Hardware and Software Mechanisms for Instruction Fetch Prediction

Bradley Gene Calder

CU-CS-781-95

@T}University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

HARDWARE AND SOFTWARE MECHANISMS FOR INSTRUCTION FETCH
PREDICTION
by
BRADLEY GENE CALDER
B.S. Computer Science, University of Washington, 1991
B.S. Mathematics, University of Washington, 1991

M.S. Computer Science, University of Colorado, 1993

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science

1995

This thesis for the Doctor of Philosophy degree by
Bradley Gene Calder
has been approved for the
Department of
Computer Science

by

Dirk Grunwald

Andrew Pleszkun

Date

Calder, Bradley Gene (Ph. D., Computer Science)
Hardware and Software Mechanisms for Instruction Fetch Prediction

Thesis directed by Assistant Professor Dirk Grunwald

Accurate instruction fetch prediction and branch prediction is increasingly important on today’s wide-
issue architectures. Instruction fetch prediction is the process of determining the next instruction to request
from the memory subsystem. Branch prediction is the process of predicting the likely out-come of branch
instructions. Many branch prediction and instruction fetch prediction architectures have been proposed, from
simple static techniques to more sophisticated hardware designs. This dissertation concentrates on the problem
of instruction fetch prediction.

If the current instruction fetch contains a branch instruction and the branch is a taken PC-relative
branch, the processor does not know which instructions to fetch next from the instruction cache if the target
address has not yet been calculated. This is called the instruction fetch problem. Not knowing the target address,
even if the direction of the conditional branch is correctly predicted, can cause the wrong instructions to be
fetched from the instruction cache. Instruction fetch prediction solves this problem by supplying a mechanism to
predict the target address enabling the instruction cache to immediately start fetching at the predicted destination.

This dissertation examines three techniques to improve instruction fetch prediction. The first technique,
called Branch Alignment, is a software optimization that reorders basic blocks, taking into consideration the
architectural cost model and the branch prediction architecture in order to improve instruction fetch prediction.
The second mechanism is a hardware design called the Next Cache Line and Set prediction architecture which
uses cache indices instead of target addresses to predict which instructions to fetch from the instruction cache.
Lastly, a hardware/software architecture design, called the Precomputed-Branch architecture, uses precomputed
branch addresses instead of PC-relative addresses in order to eliminate all instruction fetch penalties. Another
contribution of this thesis is a system-level performance comparison of several current branch and instruction
fetch prediction architectures using a full pipeline-level architectural simulator. This thesis also provides
instruction fetch and branch prediction performance results for object-oriented C++ applications.

DEDICATION

To my wife
Jena
and
my parents,
Cindy and Evan.

ACKNOWLEDGMENTS

I would like to give special thanks to my advisor, Dirk Grunwald. This work would not have been
possible without his advice, support, and the computing resources he provided to perform the thousands of
simulations that went into this dissertation. I would also like to thank my thesis committee: Andy Pleszkun,
Ben Zorn, Gary Nutt and Bill Waite.

I'would like to thank Amitabh Srivastava and Alan Eustace for providing ATOM and OM, Joel Emer,
Mike McCallig, and Dave Webb for providing Zippy, and especially Joel Emer for answering questions and
providing help pertaining to Zippy for the system level branch architecture study. I would like to also thank
Amitabh and Digital Equipment Corporation’s Western Research Lab for supporting me for two summer intern-
ships and for providing software grants, and Bruce Foster for providing the equipment grants needed to perform
much of this work. I would also like to thank ARPA for funding me with a Fellowship in High Performance
Computing, administered by the Institute for Advanced Computer Studies, University of Maryland. I would
also like to thank all the other people I have worked with or discussed ideas with over the years: Keith Farkas,
Dennis Lee, Alan Eustace, Basim Kadhim, Rich Neves, Harry Jordan, Dave Wagner and J ean-Loup Baer.

I'would like to thank all my friends at University of Colorado for making the past few years excellent
ones: Basim and Sarah Kadhim, Rich and Michelle Neves, James Brunner, Suvas Vajracharya, Anshu Aggarwal,
Jon Cook, Adam Griff, Harini Srinivasan, and many others.

Finally, I would like to thank my parents, Cindy and Evan, for their support, and especially my loving
wife Jena for her patience, support, and encouragement through these years.

