

Figure 4.5 shows a routine that WécreaLethermbed a quaternary

tree into the fat tree topology of the CM5. The algorithm is straigtforward.
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Figure 4.1: Spanning tree for a hypercube of dimension 4.
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Tree (me, dim0, dim1, num_neigh, neighbors)

int me; \* processor’s id ¥\
int dim0; \* hypercube dimension *\
int diml1; ~ \* dummy variable for symmetry with the 2-D case *\
int num neigh; \* number of neighbors of processor me in the tree
including its parent and children *\
int *neighbors; \ vector containing the neighbors’ ids *\
{
int 1, L;
int parent;

for (1=0; i<dimO0; i++) {
\* find first one (1) from right to left
in the binary representation of me *\
if ( ((me >>1) & 01) == 01) {
parent = me & ~(1 << 1); \* toggle first one (1)
Co- to determine parent’s id *\
. break; V
}
\* count the number of zeroes
to determine the level of me in the tree
and thus, the number of children *\
else
L++;
}
num_neigh = L+1;
" neighbors = (int *)malloc(nummeigh*sizeof(int));
neighbors[0] = parent;
for (1=0; i<L; i++)
neighbors[i+1] = me | (1 << 1); \* toggle zeroes
b v to determine the children’s ids *\

Figure 4.2: Algorithm for embedding a spanning tree into a hypercube,
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Tree (me, p0, pi, num_neigh, neighbors)

int me; \* processor’s id *\
int pO0; \* number of rows in the mesh *\
int pl; \* number of columns in the mesh *\
int num_neigh; \* number of neighbors in the tree *\
int *neighbors; \* vector containing the neighbors’ ids *\
{
int i, L;
int parent;
int x[2], dim[2];
int L[3];

\* find coordinates (z[0], z[1]) corresponding to processor me *\
x[0] = me / p1; \* row *\
x{1] = me % p1; \* column *\

\* function log2 returns the closest integer greater than or equal to *\
\* the logarithm in base 2 of the argument *\

dim[0] = log2(p0);

dim[1] = log2(p1l);

neighbors = (int *) malloc( (dim[0]+dim[1]+1) * sizeof(int) );

for (j=1; j>=0; j-) {
for (i=0; i<dim[j]; i++) {
\* find first one from right to left
in the binary representation of one of the coordinates *\
if ( (x[j] >>1) & 01) == 01) { ‘
parent = x[j] & ~(1 << 1); \* toggle first one *\
break; \* to determine the parent’s id *\

\* count the number of zeroes
to determine the number of children of me in each dimension *\
else )

L{j]++;

for (1=0; i<L{j]; i++)
neighbors[L[j+1]+i+1] = x[j] | (1 << 1); :
if (x[j] '= 0) break; \* only the roots of the spanning trees in the-first *\
: \* dimension are considered for the second dimension \
num neigh = L[0]+L[1]+1;
neighbors[0] = parent;

Figufc 4.3. Algérithm for embedding a tree of spanning-trees into a 2- mesh.
\‘
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Figure 4.4. The physical topology of the CM5 1s a quaternary fat-tree. Each -
internal node of the tree is made up of several router chips. Each router chip
" “is connected to 4 child chips and either 2 or 4 parent chips. Source [59).
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Processors are clustered in groups of four. The ﬁeighbors of a processor are all
the other processors in its group. The parent processor is the lowest numbered
processor in the group.

4.1.4 Embedd‘ing rings into hypercubes.  This algorithm,
presented in [79], embeds a ring of | vertices into a hypercube of p = 2¢ pro-
cessors in a way that presérves the property that two adjacent vertices in the
logical ring correspond to actual neighbors in the physical hypercube. Let us
consider first the case { = 2¢. An efficient way to embed a ring into a hypercube
is to connect the processors according to the binary reflected Gray code. There
are different ways to generate ’G'ray codes. We follow the procedure explained
in [79]. We start with the sequence of the two digits 51 = {0,1}. It corresponds
to the one-bit Gray code. To build a two-bit Gray (;ode, we take the one-bit
sequence and iﬁsprt a zero in front of each number, then we take the one-bit
sequence 1in reverse order and insert a one in front of each number. Thus, we
get the sequence

Sy = {00,01,11,10}
To get a three bit Gray code we repeat the process, taking the above sequence
Sy and inserting a zero in front of each number, then taking the reverse of 5

and inserting a ;)ne in front of eéch number. The new sequence 1s

S5 = {000,001,011,010,110, 111,101, 100}.
‘In general, if we call Sﬁ the sequence obtained by rev@rsing Siy and denof,e
0.5; o;' 151- the seq{lences obtained by inserting a 0 or 1 respectively in front
of each elemenf of the sequence S;, then the expression for a binary reﬁécted

Gray code of order d becomes

Sd = {05(1,1,15?_1}. (41)



Tree (me, num.proc, pl, num neigh, neighbors)

int me; \* processor’s id *\
int num_proc; \* number of processors *\
int p2; \* dummy argument used for symmetry with the 2-D
mesh case *\
int num_neigh; \* number of neighbors in the tree *\
int *neighbors; \* vector containing the neighbors’ ids *\
{ .
int 1, ¢;

‘ ¢ = (int) me / 4; o

num.neigh = 4;4 . :
neighbors = (int *)malloc(num neigh*sizeof(int));

for (i=1; i<num-neigh; i+-)
neighbors[i] = ( (me-+i) % 4 ) + c*4; \* the children’s ids *\

neighbors[0] = ¢*4; \* the parent’s id *\

}

Figure 4.5: Algorithm for embedding a quaternary tree into a fat tree.
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Ring (me, num_proc, pl, num_neigh, neighbors)

int me; \* processor’s id *\

int num_proc; \* number of processors ¥\ -

int pl; \* dummy argument used for symmetry with
~ the 2-D mesh case *\

int numeigh; \* number of neighbors in the ring *\

int *neighbors; \* vector containing the neighbors’ ids *\

{

num-neigh = 2;
neighbors = (int *)malloc(num neigh*sizeof(int));

neighbors[0] = Gray(me, num_proc, -1);
neighbors[1] = Gray(me, num._proc, 1);

return;

}
Figure 4.6: Algorithm for embedding a ring into a hypercube.

Note that the first and last processors in this sequence are neighbors in the
virtual ring as well as neighbors in the actual hypercube.

Suppose now that [ is not exactly a powe‘r“of two but an even number
(the ring céﬁnot be émbedded intoﬂ thehypercubé 1fl is odd [79].) Let j-=1/2,
and let Si[j] denote the first j elements in the sequence Si. Then, the Gray

code sequence for this case is given by
{08eay], 181 ]}

Note that when [ = 2¢ this formulé coincides with 4.1. The Ring and the Gray
code routines f;)r a hypercube are/given in Figures 4.6 and 4.7. |

4.1”.5 Embeddihg rings into 2-D meshes.  We next describe
an algorithm proposed in [5] to embed a ring into a 2D mesh. Figure 4.8
depicts a mesh of 16 = py X p, = 4 x 4 processors. Processors in a partition
(rectangular submeésh) are identified by a logical processor number in the range

from zero to one less than the number of nodes in the partition;i.e_._zzmm_proc.

-«

As in the hypercube case, we want an algorithm that embeds a ring so that



Gray (me, num_proc; par)
int me; '
int num.proc;
int par;
{
int 1, k, mi, My, ¢;
int *s;

s = malloc(num_proc*sizeof(int)); \* contains the gray sequence *\
s[0] = 0;.
s[i] = 1;

for (i=1; (1<<(i+1)) < num_proc; i++) {
mi = 1 << i; \* each sequence has twice as many elements *\
Mi = 2*mi; \* as the previous one *\
¢ = mi;
for (k=mi; k<Mi; k++) {
et
\* generates half of the new sequence by reversing the order of the *\
\* previous one and inserting a 1 in front of each number. *\
\* The other half is exactly as the previous sequence *\
. sfk] = s[c] ] (1 << 1);
} ,
\* the last sequence is generated separately to cover the case that
\* num_proc is not a power of two *\
mi = (num-proc-2)/2+1;
Mi = num.proc + 1;
¢ = mj;
for (k=mi; k<Mi; k++)
=

slk] = s[c] | (1 << 1);

for (i=0; i<num_proc; i++) {

if (me == s[i]) { \* searches position of me in the Gray sequence *\
pos = I;
break;
}
if (par == 0) return (pos); \* returns position of me in the Gray sequence =\
if (par == 1) return (s[(pos+1)%num_proc]); \* returns the successor of me *\
if (par == -1) return (s[(pos-1)%num.proc]); \* returns the predecessor of me *\

}

- Figure.4.7: ‘Algorithm for computing the Gray sequence.

-

B



69

Ol 141213
4 1516
81911011
1211314 | 15.

Figure 4.8: Distribution of processors in a mesh.

all neighbors in the ring are neighbors in the partitioh. The sequence starts at
processor 0 and goes from top to bottom of the mesh in a serpentine fashion.
It goes from left to right in the even rows (starting at row 0) and from right
to left 'in the odd ones, without including the processors located at the first
column except for those in the first and last rows. When the sequence gets the
lower left corner of the 2-D mesh, it goes straight up from bottom to tolp.y In
the example of 4 x 4 processors, this algorithm should produce the folléwing

sequence of neighboring processors in the ring:
{0,1,2,3,7,6,5,9,10,11,15,14,13,12, 8,4},

with processor 4 connected to processor 0.

The Ring function for the mesh that produces this sequence is given
n Figure 4.9. When applied to a processor id, the function OUT returns 0 if
the 1d is,outu: ofvthe range of processors available, i.e., 0 to one less than the
number of processors, and 1 otherwise. This algorithm dées not apply when
the number ofirows is odd.

