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Abstract

As object
oriented features are added to programming languages such as C��� demands upon dynamic
memory allocation systems increase� Prototyping languages such as Smalltalk and LISP have long rec

ognized the impact of garbage collection on improving reliability and programmer productivity� but
providing garbage collection in C�� is hard because pointers are di�cult to reliably identify� Conser

vative generational collectors provide a partial solution to this problem at the cost of increased memory
consumption due to memory fragmentation and tenured garbage�

This research introduces a new conservative generational garbage collection mechanism� the Dynamic
Threatening Boundary �DTB�� that� unlike previous collectors� uses a dynamically updated threatening
boundary to select objects eligible for reclamation� By using object lifetime demographics to adjust
the threatening boundary between generations backward during run
time� one policy using the DTB
mechanism signi�cantly reduced tenured garbage� Because this mechanism clearly separates generation
selection policy from implementation� future researchers can easily develop other new policies that may
reduce costs further�

Existing implementations of generational collectors for C often use an expensive virtual memory
write
trap to maintain pointers into the scavenged generation� This research investigates the costs and
bene�ts of using an explicit store check instruction sequence to reduce the time overhead of the write
barrier for generational collectors for C� To further reduce memory fragmentation and time overhead�
this research also shows new ways to predict short
lived objects and recognize long
lived ones�

The eectiveness of these techniques is evaluated by using trace
driven simulation to compare them
against several existing generational collection policies� Although program behavior strongly in�uences
the costs of garbage collection� relevant C program behaviors have not been measured and reported
before� Several well
known C programs were instrumented and the results analyzed to provide data for
future researchers incorporating garbage collection into languages that currently do not provide it�
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Chapter �

Introduction

��� Motivation

Since the beginning of this decade� industrial soft

ware systems have undergone signi�cant change�
Drastically lower hardware costs have correspond

ingly increased the number and power of comput

ers that modern society uses� The demands upon
these machines have grown too as people have dis

covered more ways to put the increased compu

tational resources to use� The result is that the
size and number of software systems have grown
proportionally� forcing changes in the way people
develop them�

Larger software systems and lower
cost hard

ware have caused more powerful programming lan

guages to become popular in industry� These lan

guages provide cleaner mechanisms for data ab

straction� which in turn� require more sophisti

cated run
time systems to support them� For ex

ample� event
driven programming� which used to
be almost strictly within the domain of operating
systems device drivers� has now migrated upward
into the typical application programmer�s domain
as illustrated by common use of window
based
user interfaces� Window systems frequently use
an object
oriented paradigm� and that paradigm
encourages heavy dynamic storage allocation�

These complex applications� with their so

phisticated data structures� place heavy demands
upon the computer�s primary memory� In order to
use this memory more eectively� programs are al

locating and deallocating memory as the program
runs rather than relying primarily upon static
storage allocation methods� C��� with its object

oriented style� encourages programmers to create
objects that have lifetimes quite dierent than the
scope of their names� This increased use of dy

namic memory allocation also requires more pow


erful run
time support from the memory systems
than has been typical in widespread industrial use
in the past�

Garbage collection frees the programmer and
designer from the burden of memory resource
management by letting the computer determine
when storage may be reused� Program design is
simpli�ed because data structures using objects
shared between modules do not require a protocol
for freeing their storage� Reliability and develop

ment time are improved because errors in memory
management often cause catastrophic failure and
are time consuming to test� locate� and repair�

The bene�ts of garbage collection come at a
cost� however� Garbage collector implementations
typically require more memory than explicit deal

location� The virtual memory system may thrash
when a garbage collector attempts to identify un

used memory �garbage	� Processor overhead can
also be excessive and disruptive if the collector
used is not adequately matched to the applica

tion� Finally� programming languages and com

puter architecture strongly in�uence garbage col

lector design� often by making collection di�cult
to implement e�ciently�

Past research has produced two compatible
techniques of garbage collection that partially ad

dress these problems� generational and conserva

tive collection�

Generational collectors work by dividing allo

cated objects into young and old generations based
upon their age� Generational collectors examine
older objects less frequently than younger ones� To
avoid erroneously deallocating an object� genera

tional collectors use a write barrier to record point

ers from old objects to young ones by checking ev

ery store instruction in the program� Generational
garbage collectors reduce thrashing and disruptive
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collection pauses by limiting their scope only to
objects that have been recently allocated� Em

pirical measurements show that such objects are
often more likely to be available for reclamation
than older ones �BZ��� Hay��� WM��b� ZG����

Conservative collectors never deallocate ob

jects referenced by values that only appear to be
pointers and never move allocated objects� Thus�
conservative collectors can be used with program

ming languages and computer architectures that
make distinguishing pointers from data di�cult
�e�g�� C��� RISC	� Since conservative collectors
do not move live objects� they do not have to re

liably recognize and alter pointers to them�

The success of both collection algorithms is
evinced by their frequent use in language envi

ronments that require automatic storage reclama

tion �App��� BDS��� Fra��� HMS����

Despite their success� both types of collectors
have drawbacks� Generational collectors create
tenured garbage as old objects become unreach

able and are not collected �BZ���� Store checks
done by the write barrier can cause high processor
overhead �HMS��� Zor��a�� Conservative collec

tors can cause memory fragmentation since live
objects cannot be copied and they can become
scattered across the address space�

��� Research Contributions

This research investigates ways to improve the per

formance of conservative generational garbage col

lection� First� I determine the impact of using
an in
line write barrier for generational collection
upon processor overhead� Second� I measure C
program behaviors relevant to garbage collection�
and how they aect performance� Third� I evalu

ate a new method of generational garbage collec

tion to reduce tenured garbage� This method al

lows explicit separation of garbage collection pol

icy from implementation� Fourth� I show how
memory fragmentation may be reduced by using
information available at the time of allocation to
predict the lifetime of short
lived objects�

The write barrier can be a source of signi�

cant processor overhead in generational garbage
collectors� When pointers can be recognized with
certainty� as is possible with LISP and Smalltalk�
the write barrier is frequently implemented by in

structions added at each store instruction� The in


struction sequence checks for creation of a pointer
from an uncollectable old object to a collectable
young object�
When pointers cannot be identi�ed� as is com


mon with C�� and C� conservative generational
collectors typically use an operating system call to
write protect memory containing old objects� In

stead of using instructions at each store� a write

protect trap causes the operating system to call a
subroutine when a store instruction tries to write a
value into the protected memory� The subroutine
then records the stored location for future refer

ence by the collector and returns� These traps can
be very expensive depending upon the operating

system implementation and program behavior�

This research investigates the new approach of
using an in
line write barrier for conservative gen

erational garbage collection� Such an approach
becomes practical with the increased availability
of binary
to
binary translators� which allow exe

cutable programs to be altered without requiring
compiler modi�cation� Trap handling in operat

ing systems is often very slow� so replacing this
overhead with a few instructions is a promising
approach�

The popularity of object
oriented program

ming has caused new features to be added to pro

gramming languages that do not have garbage col

lection� Object
oriented features require lots of
dynamic storage allocation� which makes the addi

tion of garbage collection attractive� Program be

havior strongly aects garbage collection� The rel

evant behaviors of programs written in languages
that do not provide garbage collection have not
been measured before�

This research measures aspects of C program
behavior relevant to conservative generational gar

bage collection� Speci�cally� the store frequency
patterns� which have never been measured before
for C� are evaluated in the context of their impact
upon an in
line write barrier� Object life time de

mographics� which are relevant to generation se

lection� are also measured�
Generational collectors collect older genera


tions less frequently than younger ones� Pause
times are reduced but at the expense of maintain

ing the write barrier and retaining tenured gar

bage� Tenured garbage is created when the gener

ation boundaries do not match the object demo

graphics� For example� if the average object age
changes during the lifetime of the program� then
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no �xed
age generation boundary policy will work
well� Either processor overhead will be excessive
if the youngest generation is too big� or tenured
garbage will be created if it is too small�

This research investigates a new generational
partitioning mechanism that allows the boundary
between the old and young generations to be ad

justed dynamically� Also� a speci�c policy using
this mechanism to partition objects based upon
their lifetime demographics is evaluated� The pro

cessor time and memory overhead of this approach
is compared against several existing widely
used
generational algorithms using several well
known
C applications� By providing an approach that
clearly separates policy from implementation� the
door is opened for future rearchers to investigate
other policies as well�

Conservative collectors can cause memory frag

mentation because live objects may not be moved
after they are allocated� Moving objects requires
pointers to be altered to re�ect each object�s new
location� Altering a value that was misidenti�ed as
a pointer by a conservative collector would break
the program� As young objects die� the resulting
gaps in the address space become fragmented by
older objects� To address this problem a reliable
way is needed to predict the lifetimes of objects at
the time they are allocated�

This research investigates new ways to detect
when objects die and thus reduce memory con

sumption� One approach shows how short
lived
objects can be reliably predicted by their alloca�
tion site�what point in the program did the allo

cation� Segregating such objects reduces fragmen

tation� Another approach recognizes long
lived
clusters of objects by using the write barrier to
monitor pointer stores to collect them less often�
thereby saving processor overhead� Lastly� store
behavior discovered by the write barrier may be
used to indicate the death of object clusters�

The remainder of this dissertation proceeds as
follows� First� the relationship to prior research
is discussed� Next� the implementation model ap

propriate to garbage collection is presented with
the corresponding costs� Next� the experimental
methods and assumptions used to evaluate this
work are presented� After that� a chapter appears
for each of the principal contributions� the in
line
write barrier� the dynamic threatening boundary�
and lifetime prediction� Lastly� the conclusion will

discuss how these results relate to each other and
to future work�

Terms commonly used in the literature will ap

pear frequently throughout this document� In or

der to assist the reader� such terms will be itali

cized when they are �rst used and will appear both
in the glossary on page �� and in the index�
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Chapter �

Related Work and Contributions

This chapter presents the context required for
understanding and evaluating the remainder of
this dissertation� First� problems of explicit stor

age allocation motivate the need for garbage col

lection� Next� general concepts of garbage collec

tion are presented along with how two types of
collection� generational and conservative� reduce
the costs and expand the availability of automatic
storage reclamation� Lastly� advantages and lim

itations of speci�c examples of the prior art and
how they inspired the research done for this dis

sertation are discussed�

��� Problems with Explicit

Deallocation

Allocation of storage for program data structures
is one of the most important services provided by
the programming environment� Static allocation
provides an e�cient and simple solution for ob

jects such as global variables �e�g�� FORTRAN�
BASIC	 where object sizes are �xed� known in
advance� and lifetimes are the same as the pro

gram�s� Stack allocation provides a simple way to
reuse memory when the object lifetimes match the
scope of a subroutine �e�g�� local variables in PAS

CAL or automatic variables in C	� When lifetimes
or object sizes are not known in advance� such as
for recursive data structures or for dynamic ar

rays and records� dynamic storage allocation is re

quired�

Several forms of dynamic storage allocation ex

ist� In the simplest form� storage is allocated ex

plicitly by the program and is never deallocated�
the operating system recovers the memory when
the program terminates� For short
lived applica

tions or on machines with large amounts of virtual

memory� such an approach is often appropriate� it
has the advantages of minimal programmer eort
and low probability of storage deallocation errors�
But� when storage demands are large over the life

time of the program� memory must somehow be
reused�

One common approach requires the program

mer to explicitly deallocate each allocated object
�piece of storage	 at the end of its lifetime �e�g�� C�
ADA	� Unfortunately� determining when dealloca

tion should occur is often di�cult and becomes
rapidly more so as the number of modules sharing
a given data structure grows�

Diagnosis and repair of incorrect deallocations
is notoriously di�cult and expensive� Forgetting
to deallocate an object results in a memory leak
in which storage not reclaimed grows slowly un

til memory is exhausted� identifying which objects
cause such leaks is very di�cult� Conversely� deal

locating an object that is later referenced creates a
dangling reference that will not be apparent until
the storage reclaimed from that object is overwrit

ten and a reference to the original object occurs�
In both cases� the failure symptom often occurs
long after the cause� Tools such as Purify �HJ���
�a sort of memory debugger	 help diagnose these
problems� but only after they occur and with man

ual intervention�

Programmers must still design and strictly fol

low a protocol for the freeing of objects� This
protocol can become especially cumbersome when
object references may be shared between modules
and written by dierent engineers or companies�
The protocol for one module may have been writ

ten without knowledge of protocol for the other
and may con�ict with each other�

When these two problems are likely to occur in
a software system� automatic storage deallocation
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becomes attractive�

��� Garbage Collection Al�

gorithms

Garbage collection provides a solution where stor

age reclamation is automatic� This section pro

vides an overview of the the simplest approaches
to garbage collection� and then discusses the two
forms of garbage collection most relevant to this
dissertation� generational collection and conserva

tive collection�

����� Simple Approaches

All garbage collection algorithms attempt to deal

locate objects that will never be used again� Since
they cannot predict future accesses to objects� col

lectors make the simplifying assumption that any
object that is accessible to the program will indeed
be accessed and thus cannot be deallocated� Thus�
garbage collectors� in all their variety� always per

form two operations� identify unreachable objects
�garbage	 and then deallocate �collect	 them�

Reference�counting collectors identify unreach

able objects and deallocate them as soon as they
are no longer referenced �Col��� Knu���� Associ

ated with each object is a reference count that is
incremented each time a new pointer to the ob

ject is created and decremented each time one is
destroyed� When the count falls to zero� the refer

ence counts for immediate descendents are decre

mented and the object is deallocated� Unfortu

nately� reference
counting collectors are expensive
because the counts must be maintained and it is
di�cult to reclaim circular data structures using
only local reachability information�

Mark�sweep collectors are able to reclaim cir

cular structures by determining information about
global reachability �Knu��� McC���� Periodically�
�e�g�� when a memory threshold is exhausted	 the
collector marks all reachable objects� and then
reclaims the space used by the unmarked ones�
Mark
sweep collectors are also expensive because
every dynamically
allocated object must be vis

ited� the live ones during the mark phase and the
dead ones during the sweep phase�

On systems with virtual memory where the
program address space is larger than primary

memory� visiting all these objects may require the
entire contents of dynamic memory be brought
into primary memory each time a collection is per

formed� Also� after many collections� objects be

come scattered across the address space because
the space reclaimed from unreachable objects is
fragmented into many pieces by the remaining live
objects� Explicit deallocation also suers from this
problem� Scattering reduces reference locality and
ultimately increases the size of primary memory
required to support a given application program�

Copying collectors provide a partial solution to
this problem �Bak��� Coh���� These algorithms
mark objects by copying them to a separate con

tiguous area of primary memory� Once all the
reachable objects have been copied� the entire ad

dress space consumed by the remaining unreach

able objects is reclaimed at once� garbage objects
need not be swept individually� Because in most
cases the ratio of live to dead objects tends to be
small �by selecting an appropriate collection inter

val	� the cost of copying live objects is more than
oset by the drastically reduced cost of reclaiming
the dead ones� As an additional bene�t� spatial lo

cality is improved as the copying phase compacts
all the live objects� Finally� allocation of new ob

jects from the contiguous free space becomes ex

tremely inexpensive� A pointer to the beginning of
the free space is maintained� allocation consists of
returning the pointer and incrementing it by the
size of the allocated object�

But copying collectors are not a panacea� they
cause disruptive pauses and they can only be used
when pointers can be reliably identi�ed� Long
pauses occur when a large number of reachable
objects must be traced at each collection� Gen�
erational collectors reduce tracing costs by limit

ing the number of objects traced �LH��� Moo���
Ung����

Precise run
time�type information available
for languages such as LISP� ML� Modula
� and
Smalltalk allows pointers to be reliably identi�ed�
However� for languages such as C or C��� copying
collection is di�cult to implement because lack of
run
time type information prevents pointer iden

ti�cation� One solution is to have the compiler
provide the necessary information �DMH���� Con�
servative collectors provide a solution when such
compiler support is unavailable �BW����
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����� Generational Collection

For best performance� a collector should mini

mize the number of times each reachable object
is traced during its lifetime� Generational collec�
tors exploit the experimental observation that old
objects are less likely to die than young ones by
tracing old objects less frequently �BZ��� Bak���
Hay��� Sha��� SM��� WM��b� Zor��� ZG����
Since most of the dead objects will be young� only
a small fraction of the reclaimable space will re

main unreclaimed after each collection� and the
cost of frequently retracing all the old objects
is saved� Eventually� even the old objects will
have to be traced to reclaim long
lived dead ob

jects� Generational collectors divide the memory
space into several generations where each succes

sive older generation is traced less frequently than
the younger generations� Adding generations to
a copying collector reduces scavenge time pauses
because old objects are neither copied nor traced
on every collection�

Generational collectors can avoid tracing ob

jects in the older generation when pointers from
older objects to younger objects are rare� Tracing
the old objects is especially expensive when they
are in paged
out virtual memory on disc� This cost
increases as the older generations become signi�

cantly larger than younger ones� as is typically the
case� One way implementations of generational
collectors reduce tracing costs is to segregate large
objects that are known not to contain pointers
are into a special untraced area �UJ���� Another
way to reduce costs is to maintain forward
in
time
inter
generational pointers explicitly in a collec

tor data structure� the remembered set� which be

comes an extension of the root set� When a pointer
to a young object is stored into an object in an
older generation� that pointer is added into the re

membered set for the younger generation� Track

ing such stores is called maintaining the write bar�
rier� Stores from young objects to old ones are
not explicitly tracked� Instead� whenever a given
generation is collected� all younger generations are
also collected�

The write barrier is often maintained by using
virtual memory to write protect pages that are el

igible to contain such pointers �AEL���� Another
method is to use explicit in
line code to check for
such stores� Such a check may be implemented
by the compiler� but other approaches are possi


ble� For example� a post processing program may
be able to recognize pointer stores in the com

piler output� and insert the appropriate instruc

tions �Dig��� HJ��� LB��� SE����

Designers of generational collectors must also
establish the size� collection and promotion poli

cies for each generation and how many generations
are appropriate� The collection policy determines
when to collect� the number of generations� their
size� and the promotion policy determines what is
collected�

The collector must determine how frequently
to scavenge each generation� more frequent collec

tions reduce memory requirements at the expense
of increased CPU time because space is reclaimed
sooner but live objects are traced more frequently�
As objects age� they must be promoted to older
generations to reduce scavenge costs� promoting a
short
lived object too soon may cause space to be
wasted because it may be reclaimed long after it
becomes unreachable� promoting a long
lived ob

ject too late results in wasted CPU time as that
object is traced repeatedly� The space required
by each generation is strongly in�uenced by the
promotion and scavenge policies�

If the promotion policy of a generational col

lector is chosen poorly� then tenured garbage will
cause excessive memory consumption� Tenured
garbage occurs when many objects that are pro

moted to older generations die long before the gen

eration is scavenged� This problem is most acute
with a �xed
age policy that promotes objects af

ter a �xed number of collections� Ungar and Jack

son devised a policy that uses object demographics
to delay promotion of objects until the collector�s
scavenge costs require it �UJ����

Because generational collectors trade CPU
time maintaining the remembered sets for a re

duced scavenge time� their success depends upon
many aspects of program behavior� If objects in
older generations consume lots of storage� their
lifetimes are always long� they contain few point

ers to young objects� pointer stores into them
are rare� and many objects die at a far younger
age� then generational collectors will be very eec

tive� However� even generational collectors must
still occasionally do a full collection� which can
cause long delays for some programs� Often� how

ever� collectors provide tuning mechanisms that
must be manipulated directly by the end user
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to optimize performance for each of their pro

grams �App��� Sym��� Xer����

Generational collectors have been implemented
successfully in prototyping languages� such as
LISP� Modula
�� Smalltalk and PCedar �App���
BDS��� Cou��� HMS��� Boe��� Nel��� Sym����
These languages share the characteristic that
pointers to objects are readily identi�able� or
hardware tags are used to identify pointers� When
pointers cannot be identi�ed� copying collectors
cannot be used� for when an object is copied� all
pointers referring to it must be changed to re

�ect its new address� If a pointer cannot be dis

tinguished from other data then its value cannot
be updated because doing so may alter the value
of a variable� The existing practice in languages
such as C and C��� which prevent reliable pointer
identi�cation� has motivated research into conser�
vative non�copying collectors�

����� Conservative Collection

Conservative collectors may be used in language
systems where pointers cannot be reliably identi

�ed �BW���� Indeed� an implementation already
exists that allows a C programmer to retro�t a
conservative garbage collector to an existing ap

plication �Boe���� This class of collectors makes
use of the surprising fact that values that look like
pointers �ambiguous pointers	 usually are point

ers� Misidenti�ed pointers result in some objects
being treated as live when� in fact� they are gar

bage� Although some applications can exhibit se

vere leakage �Boe��� Wen���� usually only a small
percentage of memory is lost because of conserva

tive pointer identi�cation�

Imprecise pointer identi�cation causes two
problems� valid pointers to allocated objects may
not be recognized �derived pointers	� or non

pointers may be misidenti�ed as pointers �false
pointers	� Both cases turn out to be critical con

cerns for collector implementors�
A derived pointer is one that does not contain

the base address of the object to which it refers�
Such pointers are typically created by optimiza

tions made either by a programmer or a compiler
and occur in two forms� Interior pointers are ones
that point into the middle of an object� Array
indices� and �elds of a record are common exam

ples �BGS���� Sometimes an object that has no
pointer into it from anywhere is still reachable�

For example� an array whose lowest index is a non

zero integer may only be reachable from a pointer
referring to index zero� Here the problem is that a
garbage collector may mistakenly identify an ob

ject as unreachable because no explicit pointers to
it exist�

With the exception of interior pointers� which
are more expensive to trace� compiler support is
required to solve this problem no matter what col

lection algorithm is used� In practice� it turns
out that compiler optimizations have not been a
problem yet �June ����	 because enabling sophis

ticated optimizations often breaks other code in
the users program and is not used with garbage
collected programs in practice �Boe��b�� Such
support has been studied by other researchers
and will not be discussed further in this disser

tation �Boe��� DMH��� ED����

False pointers exist when the type �whether it
is a pointer or not	 of an object is not available to
the collector� For example� if the value contained
in an integer variable corresponds to the address
of an allocated but unreachable object� a conser

vative collector will not deallocate that object�
A heuristic called blacklisting reduces this prob

lem by not allocating new objects from memory
that corresponded to previously discovered false
pointers �Boe���� But even when the type is avail

able� false pointers may still exist� For example�
a pointer may be stored into a compiler generated
temporary �in a register or on the stack	 that is
not overwritten until long after its last use� While
memory leakage caused by the degree of conser

vativism chosen for a particular collector is still
an area of active research� it will not be discussed
further in this dissertation except in the context
of costs incurred by the conservative collector�s
pointer
�nding heuristic�

Not only can false pointers cause memory leak

age� but they also preclude copying� When a copy

ing collector �nds a reachable object� it creates a
new one� copies the contents of the old object into
it� deletes the original object� and overwrites all
pointers to the old object with the address of the
new object� If the overwritten pointer was not a
pointer� but instead was the value of a variable�
this false pointer cannot be altered by the collec

tor� This problem can be partly solved by moving
only objects that are not referenced through false
pointers as in Bartlett�s Mostly Copying collection
algorithm �Bar����
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If true pointers cannot be recognized� then the
collector may not copy any objects after they are
created� One of the chief advantages of copying
collectors� reference locality� is lost �Moo���� A
conservative collector can also cause a substantial
increase in the size of a process�s working set as
long
lived objects become scattered over a large
number of pages�

Memory becomes fragmented as the storage
freed from dead objects of varying sizes become in

terspersed with long
lived live ones� This problem
is no dierent than the one faced by traditional
explicit memory allocation systems such as mal�
loc�free in widespread use in the C and C�� com

munity� Solutions to this problem may be readily
transferable between garbage collection and ex

plicit memory allocation algorithms�

The trace or sweep phases of garbage col

lection� which are not present in explicit mem

ory allocation systems� can dramatically alter
the paging behavior of a program� Implemen

tations of copying collectors already adjust the
order in which reachable objects are traced dur

ing the mark phase to minimize the number of
times each page must be brought into main mem

ory �DWH����� Zorn �Zor��b� has shown that iso

lating the mark bits from the objects in a Mark�
Sweep collector and other improvements also re

duce collector
induced paging� Generational col

lectors also dramatically reduce the pages refer

enced as well �DWH���� Moo��� Ung����

Even though generational collectors reduce
pause times� work is also being done to make gar

bage collection suitable for the strict deadlines of
real
time computing� Baker �Bak��� suggested in�
cremental collection� which interleaves collection
with the allocating program �mutator	 rather than
stopping it for the entire duration of the collection�
Each time an object is allocated� the collector does
enough work to ensure the current collection com

pletes before another one is required�

Incremental collectors must ensure that traced
objects �those that have already been scanned for
pointers	 are not altered� for if a pointer to an oth

erwise unreachable object is stored into the pre

viously scanned object� that pointer will never be
discovered and the object� which is now reachable�
will be erroneously reclaimed� Although origi

nally maintained by a read barrier �AEL��� Bak���
this invariant may also be maintained by a write
barrier �BDS���� The write barrier detects when

a pointer to an untraced object is stored into a
traced one� which is then retraced �Wil��b�� No

tice that this barrier may be implemented by the
same method as the one for the remembered set
in generational collectors �DWH����� only the set
of objects monitored by the barrier changes� Net

tles and O�Toole �NO��� relaxed this invariant in
a copying collector by using the write barrier to
monitor stores into threatened objects and alter

ing their copies before deallocation�

Because incremental collectors are often used
where performance is critical �App��� BDS���
NO���� any technology to improve write barrier
performance is important to these collectors� Con

versely� high
performance collection of any type is
more widely useful if designed so it may be easily
adapted to become incremental� This dissertation
will not explicitly discuss incremental collection
further� but keep in mind that write
barrier per

formance applies to incremental as well as gener

ational collectors�

��� Related Work

This dissertation combines and expands upon the
work done by several key researchers� Xerox
PARC developed a formal model and the concept
of explicit threatened and immune sets� Ungar
and Jackson developed a dynamic promotion pol

icy� Hosking� Moss and Stefanovi�c compared the
performance of various write barriers for precise
collection� and Zorn showed that in
line write bar

riers can be quite e�cient� I shall now describe
each of these works and then introduce the key
contributions this dissertation will make and how
they relate to the previous work�

����� Theoretical Models and Im�
plementations

Researchers at Xerox PARC have developed a
powerful formal model for describing the parame

ter spaces for collectors that are both generational
and conservative �DWH���� Hay���� A garbage
collection becomes a mapping from one storage
state to another� They show that storage states
may be partitioned into threatened and immune
sets� The method of selecting these sets induces
a speci�c garbage collection algorithm� A pointer
augmentation provides the formalism for model
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ing remembered sets and imprecise pointer iden

ti�cations� Finally� they show how the formalism
may be used to combine any generational algo

rithm with a conservative one�

They used the model to design and then imple

ment two dierent conservative
generational gar

bage collectors� Their Sticky Mark Bit collector
uses two generations and promotes objects surviv

ing a single collection� A re�nement of this col

lector �Collector II	 allows objects allocated be

yond an arbitrary point in the past to be im

mune from collection and tracing� This bound

ary between old objects� which are immune� and
the new objects� which are threatened� is called
the threatening boundary� More recently� these
authors have received a software patent covering
their ideas �WDBH����

Until now� Collector II was the only collector
that made the threatening boundary an explicit
part of the algorithm� It used a �xed threatening
boundary and time scale that advanced only one
unit per collection� This choice was made to allow
an easy comparison with a non
generational col

lector� not to show the full capability of such an
idea�

Both collectors show that the use of two gener

ations substantially reduces the number of pages
referenced by the collector during each collection�
However� these collectors exhibited very high CPU
overhead� the generational collectors frequently
doubled the total CPU time�

In later work� they implemented a Mostly
Parallel concurrent two
generation conservative
Sticky Mark Bit collector for the PCeder lan

guage �BDS���� This combination substantially
reduced pause times for collection compared to
a simple full
sweep collector for the two pro

grams they measured� These collectors used page

protection traps to maintain the write barrier�
They did so by write protecting the entire heap
address space and installing a trap handler to up

date a dirty bit for the �rst write to each page�
Pause times were reduced by conducting the trace
in parallel with the mutator� Once the trace was
complete� they stopped the mutator� and retraced
objects on all pages that were �agged as dirty�

All their collectors shared the limitation that
once promoted to the next generation� objects
were only reclaimed when a full collection oc

curred� so scavenger updates to the remembered

set were not addressed� Tenured garbage could
only be reclaimed by collecting the entire heap�

My work extends upon theirs by exploiting the
full power of their model to dynamically update
the threatening boundary at each collection rather
than relying only upon a simple �xed
age or full

collection policy�

����� Feedback�Mediation

Ungar and Jackson measured the eect of a dy

namic promotion policy� Feedback Mediation� upon
the amount of tenured garbage and pause times
for four six
hour Smalltalk sessions �UJ���� They
observed that object lifetime distributions are ir

regular and that object lifetime demographics can
change during execution of the program� This be

havior aects a �xed
age tenuring policy by caus

ing long pause times when a preponderance of
young objects causes too little tenuring� and ex

cessive garbage when old objects cause too much
tenuring�

They attempted to solve this problem us

ing two dierent approaches� First� they placed
pointer
free objects �bitmaps and strings	 larger
than one kilobyte into a separate area� this ap

proach was eective because such objects need not
be traced and are expensive to trace and copy�
Second� they devised a dynamic tenuring policy
that used feedback mediation and demographic in

formation to alter the promotion policy so as to
limit pause times� Rather than promoting objects
after a �xed number of collections� Feedback me

diation only promoted objects when a pause
time
constraint was exceeded because a high percentage
of data survived a scavenge and would be costly to
trace again� To determine how much to promote�
they maintained object demographic information
as a table containing of the number of bytes sur

viving at each age �where age is number of scav

enges	� The tenuring threshold was then set so the
next scavenge would likely promote the number of
bytes necessary to reduce the size of the youngest
generation to the desired value�

Their collector appears similar to Collector II
in that it uses an explicit threatening boundary�
but diers because it does so for promotion only�
not for selecting the immune set directly�

My work extends theirs by allowing objects to
be demoted� Their object promotion policies can
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be modeled by advancing the threatening bound

ary by an amount determined by the demographic
information each time the pause
time constraint
is exceeded� I extend this policy by moving the
threatening boundary backward in time to re

claim the tenured garbage that was previously pro

moted�

Hanson implemented a movable threatening
boundary for a garbage collector for the SNOBOL

� programming language �Han���� After each col

lection� surviving objects were moved to the be

ginning of the allocated space and the remain

ing �now contiguous	 space was freed� Allocation
subsequently proceeded in sequential address or

der from the free space� After the mark phase�
and before the sweep phase� the new threatening
boundary was set to the address of the lowest un

marked object found by a sequential scan of mem

ory� This action corresponds to a policy of setting
the threatening boundary to the age of the oldest
unmarked object before each sweep� His scheme is
an optimization of a full copying garbage collector
that saves the cost of copying long
lived objects�
His collector must still mark and sweep the entire
memory space�

����� Write Barrier Performance

Hosking� Moss� and Stefanovi�c at the University of
Massachusetts �HMS��� evaluated the relative per

formance of various in
line write barrier implemen

tations for a precise copying collector using �ve
Smalltalk programs� They developed a language

independent garbage collector toolkit �HMD��� for
copying� precise� generational garbage collection�
which� like Ungar and Jackson� maintains a large
object space� They compared the performance of
several write barrier implementations� card mark

ing using either in
line store checks or virtual
memory� and explicit remembered sets� and pre

sented a breakdown of scavenge time for each write
barrier and program� Their research showed that
maintaining the remembered sets explicitly out

performed other approaches in terms of CPU over

head for Smalltalk�

Zorn �Zor��a� showed an in
line write bar

rier exhibited lower
than
expected CPU overheads
compared with using operating system page
pro

tection traps to maintain a virtual
memory write
barrier Speci�cally� he concluded that ����carefully
designed in
line software tests appear to be the

most eective way to implement the write barrier
and result in overheads of ��������

In separate work �Zor��b� he showed properly
designed mark
sweep collectors can signi�cantly
reduce the memory overhead for a small increase
in CPU overhead in large LISP programs�

These results support the notion that using
an in
line write barrier and non
copying collection
can improve performance of garbage collection al

gorithms�

��� Contributions

Ungar and Jackson�s collector provided a power

ful tool for reducing the creation rate of tenured
garbage by adjusting the promotion policy dynam

ically� I take this policy a step further and adjust
the generation boundary directly instead� PARC�s
Collector II maintains such a threatening bound

ary� but they measured only the case where the
time of the last collection was considered� I alter
the threatening boundary dynamically before each
scavenge which� unlike Ungar and Jackson�s col

lector� allows objects to be un�tenured� and hence
further reduce memory overhead due to tenured
garbage� Unlike other generational garbage collec

tion algorithms� I have adopted PARC�s notation
for immune and threatened sets� which simpli�es
speci�cation of my collector over generational col

lectors�

In order to avoid compiler modi�cations� pre

vious conservative collectors have used page

protection calls to the operating system for main

taining the write barrier� Recent work has shown
program binaries may be modi�ed without com

piler support� Tools exist� such as QPT� Pixie�
and ATOM� that alter the executable directly
to do such tasks as trace generation and pro�l

ing �Dig��� LB��� SE���� The same techniques
may be applied to generational garbage collectors
to add an in
line write barrier by inserting explicit
instructions to check for pointer stores into the
heap� Previous work has only evaluated in
line
write barriers for languages other than C �e�g��
LISP� Smalltalk� Cedar	� I evaluate the costs of
using an in
line write barrier for compiled C pro

grams�

Generational copying collectors avoid destroy

ing the locality of the program by compacting ob

jects� conservative� non
copying collectors cannot



�� CHAPTER �� RELATED WORK AND CONTRIBUTIONS

do this compaction� Even so� Zorn showed mark

sweep collectors can perform well� and malloc�free
systems have been working in C and C�� for
years with the same problem� However� in pre

vious work I have examined the eectiveness of
using the allocation site to predict short
lived ob

jects �BZ���� For the �ve C programs measured
in that paper� typically over ��� of all objects
were short lived and the allocation site often pre

dicted over ��� of them� In addition� over ��� of
all dynamic references were to predictable short

lived objects� By using the allocation site and
object size to segregate short
lived objects into
a small ���K
byte	 arena� short
lived objects can
be prevented from fragmenting memory occupied
by long
lived ones� Because most references are
to short
lived objects now contained in a small
arena� the reference locality is signi�cantly im

proved� In this document� I will discuss new work
based upon lifetime prediction and store behav

ior to show future opportunities for applying the
prediction model�

Albert Einstein observed that any theory
should be as simple as possible to describe the ob

served facts� but no simpler� The same could be
said of designs for complex software systems� The
designer�s task is to choose the simplest dynamic
storage allocation system that meets the applica

tion�s needs� Which system is chosen ultimately
depends upon program behavior�

The designer chooses an algorithm� data struc

ture� and implementation based upon the antici

pated behavior and requirements of the applica

tion� Data of known size that lives for the entire
duration of the program may be allocated stati

cally� Stack allocation works well for the stack

like control �ow for subroutine invocations� Pro

gram portions that allocate only �xed
sized ob

jects lead naturally to the idea using explicit free
lists to minimize memory fragmentation� The ob

servation that the survival rate of objects is lower
for the youngest ones motivated implementation
of generational garbage collection� In all cases�
observing behavior of the program resulted in in

novative solutions�

All the work presented in this dissertation is
based upon concrete measurements of program be

havior� Program behavior is often the most im

portant factor in deciding what algorithm or pol

icy is most appropriate� While I present measure

ments in the context of the above three contribu


tions� they are presented in enough detail to allow
current and future researchers to gain useful in

sight from the behavior measurements themselves�
Speci�cally� I present material about the store be

havior of C programs� which has previously not
appeared elsewhere�



��

Chapter �

Implementation Costs

Any type of dynamic storage allocation system
imposes both CPU and memory costs� The costs
often strongly aect the performance of the system
and pass directly to the purchaser of the hardware
as well as to software project schedules� Thus� the
selection of the appropriate storage management
technique will often be determined primarily by its
costs� This chapter will discuss the implementa

tion model for garbage collection so that the exper

imental methods and results to follow may be eval

uated properly� I will proceed from the simplest
storage allocation strategies to the more complex
strategies� adding re�nements and describing their
costs as I proceed� For each strategy� I will discuss
the outline of the algorithm and data structures�
then I will provide details of the CPU and memory
costs� Initially� explicit storage allocation costs
will be discussed and provide a context and mo

tivation for the costs of the simplest garbage col

lection algorithms� mark
sweep and copy� Lastly�
the more elaborate techniques of conservative and
generational garbage collection are discussed�

��� Explicit Storage Alloca�

tion

Explicit dynamic storage allocation �DSA	 pro

vides two operations to the programmer� allocate
and deallocate� Allocate creates uninitialized con

tiguous storage of the required size for a new al�
located object and returns a reference to that stor

age� Deallocate takes a reference to an object and
makes its storage available for future allocation by
adding it to a free list data structure �objects in
the free list are called deallocated objects	� A size
must be maintained for each allocated object so

that deallocate can update the free list properly�
Allocate gets new storage either from the free list
or by calling an operating system function�
Allocate searches the free list �rst� If an ap


propriately sized memory segment is not available�
allocate either breaks up an existing segment from
the free list �if available	 or requests a large seg

ment from the operating system and adds it to
the free list� Correspondingly� deallocate may co

alesce segments with adjacent addresses into a sin

gle segment as it adds new entries to the free list
�boundary tags may be added to each object to
make this operation easier	� The implementation
is complicated slightly by alignment constraints of
the CPU architecture since the storage must be
appropriately aligned for access to the returned
objects�
The costs of this strategy� in terms of CPU

and memory overhead depend critically upon the
implementation of the free list data structure and
the policies used to modify it �DDZ��� GZH���
GZ��� KV��� MK��� ST��� Sta��� WW��� ZG����
The CPU cost of allocation depends upon how

long it takes to �nd a segment of the speci�ed size
in the free list �if present	� possibly fragment it�
remove it� and return the storage to the program�
The CPU cost of deallocation depends upon the
time to insert a segment of the speci�ed address
and size into the free list and coalesce adjacent
segments� The total CPU overhead depends upon
the allocation rate of the program as measured by
the ratio of the total number of instructions re

quired by the allocation and deallocation routines
to the total number of instructions executed�
The memory overhead consists entirely of space

consumed by objects in the free list waiting to
be allocated �external fragmentation �Ran���	�
assuming that internal fragmentation and the
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space consumed by the size �elds and boundary
tags is negligible� Internal fragmentation �Ran���
is caused by objects that were allocated more stor

age than required �either to meet alignment con

straints or to avoid creating too small a free
space
element	� careful tuning is often done to the al

locator to minimize this internal fragmentation�
The data structure required to maintain the free
list may often be ignored because it can be stored
in the free space itself�

The amount of storage consumed by items in
the free list depends highly upon the program be

havior and upon the policy used by allocate to
select among multiple eligible candidates in the
free list� For example� if the program interleaves
creation of long
lived objects with many small
short
lived ones and then later creates large ob

jects� most of the items in the free list will be
unused� Memory overheads �as measured by the
ratio of size of the free space to the total memory
required	 of thirty to �fty percent are not unex

pected �Knu���� which leaves much room for im

provement �CL���� The total memory overhead
depends upon the size of the free space as com

pared to the total memory required by the pro

gram� This free list overhead is the proper one to
use for comparing explicit dynamic storage alloca

tion space overheads to those of garbage collection
algorithms since garbage collection can be consid

ered to be a form of deferred deallocation�

Often� both the CPU and memory costs of ex

plicit deallocation are unacceptably high� Pro

grammers often write speci�c allocation routines
for objects of the same size and maintain a free
list for those objects explicitly thereby avoiding
both memory fragmentation and high CPU costs
to maintain the free list� But� as the number of
distinct object sizes increase� the space consumed
by the multiple free lists become prohibitive� Also�
the memory savings depend critically upon the
programmer�s ability to determine as soon as pos

sible when storage is no longer required� When
allocated objects may have have more than one
reference to them �object sharing	� high CPU costs
can occur as code is invoked to maintain reference
counts� Memory can become wasted by circular
structures or by storage that is kept live longer
than necessary to ensure program correctness�

��� Mark�Sweep Garbage

Collection

Mark�sweep garbage collection relieves the pro

grammer from the burden of invoking the deal

locate operation�the collector performs the deal

location� In the simplest case� there is assumed
to be a �nite �xed upper bound on the amount of
memory available to the allocate function� When
the bound is exceeded� a garbage collector is in

voked to search for and deallocate objects that
will never be referenced again� The mark phase
discovers reachable objects� and the sweep phase
deallocates all unmarked objects� A set of mark
bits is maintained� one mark bit for each allocated
object� A queue is maintained to record reachable
objects that have not yet been traced�

The algorithms proceeds as follows� First� the
queue is empty� all the mark bits are cleared� and
the search for reachable objects begins by adding
to the queue all roots� that is� statically
allocated
objects� objects on the stack� and objects pointed
to by CPU registers� As each object is removed
from the queue� its contents are scanned sequen

tially for pointers to allocated objects� As each
pointer is discovered� the mark bit for the object
being pointed to tested and set and� if unmarked�
the object is queued� The mark phase terminates
when the queue is empty� Next� during the sweep
phase� the mark bit for each each allocated object
is examined and� if clear� deallocate is called with
that object� As a re�nement� the implementor
may use a set instead of a queue and may choose
an order other than �rst
in
�rst
out for removing
elements from the set�

Mark
sweep collection adds CPU costs �over
explicit DSA	 for clearing the mark bits and� for
each reachable object� setting the mark bit� en

queuing� scanning� and dequeuing� In addition�
the mark bit must be tested for each allocated
object and each unreachable object must be lo

cated and deallocated� Deferred sweeping may be
used to reduce the length of pauses caused when
the collector interrupts the application� For de

ferred sweep� the collector resumes the program af

ter the mark phase� Subsequent allocate requests
test mark bits� deallocating unmarked objects un

til one of the required size is found� Deferred
sweeping should be completed before the next col

lection is invoked since starting a collection when
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memory is available is probably premature�

The �rst component of the memory cost for
mark
sweep is the same as for explicit dealloca

tion where the deallocation for each object is de

ferred until the next collection� this cost can be
a very signi�cant� often one and one half to three
times the memory required by explicit dealloca

tion �DDZ��� Knu���� In addition to the size�
a mark bit must be maintained for each allo

cated object� Memory for the queue to main

tain the set of objects to be traced must be main

tained by clever means to avoid becoming exces

sive �Boe��� Che��� SW��� Wal���� A brute
force
technique� to handle queue over�ow� is to dis

card the queue and restart the mark phase without
clearing the previously set mark bits �Boe��b�� If
at least one mark bit is set before the queue is dis

carded� the algorithm will eventually terminate�

Virtual memory makes it attractive to collect
more frequently than each time the entire virtual
address space is exhausted� The frequency of col

lection aects both the CPU and memory over

head� As collections occur more frequently the
memory overhead is reduced because unreachable
objects are deallocated sooner but the CPU over

head rises as objects are traced multiple times be

fore they are deallocated�

The two degenerate cases are interesting� Col

lecting at every allocation uses no more storage
than explicit deallocation but at the maximal
CPU cost� no collection at all has the minimum
CPU overhead of explicit deallocation with a zero

cost deallocate operation� but consumes the most
memory� The latter case may often be the best
for short
lived programs that must be composed
rapidly� The designer of the collector must tune
the collection interval to match the resources avail

able� Although this dissertation will not discuss it
further� policies for setting the collection interval
are an interesting topic in their own right� and
there is much room for future research�

As mentioned earlier� during explicit dynamic
storage deallocation� fragmentation can consume a
signi�cant portion of available memory� especially
for systems that have high allocation and dealloca

tion rates of objects of a wide variety of sizes and
lifetimes� Other researchers have observed that
the vast majority of objects �������	 have very
short lifetimes�under one megabyte of allocation
or a few million instructions �Wil��b�� This obser

vation motivates two other forms of garbage collec


tion� copying collection� which reduces fragmenta

tion and sweep costs� and generational collection�
which reduces trace times for each collection�

��� Copying Garbage Collec�

tion

Copying garbage collection marks objects by copy

ing them to a separate empty address space �to�
space	 �FY���� Mark bits are unnecessary because
an address in tospace implicitly marks the object
as reachable� After each object is copied� the ad

dress of the newly copied object is written into the
old object�s storage� The presence of this forward�
ing pointer indicates a previously marked object
that need not be copied each subsequent time the
object is visited� As each object is copied or a ref

erence to a forwarding pointer is discovered� the
collector overwrites the original object reference
with the address of the new copy�

The sweep phase does not require examining
mark bits or explicit calls to deallocate each un

marked object� Instead� the unused portion of to

space and the entire old address space �fromspace	
becomes the new free list �newspace	� Allocation
from newspace becomes very inexpensive� incre

menting an address� testing it for over�ow� and
returning the previous address� Collection occurs
each time the test indicates over�ow of the size of
tospace� No explicit free list management is re

quired�

Copying collection adds CPU overhead for the
copying of the contents of each of the reachable ob

jects� Memory overhead is added for maintaining
a copy in tospace during the collection� but frag

mentation is eliminated because copying makes
the free list a contiguous newspace� Tospace may
be kept small by ensuring that the survival rate is
kept low by increasing the collection interval�

Copying collection can only be used where
pointers can be reliably identi�ed� If a value that
appears to point to an object is changed to re

�ect the updated object�s address� and that value
is not a pointer� the program semantics would be
altered�
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��� Conservative Garbage

Collection

Unlike with copying collection� conservative col�
lectors may be used in languages where pointers
are di�cult to reliably identify� Conservative col

lectors are conservative in two ways� they assume
that values are pointers for the purposes of deter

mining whether an object is reachable� and that
values are not pointers when considering an ob

ject for movement� They will not deallocate any
object �or its descendents	 referenced only by a
value that appears to be a pointer� and they will
not move an object once it has been allocated�

Conservative garbage collection requires a
pointer��nding heuristic to determine which values
will be considered potential pointers� More pre

cise heuristics avoid unnecessary retained mem

ory caused by misidenti�ed pointers at the cost
of additional memory and CPU overhead� The
heuristic must maintain all allocated objects in a
a data structure that is accessed each time a value
is tested for pointer membership� The test takes
a value that appears to be an address� and re

turns true if the value corresponds to the address
pointing into a currently allocated object� This
test will occur for each value contained in each
traced root or heap object during the mark phase�
The precise cost of the heuristic depends highly
upon the architecture of the computer� operating
system� language� compiler� run
time environment
and the program itself� The Boehm collector usu

ally requires �� instructions on the DEC Alpha to
map a ��
bit value to the corresponding allocated

object descriptor�

In addition to the trace cost� CPU overhead
is incurred to insert an object into the pointer

�nding data structure at each allocation� and to
remove it at each deallocation� As with mark

sweep� deferred sweep may be used�

In addition to the memory for the mark bits
previously mentioned for mark
sweep� conserva

tive collectors require space for the pointer
�nding
data structure� On the DEC Alpha� the Boehm
collector uses a two
level hash table to map ��
bit
addresses to a page descriptor� All objects on a
page are the same size� Six pointer
sized words
per virtual
memory�sized page are required� The
space for page descriptors is interleaved through

out dynamically allocated memory in pages that

are never deallocated�

��� Generational Garbage

Collection

Recall that generational garbage collectors at

tempt to reduce collection pauses by partitioning
memory into one or more generations based upon
the allocation time of an object� the youngest ob

jects are collected more frequently than the oldest�
Objects are assigned to generations� are promoted
to older generation�s	 as they age� and a write
barrier is used to maintain the remembered set for
each generation� The memory overhead consists of
generation identi�ers� tenured garbage� and the re

membered set� Also� partition fragmentation can
increase memory consumption for copying genera

tional collectors when the memory space reserved
for one generation cannot be used for the other
generation� The CPU overhead consists of costs
for promoting objects� the write barrier and up

dating the remembered set� Each of these costs
are discussed in this section� An understanding of
them is required to evaluate the results presented
in the experimental chapters later in this disserta

tion�

The collector must keep track of which gener

ation each object belongs to� For copying collec

tors� the generation is encoded by the object�s ad

dress� For mark
sweep collectors� the generation
must be maintained explicitly� usually by cluster

ing objects into blocks of contiguous addresses and
maintaining a word in the block encoding the gen

eration to which all objects within the block be

long �HMD���� As objects age� they may be pro

moted to older generations either by copying or
changing the value of the corresponding genera

tion �eld�

Tenured garbage is memory overhead that oc

curs in generational collectors when objects in pro

moted generations are not collected until long after
they become unreachable� In a sense� all garbage
collectors generate tenured garbage from the time
objects become unreachable until the next collec

tion and memory leaks are the tenured garbage of
explicit dynamic storage allocation systems� One
of the central research contributions of this disser

tation is to quantify the amount of tenured gar

bage for some applications� to show how it may be
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reduced� and to show how that reduction can im

pact total memory requirements� Chapter � shows
how tenured garbage from a generational collec

tor mimics a memory leak bounded in time to the
next scavenge of the generations containing that
garbage�

In order to avoid tracing objects in genera

tions older than the one currently being collec

ted� a data structure� called the remembered set�
is maintained for each generation� The remem

bered set contains the locations of all pointers
into a generation from objects outside that gen

eration� The remembered set is traced along with
the root set when the scavenge begins� PARC�s
formal model called the remembered set a pointer
augmentation and each element of the set was
called a rescuer� This additional tracing guaran

tees that the collector will not erroneously col

lect objects in the younger �traced	 generation
reachable only through indirection through the
older �untraced	 generations� CPU overhead oc

curs during the trace phase in adding the appro

priate remembered set to the roots� and in scan

ning each object pointed to from the remembered
set�

A heuristic to reduce the size �and memory
overhead	 of the remembered set is often �indeed�
universally	 used� only pointers from generations
older than the scavenged generation are recorded�
but at the cost of requiring all younger genera

tions to be traced� This heuristic makes a time

space tradeo between increased CPU overhead
for tracing younger generations to reduce the size
of the remembered set based upon the assumption
that forward�in�time pointers �pointers from older
objects to younger ones	 are rare� If objects con

taining pointers are rarely overwritten after being
initialized� then the assumption would appear to
be justi�ed� however empirical evidence support

ing this assumption is often not well supported in
the literature when generational garbage collection
is used in a speci�c language environment� Still�
collecting all younger generations does have the
advantage of reducing circular structures crossing
generation boundaries �LH����

The write barrier adds pointers to the remem

bered set as they are created by the application
program� Each store that creates a pointer into a
younger generation from an older one inserts that
pointer into the remembered set� The write bar

rier may implemented either by an explicit in
line

instruction sequence� or by virtual
memory page
protection traps� The CPU cost of the instruction
sequence consists of instructions inserted at each
store� The sequence tests for creation of a forward

in
time inter
generational pointer and inserts the
address of each pointer into the remembered set�
The virtual
memory CPU cost consists of delays
caused by page write
protect traps used to �eld
the �rst store to each page in an older generation
since the last collection of that generation� The
cost of page
protection traps can be signi�cant�
on the order of ���
���� microseconds �HM���� so
there is motivation for investigating using an ex

plicit instruction sequence for the write barrier�
The in
line cost will be discussed in more detail in
Section ����

When three or more generations exist� updat

ing the remembered sets requires the capability to
delete entries�� The collector must ensure that un

reachable objects discovered and deallocated from
scavenged generations are removed from the re

membered sets� A crude� but correct� approach
is to delete all pointers from the remembered sets
for the scavenged generations and then add them
back as the trace phase proceeds�
Consider an n generation collector containing

generations � �the youngest	� to generation n � �
�the oldest	� Before initiating the trace phase�
suppose we decide to collect generations k and
younger for some k such that � � k � n� We
delete from the rememberd set for each genera

tion� t� such that � � t � k� all pointers from
generations s such that t � s � k� As the trace
proceeds� any pointer traced that crosses one or
more generation boundaries from an older gener

ation� s� to a younger generation� t� is then added
to the remembered set for the target generation�
t�

Another approach is to explicitly remove from
each generation�s remembered set all entries cor

responding to pointers contained in each object
as it is scanned� This deletion can occur dur

ing the mark phase� or as each object is deallo

cated during the �possibly deferred	 sweep phase�
The recent literature is not very precise about this
cost �HMS��� HMD���� presumably because cur

rently only generational collectors that use two
generations are common� In this case� only one

�Extra entries in the remembered set will not cause the
collector to fail� but it does increase trace costs andmemory
consumption



�� CHAPTER �� IMPLEMENTATION COSTS

remembered set exists �for generation �	� and it
is completely cleared only when a full collection
occurs� precise remembered set update operations
are not required�



��

Chapter �

Experimental Methods

The results of this dissertation are empirical
rather than analytical� The goal is to improve the
performance of conservative generational garbage
collection� In order to evaluate the eectiveness
of this dissertation in meeting this goal� we must
de�ne what performance is� the sources of the per

formance data� how measurements are made� and
which algorithms are being compared� This chap

ter will describe each of these subjects in turn and
the chapters following will present results of ex

periments based on the material presented here�

��� Performance Metrics

Ultimately� research will lead to implementations�
and those implementations will produce useful re

sults that require computational resources when
executed� If the results provide a bene�t that out

weighs the costs of the resources� then the imple

mentations will be used and the research upon
which they are based will have been justi�ed�
The more bene�ts outweigh the costs� the bet

ter� Thus� the metrics by which algorithms are
compared should be highly relevant to their im

plementors and users� If they are not� then it is
di�cult to evaluate both the meaning and signi�

cance of the results of the research�

Two metrics result in direct costs to the user
of a given implementation� CPU �time	 costs� and
memory costs� The previous chapter discussed� in
detail� both of these costs for various techniques of
garbage collection� and for generational and con

servative garbage collectors in particular� These
costs were chosen because they are the ones that
have the most obvious and most direct relationship
to real
life situations where time and money must
be spent to obtain the resources necessary to use

new algorithms� Higher performance algorithms
result in lower costs to produce a given bene�t�

CPU costs may be measured in a variety of
ways� Ultimately� the user is most often con

cerned with the elapsed time to complete the tasks
of interest� Unfortunately� this time may be af

fected by a variety of factors such as the proces

sor architecture� clock speed� the number of pro

cessors used� bus bandwidth� memory hierarchy�
and input
output device speeds� The degree to
which each of these factors in�uences the task

completion time is highly in�uenced by the be

havior of the tasks�

In order to simplify both the collection and pre

sentation of results in this dissertation� only one
CPU performance metric is considered� the total
number of instructions executed� Usually� fewer
instructions result lower execution time� and much
of the compiler
optimization work uses the same
metric� Time spent on cache misses and page

faults� while relevant as well� will be left for future
work�

Memory costs will be measured in terms of to

tal memory consumed� in bytes� by the applica

tion as it runs� Peak or maximum memory con

sumption is most relevant for single
tasking situ

ations where virtual memory is not used� Other
metrics for memory consumption such as the av

erage� or median are applicable for virtual mem

ory� or multi
tasking environments� As with the
CPU metric� more complex measures of memory
costs including paging behavior� locality of refer

ence� and working
set size� while also of interest�
will be left for future work� However� the cost of
memory fragmentation will be included because it
directly aects both maximum and average mem

ory consumption but this cost will not broken out



Figure ���� Trace
driven Simulation�
An instrumentation program �ATOM or StCheck�
reads an application program and instrumentation
code �Instr Code or malloc� and produces an instru�
mented version of that program� The instrumented
application �with its inputs� is executed to produce a
trace of relevant events� This event trace is fed into
a program �such as a GC Simulator� that simulates
the algorithms being measured and produces appro�
priate statistics �GC or Store Statistics� from which
CPU and memory costs are extracted�

The CPU and memory overheads of each of the
programs were measured by using the technique

�Readers are invited to contact the author if they would
like to contribute such programs for future research� Such
contributions would be very welcome� Source code is not
required if unstripped executables can be provided for the
DEC Alpha running OSF���
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Table ���� Sample programs measured�

Program Description
Cfrac

����� lines
�� MBytes

Cfrac is a program that factors large integers using the continued fraction
method� The input was a ��
digit number that was the product of two
primes�

Espresso

������ lines
��� MBytes

Espresso� version ���� is a logic circuit optimization program� The input was
the largest example provided with the release code�

Gawk

����� lines
��� MBytes

GNU Awk� version ����� is a publicly available interpreter for the AWK
report and extraction language� The input script formatted words in a
dictionary�

Ghost

������ lines
��� MBytes

GhostScript� version ������ is a publicly available interpreter for the Post

Script page
description language� The input was a large PhD thesis�
GhostScript was not run interactively as is often done� but instead was
executed with the NODISPLAY option� which causes results not to be dis

played�

Perl

������ lines
�� MBytes

Perl ����� is a publicly available report extraction and printing language�
The input script formatted the words in a dictionary into �lled paragraphs�

Sis

������� lines
�� MBytes

SIS� Release ���� is a tool for synthesis of synchronous and asynchronous
circuits� It includes capabilities such as state minimization and opti

mization� The input was one of the examples provided with the release
�mcnc���cse�blif	� which attempted to reduce the depth of the circuit
�speed�up	�

of trace�driven simulation� A simulator for each of
the algorithms being compared is executed using
an event trace as input to produce performance
statistics as output� An event trace is generated
by executing a specially modi�ed version of each
application program� Modi�ed applications are
produced from the unmodi�ed ones using an in

strumentation tool� After performance statistics
are generated� relevant statistics are extracted and
processed to produce the desired CPU and mem

ory costs� Figure ��� shows how trace
driven sim

ulation was used to collect the results for Chap

ters � and ��

Trace
driven simulation avoids the need to im

plement all the details of the algorithms being
compared� The simulator implements an abstrac

tion of the algorithm containing all the relevant
details� A simulation model� incorporating a set
of assumptions� determines what details are rele

vant� The trustworthiness of the simulation de

pends critically upon how faithfully the model
matches a realistic implementation� Each of the
simulations is deterministic� so only one execution
of each application was required� and no statistical
analysis �such as regressions� or error bars	 were
required�all measurements are exact� Each of the
following three chapters containing results outlines

the simulation model and the assumptions of that
model to allow the reader to properly evaluate how
strongly to trust their conclusions�

��� Algorithms Compared

In order to evaluate the relevance and signi�

cance of the results� each result must be com

pared against the existing state
of
the
art� Results
should provide clear improvements over existing
algorithms or should provide signi�cant insights
that assist future work� In each of the following
chapters� a new algorithm� and the previous algo

rithms to which it is compared will be presented�
All results will be presented in in comparison with
those algorithms�

��� Summary and Outline of

Later Chapters

The previous chapters discussed� in increasing de

tail� the general concepts necessary to understand
and evaluate each of the principal contributions of
this work� The next three chapters will present ex

perimental results for each of these contributions�
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Chapter � discusses the costs of an in
line write
barrier for C programs� Chapter � introduces a
new form of generational garbage collection and
shows how it can substantially reduce the mem

ory cost of tenured garbage without introducing
excessive CPU overhead� Chapter � shows that
the allocation site is an accurate predictor of short

lived objects and how store behavior may predict
object lifetimes�



��

Chapter �

In�line Write Barrier for C

Previous chapters have discussed� in general�
the motivation� related work� contributions� im

plementation costs� and methods of this research�
This chapter� along with the next two� mirrors this
structure� but in more detail for each of the prin

cipal contributions of this dissertation�

This chapter concentrates on measurements of
program behavior and the CPU costs of an in
line
write barrier for generational garbage collection
for C� The memory overhead of the write
barrier
consists of the remembered set� which will be dis

cussed in the next chapter� First� this chapter
will discuss the motivation for investigating mov

ing from a virtual
memory write barrier to an in

line barrier for C� and why program behavior is
relevant� Next� I will discuss the speci�c costs of
the write barrier and related work examining those
costs� After that� I will present the methods used
and the assumptions of the cost model� Next� I
will present measurements showing the expected
overhead of using an in
line write barrier based
upon that model and the store behavior of several
C programs� Last� implications for future research
will be discussed�

��� Motivation

Generational collectors often use a write barrier
to avoid tracing objects in older generations� Un

fortunately� maintaining the write barrier can be
expensive if not done carefully� One popular ap

proach uses page
protection hardware to write
protect pages that may contain objects in older
generations� When a store occurs to such a page�
a user
level trap handler is invoked in the garbage
collector� The trap handler takes whatever actions

are necessary to ensure that inter
generational
forward
in
time pointers are recorded� unprotects
the page� and resumes program execution�

Unfortunately� current operating systems are
not designed to allow user programs to rapidly
handle page
protection traps� Trap turnaround
times of ������� microseconds have been mea

sured by Hosking �HH���� which� on a �� mega

hertz DECstation ����� amounts to over ���
instructions per trap� Zorn �Zor��a� states
trap costs of �over a millisecond� amounting to
����several thousand instructions�� Thekkath and
Levy �TL��� measured the trap times for several
workstations and operating systems and observed
times ranging from �� to ���� microseconds�

For comparison� I measured the trap times on
a ��� MHz DEC AlphaStation ��� ����� run

ning the OSF
� operating system version ���� The
round
trip time for a user
level signal handler to
�eld a page
protection trap was �� microseconds��
which represents sightly over �� thousand instruc

tions per trap on this machine� These measure

ments provide strong support for improving the
costs of a write barrier�

This design makes sense for operating systems
because page
protection traps either occur rarely
�e�g�� for access violations	 or to retrieve non

resident virtual
memory pages into memory by in

curring a disc transaction of at least �� millisec

onds� But� when used for garbage collection� page

protection traps will occur more frequently and
will often not require a disc access because the
page will already be resident� As technoligy ad

vances� the situation gets worse because proces

sor speeds are improving more rapidly than disc
speeds�

�Excluding all ten instructions in the user trap�handler
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Although there has been some recent work to
improve the speed of operating
system traps �TL����
another solution is to provide user
level access to
virtual
memory dirty bits �Sha��� x������ pp ���

����� This solution avoids the need for the trap
handler in the garbage collector to be invoked by
the operating system� Shaw added three operating
system calls� one for clearing the virtual
memory
dirty bits for each page� another for reading them�
and another that combines both operations� The
collector clears the dirty bits after pages have been
scanned� and re
examines them during each sub

sequent scavenge� The operating system must be
modi�ed to cooperate with the collector for main

taining the dirty bits and the virtual memory� Un

fortunately� dirty
bit operations are not yet widely
supplied by the operating
system interface�

How well a virtual
memory write barrier per

forms depends highly upon program behavior�
Only stores that create inter
generational forward

in
time pointers must be trapped� Languages that
have few such stores will not incur high overheads
even though traps are expensive� Forward
in
time
pointers can only be created when an existing ob

ject is over
written� Programs in highly applica

tive functional languages� such as ML� would cre

ate few such pointers� and would perform well�
regardless of the write barrier implementation�
Some Smalltalk programs have low overheads as
well �HH����

The costs of a write barrier for garbage collec

tion of C and C�� programs may be much worse�
As mentioned earlier� garbage
collection for such
programs is desirable as an option and several re

searchers have made signi�cant eort to provide
that option �Bar��� Boe��� Det���� Providing an
e�cient cost
eective virtual
memory write bar

rier is di�cult� the only currently �July ����	
portable widely available implementation known
to the author is �Boe����

Bartlett avoids the need for a write barrier
by having the user program provide routines for
tracing objects in the older generation� Boehm�s
implementation provides hooks for generational
collection� but it is not enabled by default �See
MPROTECT VDB in �Boe��a�	� In addition�
Boehm �Boe��a� has noted that VM page traps
may not detect pointer stores performed by the
operating system during system calls��

�Presumably pointers stored by such calls are rare� but

Research on aspects of program behavior for
C or C�� that pertain to the write barrier has
never been done before and is important for people
wishing to implement generational collection for C
or C���

��� Write�barrier Costs

The CPU overhead of an in
line write barrier de

pends upon precise program behavior� Recall from
Section ��� �page ��	 that the write barrier adds
elements into the remembered set� For an in
line
write barrier� a sequence of instructions �the store

check	 must be added before or after each store
instruction of the program� Recall also that only
inter
generational forward
in
time pointers must
be added� Thus� only a small fraction of total
stores will actually result in additions to the re

membered set� The size of this fraction and its
cost depends upon several aspects of program be

havior�

For the most general case� each store check
must�

�	 verify the store is a non
initializing store
�optional optimization	�

�	 ensure the value being stored is a pointer�

�	 ensure the pointer corresponds to a dynam

ically allocated object�

�	 determine the objects �if any	 correspond

ing to the location �source	� and value �tar

get	 of the pointer being stored�

�	 ensure the generation of the source is older
than the target� and

�	 add the address being stored into the re

membered set�

Also recall that at the beginning of each trace
phase� the garbage collector must enqueue the el

ements of the appropriate remembered set� and
then trace those objects �pages �����	�

All of the above operations above may be op

timized in various ways� depending upon the ar

chitecture of the CPU� compiler� run
time envi

ronment� operating system and programming lan

guage� For an extreme example� consider the case

Boehm implemented a wrapper for the read system call to
illustrate how to deal with this problem�



���� METHODS ��

where each object is tagged with its type and copy

ing generational garbage collection is used� The
non
initializing pointer test �operations �����	 may
often be eliminated by static information available
at the time the store instruction is compiled� and
if not eliminated� only require a single instruction
test the type tag� Operations � and � consist of
a compare of the source and target addresses� and
operation � is an insertion into a hash table� There
are numerous other possibilities depending upon
how restrictive the architectures are and how pre

cise the remembered sets are�

H!olzle �H!��� stated that just two instructions
are required for the SELF language where card
marking �WM��a� is used for the remembered set�
Card marking trades reduced store check costs
for increased tracing costs� Remembered set el

ements consist of cards �typically ��� bytes each	
to scan for pointers to objects rather than than
single pointer locations� H!olzle uses a shift in

struction to calculate the oset into a byte map
from the address of the store� and a store to clear
that byte� A dedicated register points to the base
of the byte map that corresponds to a single re

membered set for a two
generation collector� This
cost presumes that a single byte map exists for
the entire heap� For heaps that are too large to
allocate a static byte map in advance� setting and
checking multiple byte maps would add additional
overhead� Their method defers all but operation �
until the trace phase�

How the work of the write barrier is parti

tioned between the store check and the trace phase
will aect performance� The cost during tracing
depends upon the number of modi�ed locations
rather than the number of stores and its aect
upon the cache and page locality of the program
is probably dierent� For card
marking schemes�
the spatial pointer density can increase costs as
well� a program that stores to one pointer on each
card in the entire heap would cause a generational
collector to scan every object in the heap� Hosking
and Moss �HM��� designed a hybrid scheme that
transfers pointer locations from marked cards to
the remembered set during the next trace phase�
When results are presented for write
barrier costs�
the reader should be careful to ensure that this
partitioning is clear and that all costs have been
presented�

Conservative collection can interact with the
write barrier to increase its cost� For operations �

and � each store instruction must determine the
object corresponding to the source and invoke the
pointer
�nding heuristic �page ��	 for the target�
Interior pointers �see page �	 make the pointer

�nding heuristic slightly more complex because it
must locate the bases of objects� Derived pointers
�p� �����	 can prevent recognition of pointers to
reachable objects entirely�

��� Methods

As mentioned in Chapter �� several C programs
were instrumented to produce traces of program
behavior� The traces� consisting of sequences of
store and allocation events generated as the pro

gram ran� were analyzed and that analysis was
used with a performance model to produce the ex

pected CPU overheads for an in
line write barrier�

Program instrumentation used to be a much
more di�cult problem than it is today� When this
research began� Larus provided a tool called AE�
for abstract execution on the Sun SPARC� AE used
the object �les for a program with a set of interest

ing events to produce a C program� an abstraction
of the original� that generated the same sequence
of events� That C program was then linked with
instrumentation code to produce the desired data�

The events of interest were store events and
memory allocation and deallocation events� For
each store event� I needed to know the instruction
performing the store� the location of that instruc

tion� the value being stored �register contents	� its
size �word or quadword	� location �eective ad

dress	� and the value being overwritten �memory
contents	� Unfortunately� with AE� the C program
generating the events was an abstraction and it
did not provide a way to obtain the contents of a
memory location being overwritten��

As an alternative to AE� I wrote an instru

mentation program �StCheck	 that replaced all
store instructions in an object �le with calls to
an instrumentation routine followed by the orig

inal store �see the right
hand side of Figure ���
on page ��	� The new object �le was then linked
with a special version of the memory allocation
routines �e�g�� malloc and free	 and the store in

strumentation routine� Each application program

�Knowing when a pointer is overwritten allows the sim�
ulator to verify object reachability�
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was instrumented and executed to produce a set
of store statistics�

An instruction pro�ling tool� Pixie �Dig���� was
used to collect the the total number of instructions
executed by each instrumented program�

Store statistics and the pixie output were then
fed into PERL
language scripts that incorporated
a write
barrier model and subtracted the instru

mentation overhead to extract the expected CPU
overhead�

��� Results

This section discusses two results regarding an in

line write barrier� First� I show how the store
behavior of real
world C programs and a typical
computer architecture in�uence the write barrier�
Second� I show how that behavior in�uences total
CPU overhead for a ��
instruction write barrier�

����� Store Behavior

Recall from Section ��� �page ��	� that the CPU
architecture plays a role in the costs of the write
barrier� All programs were executed on a DEC
Alpha� The Alpha is a ��
bit RISC machine�
where pointers occupy eight bytes each� The
only instructions that operate upon memory are
� or �
byte loads and stores� Memory accesses
not aligned by the size of their operand incur
a trap� Special instructions exist for doing un

aligned� byte� or word accesses� This architecture
is fairly typical of modern RISC machines except
that it uses ��
bit rather than ��
bit pointers�

As mentioned in Section ��� several tests must
be performed by the write barrier at each store
instruction in the program� In order to compute
the costs associated with each of the operations
required� the program store behavior of each of the
instrumented programs was collected as shown in
Table ����

First� observe that the number of store instruc

tions as a percentage of total instructions executed
ranged from ����� to ������one in every �� to
�� instructions� Even if only two instructions must
be added at every store� an in
line write barrier
would add �� to �� percent to the execution time
of the program� thus some form of static analysis
is needed to reduce this cost� Fortunately� there
are several easy heuristics�

Table ���� Program Store Behavior�

Exec� Store Filter Forward
Program Instr� Instr� Instr� Instr�

���� 	 ��	 ��	 ��	
Cfrac ���� ���� ���� �����
Espresso ���� ���� ���� �����
Gawk ���� ���� ���� �����
Ghost ���� ���� ���� �����
Sis ��� ���� ���� �����

The CPU overhead for the write barrier for several pro�
grams above depends upon their store behavior� All
percentages are of total instructions executed �Exec�
Instr��� The Filter Instr� column shows the percent�
age of total instructions requiring a �lter to check
for forward�in�time pointers� This percentage is small
compared to the store instruction percentage �Store
Instr��� which is itself a small percentage of total
instructions� Forward Instr� shows the percentage
of total instructions that required a forward�in�time
pointer to be inserted into the remembered set�

The store instruction itself provides useful in

formation for static analysis� For example� only
heap stores are interesting� The C compiler allo

cates local variables on a stack and accesses them
using a dedicated register called the stack pointer�
If only stack �and not heap	 objects are accessed
by the stack pointer� then any store instructions
using a displacement from the stack pointer may
safely be ignored by the write barrier�

Note that pointer indirection is a frequent op

eration� and that accesses are often signi�cantly
�often ����	 slower for unaligned than aligned
memory operations� On the Alpha� the overhead
is even worse because a trap will occur� Architec

tures often have separate instructions for aligned
and unaligned stores� It seems valid to assume
that the compiler will avoid creating unaligned
pointers� and hence avoid generating unaligned
pointer store instructions� Thus� any unaligned
store instructions can also be ignored statically�

Note also� that pointers have a �xed size�
Many computer architectures also encode the size
of the entity being stored into the instruction� Any
store of a value of a dierent size than a pointer
may also be ignored safely�

The Filter Instr� column of the table shows
the percentage of total instructions executed that
were not able to be eliminated by one of the three
simple static analysis heuristics described above�
As the table shows� this value is a small percent




Figure ���� CPU Overhead of an In
line Write
Barrier�
An in�line write barrier increases the total instructions
executed by the sample programs up to an additional
����

The CPU overheads ranged from from �� for
Cfrac to ��� for Gawk� Only one instruction
in ��� needed to be checked for Cfrac as com

pared to one in �� for Gawk� Gawk also had
both the highest percentage of store instructions
and the largest heap size of any of the programs
measured� There was also a high correlation be

tween ranking of the programs in terms of CPU
overhead and maximum heap size �see Table ����
page ��	 as well as the ratio of store instructions
to total instructions�
The CPU overhead for the write barrier us


ing only the simple static heuristics mentioned
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earlier and a ��
instruction write barrier is likely
to be too high for most C or C�� applica

tions� This result contrasts sharply with Small

talk� where store checks caused an overhead of less
than �����HM��� For LISP� Moon �Moo��� p� ����
estimated from ������� overhead for a software
store
check��

��� Implications

I restricted the heuristics available and chose a
high write
barrier cost based upon the assump

tion that no compiler support would be available
from C�� compilers� and that executable
�le in

strumentation tools would be of limited capabil

ity� If these assumptions are relaxed slightly� im

provements appear likely on two fronts� increas

ing the eectiveness of static analysis in reducing
the number of annotated stores� and reducing the
number of instructions for the barrier�

These measurements did not apply a heuristic
for removing any initializing stores� In the case of
C��� statically recognizing initializing stores for
heap objects may be quite possible because objects
are often allocated by a class constructor� which
also initializes its object� Techniques such as data

�ow analysis used by compiler optimizers may be
very eective at detecting such stores� Even if
the compiler cannot be modi�ed for this purpose�
recent work at DEC WRL indicates that the capa

bilities of executable �le translators have advanced
very signi�cantly since work for this dissertation
began �SW���� The author has done some prelimi

nary measurements showing that initializing stores
could be a signi�cant fraction �greater than ���	
of all heap stores for the C programs above� Pre

cise measurements of rates of initializing stores for
C�� programs would be very useful future work�

In this work� no static type information was
used to reduce the number of annotated stores�
The language designs for some languages� such as
Modula
�� signi�cantly increase the static type

checking capability of the compiler� Any assign

ment that could be recognized as a non
pointer

�For the remsets implementation� Hosking and Moss re�
ported ��	�
	� checked stores in 	
 seconds for the Interac�
tive benchmarkon a �����MHz DECstation ��� I assume

 cycles per check�

�Moon stated ���
� microseconds between stores and

���
� microseconds for each store check�

store at compile
time need not be annotated� De

termining the eectiveness of such type tests upon
improving the �aligned pointer
sized heap store�
heuristic above as well as reducing the instruction
count for the barrier could be fruitful avenues of
future work�

Reducing the number of instructions for the
write barrier is essentially a form of code optimiza

tion� Code optimizations has been researched very
heavily in the last few years �BGS���� Placing hash
table and object descriptor addresses into dedi

cated registers may provide a signi�cant reduc

tion in the code
sequence required� My estimate
on the number of instructions assumed all point

ers could be interior pointers� A simpler� faster
pointer
�nding heuristic may be possible for stores
of pointers that point only to the lowest address
of an object�

I have assumed that the entire write barrier
was implemented in
line rather than by using some
of the tradeos made by card
marking schemes
that move some of the work into the trace phase of
the collector� This result shows that making such
a tradeo even for an in
line write barrier may be
appropriate�by using Moss�s �HMS��� Sequential
Store Bu�er for example�

This section investigated one technique for im

proving the performance of generational garbage
collection� I have talked about how the mechanism
of an in
line write barrier aects CPU overhead in
the context of C� In the next chapter� I will inves

tigate a new method for improving the memory
performance as well�
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Chapter �

Dynamic Threatening Boundary

This chapter discusses an improvement to gen

erational garbage collection that reduces its mem

ory consumption by more eectively reclaiming
tenured garbage� The �rst section discusses the
advantages of using policy to de�ne mechanism
over the reverse approach� In the next section� I
motivate and discuss an overview of my algorithm
in the context of other related work� Sections �����
and ����� discuss� in detail� the mechanism and
its implementation� Sections ����� and ����� de

rive one policy using this mechanism� Lastly� Sec

tions ��� and ��� present the experimental meth

ods and results�

��� Policy versus Mechanism

The purpose of a garbage collector is to recover the
maximum amount of memory with the least ex

penditure of CPU time� Recall from Section �����
�p� �	 that generational garbage collectors exploit
the property that younger objects have a higher
probability of becoming garbage than older ones�
The collector can increase its productivity �in

structions executed per byte reclaimed	 by prefer

entially scavenging younger objects over older ones
since fewer objects will be traced and a higher per

centage will be garbage� Generational collectors
work by using a mechanism to implement a pol

icy for dividing objects into either young or old
generations based upon their age�

Unfortunately� policy is often dictated by im

plementation constraints upon the mechanism
rather than desired performance goals� An easy

to
implement mechanism that performs accept

ably will often be used no matter what policy
it follows� The implementation de�nes the pol

icy rather than the other way around� Ideally a

policy would be selected to meet a performance
objective and that policy would suggest a set of
possible mechanisms� one of which would be cho

sen for implementation�
Using the implementation to de�ne the policy

works well until the implicit assumptions change�
causing the performance to degrade to an unac

ceptable level� Often� new implementation tech

niques are tried that de�ne new policies until
the performance is again acceptable� The prob

lem with this approach is that the underlying in

teraction between program behavior and policies
never becomes clearly understood� Neither behav

ior nor policies need be examined to implement
a bottom
up mechanism
to
performance trial
and

error technique�
Wilson �Wil��a� has conducted a very recent

survey of the literature that shows how this ap

proach in�uences explicit dynamic storage alloca

tion design� For example� suppose the mechanism
of a doubly linked list is used to maintain a free
list of available blocks of storage� and a pointer is
used to point to the next block in the list� When

ever an item is freed� it is inserted into the list
before the block being pointed to� Whenever an
item is allocated� the pointer is advanced until a
block large enough to meet the request is located�
Then the block is split yielding a block of the cor

rect size� and a fragment� The block is returned
to the program� and the fragment remains in the
free list�
The allocation routine must decide how meet

the request� choose among the blocks in the free
list large enough to meet the request� whether to
split the block and how� and when to get more
memory from the operating system� Which choice
it makes de�nes an allocation policy� The pol

icy de�ned by the mechanism depends critically
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upon minute design decisions made by the im

plementor� For example� how the pointer is ma

nipulated and the ordering of the list can de�ne
policies of �rst
�t�lowest
address� �rst
in��rst
out
�FIFO	� last
in��rst
out �LIFO	� or next
�t� Each
of these policies has an impact on CPU and mem

ory performance� Trivial changes to the mecha

nism can have dramatic aects upon the policy�
and by implication� performance� For example�
Wilson states that using �rst
�t�lowest address
yielded ��� fragmentation while LIFO�next
�t
yielded ����

Generational garbage collectors must make
similar implementation� mechanism� and policy
choices for when to collect� how to implement the
write barrier� and selecting which objects to col

lect� One of my principal goals for this disserta

tion was to �nd more �exible ways to improve the
performance of garbage collection� Instead of let

ting mechanism de�ne policy� I chose to work in
the opposite direction� de�ne what performance is
important� determine what behaviors aect that
performance� use that behavior to de�ne a policy
to improve it� design a mechanism to implement
that policy� and �nally� propose an implementa

tion for that mechanism�

With this general goal in mind� I began exam

ining the performance issues important for gen

erational garbage collectors� CPU and memory
overhead� Then� I realized that generational col

lectors must have a policy for deciding what to
trace at each collection� selecting the immune set�
I sought a mechanism that provides for the most
�exible policy choices� the dynamic threatening
boundary� Then I examined various policies� both
existing and new� to see which ones were the most
promising� Finally� I conducted experiments to see
how program behavior aected the performance of
each of these policies�

��� Motivation

All generational collectors trade space for time�
By limiting the number of objects traced� the CPU
time lost to tracing is improved� but at the cost
of increased memory consumption due to tenured
garbage� Speci�cally� all generational algorithms
occasionally promote objects that eventually be

come tenured garbage� Tenured garbage eventu

ally needs to be reclaimed in some way� otherwise

it will cause excessive memory consumption and
an associated degradation in performance due to
decreased reference locality�

The simplest solution to this problem is to oc

casionally collect all the older objects at a time
when a long pause� possibly accompanied by many
page faults� will not be too disruptive� Another
solution is to set the garbage collector�s promo

tion threshold �i�e�� the age at which objects are
promoted	 to a �xed value that minimizes the ten

ured garbage� Unfortunately� both identifying ac

ceptable times for long pauses� and identifying an
appropriate promotion threshold� varies from one
program run to the next and even during the life

time of a single program� As a result� Ungar and
Jackson �UJ��� propose a method called feedback
mediation �FM	� which provides a partial solution
to this problem by adjusting the promotion thresh

old for old objects based upon a pause
time con

straint and object lifetime demographics� Their
collector reduces tenured garbage by reducing the
rate of object promotion� However� once objects
are promoted using their method� the problem of
reclaiming them still remains�

��� Overview and Scope

In Section ������ I describe a mechanism that ex

tends existing generational collection algorithms
by allowing them to reclaim tenured garbage more
eectively� In particular� my Dynamic Threaten�
ing Boundary �Dtb	 mechanism divides memory
into two spaces� one for short
lived� and another
for long
lived objects� Unlike previous work� my
collection mechanism can dynamically adjust the
boundary between these two spaces either forward
or backward in time� essentially allowing data to
become untenured�

To implement the Dtb mechanism� all point

ers that point forward
in
time must be recorded
in the remembered set� unlike standard gen

erational collectors� where only forward
in
time
pointers that cross the generation boundaries
�inter�generational pointers	 are recorded� In Sec

tion ������ I measure the overhead of maintain

ing the Dtb remembered set and the cost of pro

cessing it during collection� My measurements of
allocation
intensive C programs indicate that the
space overhead of the Dtb ranges from ����� of
the maximum storage required by the program�
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while the CPU overhead of maintaining the Dtb
ranges from ���� of total execution time �as mea

sured by the number of instructions executed	�
The techniques proposed should be most suc


cessful in two classes of languages� languages
where pointers tend to account for a small frac

tion of the total memory allocated� and languages
where most pointers do not point forward
in
time
�i�e�� where programs perform few destructive up

date operations� such as Standard ML	� My mea

surements in Section ��� indicate that C may be

long in the �rst category�

Once the dynamic threatening boundary mech

anism is available� it provides signi�cant �exibility
to the collector implementation and clearly sep

arates issues of policy from implementation� In
Section ������ I explore one policy� using the Dtb
mechanism� that attempts to reduce a program�s
tenured garbage� My policy extends Ungar and
Jackson�s feedback mediation policy by taking ad

vantage of the �exibility provided by the Dtb�
My results show that this policy is more successful
than feedback mediation at reducing tenured gar

bage and results in smaller program heaps when
such tenured garbage exists� even when the addi

tional space overhead of maintaining the Dtb is
taken into account�

In Section ��� �p� �	 I discussed the work my
idea is most closely based upon� My work deals
with generational garbage collection� which is a
subset of more general selection policies� The gen

eral class collects only a subset of all allocated
memory by using a selection policy to decide what
to collect� Generational collectors use an age

based selection policy� Other selection policies are
possible�

Wilson and Moher�s Opportunistic Collector
�WM��b� allocates objects created since the last
collection in chronological order in memory� By
selecting an appropriate address� only objects al

located since a speci�c time may be selected for
promotion� However� once their collector has re

claimed objects from this new
object area� a dif

ferent promotion policy must be followed because
surviving objects are no longer in chronological
order� My algorithm preserves the object�s allo

cation time for all objects� not just new ones� so
mine may select among surviving objects of any
age as well�
When age is not a reliable indicator of garbage

non
generational methods must be used� Hud


son and Moss �HM��� describe a mature object
space that is collected incrementally based upon
object connectivity rather than age� Likewise�
Hayes �Hay��� shows that when certain key ob�
jects die� they may indicate other unused ones as
well� Like generational collectors� mine could elim

inate objects from age
based collection by promot

ing them to mature or key object space� where
they would be collected by other algorithms once
they age enough�

The Dtb mechanism I describe is an extreme
case of a collection implementation that allows
multiple generations �e�g�� �CWB��� HMD���	� As
the number of generations grows to the number
of live objects� the two concepts merge� From
this perspective� my proposed collection policy
�Dtbdg	 represents a policy to select which gener

ation to collect� Also� this previous work has not
quanti�ed the overhead of maintaining large num

bers of generations� either in terms of CPU cost
or memory overhead as I shall� Note that policies
for deciding what to collect are completely inde

pendent of deciding when to collect� Because both
aect performance� the distinction is often confus

ing� this research investigates a very general age

based mechanism for partitioning what to collect
and one policy using that mechanism�

��� Dynamic Threatening

Boundary Collector

In this section I describe the Dtb mechanism and
a policy for a collector that uses it to reduce ten

ured garbage� I �rst describe how it provides the
capability to dynamically adjust the boundary be

tween old and new objects based upon the object
allocation time� Next� I describe the new imple

mentation issues raised by my mechanism� Then
I discuss how the threatening boundary selection
policy in�uences tenured garbage and pause times�
Finally� I describe one policy that makes use of the
Dtb mechanism to trade available pause time for
reduced tenured garbage�

����� The Dynamic Threatening
Boundary Mechanism

Recall from Section ����� �p� �	 that we can view a
generational collector as partitioning the allocated
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space into threatened and immune sets� Threat

ened objects are those that the collector traces to
�nd unreachable objects and reclaim them� Im

mune objects are ones that will not be traced in
a given collection� The selection criteria for these
sets distinguishes various collection algorithms�

Consider how a traditional generational col

lector selects its threatened and immune sets�
The threatened set contains those objects that
have survived fewer than a speci�ed number of
collections�typically one or two �App��� Fra���
WM��b�� The root objects and all objects in older
generations are immune� The threatening bound�
ary divides the young threatened objects from the
old immune objects� Each time the garbage col

lector is invoked� its policy sets the threatening
boundary to the time of the kth previous collec

tion� where k is a small integer constant� Scav

enging the kth older generation corresponds to
temporarily choosing a threatening boundary to
the age corresponding to the kth previous gen

eration boundary� Generation boundaries simply
constrain the set of allowable threatening bound

aries�

My mechanism eliminates generation bound

aries� Instead� an explicit threatening boundary
is established at the beginning of each collection�
This boundary allows the collector to be much
more �exible in choosing policies for selecting the
threatened set�

Figure ��� illustrates how the dynamic threat

ening boundary collector compares with other gen

erational collectors� This �gure shows a memory
space divided into two generations� Age proceeds
from youngest objects at the top of the page to the
oldest at the bottom� whereas birth time increases
in the other direction� Objects �in rectangles	
are labeled in sequence by age� Arrows �labeled
in lower case	� indicate pointers between objects�
heavy arrows indicate forward
in
time pointers�

For a generational collector� only pointers f
and h must be recorded by the remembered set for
Generation � because otherwise object H would
be incorrectly deallocated by a scavenge of Gener

ation �� While the garbage objects B and E would
be scavenged� objects J �K� and F would not� they
are tenured garbage� Object F illustrates the phe

nomenon of nepotism� it remains alive even though
it is threatened and unreachable because the ten

ured garbage points to it� Once promoted� tenured
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Figure ���� Dynamic Threatening Boundary vs
Generations�
The generational collector above divides memory into
two generations� one young and one old� A dynamic
threatening boundary collector adjusts a threatening
boundary that may move between scavenges� say from
TBn�� to TBn� Objects are shown ordered by birth
time for exposition only	 the actual implementation
may maintain object locations in any order� Objects
with solid outline indicate reachable live objects and
those with a dashed outline indicate garbage�

garbage requires a complete scavenge of its genera

tion to be reclaimed� in this case� Generation �� A
non
generational collector always collects all gen

erations and so would collect all the garbage ob

jects �B� E� F � J � and K	 at the cost of tracing
the entire memory space�

For a dynamic threatening boundary collector�
a threatening boundary �shown by a dashed line at
TBn��	� divides the memory into threatened and
immune spaces� Because the threatening bound

ary can be changed at the beginning of each scav

enge� all forward
in
time pointers must be main

tained in a single remembered set �pointers a� d�
h� f � and l	� At scavenge time only pointers that
cross the threatening boundary are traced �point

ers d	� On a later scavenge� the collector is free to
set the new threatening boundary to any desired
time� say at TBn� Unlike the generational collec

tor� objects J � K and F become untenured� and
will be reclaimed� Object L remains alive because
pointer l references it from the remembered set�
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����� Dynamic Threatening Bound�
ary Implementation

In this section� I describe the implementation of
the Dtb mechanism� First� I state my assump

tions� next I describe the implementation at a high
level� and �nally I discuss aspects of the implemen

tation that are dierent from existing generational
mechanisms�

For the purpose of this discussion� I assume
that I am implementing the Dtb mechanism in
the context of a non
copying algorithm� This as

sumption implies that objects are not relocated
when collected and that the birth time of an ob

ject cannot be encoded in its address �as is the
case in most copying algorithms	� Thus� I assume
that every object has a birth time �eld associated
with it that is set when the object is allocated and
never modi�ed� I also assume that a data struc

ture exists �the remembered set� which I describe
in detail below	� that indicates the location of ev

ery forward
in
time pointer� That is� every pointer
stored in an object� o�� that points to an object�
o�� such that the birth time of o� is less than the
birth time of o� �o� is younger than o�	�

To understand how theDtbmechanism works�
suppose that I am about to do a garbage collec

tion and some policy has determined some speci�c
threatening boundary� First� I augment the nor

mal root set �i�e�� registers and stack	 with some of
the elements in the remembered set� Speci�cally� I
scan the remembered set and �nd all elements of it
such that the forward
in
time pointer from the set
points from an object born before the threatening
boundary to an object born after the threatening
boundary� The augmented root set now contains
pointers to all objects in the threatened set that
are reachable from the root set or immune set� I
transitively traverse these roots marking all reach

able objects in the threatened set� To complete the
collection� I must then sweep the entire memory
searching for unmarked objects that have a birth
time later than the current threatening boundary�
In practice� such a sweep can be deferred �Zor��b��
reducing its performance impact�

The implementation of a dynamic threatening
boundary mechanism relies mostly upon technol

ogy already available for other generational col

lectors� Here I describe new implementation is

sues raised by my mechanism and how they aect
performance� These issues are maintaining object

birth times� the eect of the remembered set on
memory consumption� the write barrier� and trac

ing�

Object birth times must be available to deter

mine the threatened set and to allow the write
barrier to maintain the remembered set� The most
straightforward implementation maintains a word
per object� In environments where many small
objects are allocated� objects may be co
located
into pages �or areas	 sharing the same birth time�
Birth time may be chosen to be any appropriate
metric of the granularity desired� One metric cor

responding closely to existing generational collec

tors is the number of collections preceding the ob

ject allocation� A �ner grained metric might be
the total number of bytes allocated before the ob

ject was allocated�

Typically� a remembered set is maintained for
each generation except the oldest� since my mech

anism has only two generations� and the bound

ary between them moves� it uses a single remem

bered set instead� Generational collectors record
only forward
in
time pointers that cross genera

tion boundaries whereas mine records all forward

in
time pointers� My remembered set is larger� I
show how much larger in Section ������

Recall from Section ��� �p� ��	 that one com

ponent of the CPU costs for the write barrier is
the time spent adding a pointer to the remem

bered set� The barrier cost for the Dtb mecha

nism is the same� except the birth times of the
objects are compared instead of the generations�
My algorithm performs this remembered set inser

tion more often than other generational collectors
since I insert all forward
in
time pointers rather
than just those that cross the threatening bound

ary� I explain the cost in detail in in Section ����

Like all generational collectors� each element of
the remembered set must be examined as an ad

ditional root during the trace phase of each scav

enge� My remembered set is larger� and I must
perform an additional test to ensure I only trace
objects that are born after the current threaten

ing boundary� In Section ��� I show how much
my mechanism would increase CPU compared to
a traditional generational collector�
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����� How Policies A�ect Collector
Performance

The choice of the threatening boundary aects
both the CPU time spent scavenging and the
memory wasted by tenured garbage� For a given
collection interval� a young threatening boundary
results in short trace times at the expense of more
tenured garbage� An older threatening boundary
wastes more CPU time tracing more of the live ob

jects� but saves memory because older unreachable
objects are reclaimed sooner�

Figure ��� shows how these values are related�
The vertical axis is storage consumed �in bytes	
and the horizontal axis is execution time �CPU
instructions executed	� Consider how a full gar

bage collection behaves� Periodically� at time ti�
a scavenge is triggered� The collector traces all
the live storage and reclaims the rest� For exam

ple� at time t��Mem� bytes of storage were in use
before the scavenge� the collector traced Trace�
bytes� which included all the live bytes L�� All
the remaining bytes were reclaimed as shown by
the curve dropping vertically to L�
A generational collector scavenging at time

tn�� would only trace objects born after a �xed

age threatening boundary TBn��� This results
in shorter pause times due to less storage traced�
Tracen��� at the cost of more storage surviving�
Sn��� The dierence between Sn�� and Ln�� is
the tenured garbage�

At time tn� the dynamic threatening bound

ary mechanism must select a threatening bound

ary TBn before initiating scavenge n� The far

ther back in time TBn is� the more storage will be
traced� and the more garbage reclaimed�

����� A Policy to Reduce Tenured
Garbage	 DTBdg

One important policy for all generational collec

tors is when to promote objects from threatened
space to immune space� A non
generational col

lector always collects all data� which corresponds
to selecting the threatening boundary to be zero
at every collection� I call such a collector Full�
and note that Full never tenures any garbage�

A �xed�age generational collector promotes all
objects that survive k collections� where k is a
�xed value� This choice corresponds to setting the
threatening boundary a �xed distance backward in

time� If k  �� �i�e�� the Fixed� policy used in my
results	 then this policy corresponds to tenuring
objects as soon as they survive a single collection�

Feedback mediation �or FM	 is more sophisti

cated than a �xed
age policy� Instead of blindly
setting the threatening boundary a �xed distance
in the past� feedback mediation only advances
the threatening boundary when a pause
time con

straint �as de�ned by the number of bytes that
are traced	 is exceeded� In particular� if the cur

rent scavenge traces more bytes than a speci�ed
maximum� Tracemax� the threatening boundary
is advanced� otherwise it is not and no objects are
promoted�

To advance the threatening boundary� the FM
algorithm maintains a table of object demograph

ics as it scavenges� The table classi�es the cur

rently scavenged objects by birth time into cat

egories �or birth
time regions	 and identi�es how
many bytes of objects are alive in each birth
time
region� When the threatening boundary must be
advanced� this table is scanned backwards start

ing at the current time� The scan accumulates the
number of live bytes in each region until Tracemax

bytes is reached� This point determines where
the new threatening boundary is set� In feedback
mediation� demographics data are not preserved
from one scavenge to the next� and information
about objects born before the current threatening
boundary are neither available nor used�

I seek a policy that reduces tenured garbage
more eectively than feedback mediation� My pol

icy� Dtbdg �Dtb demographic	 attempts to do
this by using the ability of the mechanism to dy

namically adjust the threatening boundary to any
desired value� The policy attempts to meet two
goals� control pause times and minimize tenured
garbage� Like feedback mediation� the policy at

tempts to meet the �rst goal by explicitly adjust

ing the threatening boundary forward to reduce
pause times when it traces more than Tracemax

bytes� However� to meet the second goal more
eectively than feedback mediation it moves the
boundary backward in time when it traces fewer
than Tracemax bytes� To do this adjustment� it
preserves demographic information from one col

lection to the next and uses it in the same manner
as feedback mediation� but without the constraint
against moving the boundary backward�

My policy has a couple of additional re�ne

ments� First� it attempts to predict how much
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Figure ���� Garbage Collector Memory Use�
A non�generational full garbage collector collects all garbage at periodic intervals as shown by curve Full falling
to curve L at time ti� for i 
 � to n� like any generational collector� the dynamic threatening boundary mechanism
saves tracing time by following curve DTB leaving some tenured garbage above the Full curve� DTB reduced
tenured garbage after time tn by selecting TBn to trace older objects than TBn�� did at time tn��� Tracemax

refers to a trace limit used by demographic policies such as feedback mediation and the dynamic threatening
boundary�

data will survive the current collection by esti

mating that the survival rate for objects allocated
since the last collection will be the same as from
the previous collection� Therefore� it increments
the sum obtained from the backward demographic
scan by the number of newly
allocated bytes sur

viving during the last scavenge� Second� it at

tempts to avoid repetitive tracing of long
lived
clumps of old objects �the so
called pig�in�the�
python	� When the policy exceeds Tracemax as a
result of moving the threatening boundary back

ward to a given value� it does not select that �or an
older	 boundary again at the next scavenge� Each
unsuccessful attempt to collect the clump doubles
the intervening time until the next attempt on
that clump�

Figure ��� illustrates how the threatening
boundary� TBn� is selected at time tn� Each of
the birth
time regions A�D contains objects still
alive at time tn that were born between collections
at times ti and ti�� �for integer i  � to n	� Be

cause region E has never been collected� the �rst
re�nement uses D�s value as a prediction� The
new threatening boundary� TBn� is set to the old

est value that does not exceed Tracemax  ���
thousand bytes �e�g�� E �D�C  ��� ��� ��  
�� � ���	� TBn�x illustrates a previous threaten

ing boundary that was selected x collections ago as
a result of the second re�nement� collection of the
long
lived region� A� was previously attempted�
but resulted in too much storage being traced�

TB TB TBn n-1n-x

t t tt

Birth Time

t t
0 1 n-3 n-2 n-1 n

memory

3030
252540

A B C D E

Figure ���� Threatening Boundary Demographics�
The numbers underneath each curve show the total
storage traced by previous collections for each of the
birth�time regions A�D� Each region contains objects
born between collections �ti�� to ti� i 
 � to n� that
are live at time tn� Region E� to be traced� uses the
previous collection�s value� D� as an estimate� At time
tn� the Dtbdg collector moves threatening boundary
backward from TBn�� to TBn by using the oldest
boundary such that the total traced area is less than
Tracemax 
 ��� thousand bytes �E D  C 
 �� 
��  �� 
 �� � �����



�� CHAPTER �� DYNAMIC THREATENING BOUNDARY

��� Methods

This section discusses the experimental technique
and the assumptions made by my simulation
model� Parameters for the collectors were selected
to provide �reasonable� values which did not dis

tort the results� Assumptions about implementa

tion costs were chosen to be conservative by pro

viding worst
case estimates� actual tuned imple

mentations would likely yield better results�

I was interested in comparing the relative per

formance of dierent garbage collection algorithms
in terms of CPU and memory overhead� tenured
garbage� and bytes traced� To determine the ef

fectiveness of the dynamic threatening boundary
mechanism and the Dtbdg policy� I instrumented
a set of �ve allocation
intensive C programs using
ATOM �Dig��� SE��� as shown on the left
hand
side of Figure ��� �p� ��	� The programs measured
are described in Table ��� �p� ��	� I used memory
allocation and deallocation events in these pro

grams to drive a simulation of the dierent gar

bage collection algorithms� The output from the
simulation consisted of memory and CPU usage
patterns that were then processed to produce per

formance data�

The simulator implemented each of four gar

bage collection policies� full collection �Full	�
�xed
age generational �Fixed�	� feedback medi

ation �FM	� and my collector policy �Dtbdg	�
Scavenges were triggered after every � million
bytes of allocation and Tracemax was set to
��� thousand bytes�

Conceptually� the new data allocated since the
last collection is considered to be in the �nursery��
although in a non
copying collector such data will
not be contiguous� I assume that the nursery is
always collected in all the algorithms I consider�
Thus� what dierentiates the threatening bound

ary selection policies I consider is what� in addition
to the nursery� is collected�

I assumed a collection was triggered after ev

ery million bytes of allocation� As mentioned pre

viously� the issue of when to collect exists for all
collectors� not just generational ones� The col

lection interval chosen is often in�uenced by the
program�s allocation rate� Programs which have
very high allocation rates execute very few instruc

tions between each allocation and will be more sen

sitive to the collection interval� In equilibrium�
such programs would be expected to have very

high deallocation rates as well� which should make
generational collection very eective� One million
bytes was chosen as the collection interval to en

sure that at least �� garbage collections occurred
for each application� Smaller collection intervals
may cause collection overheads that are unrealis

tically high for a full
collection policy� or unfairly
handicap a �xed
age collection policy by causing
too much tenured garbage� The same �xed value
was used to avoid introducing additional interac

tions which may distort the results��

The trace limit �Tracemax	 chosen aects the
performance of the two demographic policies�
FM and Dtbdg � The setting acts like a knob
that increases pause times while reducing tenured
garbage�or vice
versa� A high setting causes the
collector to degenerate from a generational col

lector into a full collector� A low setting essen

tially disables garbage collection entirely and in

curs maximum memory consumption and minimal
collection overhead� I chose a value of ��� thou

sand bytes to prevent either form of degeneration
to occur� As with the collection interval� the same
value was chosen for all applications to avoid dis

torting the results�

To determine the CPU overhead added byDtb
over existing generational collectors� I measured
the size of the remembered sets and the frequency
of forward
in
time stores for each application� I as

sumed that the remembered set size for Dtb was
at its maximum during the entire execution time
of each program� and that it was zero for a gen

erational collector� I assumed that each entry in
the remembered set required an average of �� in

structions during the trace phase of each scavenge
to perform the test for crossing the threatening
boundary�� To determine the frequency of addi

tions to the remembered set� I used the Forward
Instr� column from Table ��� �p� ��	 and assumed
that each insertion required �� additional instruc

tions at each forward
in
time store��

�One megabyte was also independently suggested based
on measurements of collection in the ML language environ�
ment �SM�	��

�Empty lists in a hash table can be detected in 	 in�
structions� the target birth�time in �
� and the source in
�
 more� Since the threatened set is almost always smaller
than the immune set� the target test will often fail� avoiding
execution of the source test�

�� instructions for the hash function� 
 to index into
the table of linked�lists� � to compare the key� and � for
insertion�
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To determine the memory required by the re

membered set for the Dtb mechanism� I measured
the maximum number of live bytes� pointers� and
forward
in
time pointers� for each application� I
assumed that each remembered set entry required
two pointer slots of � bytes each �as on the DEC
Alpha	� one for the address updated� and one for
a hash link� Other tradeos may be made to im

prove memory or time performance as appropri

ate� For the purposes of comparison� I assumed
other generational collectors had a remembered
set size of zero� incurring no costs to update it�

To determine the memory overhead for main

taining the birth times� I measured the maxi

mum number of live objects and multiplied by
� bytes per object� To take into account memory
fragmentation� the simulator allocated and deal

located dummy objects in a separate process us

ing the GNU malloc�free routines as the simula

tion proceeded� I chose GNU malloc because it is
among the most space
e�cient allocation packages
for C �DDZ���� The maximum heap size was then
recorded for each application�

��� Results

In this section� I investigate the costs of imple

menting the dynamic threatening boundary mech

anism and the performance of the Dtbdg policy�

����� Cost of the DTB Mechanism

As I have mentioned� a dynamic threaten

ing boundary mechanism is similar to that of a
conventional generational collector� except that it
must maintain a remembered set of all forward

in
time pointers� I investigate the overhead of cre

ating and maintaining that set in this section�

CPU Overhead

In Figure ���� I show the cost of updating the re

membered set �RS Insert	� and scanning that set
�RS Scan	 during each collection� The numbers in
the �gure are derived from the measurements con

tained in Table ��� �p� ��	� As the �gure shows�
the additional overhead associated with maintain

ing the write barrier �RS Insert	 and scanning
the larger remembered sets �RS Scan	 programs
ranges from �� to �� of total program execution

time� The store check overhead for an in
line write
barrier� as shown in Figure ��� �p� ��	� will be the
same for Dtb as it is for any generational collec

tor�

Memory Overhead

Tables ��� and ��� show the storage allocation be

havior of each of the sample programs� The ta

bles show the total bytes and objects allocated
during the time the program ran� allocation rate�
the maximum live objects� live bytes �excluding
fragmentation	� the maximum heap size �includ

ing fragmentation	� number of objects� pointers�
and remembered set size� The last three columns
of Table ��� shows allocation rates for the C pro

grams was ranged from ��� to ����� instructions
between allocations� This information� combined
with the total allocated bytes shows that a one
megabyte collection interval met the criteria given
on page ���

Figure ��� shows the space overhead of main

taining all forward
in
time pointers in the remem

bered set and storing �ne
grain birth times for
each object as derived from Tables ��� and ����
Both the birth
�eld and the remembered
set over

head vary widely across the applications but range
from �� to ��� of total memory consumption�
Gawk and Cfrac overheads are dominated by
the birth
time �eld because they have mostly
small objects and low pointer density� Espresso
and Sis have much higher pointer density� so re

membered sets dominate their overhead�

Because I am modeling a non
copying collec

tor� I conservatively assume that an �
byte birth
�eld is included with each object� In practice�
only several hundred distinct birth
time values are
probably necessary at any time� and so this in

formation could be encoded in many fewer bits
�e�g�� by mapping object addresses to an array of
bytes	� Because FM also collects and uses ob

ject demographic information� it also requires such
birth
time �elds� In a copying collector� more ef

�cient methods of encoding birth information are
also possible� By co
locating objects of the same
age on the same page �or sub
page	� the �
byte
overhead would be incurred per page instead of
per object� Such an approach could suer mem

ory loss from internal fragmentation� however�



Figure ���� Memory Overhead of the Dtb Mechanism�
Dtb incurs memory overhead for maintaining all forward�in�time pointers in the remembered set and a birth�time
�eld for each object� The percentage of maximum memory consumed �including fragmentation� is shown� Note
that feedback mediation would have the same birth�time �eld overhead�
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Table ���� Program Allocation Behavior�

Total Maximum Allocation Rate
Program Allocated Live instr� instr� bytes

KBytes Objects KBytes Objects �alloc� �byte �alloc�

Cfrac ������ ��������� ��� ����� ����� �� ��
Espresso ������� ��������� ��� ����� ����� �� ���
Gawk ������� ��������� ����� ������� ��� � ���
Ghost ������� ������� ����� ����� ����� �� ���
Sis ������ ������� ��� ������ ��� �� ��

This table and Table ��� show the allocation behavior of the sample programs used for computing the memory
overhead for the DTB mechanism� Assuming � bytes per object� the birth �eld overhead shown in Figure ���
is � times the Maximum Live Objects divided by Maximum Heap Size encountered during program execution
�Table ����� For Espresso� ���� 
 ���� ��� ����������� � ������ The �rst two column of Allocation Rate are
the ratio of Exec� Instr� �Table ���� to Total Allocated Objects and Total Allocated Bytes� respectively� The
last column shows the average size per allocated object�

Table ���� Program Pointer Density Measurements�

Maximum � �
Program Heap Size Rem� Set Live Forward Heap

KBytes Pointers Pointers Pointers Pointers

Cfrac ����� ����� ����� �� �����
Espresso ����� ����� ������ �� �����
Gawk ����� ��� ����� �� ����
Ghost ����� ����� ������ �� �����
Sis ����� ������ ������ �� �����

Assuming ��byte pointers� and two pointers for each remembered set element� the remembered set overhead shown
in Figure ��� is �� times Maximum Rem� Set divided by Maximum Heap Size� For Espresso� ���� 
 ���� ����
����������� � ������ The pointer density �� Heap Pointers� is the ratio of � times Maximum Live Pointers to
Maximum Live �Table ����� The forward�in�time pointer density �� Forward Pointers� is the ratio of remembered
set pointers �Rem� Set Pointers� to Maximum Live Pointers� As the forward pointer density increases� so does
the remembered set size and the corresponding overhead� Except for Ghost� the assumption that few pointers
point forward�in�time appears unfounded for the C programs shown here�
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����� Evaluation of DTBdg Policy

In this section� I evaluate the eectiveness of the
Dtbdg policy in reclaiming tenured garbage and
compare it to three other collection algorithms� I
�rst consider total memory use� then tenured gar

bage reclamation� its eect on pause times� and �

nally� the total amount of data traced� Note that I
considered the �xed costs of maintaining the write
barrier and scanning the remembered sets for the
mechanism in the previous section� here I evaluate
one speci�c policy that uses this mechanism�

Memory Bene
ts

I �rst looked at the memory required by each of
the dierent collectors in Figures ��� and ���� In
Figure ���� I evaluate collector performance with
respect to maximummemory used �including frag

mentation	� Dtbdg saved signi�cant amounts of
memory for Espresso and Ghost even after the
eects of the remembered set and birth time over

heads from Figure ��� have been included� Sis still
had a modest improvement even though it had the
largest memory overhead due to its high pointer
density� Dtbdg incurs only a minor cost in Cfrac
and Gawk where no collector distinguished itself�

Figure ��� shows how tenured garbage aected
total memory use� Cfrac and Gawk do not
generate signi�cant amounts of tenured garbage�
Thus there was no opportunity for either FM
or Dtbdg to recover much� For Espresso and
Ghost� however� tenured garbage was a signi�

cant portion of average memory use ���� and ���
respectively for Fixed�� ��� and ��� for FM	�
Observe how Dtbdg �s maximum memory use sav

ings were roughly proportional to the proportion
of tenured garbage� Sis had ��� tenured garbage
for FM� but the savings were reduced by the ���
memory overhead of Dtb �see Figure ���	� When
tenured garbage was present to a signi�cant de

gree� my policy was able to collect much of it�

Object Tracing Costs

I now discuss the costs incurred as a result of
collecting the tenured garbage� Figure ��� shows
the ��th percentile pause times in the test pro

grams �� out of �� pauses trace fewer bytes	��

�I used this metric to facilitate comparison with Ungar
and Jackson�s previous work �UJ�
��

Full is not shown because it had pause times
o the chart� The values for FM and Dtbdg are
much lower than Full� showing the bene�ts of
generational garbage collection� Fixed� had the
lowest pause times� but at the cost of having the
most tenured garbage �Figure ���	� In Sis� the
generational policies were not as eective at con

trolling pause times than they were in other pro

grams� but they still reduced the ��th percentile
pause
time of Full from ��� to ��� thousand
bytes �see Table ���	� The �gure shows what im

pact moving back the threatening boundary had
on pause times� In particular� Dtbdg was higher
than FM and both were higher than Fixed�� As
expected� the largest increase in pause times for
Dtbdg occurred for the same applications that had
the greatest recovery of tenured garbage and was
roughly proportional to the tenured garbage re

claimed�

Table ���� ��th Percentile Pause Times�

�Ratio to Tracemax	
Program Full Fixed� FM Dtbdg

Cfrac ���� ���� ���� ����
Espresso ���� ���� ���� ����
Gawk ����� ���� ���� ����
Ghost ����� ���� ���� ����
Sis ���� ���� ���� ����

Each column shows the ��th percentile pause times for
each program row as the ratio of total bytes traced to
Tracemax 
 ��� thousand bytes�

Data Traced

Finally� I consider the amount of work done �e�g��
time spent	 tracing data in the dierent collec

tors� Garbage collectors trade reduced memory
consumption for added tracing CPU overhead� To
convert bytes traced to CPU overhead� I assumed
�� instructions per byte
traced�� Consider that
Full would be completely o the scale in Fig

ure ���� and compare the Fixed� collector in Fig

ure ��� with the Full and Fixed� collectors in
Figure ���� Full always traces all objects� and
thus has the lowest memory consumption and the
traces the most bytes� On the other hand� Fixed�
tenures objects after just one collection� and thus

�Ungar and Jackson stated � microseconds per byte
traced at 	 nanoseconds per instruction �UJ�
� p� ���



Figure ���� Mean Tenured Garbage�
The �gure shows the mean amount of garbage that was tenured by each of the di�erent collection algorithms
during program execution for the FM and Dtbdg collectors� Full has no tenured garbage by de�nition�



Figure ���� Total Bytes Traced�
This �gure shows the cumulative total of all bytes traced by each collector during the lifetime of each program�
Full is not shown because it was o� the scale in all cases �see Table �����
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Table ���� Total Data Traced�

FM �Ratio to FM	
Program KBytes CPU��	 Full Fixed� Dtbdg

Cfrac ����� ��� ���� ���� ����
Espresso ����� ��� ���� ���� ����
Gawk ����� ���� ����� ���� ����
Ghost ����� ��� ����� ���� ����
Sis ����� ���� ���� ���� ����

The two FM columns show the number of kilobytes traced and the CPU overhead for the FM collector� Subse�
quent rows show the relative performance of the other collectors as a ratio to FM
 �� The CPU Overhead was
computed assuming �� instructions per byte traced using Exec� Instr� from Table ��� �p� ����

has the lowest tracing overhead but uses the most
memory of the two� If tracing overhead was the
sole concern of users� the Fixed� policy would be
the obvious choice because it has the lowest over

head� Unfortunately� this algorithm has the prop

erty that tenured garbage accumulates �e�g�� quite
rapidly in Espresso and Ghost� see Figure ���	
and its memory consumption is large� which moti

vates accepting the higher tracing overheads and
pause
time overheads of FM and Dtbdg �

��� Summary

Using policy to de�ne implementation motivates
understanding of program behavior to derive ef

fective policies to improve performance� Gener

ational collection policies reduce pause times but
cause excessive memory consumption by occasion

ally promoting objects that eventually become un

reclaimed garbage� My Dtb mechanism� unlike
previous work� enables policies that can dynam

ically adjust the threatening boundary between
immune and threatened data either forward or
backward� essentially allowing objects to become
untenured at any time� Measurements of �ve
allocation
intensive C programs showed that the
Dtb mechanism added ����� to the total space
and ���� to the total execution time of the pro

grams over the costs of a conventional genera

tional collection algorithm� I described one policy�
Dtbdg � for setting the threatening boundary based
on an extension of Ungar and Jackson�s feedback
mediation collector� My results showed the Dtbdg
policy� which uses the dynamic threatening bound

ary mechanism� was more eective at reclaiming
tenured garbage when it was present�in one case
reducing memory requirements over feedback me

diation by ����
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Chapter �

Lifetime Prediction

The previous chapter examined how policies
can in�uence the performance of garbage collec

tion� this chapter will show a couple of examples of
how program behavior can in�uence policy selec

tion� First� I will discuss how one insight into pro

gram behavior led to measurements that showed a
high degree of correlation between short
lived ob

jects and the point in the program responsible for
allocating them� By a similar process� observa

tions of program behavior during measurements
of the performance of the write barrier and the
dynamic threatening boundary collector led me
to speculate about a possible correlation between
stores and object lifetimes� The second section
of this chapter shows some preliminary measure

ments supporting such a correlation� Unlike the
previous chapters� this one will concentrate more
upon behavior as a vehicle for suggesting future
policies rather than on the precise mechanisms to
implement those policies�

��� Motivation	 Background

and Scope

The principal feature of dynamic storage alloca

tion is also its biggest liability� Dynamic storage
allocation allows programs to create and use data
structures whose memory consumption varies ac

cording to the demands of the program while it is
running� The programmer need not decide in ad

vance the worst
case memory consumption of the
program� But� unlike static allocation� which can
fail only when insu�cient memory is available to
load the program� dynamic allocation can run out
of memory at unpredictable times� Virtual mem

ory increases the address space available before
memory exhaustion occurs� but the address space

is not unlimited� especially on multi
programming
systems�

One of the causes of memory exhaustion is
fragmentation� As objects are allocated and deal

located� gaps are created in the address space
when long
lived objects are assigned addresses be

tween short
lived ones� If an allocation occurs�
and and no gap is large enough to �t� more mem

ory must be requested from the operating system�
increasing the total memory required by the pro

gram� Fragmentation can account for a substan

tial fraction �������	 of the total memory con

sumed by a program �Wil��a�� Fragmentation oc

curs both for explicit dynamic storage allocation
and for conservative garbage collection�

Garbage collectors can also suer from exces

sive memory consumption� All garbage collec

tors defer deallocations until the trace phase com

pletes� This delay ties up memory with unreach

able objects for a time equal to the collection inter

val� Detlefs� Dosser and Zorn �DDZ��� measured
a median overhead of ��� for garbage collection
over explicit deallocation for eleven C and C��
applications� As mentioned in Chapter �� genera

tional collectors suer memory loss from tenured
garbage�

All these forms of memory loss depend highly
upon program behavior� It has been proven �for
systems that cannot move allocated objects	 that
pathological programs can always be devised that
will run out of memory even though enough mem

ory remains in the gaps to meet a given allocation
request �Rob���� Yet� most dynamic storage al

location systems perform well in practice� most
programs behave in a manner that is not patho

logical� This chapter explores whether program
behavior can be exploited further to reduce the
peak memory overhead of dynamic storage allo
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cation systems� both for explicit deallocation and
automatic garbage collection�

Generational collectors already exploit pro

gram behavior by concentrating eort upon ob

jects likely to be short
lived� The heuristic they
use to make this prediction is that the most re

cently allocated objects are the most likely to die�
The measurements shown in this chapter will con

�rm this hypothesis� and suggest a possible exten

sion�

Some of the measurements in this chapter are
in units of time� The simplest measure is elapsed
time� in seconds� between two events of interest�
Typical important events are the start and end of
program execution� or the allocation and deallo

cation times of an object� The age of an object is
the dierence between the current time� and the
allocation time of the object�

Often� dynamic storage systems are only inter

ested in time spent while doing storage manage

ment� For example� if an input�output
intensive
program runs for several hours without doing any
allocation or deallocation� this time is not impor

tant to a garbage collector or memory allocator
since no storage allocation work is required� We
would like a measurement that re�ects only the
time that the storage management system is op

erating�

The work load placed upon a storage allocator
is dependent upon the rate of memory allocation
requests� Often� the CPU cost is related to the
object allocation rate� and the memory cost is re

lated to the byte allocation rate� As a result� this
chapter follows the convention that is common in
storage allocation literature� time is measured in
units of cumulative bytes allocated since program
execution began� Thus� the lifetime of an object is
the number of bytes that were allocated between
the time the object was allocated and later freed�

��� Allocation�Site Lifetime

Prediction

Pro�le
based optimization is often used as a tech

nique to improve the CPU performance of a pro

gram� A representative execution of the program
is instrumented to produce performance metrics
that may be examined �either by a human being�

or automatically by a compiler	 and used to mod

ify the program� The same technique may also be
used to improve memory performance as well�
Programmers often have a sense of what por


tion of a program is responsible for allocating an
object and when the allocation should take place�
Frequently� a symmetric situation exists for ob

ject deallocations as well� Thus� object lifetimes
should correlate with the location in the program
responsible for object allocation�

The allocation site of an object corresponds
to the point in the program responsible for al

locating it� More precisely� the allocation site is
the sequence of nodes on the path of the dynamic
call graph from the allocation routine to the entry
point of the program �e�g�� the sequence of return
addresses on the stack upon entry to malloc	�
Hanson describes how segregating short
lived

objects can improve memory performance� in his
case by having the programmer explicitly specify
what is short
lived �Han���� If allocation sites do
indeed correlate with object lifetimes� and pro�le

based optimization works� then it is possible to
automate Hanson�s algorithm�

Speci�cally� the approach would be to use an
instrumentation tool� such as ATOM� to instru

ment the program to emit all the allocation sites
with their corresponding object lifetime distribu

tions� From the distributions� select those sites
responsible for short
lived objects� Then� link in a
special version of the allocation routine that tests
to see if the allocation request is from one of the
short
lived allocation sites� If so� then short
lived
objects may be segregated into a special arena
where they will not cause fragmentation by being
interleaved in the rest of the address space with
long
lived objects� A similar technique may be
applied to conservative garbage collectors�
Tables ��� and ��� show how this idea would

work by instrumenting a �ctitious program to pro

duce the allocation
site lifetime
distributions� The
�rst table shows some of the allocation sites col

lected during one run of the program� Each al

location site corresponds to a call to malloc� A
mapping function converts the sequence of nodes
on the call graph for each site to an allocation site
identi�er� As each object is deallocated �or be

comes unreachable	� the lifetime distribution for
the site identi�er that allocated the object is up

dated� At the end of the program there a life

time distribution corresponding to each site� The



Figure ���� Allocation Site Prediction Perfor

mance�
Of all the bytes allocated by the programs above� over
��� were short�lived� The allocation site was able to
predict a high fraction of them� For three of the ap�
plications� all of the predicted short�lived bytes could
be allocated to arenas �rightmost bar�� thus avoiding
fragmenting the heap�

��� Write�Barrier Lifetime

Prediction

One of the problems that plagues generational gar

bage collectors is how to deal with long
lived clus

ters of objects� Chapter � showed how one policy
for altering the threatening boundary reduced ten

ured garbage� As mentioned on page ��� a re�ne
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ment of the policy included a technique for recog

nizing the occurrence of a pig
in
the
python prob

lem� Chapter � examined program store behavior
relevant to an in
line write barrier� The barrier
must track creation of forward
in
time pointers�
but it can also track destruction of pointers as well�

The reachability of objects is reduced by
pointer destructions� and when that reachablilty
becomes zero� the object can be deallocated�
Reference counting collection is simply a precise
mechanism for ensuring this deallocation is per

formed promptly� perhaps a less precise mech

anism may be useful for generational collection�
The write barrier may be able assist with collec

ting long
lived immune objects by noting when
pointers into the immune set are destroyed by non

initializing stores�

Hayes �Hay��� introduced the idea of key ob�
jects as policy for �nding clusters of objects that
are likely to be garbage� He noticed that at the
time of deallocation� the majority of objects have
the same allocation time �within one kilobyte	�
Key objects are those which� when they become
unreachable� indicate a cluster of other unreach

able objects� In later work Hayes �Hay��� pre

sented an approach for clustering objects pointed
to by key objects� and using the the targets of
pointers in the remembered set as keys� Rather
than using additions to the remembered set as key
objects� I decided to investigate using deletions of
pointers to immune objects instead�

In order to see if there was any merit to this hy

pothesis� I used the same techniques as in previous
chapters with the same application programs� To
the instrumentation code� I added a function that
would output the object lifetime and store demo

graphics �see the next section	 after each ��� kilo

bytes of allocation� This demographic information
was fed into a Matlab program to display the be

havior graphically in three dimensions� Because of
processor and memory limitations� I used shorter
runs of the programs than with the measurements
in previous chapters and not all of the programs
were measured� I was looking for exploitable regu

larities in program behavior� and correlations be

tween store events with object lifetimes in par

ticular� Because the measurements were only for
small amounts of allocation� the results presented
are primarily to provide insight for future work�

Recall from Figure ��� �p� ��	 that at a given
instant in time� the live objects of a program

were allocated at various dierent times� The de

mographic curve shows the number of currently
live bytes that were allocated at each speci�c
time� As program execution proceeds� the curve
changes as new objects are allocated and old ones
are freed� This measurement is similar to Ste

fanovic�s �SM��� for ML but I use allocation
time
demographics rather than age demographics�

Figure ��� shows the lifetime demographics for
one of the application programs� Espresso� Pro

gram execution began in the upper right corner
and proceeded along the diagonal to the lower left�
The vertical axis for the area to the right of the
diagonal shows the number of bytes allocated at
the time shown on the lower axis that still exist at
the time shown on the left axis� The area behind
the diagonal is zero because objects cannot exist
before they are allocated�

Espresso was fairly typical of the applications
in several respects� First� notice the tall ��n� on
the right� This represents data that was allocated
at the time the program started� and lived almost
the entire lifetime of the program� Notice also�
that it is one of the largest sources of live data in
the program� Such a �n was a common occurrence
in the applications measured� Second� notice the
spikes along the diagonal� These spikes represent
strong con�rmation of the generational hypothe

sis� large amounts of data die an extremely short
time after allocation� Such behavior was also true
of all the applications�

Further examination of the �gure reveals more
subtle behavior� Notice that several small lines
extend from the diagonal into the foreground� two
are at allocation times of about � and � kilobytes�
These truncated �ns ��pigs�	 represent small clus

ters of long
lived objects� Ideally� a generational
collector would promote these objects shortly af

ter allocation� and collect them shortly after they
become unreachable� The dynamic threatening
boundary collector would do this by moving the
threatening boundary backward in time� For ex

ample� at �� on the time axis� suppose a collection
occurs� The collector could set the threatening
boundary to � on the allocation
time axis� All un

reachable objects consuming memory at time ���
which have allocation times more recent than �left
of	 � would be reclaimed� This would include the
two long
lived clusters �pigs	�

Notice that there are actually four very closely
spaced �ns on the right of the �gure� a short one
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on the very edge� one about � times taller next�
followed by one half again as large� and �nally by
one half as tall that dies at about � kilobytes� A
garbage collector trying to collect any but the last
�n �which is actually a pig� because it died long
before program termination	 would be wasting its
time� How does a collector recognize a �n� or more
precisely� tell the dierence between a �n� which
is not reclaimable� and a pig� which is"

Figure ��� shows the store demographics for
Espresso� A spike on the �gure corresponds to
the number of stores that overwrite pointers to
an object� The time axis corresponds to when the
stores took place� and the allocation time axis cor

responds to when the object pointed to by the
overwriting store was allocated� Compare this
store demographic �gure with the lifetime demo

graphic �gure above� Observe that stores corre

sponding to long
lived objects are rare for this
program� Also� notice there is a high correlation
between destructive stores and the end of an ob

ject�s lifetime as evinced by the store peaks in the
foreground�

For a generational collector� this behavior
could be exploited in a couple of ways� by trig

gering collections� or by adjusting the threatening
boundary� All generational collectors must decide
when to collect older generations� A sudden in

crease of stores overwriting pointers to immune
objects could cause a �ag to be set by the write
barrier that would trigger a trace of older objects�
For a dynamic threatening boundary collector� the
demographics of the store could be used to select
the threatening boundary explicitly�

Of course� not all applications can be counted
upon to exhibit such polite behavior� For Ghost�
shown in Figures ��� and ���� long
lived objects
survived the entire execution of the program�
Almost all destructive pointer
stores overwrote
pointers to short
lived objects or to long
lived ob

jects allocated at the start of program execution�
Note that a collector using a store demographic
policy would still work properly forGhost if it ig

nored objects allocated near the start of program
execution�it would correctly refuse to attempt to
recover long
lived objects� Cfrac had similar be

havior� except no stores changed pointers to long

lived objects�

This and the previous sections discussed how
two observations of program behavior suggested

Figure ���� Lifetime Demographics for Espresso�
This �gure shows lifetime demographics as a function
of time� As program execution proceeds from the back
to the front of the �gure� objects are allocated and
later die� At any given instant� live data was allocated
at various times� the oldest on the right� youngest on
the left� The vertical axis shows the total live data�
All units are in kilobytes ����� bytes�� The peak at
the diagonal shows that most objects are short�lived�

Figure ���� Pointer Overwrite Demographics for
Espresso�
Like Figure ���� this �gure shows demographic infor�
mation� but for stores that overwrite pointers� The
vertical axis shows the number of stores that over�
write pointers to allocated objects as a function of
time� Store peaks corresponded closely with lifetimes
for this program�



�� CHAPTER �� LIFETIME PREDICTION

Figure ���� Lifetime Demographics for Ghost�
The lifetime demographics for Ghost were quite dif�
ferent than for Espresso� Almost all long�lived ob�
jects survived until the program ended�

Figure ���� Pointer Overwrite Demographics for
Ghost�
The destructive pointer store demographics forGhost
consisted almost entirely of pointers to objects allo�
cated near the start of program execution�

policies to exploit that behavior� segregating ob

jects based upon their allocation site� and using
store behavior obtained by the write barrier to
in�uence garbage collection collection scheduling
or immune set selection� The allocation site pro

vides an excellent predictor for short
lived objects
and overwritten pointers show potential to pre

dict the death of long
lived objects� In the latter
case� only short runs were used� so further work
is necessary before the idea can be validated� The
techniques illustrated in this chapter provided in

sight into how powerful program instrumentation
tools can be used to improve memory consump

tion in a manner similar to the way pro�ling tools
have been used in the past to improve CPU per

formance�

This concludes the three chapters discussing
each of the principal results of this dissertation� In
the next chapter� I shall summarize the results ob

tained and how they might in�uence future work�
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Chapter �

Summary and Future Work

This dissertation has investigated three con

tributions for improving the performance of gar

bage collection� an in
line write barrier� a dynamic
threatening boundary� and object lifetime predic

tion� Each of these contributions was investigated
by using an instrumentation tool such as ATOM
to directly alter the executable �les for each of
�ve dierent C programs� A simulator used events
generated by the instrumented program to gener

ate measurements of CPU and memory consump

tion� I made the additional contribution of collec

ting C program behaviors including store frequen

cies and storage allocation events� to provide a
�rm foundation for evaluating the performance of
each of the other three contributions� This chap

ter summarizes these results� and relates them to
each other and to future work�

A write barrier is used by generational collec

tors to detect pointers into the collected genera

tion� The costs of this barrier for C programs has
never been measured before� In this dissertation�
I quanti�ed the cost of using an explicit instruc

tion sequence added at each store in �ve dierent
allocation
intensive C programs� The CPU cost of
an in
line write barrier was quite variable� ranging
from �� to almost ��� of total instructions ex

ecuted� The pessimistic assumptions used by my
model result in overheads that are probably too
high for most of the C�� community�

However� there is ample opportunity for im

provement� The write barrier need not check ini

tializing or non
pointer stores� Technology that
recognizes such stores can reduce the number of
store instructions that must have the write
barrier
check sequence added� Also� the number of in

structions required by each store check may be
reduced by using dedicated registers to facilitate

rapid access to object ages and the remembered
set�

Write barrier technology is also useful for
incremental garbage collection� program debug

ging �RW���� persistent data structures �often
used for object
oriented databases	� and dis

tributed data structures� Techniques that speed
up the barrier increase its applicability to design

ers in each of these �elds� The increased avail

ability of program instrumentation tools� such
as ATOM and EEL �LS���� make consideration
of an in
line barrier attractive since there is no
need to alter the compiler� Such instrumentation
tools also make it possible to improve the perfor

mance of the write barrier both through code opti

mization �SW��� and exploiting program behavior
through pro�ling�

Generational collectors use a threatening
boundary to divide the young collected objects
from the older uncollected ones� The policies for
setting this threating boundary are often not ex

plicit because the implementation de�nes the pol

icy� In this dissertation I allow policies to be
made explicit by introducing a a new mechanism�
which extends generational collection to allows the
threatening boundary to be adjusted at any col

lection to follow any desired policy� The dynamic
threatening boundary mechanism provides a �ex

ible tool for implementing generational garbage
collectors in their most general form� I measured
how one policy I designed� which extended Ungar
and Jackson�s feedback mediation� produced less
than half as much tenured garbage of their already
eective algorithm� The reduction in tenured gar

bage translated directly into improved peak mem

ory consumption�reduced by as much as ��� for
one application�
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Further work exploring the relationship be

tween program behavior and other threatening
boundary selection policies appears promising�
One possible technique� which avoids tracing ob

jects allocated at the start of program execution
and yet still captures long
lived objects� is likely
to improve CPU overhead� Another �speculative	
possibility is to set the threatening boundary while
the trace proceeds rather than at the start of the
trace� Traversing objects in birth
time order and
terminating the trace at the point when a CPU
trace threshold is reached would allow �ne
tuning
of the tradeo between pause times and tenured
garbage� �

In this dissertation� I showed that lifetime pre

diction using the allocation site is highly successful
at �nding short
lived objects� which comprise the
majority �over ���	 of allocations made by the C
programs measured� Store demographics obtained
by the write barrier appears to have potential for
predicting long
lived objects�

The allocation site lifetime predictor in this
dissertation required a program execution pro

�le to produce an explicit storage allocator that
reduced memory consumption� An �on
the
�y�
approach� which collected and exploited behav

ior while the program was running� would elim

inate the need for obtaining a representative pro

�le� Lifetime predictors that use a policy designed
to improve reference locality are also possible� Ei

ther technique could improve both explicit storage
deallocation and conservative garbage collection�

In this dissertation� I showed measurements of
object lifetimes and store behavior that support
using overwritten pointers in the heap to drive
collection policies� I presented a hypothesis where
pointers that are overwritten indicate which ob

jects have a higher probability of dying and when
they are more likely to die� One possibility for
exploiting this behavior is to trigger collections
based upon bursts of store activity� Another is
to set the threatening boundary to the ages of ob

jects pointed to by overwritten pointers� A non

generational policy could select key objects� which
point to clusters of objects more likely to be dead�
based upon the addresses of overwritten pointers�
These techniques correspond to an imprecise form
of reference
counting garbage collection�

�This technique is analogous to terminating search
trees in computer games �e�g�� chess� based upon a time
constraint�

Program behavior guided the selection of poli

cies and provided the basis for evaluation of results
throughout this dissertation� C program behavior
relevant for garbage collection has not been mea

sured before� Interestingly� unlike for LISP or ML�
pointers observed here did not con�rm the belief
that pointers from old to young objects were rare�
������ of pointers in the heap were forward
in

time�

The generational hypothesis was con�rmed�
recently allocated objects are disproportionally
more likely to die than older objects� However�
long
lived objects were frequently allocated during
execution� and their presence complicates genera

tional policies�

The programs measured here performed a sig

ni�cant amount of memory allocation� and had a
wide variety of behaviors� These behaviors indi

cate the need to study more applications� espe

cially those written in C�� and that have larger
maximum memory sizes� More precise informa

tion about the number of initializing stores is also
needed� Behaviors necessary for quantifying ex

ploitable behavior of long
lived objects would help
derive policies for reducing fragmentation� genera

tion selection� and scheduling of collections� From
those policies� implementations would follow�

The technology now exists to easily produce
fully
implemented versions of the ideas simulated
for this dissertation� The Boehm conservative col

lector is available as a library that can be compiled
to replace the malloc �new	 library in existing C
and C�� programs �Boe��a�� A straight
forward
version of a DTB mechanism can be implemented
by adding the object allocation
time to the object
descriptor data structure� An in
line write barrier
can be added by using tools such as ATOM to in

strument all the stores in an program�s executable
�le� Lifetime prediction can be implemented by
using an instrumentation tool to collect pro�les
and to alter the executable or produce a more ef

�cient allocation package in the form of a library�

As collector implementations become more
widely available for C and C��� and their per

formance is improved� programmers will be more
likely to take advantage of that technology to re

duce the time to produce new products and in

crease their reliability� Garbage collection pro

vides one tool that can help meet these objectives�
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Glossary

age For allocated objects� the time since it became
allocated� For events� the time since the event
occured�

allocated object An object whose storage was
obtained from a dynamic allocation routine
�e�g�� malloc� new� cons	� and is not eligible
for reallocation�

allocation�site The point in the control
�ow

graph of an executing program where a new
object is allocated from primary memory�
One representation of the allocation
site is the
sequence of source
�le�line
number pairs ap

pearing on the subroutine call stack at the
time of a memory allocation event�

allocation time The time when an object be

came an allocated object� Contrast with age�

ambiguous pointer A value that appears to be
a valid pointer� It may actually be a pointer�
but it may also be a false or derived pointer
instead�

birth time A synonym for allocation time�

collection Invocation of a garbage collector to
attempt to identify and deallocate garbage�
Short for garbage collection�

collection interval The time between invoca

tion of each collection� The collection interval
is chosen according to some policy� Typical
policies are when a memory limit is exceeded
or after a speci�ed amount of allocation has
taken place since the last collection�

collector Short for garbage collector�

conservative collector A garbage collector that
assumes that all values that look like point�
ers �according to a pointer��nding heuristic	�
are indeed pointers� They must not break a
program if the assumption is incorrect �such

as by altering the value of a pointer when an
object is copied	� Conservative collectors do
not require language or computer architecture
support to identify pointers�

copying collector A garbage collector that copies
reachable objects into tospace as they are dis

covered during the trace phase�

card marking An implementation for a remem�
bered set where each element of the set cor

responds to a sequence of addresses �called
cards	 to scan for pointers rather than a sin

gle pointer address� Each address contains a
potential pointer from a immune object to a
threatened object� Cards are typically much
smaller than virtual memory pages to reduce
unnecessary scanning�

dangling reference A pointer from a reachable
object to a deallocated object�

dead object Synonym for garbage�

deallocated object An allocated object whose
storage has been made eligible for realloca

tion for another object� Objects may be deal

located explicitly by the programmer calling
a deallocation routine �e�g�� free� delete	� or
implicitly by a garbage collector� Once deal

located� the object ceases to exist�

deallocation time The time when an object be

came a deallocated object�

deferred sweep For a mark�sweep collector� de

laying the sweep phase until subsequent allo

cations occur� Each allocation performs part
of the sweep by checking a portion of the mark
bits�

derived pointer A pointer whose target is deter

mined from a computation rather than from a
single stored value� A value that is a pointer�



�� GLOSSARY

but does not correspond to the lowest address
of an allocated object�

dynamic threatening boundary For gener�
ational collectors� a threatening boundary that
may be changed from one collection to the
next�

external fragmentation The space consumed
by deallocated objects occupying multiple con

tiguous regions of storage�

false pointer A value that is not a pointer� but
corresponds to an address of an allocated ob

ject�

feedback mediation A type of generational gar�
bage collection where objects are promoted
only when a speci�ed trace limit �number
of bytes traced	 is exceeded during the trace
phase�


xed�age policy A threatening boundary selec

tion policy that sets the threatening bound

ary to the current time at each collection mi

nus some �xed interval of time �typically the
time of the previous collection	�

forward�in�time pointer A pointer from an
older object to a younger one�

forwarding pointer A pointer that is stored
into the fromspace copy of an object imme

diately after that object has been copied into
tospace during the trace phase of a copying
collector� This pointer indicates that the ob

ject has already been copied and the new ad

dress of the object�

full collection A garbage collection policy in
which all allocated objects are in the threat�
ened set at every collection� See also �xed�age�
feedback mediation� and dynamic threatening
boundary�

fromspace During the trace phase of a copy�
ing collector� the region of the address
space where objects are being copied from�
When the trace phase terminates� the entire
fromspace is freed and becomes available for
allocation of new objects�

garbage An allocated object that is no longer ac

cessible to the program and is thus eligible for

deallocation without causing erroneous be

havior� A more restricted de�nition includes
objects that are accessible� but will never be
accessed again�

garbage collector An algorithm that identi�es
garbage and reclaims its storage by deallocat

ing it� Garbage is identi�ed as all objects that
are allocated but not reachable� Reachable
objects are identi�ed as objects transitively
reachable from pointers in roots� Identifying
reachable objects is called tracing�

generation A set of allocated objects sharing the
same allocation time class� Typically objects
allocated after a certain time before the cur

rent collection are placed into an old genera

tion and those before into a young generation�

generational collector A garbage collector that
attempts to reclaim recently allocated objects
more often than older objects by segregating
them into generations�

heap For this dissertation� the region of the mem

ory address space used for storing dynami

cally allocated objects� Objects in the heap
are never roots� The heap size may be ex

panded during program execution by calls to
the operating system�

immune set During a collection those objects
that are ineligible for deallocation� Often� a
collector may save time by not tracing these
objects and using a write barrier to maintain
a remembered set of pointers from the immune
set into the threatened set�

inter�generational pointer A pointer from an
object in one generation to another� Almost
always� they are also forward�in�time point

ers�

inter�generational store An instruction that
stores an inter�generational pointer�

interior pointer A pointer into an object rather
than to the lowest address of the object�

internal fragmentation The space wasted by a
dynamic storage system by reserving more
storage for each allocated object than was re

quested�
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lifetime The interval of time between when an
object becomes allocated and deallocated�

live object An allocated object that is transi

tively reachable from the roots�

mark phase The trace phase of a mark�sweep
collector� objects are explicitly marked as
reachable by setting a corresponding mark bit�

mark�sweep collector A garbage collector that
explicitly marks all reachable objects and then
makes a sweep explicitly deallocating all un

marked ones� A set of mark bits is main

tained� one for each allocated object� Upon
initiating a collection� the mark bits are
cleared� Starting from the roots� all reach

able objects are visited and their correspond

ing mark bit is set during the mark phase�
Afterwards� each un
marked object is deallo�
cated during the sweep phase�

memory leak Garbage that will never be deallo�
cated�

mutator The program that is allocating� updat

ing� and reading the storage being reclaimed
by a garbage collector�

nepotism For a generational collector� the phe

nomenon of garbage in the threatened set that
is ineligible for reclamation because it is being
directly pointed to by garbage in the immune
set�

newspace For a copying collector� the region of
the address space where objects are initially
allocated�

object A region of sequential random
access
memory addresses �locations	 and their values
dedicated to a speci�c purpose� If the mem

ory becomes used for a new purpose� such as
by deallocation and subsequent reallocation�
the new object is distinct from the older one�

pig�in�the�python A cluster of objects allocated
at about the same time that becomes unreach�
able at about the same time� and lives sig

ni�cantly longer than objects allocated dur

ing its own lifetime� Pigs increase the cost of
generational collectors either by creating ten�
ured garbage if they remain in the immune
set or by causing excessive CPU consumption

during the trace phase if they remain in the
threatened set�

pointer A random
access memory address corre

sponding to a given object �called the target	
appearing as a value within the same or a dif

ferent object �called the source	� The pointer
is said to point from the source object to the
target object� The source object references
the target object�

pointer�
nding heuristic For a conservative
collector� a predicate that tests a value to see
if it is possibly a pointer to an allocated object�
The test must be conservative� it must never
return false for a valid pointer� but it may re

turn true for an invalid one�at the cost of
unnecessarily retaining memory�

promotion For a generational collector� the act
of reclassifying an object from the threatened
set to the immune set�

reachable object An allocated object that is ref�
erenced directly by a root or by another reach�
able object�

reference Synonym for pointer�

reference counting A method to avoid erro

neously reclaiming an shared object whereby a
counter is maintained for each object record

ing the number of references to that object�
The reference count is initialized to zero when
the object is allocated� incremented when a
new reference to it is created� and decre

mented when a reference is destroyed� The
object is deallocated when the reference count
is decremented to zero�

remembered set The set of rescuers corre

sponding to a speci�c immune set� During
the trace phase of a generational collector� the
remembered set for the generation being col�
lected augments the root set�

rescuer A pointer from an object in the immune
set to �or into	 an object in the threatened
set� Such pointers are maintained by a write
barrier that updates a data structure called
the remembered�set�
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root An object always directly accessible to the
program� Typical examples of roots are pro

cessor registers� statically allocated objects�
and the program stack�

root set The set of all roots�

scanning The operation of examining one or
more objects for pointers� Scanning an object
is cheaper than tracing because it is a more
primitive operation�

scavenge Synonym for collection�

shared object An object that is transitively
reachable via more than one path from the
roots� Also� an object that is reachable from
an entity outside the current program �such
an an I�O device� or another processor	� The
latter de�nition is outside the scope of this
dissertation�

stack The region of memory managed by the
compiler to store variables whose lifetime and
scope match the invocation of a subroutine
or function call� Pointers to variables in the
stack are forbidden to be returned by the sub

routine�

sweep phase After a mark�sweep collector com

pletes identifying reachable objects during the
mark phase� the process of examining all the
mark bits� and explicitly deallocating all un

marked objects�

tenured garbage Garbage that will not be re

claimed by a generational collector because
of promotion into a generation for old objects
�the immune set	� which is not traced by the
collector�

tenuring Same as promotion�

threatened set During a collection those objects
that will be discovered to be either live or gar�
bage when the collection completes� Threat

ened objects are eligible for deallocation if
they are found to be unreachable� For gener�
ational collectors� the objects in the younger
generations are threatened� and older genera

tions are immune�

threatening boundary In a generational collec�
tor� the boundary that divides the threatened
set from the immune set� The threatening

boundary corresponds to a speci�c instant in
time where objects allocated before that in

stant are threatened and those after are im

mune�

time I can not �nd a de�nition of time that is not
circular� Stephen Hawking probably under

stands what time is as well as anyone �Haw����
For the purposes of this dissertation� time can
me measured in seconds� instructions� cycles�
or in total bytes allocated since the allocating
program started execution�

tospace During the trace phase of a copying col�
lector� the region of the address space where
objects surviving the current collection are
copied into from fromspace�

trace phase The act of identifying the cur

rently reachable objects in the threatened set�
Reachable objects are identi�ed as objects
transitively reachable from rescuers or point�
ers in roots�

tracing Collector operation during the trace
phase� Tracing an object consists of scanning
it for pointers� and then recursively tracing
each of the objects pointed to by those point

ers�

unreachable object An allocated object that is
not a reachable object�

write barrier After a collection� unreachable
threatened objects may still not be garbage�
because of rescuers� Rescuers are discovered
during program execution when store instruc

tions occur� Each store is checked �either by a
page
protection trap or an explicit instruction
sequence	 to see if it creates a rescuer� if so�
the rescuer is added to the remembered set�
The write barrier consists of all store checks
for this purpose�
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