CONTENTS

CHAPTER

I INTRODUCTION . .t e e e e e e e e e e e e e s e e e e
LT Contributions . . . v v v v vt e e e e e e e e e e e e

1.2 Organization v v vt i e e e e e e e e e e e

2 BACKGROUND e e e e e e e e e e e
2.1 The Branch Problem and The Instruction Fetch Problem

2.2 Branch and Instruction Fetch Prediction
221 StaticPrediction e e e e e

222 DynamicPrediction. e

2.3 Profile Code Transformation Optimizations
2.3.1 Optimization for Memory Hierarchies

2.3.2 Optimizationsfor Control Flow

2.4 Reducing Branch Penaltiesin C++ it i it

3 EXPERIMENTAL METHODOLOGY v v v i it e e e e e e e e e e e e e e e
3.1 ExperimentalTools e e
311 ATOM . . . e e e e e e

312 OM . e e e e e e e

313 ZIPPY « v e e e e e

32 Program Statistics v i e e e e e e e e e e e e e
33 MEriCS . v v e e e e e e e e e e e e e e
3.3.1 Percent Increase in Execution Time (%IET) v v v v

332 CyclesPerInstruction(CPI),

3.3.3 Branch Execution Penalty (BEP)

4 SYSTEM LEVELPERSPECTIVE i e e e e i i e e
4.1 Introduction v i i e e e e e e e e e e e

4.2 Verification of Zippy Simulation Methodology
4.3 Processor Performance with Perfect Branch and Fetch Prediction
44 MEtrICS & v v v i o e e e e e e e e e e e
4.5 Branch Architectures Simulated e
4.6 Branch Architecture Performance oo Lo
4.7 Validating the Branch Execution Penalty Metric
4.8 Implications of System Level Study
49 Summary e e e e e e e e e

5 BRANCH ALIGNMENTt e e s e e e e e e e e e e e e
5.1 Introduction v o o i e e e e e e e e e e e e e

5.2 Related Branch AlignmentWork

5.3 Branch Prediction Architectures v i i
5.3.1 Static Branch Prediction Architectures

5.3.2 Dynamic Branch Prediction Methods

5.4 Branch Alignment Algorithms
541 Greedy . . . i i e e e e e e e e e e e e e

542 AddingaBranchCostModel

543 TrylS oo e e e e e

55 Methodology . . . v v v v it e e e e e e e e e e e

5.6
5.7

5.8

Greedy and Try15 Branch Execution Penalty Results
Breakdown of Greedy AlignmentResults
5.7.1 Link-Time Performance of Branch Alignment
SUMMATY . v v v v v e e e e e e e e e e e e e e e e e

6 NEXT CACHE LINESETPREDICTION it iin i

6.1
6.2
6.3

6.4
6.5
6.6

6.7
6.8
6.9

Introduction 0 i e e e e e e e e e e e e e

6.3.1 NLS-Table Versus NLS-Cache
6.3.2 Using Next Line Addresses with the InstructionCache
6.3.3 Identifying Instructions as Branch Instructions
Simulation Methodology o v i i i e e e e e e e e
Calculating Register Bit EquivalentCosts
NLS Architecture Results oo e
6.6.1 Performance of the NLS-Cache Architecture
6.6.2 Performance of the NLS-Table Architecture
6.6.3 Increasing the Performance of the NLS-Cache Architecture
6.64 RelatedWork e
Performance of the BTB Architecture
Comparison of NLS-Table and BTB Architectures
Summary e e e e e e e e e e e e e

7 PRECOMPUTED BRANCH ARCHITECTURE,

7.1
72

7.3
7.4

7.5

7.6

7.7
7.8

Introduction v o v v i i e e e e e e e e e e
The Design of Two Branch Architectures
7.2.1 A BTB-based Instruction Fetch Architecture
7.2.2 The Precomputed-Branch Architecture,
723 Computingthe Branch Target.
7.2.4 Other Non-Relative Branch Architectures
Methodology o e e
Partitioning Programs Into Branch Spaces
7.4.1 Performance of Program Partitioning Algorithms
Precomputed-Branch Architecture Performance
7.5.1 Comparing the BTB and Precomputed-Branch Architectures
Practical Concerns v o v i i i e e e e e e e e
7.6.1 Non-relative Branches inaRelative World
Design Issues and Comparison of Precomputed-Branch and NLS Architectures
Summaryo e e e e e e e e e

8 CONCLUSIONS . . . e
9 FUTUREWORK e e e e e e e e s e e e

9.1
92
93

Implications for Branch Prediction Research
Static Prediction o 0 L e e e
Dynamic Prediction and Future Processor Designs e e e

BIBLIOGRAPHY o o o e e e e e e e e e e e e e e

vii

FIGURE
2.1
2.2
2.3
24
5.1
52
5.3
54

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
7.1
7.2
7.3
74
7.5
7.6
7.7

FIGURES

Pattern History ‘Table and State Diagram for 2-Bit Counter.
Correlated Conditional Branch Prediction.
A Schematic Representation of the Coupled PAs and Branch Target Buffer Architecture.

A Schematic Representation of a Decoupled GAg and Branch Target Buffer Architecture. . .
Benefits of Code Transformation for elim_lowering in espresso
Routine input_hidden fromalvinn v o v v v v e e e
Example Illustrating How Try15 Reduces Branch Costs
Branch Alignment Total Execution Time Improvement on a DEC 3000-600 Alpha AXP for
the SPECO2 CPrograms. v v i v i e e e e e e e e e e e e e
Register Bit Equivalent Costs for On-chip BTB and Instruction Cache Architectures.