4.1.6 Embedding ringsrinto trees. TEeré is no technique that
we can use to embed a ring into a fat tree in such a way that all neighbors in
the ring are actual neighbors iin’ the fat tree. Thus, to send a message from
processor A to processor B, the message must go up the tree until it gets to
the level where it‘can go down and reach pkrocessfor B. However, because the

ey
tree is fat, the bandwidth is kept balanced and is not critically dependent on



Ring (me, p0, pl, num-neigh, neighbors )

int me; - \* processor’s id *\

int p0; \* number of rows *\

int pl; \* number of columns *\

int num_neigh; \* number of neighbors in the ring *\

int *neighbors; \* vector containing the neighbors’ ids *\

{

}

int x0, x1;
num.neigh = 2;
neighbors = (int *)malloc(numneigh*sizeof(int));

x0 = me / pl; \* the row where processor me is located *\
x1 = me % p1; \* the column where processor me is located *\

\¥¥¥% if x1=0 then me is in the first column *****\

\* the sequence goes from bottom to top *\

\* the predecessor of me is the processor below *\

\* and the successor is the processor above *\

\* if me is in the last row, its predecessor is the processor to the right *\

\* if me is in the first row, its successor is the processor to the right *\

if (x1 == 0) { :
if ( OUT(me + pl) ) neighbors{0] = me + 1;
else neighbors[0] = me + pl; :
“if (OUT(me - pl) ) neighbors[1] = me + 1;
else neighbors[1] = me - p1;

}

\FHFE¥ If the row is even, the succession goes from left to right #****\
\* the predecessor of me is me-1 and the successor me+1 *\
\* if me is in the last column, the successor is the processor below *\
else if (x0 % 2 == 0) { ‘
neighbors[0] = me-1;
if ( x1 == (pl-1) ) neighbors[l] = me + pl;
else neighbors{1l] = me + 1; :

\¥*¥*¥¥* if the row is odd, the succession goes from right to left **¥*+*\

\* the predecessor of me is me+1 and the successor me-1 *\

\* if me is in the last column, the the predecessor is the processor below *\

else { ,

if ( x1 == (pl-1) ) neighbors[0] = me - p1;
else neighbors[0] = me + 1;

neighbors{1] = me - 1;

}

Figure 4.9: Algorithm for embedding a ring into a 2D misah.
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Ring(me, num_proc, pl, num_neigh, neighbors)

int me;

int. num_proc;

int pl; *\ dummy argument used for symmetry with the
2-D mesh case *\

int num_neigh;

int *neighbors;

{

num_neigh = 2;
neighbors = (int *)malloc(num neigh*sizeof(int));

if (me == 0) neighbors[0] = num_proc - 1;
else neighbors[0] = me - 1;

neighbors[1] = '(me + 1) % num-_proc;

Figure 4.10: Algorithm for embedding a ring into a fat tree.

the distance between communicating processors. Thus, we implement a simple
algorithm that maps the ring into the processors in numerical order. The
algorithm is shown in Figure 4.10.

4.1.7 E’mvbredding lin(rzavrwarrays. To embed a linear array into
a hypercube, 2-D mesh or fat tree, we can use a similar procedure to that for
embedding rings. The only difference is that the ‘procedure for arrays does not

return a predecessor of the first processor or a successor of the last processor.

4.2 Dynamic Load Balancing Strategies

Load balancing is a critical factor in the efficient implementation of
parallel applications that evolve dynamically. The four important components
of a load balancing procedure are the control policy, the transfer policy, the
location po/licy, @d the information source policy {88]. The control policy
determines what processors are responsible for the distribution of the work.
The transfer policy concerns decisions such as when to send a task vfrom one

processor to another and which task to send. The location policy~dgtermines
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which procéssor should receive or send the tasks. Finally, the information
source policy decides what kind of information should be used to make task
transfer decisions. We devote the rest of this section to discussing each one éf
these components in more detail.

4.2.1 The control policy. Load balancing strategies can be
centralized, distributed, hybrid or hierarchical [29, 88]. In centralized straﬂegies
[51, 24], a single processor, called master, distributes the work. In distributed
strategies, all the processors actively participate in the distribution of the work
[20, 23]. Hybrid strategies contain aspects of both centralized and distributed
[88]. In hierarchical strategies [29, 32], processors are organized in different
levels. According to their level in a hierarchy, processors have different respon-

sibilities in the distribution of work.

The centralized approach uses a master-slave model. The master
processor is responsible for the distribution of the tasks among the processors.
Slave processors communicate with the master either to request work or to
send some work away. When the queue is centralized, the master processor is
also responsible for maintaining the quene. The approach is not scalable. The
master processor quickly becomes a bottleneck as the number of processors
increases [56, 83].

In the distributed @pproac_h, each processor is responsible for the dis-
tribution of the load. To avoid unnecessary COInmL1nication costs, processofs
run their tasks Jocally as much as possible.” However, the local workload may
become too heavy or too light, and so they must transfer work to keep the
load balanced. This approach is well-suited to task-parallel problems for they

are composed of independent subproblems or tasks that can be maved from
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one processor to the other without regard to the communication restraints of

The hybrid approach combines the characteristics of the centralized
and distribufed ones. The centralized mediator approach studied in (88] is an
example in this category. In this strategy, processors do not deal with the
master all the time to request or send some work. Rather, they store and
execute their tasks locally as much as possible and only communicate with the
master when the system becomes imbalanced. Thus, when a processor Becomes
overloaded, rather than sending work directly to other processors (as in the
distributed case)v, it sends it to a designated processor called the centralized
mediator. Likewise, if a processor becomes lightly loaded or idle, it sends a
request to the centralized mediator. This strategy requires less communication
“through the central processor than does the centralized one.. For that reason,
the centralized mediation Stratégy i‘s éxpected to scaie ulu) to a larger ﬁurﬁber
of processors than the centralized one. However, the mediator processor also
becomes a bottleneck as the number of processors increases.

Finally, the hierarchical approach [29, 32] is intended to overcome the
bottleneck problem that arises in the centralized and hybrid approaches by
dividing the processors into groups Qnd applying either centralized or hybrid-
strategies to each group. For example, a two-level centralized hierarchical
approach organizés the processors into groups at trhe.ﬁrsﬁt level and applies a
centralized strategy to ecach group to keep them balanced. The straf;egy resolves
the imbalance between groups at the secondrle\fel by applying the centralized

approach to the masters of those groups.
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4.2.2 The transfer policy. Two strategies have been proposed
to distribute tasks to and receive tasks from other processors: sender-initiated
and receiver-initiated [26]>(also called bidding and drafting strategies [78].) In
sender-initiated strategies, processors send out work when they determine they
- are overloaded. In this case, work is sent to other processors without it being
requested by them. In receiver-initiated strategies, processors initiate the load
balancing process when they determine that they need more work. In thls case,
work is sent to these processors upon request.

In a sender-initiated strategy, a heavily-loaded processor sends a num-

ber of its tasks te another processof. The receiving processor accepts the tasks.
If it becomes heavily loaded as well, it forwards the tasks to another processor.
In a receiver-initiated strategy, a lightly-loaded processor sends a request to
~another processor called the requestee processor. If the requestee processor
has extra work to give away, it sends a number of its tasks to the requestor.
Otherwise, it forwards the message. If the requestor processor still has some
work to do, it proceeds with the execution of its tasks. On the other hand, if
the requestor processor is already idle, 1t may send another request or check
" for termination.

Eager et al. [26] show that both receiver- and sender-initiated strate-
gies for dynamic load balancing are better than the static approach. They also
show that receiver-initiated strategies outperform sender-initiated stra.tegies.at
high system loads and that sender-initiated strategies are preferable at légllt to

moderate system loads [27].
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There are some applications in which tasks are assigned different pri-
orities. Such applica
orities determine the execution order of the tasks, i.e, when higher priorities
tasks are executed first. In this type of problem, a load balancing scheme
that only balances the load without balancing the high priority tasks over the
system, might result in the concentration of these tasks on a few processors.
This situation leads to wasteful computations '}'m(.i sub;stantia,lly higher memory
requirements that can seriously degrade the performance. A solution to this
problem is to make each processor transfer some of its highest-priority taské
not only when it is heavily loaded but also when it is moderately-loaded as well.
In this case, processors periodically transfer some tasks to other processor to
ensure an even distribution of the best parts of the search space. Obviously, if
the frequency of transfers is high, then the communication costs can be very
ﬂ large.i |

The Token strategy [86] provides another alternative to dealing with
prioritized tasks. This hierarchical approach splits the processors into clusters
of ma‘nagees controlled by load manager processors. When a managee creates
a task, it sends a token containing the priority of the new task to the load
manager. IJach managee informs its manager of the status of its load by both,
piggybacking load information Wﬁh each token 1t sends to the manager and
by periodically sending load information. When a manager decides that one of
its managees needs work, it asks the owner of the highwest priority task to send
some work to the lightly loaded processor. The load managers balance tokens

and priorities among themselves by exchanging their high priority tokens.

-
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4.2.3 The location policy. There are many ways to determine
which processor will be sent the tasks or will be asked for tasks. In the Gradi-
ent strategy [61], for instance, the requésts are sent through adjacent processors
in a mesh-connected topology. This is done by assigning a pressure to each
processor that is a function of the processor utilization and memory évailabil—
ity. A processor also defines a proximity function that indicates its distance
from the nearest idle préceSsor. THis functioﬁ is computed by each processor
based on its pressure and the proximity function of its adjacent nodes. The
value of the proximity function at each node determines a gradient plane.
Idle and overloaded processors can be found by following the track of least and
largest proximity functions respectively in the gradient plane. Contracting
Within Neighborhood [82] is another strategy that transfers work between
o neighbors. In this case, requests are sent to the topologically adjacent proces-
sor with the least load. This differs from ther Gradient strategy, where requests
are sent in the direction of an inferred global workload minimum.