A Schematic Representation of a Decoupled BTB Architecture
A Schematic Representation of the NLS-Table Architecture.
Register Bit Equivalent Costs for NLS and BTB Architectures
Average NLS-Cache Performance
Average NLS-Table Performance
Average Branch Execution Penalty for BTB and NLS-Table Architectures
Access Time for BTB Architecture v v vt i it s e e e

NLS-Table and BTB Performance for Cfront.
NLS-Table and BTB Performance for Espresso.
NLS-Table and BTB Performance forGee. oo o v i v i i i oo
NLS-Table and BTB Performance forLi.
NLS-Table and BTB Performance for Groff.
A Schematic Representation of the Branch Target Buffer Architecture.
A Schematic Representation of the Precomputed-Branch Architecture.
Alternative Branch Methods
Partitioning a Call Graph without Profiles
Partitioning a Call Graph with Profiles
Branch Execution Penalty for Precomputed-Branch and BTB Architectures
Using the Precomputed-Branch Architecture with a PC-Relative Instruction Set

10
12
13
42
43
46

TABLE
2.1 Pipeline with no Branch Prediction or Instruction Fetch Prediction.
2.2 Pipeline with Branch Prediction but no Instruction Fetch Prediction.
2.3 Pipeline with Branch Prediction and Instruction Fetch Prediction.
3.1 Description of FORTRAN Applications. « o v v v v v vt i i e e e et
3.2 Description of C Applications.« v v v v i i e e e e e e
3.3 Description of C++ Applications. i e e e
3.4 Measured Attributes of Traced Programs. o
3.5 Conditional Branch Quantiles for Traced Programs. v v v v v vt v v
4.1 Verification of Zippy Architecture Model
4.2 Zippy Performance Assuming Perfect Branch Prediction
4.3 Architectures Simulated for System Level Study
4.4 Percent Increase in Execution Time for Conditional Branch Architectures
4.5 Percent Increase in Execution Time for a Subset of Programs
4.6 Average System Level Performance,
4.7 Average Branch and Instruction Fetch Prediction Performance
4.8 Validating the Branch Execution Penalty Metric
5.1 Cost, in Cycles, for Different Branches.
5.2 Branch Execution Penalty for Static Branch Prediction Architectures with Branch Alignment.
5.3 Percent of Fall-Through Branches with Branch Alignment..
5.4 Branch Execution Penalty for Pattern History Table Architectures with Branch Alignment.
5.5 Branch Execution Penalty for Branch Target Buffers with Branch Alignment.
5.6 Branch Alignment Miss Rates and Relative Instructions Executed for Direct Mapped PHT
Architecture. L e e e e e e e
5.7 Branch Alignment Miss Rates and Relative Instructions Executed for Correlated GAg Ar-
chitecture. o e e e e e e e e
5.8 Branch Alignment Miss Rates and Relative Instructions Executed for a 64 entry BTB Archi-
TECTUTE. i i e
5.9 Branch Alignment Miss Rates and Relative Instructions Executed for a 256 entry BTB
Architecture. i e e e e e e e e e e
6.1 NLS Prediction SOUICES .+ « v v v v v v v e e et e e e e e e e e e e e e e
6.2 Instruction Cache Misses Rates for Traced Programs.
6.3 Values Used to Calculated RBE Costs for NLS Architectures.
6.4 Values Used to Calculate RBE Costs for BTB Architectures. v v v v v v v o v ..
6.5 NLS-Cache Performance for Doduc and Espresso. v v v v v v v oo v v v o w
6.6 NLS-Cache Performance for Gecand Li. o0 it it n i oo e,
6.7 NLS-Cache Performance for Cfrontand Groff.
6.8 NLS-Table Performance for Doduc, Espressoand Li oo v v vt v v ..
6.9 NLS-Table Performance for Gee, Cfrontand Groff
6.10 Branch Target Buffer Performance
7.1 Number of Static Instructions and Procedures in Traced Programs.
7.2 Efficiency of Program Partitioning with 14-bit Branch Displacements
7.3 Efficiency of Program Partitioning with 16-bit Branch Displacements e
7.4 Summary of Performance Information From Trace Driven Simulations

TABLES

29
31
32
34
35
37
44
48
49
50
51

53

54

55

1.5
7.6
7.7
7.8

Average Direct Mapped and 4-Way Associative IJB Performance for the Optimal-21 Partitioning 106
Percent of Mispredicted Branches for IJB with Preorder Partitioning 107
Percent of Mispredicted Branches for IIB with MaxCut Partitioning 108
Precomputed-Branch Penalties for Branch Intensive Programs 108

CHAPTER 1
INTRODUCTION

When a branch is encountered in the instruction stream, it can cause a change in control flow. This
change in control flow can cause branch penalties that can significantly degrade the performance of today’s
superscalar pipelined processors. To overcome these penalties, processors typically provide some form of
control flow prediction.

Branch Prediction is the process of predicting the branching direction for conditional branches,
whether or not they are taken, and predicting the target address for return instructions and indirect branches.
The final destinations for conditional branches, indirect function calls and returns are typically not available
until late in the pipeline. The processor may elect to fetch and decode instructions on the assumption that
the eventual branch target can be accurately predicted. If the processor mispredicts the branch destination,
instructions fetched from the incorrect instruction stream must be discarded, leading to several pipeline bubbles.
This is called a branch mispredict penalty.

Instruction fetch prediction is used each cycle to predict which instructions to fetch from the
instruction cache. In most processors, the next instruction is assumed to be fetched and executed. If the decoded
instruction causes a change in control flow, the instruction following the branch can not be used, and a new
instruction must be fetched after the target address is calculated, introducing a pipeline bubble or unused pipeline
step. This is called an instruction misfetch penalty, and is caused by waiting to identify the instruction as a
branch and to calculate the target address.

Historically, processor design has focused on mechanisms to correctly predict conditional control
flow changes because these are simple to implement and results in considerable savings. Only recently have
processor designs addressed instruction fetch prediction. As processors issue more instructions concurrently,
branch penalties increase, and the instruction misfetch penalty becomes increasingly important. It is more likely
that a branch will occur as more instructions are fetched each cycle, decreasing the likelihood that the “fall-
through” instruction will be executed. This thesis concentrates on the problem of instruction fetch prediction and
eliminating misfetch penalties. This dissertation examines the system level performance of modern instruction
fetch and branch prediction architectures, examines a compiler optimization called Branch Alignment to reduce
misfetch penalties, and examines two alternative instruction fetch prediction architectures called the Next Cache
Line and Set prediction architecture and the Precomputed-Branch architecture. The following paragraphs
summarize these four topics.

Usually, branch prediction mechanisms are studied in isolation, ignoring other aspects of the system.
In these studies, a variety of metrics are used to assess the performance of branch architectures, but it is rare
that the performance of an entire system is reported. There are numerous reasons for this; the complexity of
accurately simulating a complex architecture is daunting, the results are then specific to that architecture and it
is difficult to translate the performance of that architecture to another, possibly different architecture. However,
there are advantages to system-level simulations. They provide a sense of the magnitude and importance of
the problem being solved, and indicate where further effort should be placed. Furthermore, the performance
metrics, such as execution time and cycles per instruction, are more understandable to the casual reader. Lastly,
such studies provide a method to calibrate the performance metrics used in other studies with the impact on
system level performance. This dissertation provides a system level study of several branch and instruction
fetch prediction architectures, including recently proposed two-level correlated branch history architectures.
The system-level simulation is based on the Alpha AXP 21064, a dual-issue statically-scheduled processor.

To examine the instruction fetch problem I first study software techniques to reduce misfetch penalties.
I examine algorithms that reorder the structure of a program to improve the accuracy of the branch and instruction

fetch prediction architectures. These code transformations reduce the number of mispredicted branches and the
number of misfetched instructions. Essentially, the method is this: restructure the control flow graph so that
fall-through branches occur more frequently. Then use profile information to direct the transformation, and an
architectural cost model to decide if the transformation is warranted. Transformations include rearranging the
placement of basic blocks, changing the sense of conditional operations, moving unconditional branches out of
the frequently executed path, and occasionally inserting unconditional branches. By making the fall-through
the most common execution path the processor executes fewer taken branches, decreasing the need for the taken
target address, and the number of misfetched instructions is significantly reduced.

Several effective instruction fetch and branch prediction mechanisms have been proposed including
branch target buffers (BTB). A BTB is a cache storing the target address for taken branches, and is used
for predicting the next instruction fetch when a branch is encountered. When an instruction is fetched, the
instruction’s address is given to the BTB; if there is a match in the BTB and the branch is predicted as taken,
the next instruction is fetched using the target address specified in the BTB. In this design, exemplified by the
PowerPC 604 [54], a hit in the BTB identifies the instruction as a branch and the BTB provides the destination
address for only taken branches.

Using a BTB avoids the delay needed to recalculate the branch target address and reduces the misfetch
penalty. However, an effective branch target buffer can be large and can possibly increase the cycle time of a
processor. An alternative design would be to fetch the instruction following a branch by using an index into
the cache instead of a branch target address. I call such an index a next cache line and set (NLS) predictor.
A NLS predictor is a pointer into the instruction cache indicating the target instruction of a taken branch.
Johnson [32] proposed a similar design using cache indices to predict the next instruction fetch. I propose an
alternate organization that improves fetch prediction accuracy. In this dissertation, I examine two varieties of the
NLS architecture. The NLS-cache is similar to the branch architecture described by Johnson, where each NLS
predictor is associated with a cache line. The NLS-table uses NLS predictors stored in a separate direct mapped
tag-less memory buffer. I also examine the effects of combining the NLS predictors with modern two-level
correlated branch prediction architectures.