A different approach is given by the Random strategy. In this case,
a processor is selected at random eithefto transfer or to request some work.
When a processor receives a task, it accepts it for processing only if its queue
length is less than a given threshold. Otherwise, the processor forwards the
task to another randomly selected processor. - To avoid instability, there is
a transfer limit for the number of times a task can be forw§1~ded. If this
limit is eXceéded’,l the destination »processor: of the last transfer must execute
the received tasks regardless of its state. The strategy ignores communication
locality and system state. It is appealing both for its simplicity and for its‘_fast

distribution of the work without the overhead of acquiring system ingormation.



studies in [96] conclude that it can be cfficiently applied to search meth
such as backtrack search and branch-and-bound. Also, Grunwald et al. show
experimentally in [40] that a random policy generally yields good performance
when it is used for the initial placement of work.
A variation of the Random strategy is called Threshold. In this case,
 a processor is also selected at random but it is probed to determine whether a
transfer of some tasks to it would put its queue length above a given threshold.
If not, the work is transferred to the selected processor. If so, then another
processor is selected at random and probed in the same way. This proceés
repeats until either a processor is found to accept the tasks or the number
of probes exceeds a probe limit. The Threshold stratégy avoids the useless
task transfers that sometimes occur in the Random strategy. Eager. et al.-
[26] show that the performance of this sérategy with a small probe limit of
3 or 5 is almost as good as the performance with a large (and consequently
more expensiye) probe limit. Another key result of [26] is that the Threshold
strategy provides substantial performance improvement over the Random one.
In any case, Bager et al. [20] éonclude that any load balancing strat-
égy 1s betfer than none and that simple strategies are usually as effective as
more complex ones. Grunwald et al. [40] also remark that no single strategy
ié unambiguously best across alrl vthe problemé.
~ 4.2.4 . The information policy. = Load balancing strategies can -
vary from simple to complex in their use of system state information. The
advantage of a complex policy is the possibi]ity of making a better decision

regarding work placement. The disadvantages are the overhead cgst and the

-
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risk of using inaccurate or stale information. Thus, there is a trade-off between
the amount of system information used to make a transfer decision and the
cost of acquiring that information.

“Information about the system state can be acquired from two sources:
local and non-local. An example of a strategy ‘that uses local information is
Random. The motivation for this type of strategy is that thg cost of acquiring
information from other processors is not too high compared to the benefits of
using it. Examples of strategies that use non-local information are Contracting
within Neighborhood [82], Gradient [61], and Threshold [26].

‘Eager et al. [26] demonstrate that the potential of dynamic load
balancing can be realized by strategies that use only small amounts of local or

non-local information about the system state. A similar conclusion is reached

in [40].

4.,3 Checking for Termination

Termination detection is a programming issue that arises in the so-
lution of dynamic problems due to their asynchronicity. For these problems,
load balancing is'covntinuously checked and transfer of work acéox‘dingly made
from the heavily loaded processors to the lightly loaded ones. In this context,
idle pfocessors waiting for heavily loaded processors to send some work away
‘may wait forever if 1iot informed that the work has been completed. There-
fore, because it is impossible for an idle processor to correctly dvecidefwhethre:
or not to quit based on its rlocal information, a global check for termination
becomes necessary. Observe that this is a different situation than that of the
load balancing case. In the load balancing case, one has the alternative of using

either local or global information to transfer work. If the decision 19 use local
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information leads to an incorrect transfer of work, the processor has the chance
to recover from that mistake by transferring work again. In the termination
“checking case, this is no longer true. If a processor makes a wrong decision and
quits, it cannot start again. Therefore, the approach for termination must be
based on global information. A global check can be made by a single processor,
i.e., centralized, or by all of them, i.e., distributed. Because the communication
traflic associated with some centralized approaches can be reasonably low, we
are interested in these types.

A first approach [56], based on the prefix algorithm [58], assumes
that processors are connected by a virtual tree, but it can use any other virtual
topology that is appropriate for a combine operation. The procéss starts at the
leaves. When a leaf processor becomes idle, it requests more work from another
processor. While waiting, it sets its DONE flag and passes it on to its parent
with a termirnz‘ition‘message. When an internal processor, i.‘e., one that is not
a leaf, becomes idle, it sends a request for more work to another processor.
While waiting, it checks if it has received the termination message from its
children. If that is the case, and if it is still idle, it sets its DONE flag and
sends a termination message to its parent. The process fepeaté until it reaches
the root. Once the root sets its own DONE flag, it~ broadcasts an order to

~quit back down to the rest of the processors. This process takes 2log,(p) steps
to complete, where p is the number of processofs. Observe that termination
messages need td be given lower priority than the rest of the messages. In other
words, if an idle proceésor waiting for work receives two messages, one carrying
work and one carrying a termination message, it just ign«oresvthe termination

message. ) ‘ -

-
]
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However, there is a problem with this algorithm: the information
received by the root may be stale by the time it is received? and, therefore, the
order to quit could be wrong. In fact, suppose that a heavily loaded processof
A sends some work away to processor B which has just set its DONE flag and
passed it on to its parent. Because node B is idle, but has not received the
quit order yet, it accepts that work. In this case, if node A finishes first and
passes its DONE flag to its parent, the root will receive the wrong information
that every node has terminated (node B may still be working.)

To overcome this problem, [94] proposes a new approach. It starts
at the root of the virtual tree of processors. When the root becomes idle,
it broadcasts a request for information about the message count, i.e, the
difference between the number of messages sent and the number of messages
received by every processor. Fach node receives the request, but only passes
it down the free when it becomes idle. When it reaches the leaves, these
send back their answers. Internal processors wait for their children to respond.
They add their counts to their children’s counts and pass them back up. The
process repeats until it reaches the root. If the count that arrives back at the
root plus its own count is zero, then all nodes have finished. In this case, the
root broadcasts a quit message. Otherwise, there is sfill- some work being done.
This algorithm needs 2log,(p) steps to combine the information and log,(p)
steps to terminate.

“We propose a new approach that is more efficient than the onewrpré-' '
sented in [94] for it takes 2log,(p) steps to combine the information and ter-
minate. In our approach, each processor keeps a count of the messages it has

sent —i.e., those requesting work-— minus the messages received gi.e., those
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carrying work. When a leaf processor becomes idle, it sends a termination
message with this count to its parent. When an internal processor becomes
idle, it checks if it has received the termination méssé,ges from its children. In
that case, it ‘adds its children’s counts to its owin count and pasées this value
upwards. The process repeats until it reaches the root. The value that the root
obtains by adding its own count to its children’s count, represents the overall
amount of messages sent minus messages reqeived. If this value is -zero, all the
processors have finished, and, therefore, the root broadcasté a quit message.
Otherwise, there is at least one requesting message that has been sent but has
not been received before £he message count was passed. In that case, the root
proceeds until it receives a new count. When the processors that received the
uncounted messages finish their work, they pass a new count on to their par-
ents. This algorithm takes only log,(p)-steps to combine the information and
another log,(p) steps to'éompléte »tverlvnination. 7‘

We are investigating work from other areas that may be pertinent
to a full evaluation of which is the most efficient algorithm to use to detect

termination. We discuss them in detail in [18].

4.4 Broadcasting aﬁd Gathering
| For broadcasting and gathering‘ we discuss the procedure presented in
(5, 79] that can be efficiently implemented on meshes and hypercubes as well
as on fat trees. This algorithm does not cause any contention problems and
has the same_loga‘rithnﬁc time complexify on all of theseVa‘rrchitécﬂt»ures. »
In the hyi)@rcube and fat tree cases, it is implemented by embedding

a minimum spanning tree as discussed in Section 4.1. Figure 4.11 shows the

—
e
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broadcasting procedure for a hypercube of eight processors. The figure illus-
trates that the order in which bits are toggled, i.e., least significant bit to most
significant bit or vice versa, does not affect the performance of the broadcaéting
on this type of architecture.

Figure 4.12 shows the same bréa,dcast on a linear array of p nodes. In
this case, network conflicts appear when the bits are toggled least-significant bit
first. When this order is reversed, i.e., when bits a;e toggled most—signiﬁc&nt bit
first, netwofk conflicts are resolved as indicated in Figure 4.13. These results
can be extended to arrays of two dimensions. In the mesh case, the idea is to
partition the two-dimensional array along one dimension, thereby reducing t‘he
problem to that for linear arrays. These, in turn, are recursively partitioned,
doubling the number of partitions at each step, and creating distinct subarrays
which can proceed independently with the broadcast (gather) procedure. In
this way, a minimum spanning tree broadcast can be efficiently performed on
meshes as well. The only difference between the hypercube and the 2-D ﬁesll :
approaches is in the way that the minimum spanning tree is derived. While the
order in which bits are toggled to derive the tree 1s irrelevant for hypercubes,

it is important for meshes due to contention problems.