Both the BTB and NLS architectures are effective means to eliminate misfetch penalties, though they
can require a fair amount of hardware resources. The architecture hardware needs for instruction fetch prediction
can be completely eliminated by using software approaches to help solve the hardware problem. I propose that
a design used in older computers, such as the PDP-8, be used in modern architectures. This architecture is
called the Precomputed-Branch architecture; the branch destination is precomputed for most branch instructions,
allowing the branch information to be stored with the instruction. This architecture assumes a flat address space,
and eliminates program-counter relative (PC-relative) branches. In this design, the destination address is quickly
computed by precomputing the low-order bits of the destination, and concatenating this with the high-order bits
of the current address, effectively dividing memory into a number of program segments or “branch spaces”.
Branches between branch spaces are computed and performed as indirect jumps. This design assumes the
program linker or compiler can partition the program into a number of segments and modify the program’s
structure to select between intra-space and inter-space branches. I also describe how existing architectures using
PC-relative branches can be extended to use the Precomputed-Branch architecture by precomputing branch
destinations as instructions are fetched into the instruction cache.

1.1 Contributions

This dissertation makes five major contributions:
(1) I provide a detailed architectural system level study of branch and instruction fetch prediction. This
research examines current branch and instruction fetch prediction architectures providing the actual
execution time improvement for an Alpha 21064 processor. To my knowledge, no previous branch
prediction literature has reported this detailed level of results for branch and instruction fetch prediction
with respect to other system resources. This study validates the branch execution penalty metric used

to compare branch and fetch architecture performance in the remainder of this dissertation.

(2) I examine branch alignment algorithms to eliminate instruction fetch penalties and to improve branch
prediction performance. These algorithms take into consideration the architectural cost model and the
branch prediction architecture when performing the basic block reordering. Results show that these
algorithms can improve a broad range of static and dynamic branch and instruction fetch prediction
architectures.

(3) I propose the design of an alternative instruction fetch prediction architecture called Next Cache T.ine
and Set prediction. This architecture uses cache indices instead of target addresses to predict which
instructions to fetch from the instruction cache. Results show that the NLS architecture is a competitive
alternative to the BTB design.

(4) Iexamine a hardware/software solution to the instruction fetch problem called the Precomputed-Branch
Architecture. This architecture eliminates PC-relative branches, and instead uses precomputed branches
to provide the target address. This effectively eliminates all misfetch penalties since the target addresses
are precomputed. Simulation results show that the Precomputed-Branch architecture performs better
than the BTB architecture, and has significant hardware savings.

(5) I provide branch and instruction fetch prediction analysis for object-oriented C++ programs. To my
knowledge this research is the first to examine the branch and instruction fetch prediction issues and
performance of object-oriented programs. The results show that current branch and instruction fetch
prediction architectures and the architectures proposed in this dissertation accurately predict C++
applications.

1.2 Organization

The rest of this dissertation is organized into seven chapters. Chapter 2 provides the background
of this dissertation. It describes the instruction fetch and branch prediction problems, previous research in
branch and instruction fetch prediction, previous work in compiler optimizations related to branch alignment,
and previous C++ branch prediction studies. Chapter 3 describes the programs simulated in this dissertation,
provides basic branching statistics for each of these programs, and describes the simulation tools and metrics
used throughout this dissertation. Chapter 4 provides a system level study of an Alpha 21064 architecture
varying only the branch prediction architecture. This provides an indication of the importance of instruction
fetch prediction for a statically scheduled architecture like the DEC Alpha 21064. It also validates the branch
execution penalty (BEP) as a suitable metric for comparing branch and instruction fetch prediction architectures.
Chapter 5 describes Branch Alignment and the results of using branch alignment with static and dynamic branch
and instruction fetch prediction architectures. Chapter 6 describes the Next Cache Line and Set Prediction
architecture and compares the performance of the NLS architecture to the BTB design. Chapter 7 describes
the Precomputed-Branch architecture and compares its performance to the BTB design. Chapter 8 presents the
conclusion of this dissertation, and Chapter 9 discusses implications and future work.

CHAPTER 2
BACKGROUND

This chapter provides background on branch and instruction fetch prediction architectures and related
work. There are a number of mechanisms to ameliorate the effect of uncertain control flow changes, including:
N-bit counters, pattern history tables, branch target buffers, delayed branches, prefetching both targets, early
branch resolution, branch bypassing and prepare-to-branch mechanisms. These techniques are described in
great detail elsewhere by Lee and Smith [38], McFarling and Henessy [42], Lilja [39], and by Perleberg and
Smith [48]. This chapter describes the branch and the instruction fetch problems, previous work in branch and
instruction fetch prediction, previous work in compiler optimizations related to branch alignment, and previous
C++ prediction studies.

2.1 The Branch Problem and The Instruction Fetch Problem

Conventional processor architectures, particularly superscalar designs, are extremely sensitive to
control flow changes. A simplified processor pipeline can be divided into the instruction fetch (IF) stage,
instruction decode (ID) stage, register file and issue (R/I) stage, first execute stage (EX1), second execute stage
(EX2), and a write back stage (WR). This is the pipeline model assumed for the simulation results gathered in
Chapters 5, 6, and 7, and we assume that this simplified processor can fetch and execute one instruction per
cycle, but this model is also applicable to wide-issue processors. In this processor model, the target address
for a PC-relative branch is not known until after the ID stage. The final destinations for conditional branches,
indirect procedure calls and jumps, and return instructions is not known until after the EX2 stage has completed.
Processors fetch instructions, and discard their results if a branch is incorrectly predicted. Therefore, incorrectly
predicted conditional branches, indirect procedure calls and jumps, and return instructions cause a four cycle
mispredict penalty. In addition, correctly predicted taken conditional branches, unconditional branches, and
direct procedure calls can cause a one cycle misfetch penalty, because the target address is not available until
after the decode stage has completed.

The branch problem is the problem of figuring out the correct destination for branch instructions in
order to start fetching from the correct instruction stream in the instruction cache without causing any pipeline
delays. Branch prediction is the process of predicting the branching direction for conditional branches, whether
they are taken or not-taken, and predicting the target address for return instructions and indirect branches.

The instruction fetch problem is the problem of figuring out which instructions to fetch next from
the instruction cache. Instruction fetch prediction is used to predict which instructions to fetch from the
instruction cache when the current instruction fetch contains a branch. If the current instruction fetch does not
contain a branch instruction, then the next instruction fetch is easily calculated to be the PC + fetch size. If
the current instruction fetch contains a taken PC-relative branch instruction and the processor does not provide
instruction fetch prediction, the PC + fetch size is used by default for the next instruction fetch. If the fetched
instructions are not used, this introduces a pipeline bubble, or an unused pipeline step called the misfetch penalty.
Once the PC-relative target address is calculated in the decode stage, the correct target instruction can then be
fetched from the instruction cache. The misfetch penalty is caused by having to wait for the target address to be
calculated in the decode stage of our simplified processor.

Assume our simplified processor is a single issue machine, and executes three instructions: an Add,
conditional branch (CBr), and a Multiply (Mult) instruction, in this order. Also assume that the conditional
branch is taken. Figure 2.1 shows the cycle diagram of the processor when no branch or instruction fetch
prediction is available. A pipeline stall is represented as a dash (—) in the digram. In this case, the three
instructions take 12 cycles to execute. Here the processor must stall for four cycles until the destination of

the conditional branch is resolved, which is only after it has passed through the EX2 stage. At this point the
Multiply instruction can be fetched from the instruction cache and execution can continue.

Figure 2.2 shows the same pipeline with the same three instructions when only branch prediction is
added to the architecture. In this case, we may be able to correctly predict that the conditional branch is taken.
Correctly predicting the branch eliminates three of the stall cycles, but not the remaining stall cycle because
the target address is not available until after the decode stage. Therefore, the Multiply instruction cannot be
correctly fetched from the instruction cache until after the conditional branch has passed through the decode
stage.

Figure 2.3 shows the same pipeline as the previous two figures, but with instruction fetch prediction
added to the architecture. If a prediction mechanism such as a branch target buffer (BTB) is supplied, then a hit
in the BTB indicates that a branch was fetched and the target addresses stored in the BTB allows the misfetch
penalty to be avoided. In Figure 2.3, the mispredict penalty is eliminated because branch prediction predicts
that the conditional branch is taken, eliminating three cycles as in the previous diagram. In addition, the final
stall penalty is removed by using a BTB to predict the correct branch destination to start fetching from in the
instruction cache before the target address is even calculated. This example shows the benefit of instruction
fetch prediction. ,

All taken PC-relative branches (conditional branches, unconditional branches, and direct procedure
calls) can cause misfetch penalties, and these account for the majority of branches executed in a program.
Indirect jumps, indirect procedure calls and return instructions are examples of non PC-relative branches. Past
branch prediction research has typically dealt only with conditional branch prediction and has usually ignored
the penalties due to instruction misfetches, because the biggest performance gain can be seen by eliminating
mispredicted conditional branches. The other reason instruction fetch prediction was not an important issue was
that past computers were single issue processors, and for these processors it was fairly easy to eliminate most of
the misfetch penalties using branch delay slots. This is not the case for future wide-issue superscalar processors.
On these future processors, the misfetch penalties can cost several instructions and can span several cycles.
Even recent processors designs, the Intel Pentium [17], PowerPC 604 [54], MIPS R8000 TFP processor [31],
and the UltraSPARC processor, have deemed instruction fetch prediction an important enough problem to add
special purpose hardware for instruction fetch prediction to their processors.