4.5 Updafing of Pseudo-global Val"iables

Global variables cannot be used in asynchronous parallel programs
running on distributed-memory machines. However, many desired uses of
globai variables can be captured by pseudo-global oneé. To implement a
pseudo-global variable, each processor has its own copy of the variable in its

* local membry. To keep their copies updated, processors exchange their val-

~ -=
ues from time to time. There are two different ways to update pseudo-global
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Figure 4.11. Broadcasting (gathering) procedure from (to) processor 0 on a

hypercube (least significant to most significant bit.) Source [5].
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Figure 4.12. Broadcasting (gathering) from (to) processor 0 on a linear array

(least significant bit first.) Source [5].
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Figure 4.13. Broadcasting (gathering) from (to) processor 0 on a linear array
(most significant bit first.) Source [5].
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variables: centralized and distributed. In the centralized case, slave processors
communicate their values to the master, and the master co‘mmunicates‘its up-
dated value to the slave processors. In the distributed case, every processor
updates its own copy and passes it to the other processors.
 An example of the distributed approach makes each processor broad-
cast its copy periodically and all the processors update their copies as they
' receive new values. This approach may lead to a large amount of traffic in
the network. An example of centralized approach proposed by Shu and Kale
[81] uses a tree-based structure. In this algorithm, each processor keeps its
own copy updated. Every processor that is not the root periodically sends its
copy to its parent in the tree. The root periodically broadcasts its copy to all
processors. Figure 4.14 depicts the pseudo-code for this updating procédure.
We propose a hybrid approach that, like the centralized approach of
" [81], uses a tree as th’e; virtual topology of thé processors. In this case, every
processor updateé its copy of the pseudo—gldbal variable and communicates
it to its neighbors in a virtual tree (rather than broadcasting it to all the
other processors.) This approach presents two variations. One, called regular,
“in which a processor always updates its copy with the updating value and
communicates it to its neighbors, following the centralized approach of [81]
that traverses the tree in both directions. The other, called monotonic, in
which a processor updateé its copy and communicates it to its neighbors only
if the updating value is less than the current one.- This follows a distributed
approach that only traverses the tree in one direction. As in many other
issues involrved in dynamic computations, the nature of the problem at hand

determines the 7optimal approrach to use. Refer to [18] for a more complete
=
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\* Procedure to update a pseudo-global variable *\
\* Processors are arranged as a tree structure *\

if (processor is not the root)

{

when a new value is received, update own copy;
periodically, send copy to parent;

}

else

{

when a new value is received, update own copy;
periodically, broadcast own copy to all processors;

} |
Figure 4.14: Pseudo-code for the updating procedure.

evaluation of the strategies for updatingvpseudo-global variables.

%



CHAPTER 5
THE PMESC LIBRARY

This chapter presents a new library for implementing task-parallel
problems that need a static or a dynamic approach for computation on
distributed-memory computers. The library is based on the PMESC paradigm
for this allows us to distinguish the phases in the computation and treat them as
‘independent modules. Thus, the paradigm recognizes the modules or building-
blocks that compose the parallel computations and the library proposes differ-
ent strategies to efficiently implement those modules. Although the paradigm
applies to all kinds of pe;raﬂel algérithms, the library concentrates on the task-
pardllel ones. It has been designed to take care of those modules that are
application-independent and so can be reused. That way, it proyides a tool
that frees the programmer from dealing with the complexity of such iss‘ues
as load balancing, interprocessor communication, and program termination,
allowing her or him to concentrate on the application-specific ones.

The chapter begins with a discussion of the existing tools and the
motivations for developing a new one, and then prvoceeds with the presentation
of the PMESC library. Section 5.1 classifies the tools that are available for
different kinds of parallel é,ppli‘cations., Section 5.2 COlléentljatés on those tools
that address ta.sk{mrallel problems and discusses the reasons to create a new
one. Section 5.3 introduces the PMESC programmiﬁg library. Section 5.4

describes the PMESC approach for coping with some of the issues_jnvolved in

~
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dynamic computations. Section 5.5 describes the PMESC modules. Section
5.6 presents the PMESC routines organized in the Partition, Map, Embed, and
Communicate modules. Finally, Section 5.7 gives a first approach to using the

library.

5.1 Related Work

Many parallel tools and languages have been proposed in the academic -
and commercial worlds. They have one goal in common: they want to make
the parallel programmer’s task easier while maintaining bot}h portability and
good performance. The means to achieving this, however, vary widely from
one system to the other. Some are languages, some are libraries of routines,
and some are libraries of macros. ‘Mkost of them are based on the data-parallel
paradigm and only a few on the task-parallel paradigm. Some address a single
~stage of the programrhing process while others address most of them.

In this section we investigate different parallel tools (libraries and
languages) that the user has available today to cope w%th the difficult task
of implementing task-parallel programs on distributed-memory computers.
These tools provide different levels of abstraction, from the low-level commu-
ﬁication mechanisms that allow machine independence to the high-level ones
that take care of more soﬁhisticaﬁed programming issues. In terms :)yfhthe
- PMESC phases, they can be classiﬁe‘d as tools that provide support for the
Communicate pha.se alone, or for the Communicate and the Embed phases, or
for nm(;st phases in the computation. |

Several systems have been designed to take care of the Communicate
phase. They address the first problem that every programmer faces when writ-

ing a portable a.pplication:k different machines have different sets oF low-level



89

communication primitives for message-passing. These systems achieve machine
independence by providing a uniform, higher-level set of communication rou-
tines that remain unchanged across different computers. Some of these tools
are intended for a relatively small subset of machines, like PICL [33] and Linda
[14].<A0thers are intended for a wide range of shared-, distributed-memory, and
even heterogeneous systems. Examples are PVM [6], p4’[12], Chameleon [39],
MPI [64], and PARMACS [41].

Some systems address not only the Communicate buf also the Em-
bed phase of the PMESC paradigm. They allow programmers to get rid of the
tedious job of mastering not only the low-level communication primitives but
also the physical interconnections of the processors. They providé a virtual
machine that more resembles the logical interconnections defined by the appli-
cation than the physical interconnections imposgd by the machine architecture.
Examples in this regard are MP'I",“PARMACS [41} and STRANDSS [31].

Finally, many other tools are intended to assist the parallel program-
mer at a higher level, providing more tha‘.n just machine independence. While
most of these tools are especially designed for quasi-dynamic, i.e., data-parallel,
applications, a few provide a similar type of support for dynamic, i.e., task-
parallel, oneé. Although both types are adaptive, they require different miech-
anisms for parallelization. ’

Examples of tools that address data-parallel problems are thg LPARX
syétem 53], Dome {7}, and PARMACS on-the library side as well as Dino2 [77]
and Mentat [36] on the language side. Among all the systems pr;)posed‘ 0
far, only two address task-parallel computations in general: Charm [23] and

Bxpress [71]. Charm has been designed to provide full Stipport\for”tggk—paraliel

-
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computations, covering all the application-independent issues involved in their
implementation at a high-level. The Charm system is based. on the SPMD
model rather than on the MPMD one. It handles such issues as queueing of
tasks, dynamic load balancing, and information sharing. Express provides low-
and high-level abstractions for both data- and task-parallel applications. It is
based on both the SPMD and MPMD models, and, therefore, it is intended for
a wider variety of problems. It does not support some of the issues specific to
task-parallel problems such as queueing and sharing of information. We next

describe these tools in more detail.

5.2 Tools for Task—Pérallel Applications
| In this section, we describe the tools that the user has available today
for task-parallel applications. We discuss them in terms of the PMESC phases
~so that it is e‘a,s‘ier to compare and contrast them with PMESC. “

5.2.1 Express. Express [71], developed by ParaSoft Corpora-
tion, is a set of tools designed to assist the user in writing efficient and portable
parallel code. It provides support for data- and task-parallel problems. Ex-
pressb includes low- and high-level communication facilities, load balancing,
automatic loop parallelization, data distribﬁtion, and domain decomposition,
and a set of pyerformya,nce and debugging tools. Express is a:commercial product
that is marketed along with several Express-based applications. It has been de-
~signed for MIMD supercomputers with shared and distributed memory, vector
superédnputer& networks of workstations and ;vorl.\'stations. Programs writ-

ten with Express are completely portable across all the machines for which it
“provides support. without changing a single line of code. |

Express presents a three-layered approach. At the lowest level it
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provides an architecture specific layer that supports allocation of processors,
loading of programs and asynchronous message passing. -At a higher level are
the utilities designed to address some of the issues involved in data- and task-
parallel applications. Examples are the facilities for automatically decomposing
problems with regular structure and those for handling dynamic load balancing.
These routines can be used ignoring the characteristics of the hardware. At
the highest level is a complete I/O system that allows a uniform access to the
operating system facilities of the host.

The lowest level of the Express system is based on an asynchronous,
point-to-point message passing system. It offers both synchronous and asyn-
chronous functionality to support different-types of data- and task-parallel ap-
plications. Express also provides global communication functions that include
broadcast, gather and synchronization. Along with the obvious attributes of a
message such as length, data, source and destination, Express also associates
a type with each. This feature is useful for task-parallel applications for it
allows processors to make different decisions depending on the message type.
In a multitasking environment different message types can be used to specify
that certain messages are intended for one task rather than another. Different
types can also be used to handle tasks that have different priorities associated
with them. Thus, Express provides more features than other communication
systems like PVM which support only synchronous mechanisms.

On top of the communication layer comes a Iligher—leifel one for which
no knowledge of the underlying topology of the processors is required. Users
at this level can work on a virtual machine, absolutely ignoring the physi-

cal interconfiections of the processors. This level was originally designed for

-
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data-paralle] computations, and, therefore, that is the type of computation for
which it provides the strongest support. Express provides utilities for auto-
matic domain decomposition and balancing of data that are based on a virtual
grid of processors. However, the newest versions include features for dynamic
balancing of tasks as well. Express does not provide support for the other
phases involved in task-parallel computation such as handling the task queue
sgructure, information sharing to maintain a pseudo-global variable, and ésyn-
chronous detection of termination.

Finally, the highest lével layer provides a runtime I/O system that
extends the functionality of the standard C and Fortran libraries to fit Within
a parallel environment. Furthermore, it provides support for graphics, debug-
ging, and performance analysis. In summary, Express offers support for a wide
spectrum of problems and app}icati'ons. In terms of the PMESC phases, Ex-
press provides strorlg support for the Eﬁlbed and Map phases. It covers a
considerable part of the Communicate phase but it does not include informa-
tion sharing. Neither does it support the Partition phase. Table 5.1 shows the
Express features, its do’s and don’t’s so we can compare it and contrast it
later with Charm and PMESC. 7 |

5.2.2 Charm. Charm [23], developed Ey Kale and his students
at the University of Illinois, is a parallel progrém_ming system that supports an
explicitly parallel C-based language for computations with regular and irregular
structure. = Tor regular computations; it provides static load balanciné and
induces data locality. For irregular compu‘tations, it includes management of
processes, support for prioritization and information sharing, and dynamic load

balancing s£1*a.tegies. Charm 1s not pub]jc domain software, but itJg available



Table 5.1: Express features

Features Express Charm | PMESC
synchronous + vV
asynchronous
communication
virtual topologies + v
embeddings | (only grids)
dynamic v

load balancing

global communication

information sharing

Y

termination detection

queueing

prioritized tasks

I/0 N4

graphics V4

debugging v
v

performance analysis

zl‘A
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free of charge.

Charm allows machine independent parallel programming over the
class of MIMD machines —shared and non-shared memory. Unlike Express,
Charm does not provide a low-level communication layer. However, it pro-
vides higher-level mechanisms and strategies for task-parallel computations
than does Express, supporting almost all the stages involved in their imple-
mentation (not just load balancing.) In faét, Charm covers more speciﬁc issues
such as queueing and load balancing for prioritized tasks. It provides an en-
vironment where the user has to explicitly specify the creation of tasks or
chares, and the communications between them, leaving the management of
chares —load balancing, scheduling, etc.— to the system.

Chares have some properties that distinguish them from processes in
general. They are medium-grained processes that can dynamically create other
chares, send messages to other chares, and share information with other chares
using specific information-sharing primitives. The system is free to schedule
the chares on any processor it chooses to use. It follows a message-driven
approach 1n which a chare 1s allocated to a bprocessor only when a message for
that chare is received. Fach chare has associated with it a data area and some
entry functions that can access this data area. The entry functions can be
executed by addressing a message to an entry flmction of a particular chare,
which can be ﬁniquely identified with its chare-id. Having pfocessed a message,
a chare susﬁends until another message meant for it is selected. However,
when a chare blocks, waiting for a message, another chare may execute on that
processor. The system running on each processor picks a message from a queue

of messages. Besides the data, a message includes a code entry pgint and a



chare-id. The system identifies the chare-id and then jumps to the entry point.
When the entry point code finishes, control returns to thg system, which then
selects another message and repeats the cycle. The Charm implementation
on shared-memory méchines has one queue for messages shared by all the
processors. | On nonshared-memory machines, the queues are local queues, and
the load balancing strategy attempts to balance the size of these queues.

Charm provides two mechanisms for I/O; CkScanf and CkPrintf. The
difference between CkPrintf and the C function printf is that the former is
atomic. This means that data printed by a single CkPrintf is guaranteed to
appear on the output without interference from other CkPrintfs being executed
by other processors. |

In summary, Charm is a more structured environment than Express.
It provides wider‘support on high-level issues involved in task-parallel computa-
tions and less support for lower-level iséues. In terms of the PMESC ﬁaﬁadigm,
it provides only little support for the Communicate and Embed phases, and
strong support for the Partition and Map phases. Table 5.2 shows a comparison
between both systems, Exlaress and Charm.

5.27.3 Why to propose a new tool. " In Sections 5.2.1 and
5.2.2, we described the tools the programmer has available today to develop
task-parallel computations on parallel cémputer& Each of these tools has its
strengths and weaknesses. Express provides a great deal of supi)ort at the low-
est and highest levels. It also allows the user to éfﬁcieﬁtly program on a virtual
architecture of processors, ignoring the real one. However, Express lacks of
strong support at the mid-level. The Express programmer has to design and

take care of the efficient implementation of most issues involved in task-parallel

-
-



Table 5.2: Express and Charm features

Features Express Charm PMESC
synchronous + v
asynchronous
communication
virtual topologies + v Vv
embeddings (only grids) | (only spanning trees,
only in the high-level
context of the chares)
" dynamic Vv N4

load balancing

global communication

(only in the context
of the chares)

information sharing

termination detection

queueing

prioritized tasks

/0

graphics

RSN N

debugging

future plans

performance analysis

SN

<

4
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computation such as handling the queue of tasks, detecting termination of the

the user has to take care of the load balancing of tasks when these have associ-
ated priorities. Express keeps the number of tasks in each processor balanced,
but it does not provide support for keeping the pfiorities balanced. Load bal-
ancing of prioritized tasks is a very important issue in those problems where
efficiency is achieved not just by keeping the processors“busiy all the time but
also by keeping them busy doing productive work.

In contrast, Charm provides no support at the lowest-lével. If the user
wants to implement a new approach from scratch, she or he must use another
communication system. Instead, Charm provides a great deal of support for
high-level programming issues, but in a very structured manner. The user then,’
is restricted to using the chare-based model without much room for change.
This conrstraiiltubis certainly ajdra,wback in this type of problem where the
decisions about what techniqﬁe or approach are more efficient depend on the
application and, sometimes, on the target machine. In order to achieve good
perfox‘mallée, the user must be given alternatives so she or he can ultima,tely
decide what to use and how to use it.

The PMESC library offers the high-level facilities provided by Charm
but at the same time provides the low-level power of machine independence
’ providea by Express. In other words, it combines the strengths of both Express
and Charm in a single sjrstem that allows portability with govodA p'erforfﬁance
and, above all, 1s easy to use. We want this SyStélﬂ to offer the user the
framework and high-level abstractions to design and implement task-parallel

applications. It should also give the user all the power to create_her or his
e



98

own alternatives from scratch without the burden of the machine-dependent
communication primitives or the architecture-dependent processor interconnec-
tions. In the next sections, we discuss the library prototype that we propose

to deal with these issues.

5.3 A New Library: PMESC

Rather than starting from the hardware and building a communica-
tion system, PMESC began with the applications and their requirements. Our
goal with PMESC is to fulfill those requirements by offering utilities at all lev-
els of complexiﬂy from low-level message passing primitives to automatic load
balancing as well as a communication interface that Vis totally independent of
the underlying hardware connectivity. We next discuss the design decisions
made to achieve this goal.

5.3.1 The levels of PMESC. PMESC 1s a two-layered library.
At the lower level, it provides support for synchronous and asynchronous mes-
sage passing. The user can either use these facilities or ignore them totally
depending on the degree of involvement she or he wants to achieve with the
application. At the higher-level, PMESC provides the high-level abstractions
to handling more specific programming issues. These routines form the ba-
sis for a flexible médel of computation in which the underlying topology of
the hardware can be completely ignored. Unlike Express, PMESC does not
support a higher level for I/O. We will consider this possibility in a future
implementaﬁon of the library. For 1/O, the user can use either the functions
provided by the C or Fortran language or the routines provided by the machine
- vendors. )

Each level of PMESC is distinct and independent of the‘(?thcr, with
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the higher level being built on top of the lower one. As a result of that design,

we can port, the li
down” approach in which the low-level may need to change while the high-level,
built on top of it, does not. The usér code, built on top of these levels, should
remain unchanged across different computers. The only exception may be the
lines corresponding to input and output of data (only if the routines provided
by the machine vendors are used.)

5.3.2 The programming model (for viewing the computers).
There are two completely disjoint programming models. PMESC supports the
“Hostless” model. In this model, the same or different pieces of code are
executed in parallel on all participating nodes by just invoking the name of the
executablé code. The parallel program may use most operating system services
and runtime libraries as though it were running on the host computer itself.
For instance, it can invoke the C functions for I/0 frorﬁ a,ny node. The Intel
machines iPSC/860 and Delta as well as the CM5 support -this approach.

The alternative model 1s called “Host-Node”. It entails writing a
program for the native host computer and another for the parallel computer
nodes. The host program takes care of allocating processors and downloading
applications, and eventually it may execute some portions of the application:
The nodes typically perform the bulk of the numerical computation. The
facilities available from the operating system and runtime libraries are only
available to the host. Thﬁs, [/O must be handled by the host program and
then sent in messages to the nodes. The iPSC/2 and CM2 support this model.

In this thesis, we will limit ourselves to the hostless approach for it

“resembles more the nature of the asynchronous and independenf_problems.
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# include “types.h” \* Define system constants and macros *\
main (arge, argv)
int argc;

char * argv[];

{

\* User Program *\

}
Figure 5.1: A typical PMESC program.

However, a future implementation of thé library should include the host;node
model if future computers demand it. That way, the user can decide which
approach to use.

5.3.3 The language used. PMESC is a Iibrary of routines. It
can be added to any existing high level language supported by the target
machine. So far, the PMESC prototype is available in C. Most constants and
. variables needed by PMESC are defined in the header file typ es.h which should
be included in all PMESC programs. A typical PMESC program written in C
has the skeletal form shown in IFigure 5.1.

Note that the user is not restricted to the C language. It is possible

- to write a Fortran program that interfaces with a C program.-

5.3.4 Some “open” design decisioﬁs. » Some design decisions
have been left open to the user because they depend on the application. Ques-
tions like:

‘ Should the queue of tasks be centralized or distributed?