2.2 Branch and Instruction Fetch Prediction

Branch and instruction fetch prediction techniques can be classified as either static or dynamic. Static
branch prediction information does not change during the execution of a program, while dynamic prediction
may change, reflecting the time-varying activity of the program. Static methods range from compile-time
heuristics [4, 38, 42, 52] to profile-based methods [25, 42, 61]. In general, profile-based prediction techniques
out-perform compile-time prediction techniques or techniques that use heuristics based on the direction of the
branch target (forward or backward) or instruction opcodes. Among the static techniques, the most common
architectures for conditional branch prediction are to predict conditional branches as fall-through (not-taken),
taken, backwards taken and forwards not taken (BTFNT), having a “likely” bit encoded in the branch instruction
at compile time to predict the direction, and branch delay slots.

While static prediction mechanisms, particularly profile-based methods, accurately predict 70-90% of
branches, modern computer architectures increasingly depend on mechanisms that estimate future control flow
decisions to increase performance, requiring more accurate branch prediction mechanisms. These architectures
use dynamic prediction to achieve an accuracy above 90%. Another advantage of dynamic prediction is that
it can also avoid misfetch penalties associated with decoding the branch instruction and calculating the target
address. Among the dynamic prediction techniques, the most common architectures are pattern history tables
(PHT), branch target buffers (BTB), and architectures that combine branch and fetch prediction information
with the instruction cache.

Table 2.1: Pipeline with no Branch Prediction or Instruction Fetch Prediction.

Cycle
1 2 3 4 5 6 7 8 9 10 11 12
IF Add CBr — — — Mult
ID Add CBr — — — — Mult
R/ Add CBr — — Mult
EX1 Add CBr — — —_ — Mult
EX2 Add CBr — — — — Mult
WR Add CBr —_ — — —_ Mult
Table 2.2: Pipeline with Branch Prediction but no Instruction Fetch Prediction.
Cycle
1 2 3 4 5 6 7 8 9
IF Add CBr — Mult
1D Add CBr —_ Mult
R/ Add CBr — Mult
EX1 Add CBr — Mult
EX2 Add CBr — Mult
WR Add CBr — Mult
Table 2.3: Pipeline with Branch Prediction and Instruction Fetch Prediction.
Cycle
1 2 3 4 5 6 7 8
IF | Add CBr Mult
ID Add CBr Mult
RA Add CBr Mult
EX1 Add CBr Mult
EX2 Add CBr Mult
WR Add CBr Mult

2.2.1 Static Prediction

Some architectures employ static prediction hints, using either profile information, information derived
from compile time analysis, or information about the branch direction or branch opcode [4, 42, 52, 69]. David
Wall provided an early study on predicting the future behavior of a program using profiles [62]. His results
showed that using profiles from a different run of the application achieved results close to that of a perfect
profile from the same run. Fisher and Freudenberger confirmed that this observation applied to static branch
prediction [25]. They used traces from one execution of a program to predict the outcome of conditional
branches for the same and different inputs. They defined perfect profile prediction to be the prediction accuracy
achieved when the same input was used to trace the program and then used to measure the accuracy of static
branch prediction. Their C/Integer results show that, on average, 95% of the perfect profile prediction accuracy
is achieved when profiling a program with the best matched previous trace. Only 75% of the perfect profile
prediction accuracy was achieved using the worse previous trace. Both of these studies and others have promoted
profile based optimizations as a means to achieve increased processing performance.

More recently, studies have been performed using compile time heuristics to estimate profile informa-
tion [4, 60, 64, 14]. These studies address a number of issues. First, it may be possible to use simple heuristics
to estimate profiles, implying that profile-based optimizations can be performed using heuristics. Furthermore,
even though many extant compilers perform some profile-based optimizations, most programmers do not use
such options, either because the profiling method is not standardized across platforms, they are unaware of
the option, they are uncertain of the benefits of profile-based optimization, or they believe that the process of
gathering profiles and recompiling their programs is too expensive.

Ball and Larus proposed several heuristics for predicting a program’s behavior at compile time [4].
In a later study [14], we found their heuristics are reasonably accurate, resulting in a 25% mispredict rate at
compile time without profile information. By comparison, perfect profile prediction had a 8% miss rate for the
same collection of programs. Other studies by Wagner et. al. [60] and Wu and Larus [64] have focused on using
these heuristics and other techniques to fully estimate a program’s behavior at compile time.

We examined an alternative technique for predicting program behavior by combining profile informa-
tion gathered from a number of applications. We collected a “feature vector” describing an individual conditional
branch, and then used various machine-learning techniques to determine what combination of features, if any,
accurately predicted the branches. We have considered two techniques; the first, described in [14], uses a “neural
network”™ to combine the information from the feature vectors, and the second technique uses “decision trees”
to accomplish the same goal. These methods create heuristics to be used at compile time for a specific compiler,
language and architecture. Our results show that this technique, called Evidence-based Static Prediction (ESP),
results in a 20% mispredict rate, a slight improvement to the Ball and Larus heuristics, which had a miss
rate of 25%. In general, profile-based prediction techniques outperform compile-time prediction techniques or
techniques that use heuristics based on branch prediction or instruction opcodes.