) ,Wimt 1s the mostAeﬁicient possible inritiél disﬁributioﬁ of work among
the processors?

e Should tasks be priofit}zed?

e Should processors share some information? -3
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e Which load balancing strategy incurs the least overhead?

could not be answered without considering the problem and the target ma-
chine. Thus, the nature of the application should determine the set of building
blocks to be used. Only one system so far has addressed some but not all of
these questions: Charm. We next discuss the PMESC approach to deal with

these issues. In Chapter 9, we compare and contrast this approach to the one

proposed by Charm.

5.4‘ The PMESC Approach

* We begin by explaining the PMESC programming model for viewing
‘ dynamic task-parallel problems in general, and then we discuss the open design
decisions in particular. Task-parallel problems can be compared to a group of
individuals workihg on a common project. The work is split and assigned to
the mémbers. Each member, in turn, subdivides his or her work into smaller
pieces. Because they can execute only one piece at a time, they place the other
pieces in a pile where they will pick them later. In oﬁl* case, individuals are
represented by processors, pieces of project by tasks, and the pile of subprojects
by the queue (7)f‘tasks, but the fundamental idea ié exactly Athe same.

The first step towards using the PMESC library is to identify the
units of work or tasks. Tasks are stored in a queue of tasks from- which they
are selected for computation. The tasks and the que‘ue 1)1ay a'ur key role in
the i‘mplementatiofx and ﬁefformga,nce of task-parallel problems on distributed-
memory computers. Tasks are important for they define the granularity of the .

_parallel problem. PMESC is especially designed for mgdium— to coarse-grain

problems, and it incurs a high overhead on fine-grain applications. ®he queue
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is also important for it originates two different approaches, centralized (main-
tained by a single processor) and distributed (split into local queues maintained
by all the processors), that lead to different memory usage, network usa;ge, and
programming complexities. With these fundamental concepts in mind we can
begin making decisions.

5.4.1 Should the queue be centralized or distributed? One
of the first decisions that users must make is whether the queue of tasks is
centralized or distributed. PMESC supports both approaches. If the queue
is centralized, a master processor is responsible for storing and maintaining
the queue of tasks. Figure 5.2 depicts the framework for this approach. The
pseudo-code shows that the burden of manipulating the queue is on th‘e master
processor who spends its time receiving and sending messages.' The other pro-
cessors take tasks from the queue by sending a request to the master processor.
When they receive a task, they execute it, eventually creating more taéks along
the way. When a processor creates new tasks it stores them locally until it fin-
ishes with the execution of the current task. When execution is finished, the
processor sends the newly created tasks to the master along with a request for
more. This process repeats until the queue becomes empty in which case the
master processor sends a termination message to the other processors. Because
tasks are assigned to the processors upon request, no load balancing strategy is
necessary with this approach. Also, because there is a single queue, no special

“mechanisms are required for either detecting termination or using prioriti»zerd
tasks.

In the distributed approach, each processor‘ 1s responsible for main-

7taining, i.e., storing and handling, its own local queue. Figure 5.3 pugsents the
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framework for this case. The figure shows that every processor works on the
execution of its own tasks until its local queue becomes empty. However, like in
the human workgroup case, some individuals execute their portions faster than
the others eithér because they are less efficient at their task or because their
task is more complex. To fix this problem, idle individuals are assigned tasks
from the busy'ones in the hope that everyone will end together. That way, one
can reduce overall execution time by dynamically distributing the work so that
each processor is kept busy all the time. The load balancing mechanisms are
a fundamental ingredient for achieving good performance.

5.4.2 What is the most efficient initial distribution of work
among the proces’sors?‘ One characteristic of dynamic problems is that
they are unpredictable. It is impossible to assure that any initial distribution of
work will evenly assign work to all the processors. Therefore, PMESC lets the
user decide on thisv matter. The usef may either try to implement ;"x code that -
takes care of the initial distribution or do nothing and let the load balancing
mechanisms (in the distributed queue case) or the queueing mechanisms (in the
centralized queue case) take care of it. This decision depends on the knowledge
that the user has of the problem and on how fast she or he wants processors to -
- begin the parallel execution. In general, sending some work to‘evefy processor
so that all can start cooperating right at the beginning of the execution may be
the ‘best alternative though it is not always possible. PMESC provides machine-
independent communica;ticzn routines’as well-as virtual topologies that help the
user to implement this codevin a portable way if she or he decides to do so. We

provide some illustrative examples in Chapter 6.



[Define global variables;]
main ()
Define local variables;

InitialPartition; '
InitialMap of the work;
Store initial task(s) in queue;

if (MASTER) {
while (queue is non-empty) {
Handle queue {
if (task received)
Store it in the queue;
else if (task requested) {
Get task from queue;
. Send task torequesting processor;
1
}
}
Send termination message;
Gather results;

}

else {
while (termination message not received) {
Get task from queue;
Solve task; :
Store newly created tasks in the queue;
} :
Send final results to MASTER,;

}

" Figure 5.2: Syntax of the Centralized Approach

-F
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[Define global variables;]

main ();

{

Define local variables;

) InitialPartition;
InitialMap of the work;
Store initial task(s) in queue;

while (termination not detected) {
while (moderately loaded) {
~ Get task from queue;
" Solve task;- '
Stores newly created tasks in the queue;
}

Balance loads;
Check for termination;

}

Gather results;

Figure 5.3: Syntax for the Distributed Approach
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5.4.3 Should tasks be prioritized?  This is another decision
that the user must make for it depends on the particular problem. Some prob-
lems can be split into subproblems that can be executed in any order without
affecting either the correctness of the results or thé overall perfé)rmance‘ There
are however, other cases where the assignment of priorities to the tasks may
~ have a tremendous impact in the performance (and even the feasibility) of the
~ problem. This consideration may apply to both sequential and parallel imple-
mentations. An example is given by the Traveling Salesman Problem (TSP).
(Please refer to Chapter 6 for a description of this problem.) PMESC provides
support for handling prioritized and non-prioritized tasks.

5.4.4 How processors éhare some information? In task-
parallel applications, processors never synchronize. Thus, if they need to share
-some information, they must define a pseudo-global variable. The need for a
pseudo-global variable depends on the problem. Refer to Chapter 6 for some
illustrative examples.

Although maintaining a pseudo-global variable involves a high com-
munication overhead, keeping it updated reduces the computation costs. The
frequency of the updatings of the pseudo-global variable then becomes a sub- -
ject of trade-off. If the frequency is too low, many wasted computations may
result. If the frequency is too high, the updating procedure introduces a large
overhead. The PMESC approach to coping with this problem is to provide an
updating routine and let lrfhé user decide when to invoke it. 'Cha.péer;ﬁ shows
different uses of this routine. It also shows an example of how to determine

the updating frequency.
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5.4.5 Which load balancing strategy is the most efficient?
Depending on how the control is distributed a
ing strategies can be centralized, hierarchical, distributed or hybrid. (Please
refer to Chapter 4 for a description of these strategies.) In general, centralized
and even hybrid strategies do not perform well for large number of proces-
sors. For that reason, PMESC supports distributed strategies. The PMESC
strategies for load balancing are the random approach that distributes tasks
globally, a ring-based approach that distributes tasks among the neighbors in
a ring, and a strategy for prioritized tasks based on the random strategy. Each
strategy cofnes in two different versions: sender- and receiver-initiated.

The PMESC approach for load balancing is to let the user decide for
the particular problem. The user does not need to know which strategy to use in
advance. She or he should try different ones and then, based on the results, the
user can decide. ‘Theoretical studies show that, the random approach (or any
of its variations) performs reasonably well on ‘most applications [27, 40]. Also,
in general, the sender-initiated approach outperforms the receiver-initiated one
on moderately- to lightly-loaded systems while the opposite is-true when the
system is heavily-loaded [26].

5.4.6 When should the load balancer be invoked?  First,
the user must decide how to measure the processor’s load. One way to do it
is by countikng the number of tasks in the queue. When this count is between
some lower and upper bounds, the processor is considered modéra.tel.yloa/ded.
 Otherwise, when the count is less than the lower bound, the processor is lightly-
loaded and when it 1s greater _th‘an or equal to the upperk bound, the processor

1s heavily—ba.ded In any Case; the processor calls the load balancing.procedure
e
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to initiate some transfer of work or to check if some work has been transferred
to it or both (depending on whether the load balancing strategy is sender- or
receiver-initiated.) Therefore, the freqﬁency"of the load balancing calls can
be controlled by the lower and upper bounds. There is always a compromise
between the frequency of these calls and the‘amount of overhead introduced
by the load balancing procedure. Too frequent calls may incur high overhead,
while less frequent calls may reduce the overhead but also increase load imbal-
ance. By changing the parameters representing the lower and upper bounds,

the user must be able to find a reasonable solution.

5.5 An Introduction to the PMESC Library
In this section we summarize the programming issues that PMESC is
intended to address. We also organize them as different modules that match
the progranﬁning phases of the PMESC paradigm.
5.5.1 The PMESC features. The PMESC library addresses
the following programming issues:
) To provide support for handling the task queue structure.
) To provide support for dynamic load balancing.
) To provide support for efficient éermination checking.
(4) To provide sﬁpport for efficient updating of pseudo—globalv variables.
) To provide support for global operations such as broadcast and gather. ~
) To provide guppoﬂ; for point-to-point comn}unication In a way vth’at 18
machine—independent.d
(7) To provide support for programming on virtual machines.
- Table 5.3 shows the main fezi’tufes of Express, Charm, and PMIESC. As dis-

cussed 1 Section 5.2 PMESC combines the most important aspects of Express
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and Charm into a single tool that is easier to use and gives the user more
control over the application. In the next subsection, we discuss the PMESC
moﬂules that actually support these features. |

5.5.2 The PMESC modules. The PMESC library is composed
of a set of routines or building blocks that allow one to build a modular, easily
changeable interface between the problem and the machine. These routines
are classified according to the programming phase in the PMESC paradigm
for which they provide support. Thus, the routines that handle the té,sk queue
structure make up the Partition module, the routines that take care of bal-
. ancing the load and checking for termination comprise the Map module, the
routines that match virtual into real‘ architectures compose the Embed module,
“and the routines that take care of handling low- and high-level interproéessor
communication make up the Communicate module.

To build the library, it is necessary to implement these méd—ules. To
do>that, we need to define precisely what programming issues are involved in
each module and what strategies to use to efﬁcienﬂy attack those issues. We
will consider the Partition, Map, Embed, and Communicate modules, discuss
“their functionalities, and the methodologies to solve them.

5.5.3 The Partition rﬂmodule. The routines of the Partition
module perform one of the following procedures:

° create- the tésk queﬁe stfucture,

e dynamically allocate and deallocate memofy for the task queue struc-
tul‘e?

o add tasks to the queue,

e sclect tasks from the queue, T el



Table 5.3: Express, Charm, and PMESC features

Features Express Charm PMESC
synchronous + vV V4
asynchronous
communication
virtual topologies + v Vv v
embeddings (only grids) | (only spanning trees, (trees,
. only in the high-level rings,
context of the chares) arrays)
dynamic Vv V4 Vv

load balancing

global communication

Vv

(only in the context
of the chares)

v

information sharing

termination detection

RSN

NS ESS AN

queueing
prioritized tasks
1/0 Na
graphics v future plans
debugging v future plans future plans
v

performance. analysis

<_

future plans
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e partition the queue.

1 U

TN ] R T | E R | el e ey .
e L€ appliCatioil, qUeues Call ve €rlller Nol-prioritized or prior-

epending or
itized, centralized or distributed. The Partition module supports all these
approaches. It is implemented by deﬁningrar linked list that represents the
queue structure and different functions that access and modify the linked list.

5.5.4 The Map module. The routines of the Map module take
care of one of the following programming issues: o

o distribution of tasks among the processors for load balancing,
e termination checking.

Chapter 4 discusses the issues involved in the selection of load bal-
ancing and terrﬁination checking strategieé. In general, to avoid the boyttle‘neck
problem caused by centralized approaches, we have chosen distributed ones.
The only exception to that rule has been made in the selection of the termi-
nation checking strategy. (Please refer to Chapter 4 for a discussion of this
problem.) With respect to the load balancing procedures, we have made the
following decisions. Regarding the control issue, the strategies proposed by
PMIESC use a distributed approach. The centralized strategy that we imple-
mented produced such poor performance that we decided not to include it.
Ildwever, hybrid and even hierarchical approaches should be included ink the
future. Regarding the task transfer issue, all the strategies are implemented in
both versions, sender-initiated and receiver-initiated. Regarding the location
issue, PMESC provides a random approach that distributes tasks globally and
a ring‘»based approach thAat distributes them among the neighbors in a ring.
It also provides a,‘stra;tegy for prioritized tasks that is based on the random

strategy. Our decision has been based on the results of [26, 40, 96] g]jg.cussecl n
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Chapter 4. Finally, regarding the information source issue, we have used only
loqal information to avoid another soﬁrce of overhead. |

-5.5.5 The Embed module. AAnother fundamental task in the
implementation of a parallel algorithm is the allocation of virtually connected
processors to a given architecture. Considering embedding as an independent
procedure allows one to prograrri on a virtual machine, thereby hiding archi-
tectural details from thé applicgtion. Thus, if the programmer is concerned
with efficiency and the high communication costs that the algorithm may in-
cur, he or she should try a virtual topology of processors that can be efficiently
mapped onto the actual machine. PMESC provides such efficient embedding
routines that exploit the hardware characteristics while keeping them hidden
from the user.

Many efficient algorithms [5,‘10, 43,-79, 58] are avqilable for a wide
variety of interconnection structures and architectures. So far, we have included
the virtual topologies that we needed for the implementation of the PMESC
routines, i.e., rings for the ring-based load balancing routine, trees for the global
combine routines, and for the updating and termination checking routines, and
arrays. The algorithms are described in Chapter 4. |

5.5.6 The Communicate module. The routiﬁe’s of the Com-
municate module take care of the following programming issues:

e synchronous and asynchronous point-to-point communications,
o 7asynrchronous global combiné ‘operations{
e asynchronous updating of pseudo-global variables.
We Classifx them inte two differg;nt levels: the low l«everl-—that takes care of the

point-to-point communication and the high level that takes care ofmhe rest.
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The high level of the Communicate module includes routines for global
interchange of data. They are Broadcast, Gather, and Update (of pseudo-giobal
variables.) The mechanisms used for broadcasting and updating are described
in Chapter 4. Gathering is similar to broadcasting. However, messages flow in
the opposite direction. Instead of going from the root downwards to the leaves

(as in broadcasting); messages go upwards from the leaves to the root.

5.6 The PMESC Routines

| The purpose of this section is to describe the main routines that
compose the PMESC library modules. Thus, each subsection contains a brief
discussion of the main issues approached by each module and bresents the rou-
tines that are intended to address those issues. The arguments of the routines
are mzu“ked as IN, OUT or INOUT. The meanings of these are:

e the routine uses but does not update an INplit argument,

e the routine may update an OUTput argument,

e the routine uses and updates an INOUT argument.

5.6.1 The Partition module. The routines of the Partition
module are invoked to haﬁdle the task queue structure. Users define a vari-
able Task (equivalent to a C structure or a Pascal record) and decide which
type of queue to use (TYPEl: centralized or distributed; TYPE2: FIFO
or prioritized), and the routines of the Partition module take care of the rest.
Task is a datqstructuré that contains all the inrforma,tion that a processor needs
n order toﬁexecute’thét particular task. Remember that tasks can Be executed
by any processor, not ﬁecessarily by the processor that generates the task.
The-partition routines are:

e int ENQUEUE (TYPE1, TYPE2, * Task)

—
-
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IN TYPEI queue type can be centralized or distributed
IN  TYPE2 queue type can be FIFO or prioritized
OUT' ‘Task a data structure that contains
the information to execute a task
ENQUEUE places a Tz;Lsk in the quéue according to its priority or in

FIFO order if the queue has no priorities. It returns the current length

of the queue.

int DEQUEUE (TYPE1, TYPE2, * Task)
IN TYPE1 queue type can be centralized or distributed
IN TYPE2 queue type can be FIFO or prioritized
OUT  Task a data structure that contains
) the infermation to execute a task
DEQUEUE selects a Task from the queue (priority or FIFO) and re-

turns the current length of the queue.

int LENGTI (TYPE1l, TYPE2)
IN TYPEL queue type can be centralized or distributed
7- IN TYPE2 queue type can be FII'O or prioritized

LENGTH returns the length of the queue.

PARTITIONQ (TYPE1, TYPE2, TYPES, int *num-tasks, int

*p-node)
IN . TYPEL queue type can be centralized or distributed
IN TYPE2 queue type can be FIFO or prioritized

IN TYPE3 SPLIT ind’icétes that the queue is §l)1i£ to

send tasks. RECV indicates that the queue
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receives tasks
INOUT num-tasks number of tasks to be sent
IN p-node node to which tasks will be sent
PARTITIONQ SPLITs the queué and sends num-tasks Tasks to p-
.node or RECEIVes num-tasks Tasks from p-node.

5.6.2 The Map module. The routines of the ‘Mapv module take

care of the dynamic load balancing and termination checking procedures. The

user decides which strategy to use by selecting the corresponding routine. He or

she can also decide whether the selected strategy is sender- or receiver-initiated

by just changing one of the arguments of the routine.

The Map routines are:

e MAP Ra (TYPE1, TYPE2, int nod.e, int work_nodes)
IN TYPE1L load balancing strategy can be
SENDER or RECEIVER
IN TYPE2 indicates whether processor is
BUSY or IDLE
- IN node the calling processor id
IN work-nodes number of processors used
MAP_Ra transfers work between the calling processor node and a
processor Randomly selected in a sender or receiver-initiated fashion.
TYPEL represents those two options: SENDER and RECEIVER.
TYPEZ in;licates Whéther the calliﬁg pl’OCGSSO‘ll 1S BUSY' or IDLE.
work_nodes is the number of processors used for the parallel applica-
tion. |

-
-

e MAP_Ri (TYPEL, TYPE2, int node, int work_nodes)
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IN TYPE1 lo-ad balancing strategy can be
SENDER or RECEIVER
IN TYPE2 indicates Whether processor is
BUSY or IDLE
IN‘ node the calling processor id
IN work-nodes number of processors used
MAP_Ri transfers work between the calling processor node and one
of its neighbors in a virtual Ring in a sender or receiver-initiated fash-
ion. TYPEL is to represent those two options: SENDER and RE-
CEIVER. TYPE2 indicates whether the calling processor is BUSY

or IDLE. work_nodes is the number of proceséors used for the par-

allel application.

‘ MAP_Pr (TYPEL, TYPE2, 'ixit node, int WVcVJrk-nodes) 4
IN TYPEL load balancing strategy can be
SENDER or RECEIVER
IN TYPIE2 BUSY and IDLE
indiéate balancing of the load,
PRIOR indicate balancing of prioritiés
IN node the calling processor 1d
IN wo-rk—nodes' number of brocessors used
MAP_Pr transfers work between the calling processor node and a
processor Randomly selected in a sender or receiver-initiated fashion.
TYPET represents the two options: SENDER and RECEIVER.
This routine ilﬂplem@xﬁg a str“a.tegi; for Priﬂoi‘itized ta;sks‘t‘ha,t I\'eekps

~e

not only the load but also the priorities balanced. TYPE2 indicates
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whether the calling processor is BUSY or IDLE or ready to balance

D T
priorities PRIOR. work_iniodes is the number

)

£ o ion ] £
L pLULbbDUlD ustu 1uUlL

the parallel application.

e TERM-CHECK (flag): checks for termination according to the pro-
cedure described in Chapter 4. Users do not generally need to call this
routine; the MAP routine does when necessary.

. 5.6.3 The Embed module. The routines of the Embed mod-
ule take care of efnbedding the set of processors interconnected by different
virtual topologies into the actuél machine architecture. Thus, a call to Array,
Ring, S-Tree, and Quat-Tree by a given processor will retrieve the id of its
closest neighbors in a unidimensional array, bidirectional ring, binary tree, and
- quaternary-tree respectively. .

Users can also choose indirectly the virtual tofablogy (without specif-
ically invoking any of the embedding routines.) They do so when selecting
some strategies that use a virtual topology of processors. For instance, for the
load balancing procedure,‘users_can choose a ring or a fully-connected virtual
topology of ‘processors by 'selecting‘MAP_Ri or MAP_Ra respectively.

The embed routines are: —

e Array (int'*node, int *dim, int *neighbor)

IN node the calling node
IN dim - number of processors
OUT  neighbor the id of the virtual neighbror

Array returns the virtual neighbor of processor node in a unidimen-

sional array of dim processors.
~

¢ Ring (int *node, int *dim, int *neighbors)



118

IN node the calling node
IN dim number of processoré"
OUT neighbors = - the ids of the virtual neighbors

Ring returns the virtual neighbors of processor node in a bidirec-

tional ring of dim processors.

S-Tree (int *node, int *dim, int *neighbors)

IN node the calling node
IN dim number of processors
ouT neighbors the ids of the virtual neighbors

S-Tree returns the virtual parent and children, i.e., neighbors, of pro-

cessor node in a tree of dim processors.

uat-Tree (int *node, int *dim, int *neighbors

IN node the calling node
IN dim number of processors \
- OUT neighbors the ids of the virtual neighbors

Quat-Tree returns the virtual neighbors of processor node.in a qua-

ternary tree of dim processors.

Tree (int *node, int *dim, int *neighbors)

IN node the calling node
IN dim . number of processors
OUT neiglibors the ids of the virtual neighbors

Tree returns the virtual neighbors (neighbors) of processor node in a

tree of dimy processors. Tree’is equivalent to S-Tree on the hypercubes
B

and to Qua-Tree on the CM5.



119

5.6.4 The Communicate module. The Communicate module
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point-to-point or global. The Communicate module has two different levels.
One that takes céare of the basic point-to-point communications such as send
and receive and the other that takes care of global combine operations such as
broadcast and gather.

The high-level communication routines are:

¢ BROADCAST (int *source, char *msg)

IN source the processor that initiates the broadcasts
OUT msg the message to be broadcast

It broadcasts a message msg from processor source.

¢ GATHER (int *source, FLAG, int *msg)
IN  source the processor that gathers the messages
IN FLAG - options for ar global sum or for |
concatenation of all the messages
INOUT msg as mput, the values to be combined;
as output the result of the operation
available on the source précessor
Depending on FLAG, it either performs a global sum or gathers the
copies of msg in all the processors as the components of a vector msg in

the processor source. The values of FLAG are SUM and VECTOR,

respectively.

¢ UPDATE (my_node, work_nodes, global, newvalue, FLAG)

IN- -my.node -~ processor id
v -
-

IN - work nodes number of processors
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INOQUT global the pseudo-global variable to be updated
IN newvalue the new value
IN FLAG option to perform the update

It updates the pseudo-global variable global located in the private
memory of processor my._node with the value newvalue. If FLAG
is set to REGU, it updates global with the content of newvalue. If

FLAG is set to MONO, it only updates global when its content is

greater than the content of newvalue. If FLAG is UP or DOWN, it
follows a centralized approach in which the processor reads the message

when FLAG is UP but only updates the pseudd—global variable when

FLAG is DOWN.

The low-level communication routines take care of the Iov&-level2 machine-
dependent mechanisms for ;nessavge'pass‘ing. The implementation of these
routines may be different on different machines, but this is transparent to
the users. Thus, although the names of the library routines for message pass-
ing remain unchanged throughout all the machines, the library uses different
com_rhunication primitives for implementing them (i.e., the CMMD low-level
communication primitives on the CM5 and NX on the Intd madﬁnes.-)
Observe that, like Express, PMESC associates a type with each mes-
sage. Because PMESC uses types internally to indicate different kinds of ac-

tivity, the following message type restrictions apply: -

Type range Purpose

0-30,000 | For mnormal use

)

30,000 and over | For internal use
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The low-level communication routines are:
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s in
OUT type  the message type
OUT node the sending node

It returns 1 if there is a perniding message as well as the type of the

message and the sending processor node. Returns 0 otherwise.

¢ CANCEL-msg (int *type)
IN type  the message type
It cancels an asynchronous receive operation of type type. | When
CANCEL-msg returns the user knows the following: a) the asyn-
chronous receive operation is no longer active, b) the message buffér
may be reused, and c) the message identification (which on most ma-

chines is a limited resource) is released.” -

e ASEND (int *type, char *msg, int *size, int *node)

IN type  the message type

IN msg the message

IN size the message length -

IN node  the node to which the message s sent

It asynchronously sends a message msg of type type and size size to
processor node.
s SSEND (int *type, char *msg, int *size, int *node)
IN type  the message type
IN msg the message

1IN size the message length ' -~
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IN  node the node to which the message is sent
It synchronously sends a message msg of type type and size size to

processor node.

e ARECYV (int *type, char *msg, int *size)
IN type  the message type
OUT msg the message
INOUT size the message length

It asynchronously reccives a message msg of type type and size size.

¢ SRECV (int *type, char *msg, int *size)
IN type  the message type
OUT msg the message |
INOUT size the message length

It synchronously receives a message msg of type type and size size.

A First Approach to Using the PMESC Library

The basic idea behind PMESC is not only to facilitate the program-

mer’s job but also to allow her or him to have complete control over the appli-

cation. To that end, PMESC provides the building blocks and the frameworks

and the user puts them together. The templates presented in section 5.4 pro-

vide good starting points for the design and implementation of task-parallel

applications in terms of the PMESC library. Users have to take care of the

initial partition of the work into pieces, the initial distribution of those pieces

among the set of processors, the algorithm itself (i.e., the Solve phase), and the

main programithat puts all the building blocks together. Having those func-
T - WG

)

- tions implemented, the rest of the job is performed by the library. Thus, the
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partition routines handle the task queue —e.g., DEQUEUE selects tasks from

the ENQUE
14 A.d

the queue, n the queue. The map routines distribute

queue. The
tasks to keep the load balanced and check for termination. The communication
routines implement pseudo-global variables as well as broadcast and gather pro-
cedures. The embed routines embed virtual topologies into real ones. We now
discuss in more detail the issues involved in the implementation of a problem
‘with PMESC. |

To begin, the user has to partition the initial work into pieces and
identify the units of work or tasks. The definition of these units is a very
important part in the design process that has been purposely left to the users
so they can adjust the granularity of the problem. PMESC is designed to
coarse- to medium-grain problems. Short-lived tasks increase the overhead
and harm the performance. Thus, the initial partition process requires two
steps. One is to define a C structure called Task that contains ;“ll the data that
a processor needs in order to execute a task. The definition of the type Task is
usually included in the file “user-types.h”. bThe other S.t(’:p 15 to write the code
(i.e., the InitialPartition function in Iigure 5.3) that effectively partitions the
initial work into pieces. Notice the distinction between pieces and tasks. Pieces
are the initial chunks of work into which the original problem is subdivided.
Tasks‘ére the units of - work thatr. are queued, executed by the Solve function,
and exchanged by the processors to keep the’load balénced. The idea is to
“divide the original problem at a coarse level first, creating as many pieces
as processors, so that each processor receives some work to start execution.
Once processors get started they split the subproblems at a finer level thereby

creating the tasks. In some applications pieces and tasks may bg‘the same.

-
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This depends on the problem, and, therefore, it is left to the programmer’s

decision.

After separating the pieces, users have to implement the procedure
that distributes them arﬁong the processors (i.e., the InitialMép function in
Figure 5.3.) In general, this is a simple code in which a processor sends one or
more pieces of work to other processors. The PMESC library providesV routines
for send and receive fhat .allow users to write a portable code. Once pieces
are distributed, processors are ready to create the queue of tasks and begin
execution. -

The user has to make some decisions. One decision is what kind of
approach to use for the queue of tasks: centralized or distributed. In our ex-
periments, we confine ourselves to the distributed approach for it scales better.
Another decision is how to measure the workload (i.é., how to consider that a
processor is ’héavily-, moderétely— and liélltly—loaded.) Often, a good measure-
ment of the workload is the length of the queue of tasks. If the queue length
is between some given lower and upper bounds, the processor is considered
mo_derai;ely—loaded. Otherwise, it is lightly-loaded when the queue length is
less than the lower bound and heavily-loaded when the queue length is greater
than the upper bound. The lower and upper bounds should be input pa-
rameters th