Static conditional branch prediction can be implemented as a single prediction bit in the instruction
to indicate if the branch is to be predicted as taken or not-taken; the bit would be set by the compiler using
profiles or heuristics as discussed above. We call this the “Likely” architecture, because the bit predicts the likely
direction of the branch. Other implementations allow some action to be taken if a certain opcode is encountered.
One popular technique is to predict that backward branches are taken and forward conditional branches are not
taken (BTFNT). This technique is implemented by examining the sign bit of the relative displacement for the
branch. If the bit is on, indicating a backwards branch, the branch will be predicted as taken, and if the bit is not
set the fall-through will be predicted.

In the branch delay slot architecture, each branch instruction is followed by a fixed number of
instruction slots that are executed while the branches’ destination is resolved. These branch delay slots are filled
at compile time in order to remove misfetch and mispredict branch penalties. Recent processors no longer use
branch delay slots, since current architectures being developed issue many instructions per cycle and have very
deep pipelines. For example, the DEC Alpha 21164 issues four instructions per cycle. If the Alpha used branch
delay slots to avoid branch misfetch penalties, four instructions would be needed to fill each branch delay slot.

2.2.2 Dynamic Prediction

Most processors now use some form of dynamic branch and instruction fetch prediction to improve
performance. Some branch architectures reduce both misfetch and mispredict penalties while other architectures
only reduce mispredict penalties due to conditional branches.

One-bit branch prediction is the simplest form of dynamic conditional branch prediction. This scheme
dynamically predicts the direction that the branch was taken the last time it was executed. A O stored in the
1-bit predictor indicates that the conditional branch was not-taken the last time it was executed, and a 1 indicates
that the branch was taken. The Alpha 21064 used a one-bit branch predictor associated with each instruction
in its 8K direct mapped instruction cache to dynamically predict the direction of conditional branches. This
bit is initialized with the sign-bit of the PC-relative displacement when the cache line is read in, initializing
the dynamic 1-bit predictors to BTENT prediction. Thus, the BTENT rule is used the first time the branch is
encountered, and a dynamic one-bit predictor is used thereafter.

The pattern history table (PHT) branch architecture is another example of a dynamic architecture
used to predict only conditional branches. This architecture uses N-bit counters stored in a table to predict
the direction for conditional branches. The most common variants of this design are 1-bit counter tables that
indicate the direction of the most recent branch mapping, and 2-bit counter tables which yield much better
performance for programs with loops. Two-bit up-down saturating counters have been shown to effectively
predict the direction of conditional branches, outperforming 1-bit branch predictors [46, 52].

Figure 2.1 shows the finite state machine for a 2-bit pattern history table. The arrows in the 2-bit state
diagram show the state transition when the branch is either taken (T) or not-taken (NT). Once the direction of
the branch is known, the counter is updated. For example, if the counter has a value of 0, the conditional branch
is predicted as not-taken. If the branches’ destination is not-taken, then the counter stays the same with the value
of 0. If the branches final destination was taken, then the counter is incremented and its new value is 1. This type
of pattern history table is called a direct mapped PHT (PHT-Direct), since the branch address is used to directly
index into the pattern history table to find the 2-bit counter used to predict the branch. Since different branch
addresses can index into the same table entry, several conditional branches may alias to the same prediction
information. For example, in a 4096 entry table, branches at addresses 0, 16384 and 32768 all map to the same
entry in the table. When a conditional branch at any of these addresses is executed, the information for entry ‘0’
is used to predict the branch direction, even if that information was recorded for one of the other branches. This
aliasing effect can degrade the performance of a PHT, and there have been several studies that have addressed
the issue of trying to eliminate these aliasing effects [19, 59, 68]. The advantage of pattern history tables is that
they keep track of very little information per conditional branch site and are very effective in practice, achieving
a 95% conditional branch prediction accuracy.

Pan et al. [47] and Yeh and Patt [65, 67] investigated branch-correlation and two-level conditional
branch prediction mechanisms. Although there are a number of variants, these mechanisms generally combine
the history of several recent branches to predict the outcome of a branch. The degenerate method (GAg) of
Pan et al. [47] shown in Figure 2.2 uses a global history register to record the branch correlation. When using
a 2* entry table, the processor maintains a k-bit global history register that records the outcome of the previous
k branches (e.g., a taken branch is encoded as a 1, and a not-taken branch as a 0). This register is used as an
index into the pattern history table (PHT), much as the program counter is used for a direct-mapped PHT. This
provides contextual information and correlation about particular patterns of branches. The problem with this
method is that a lot of the table may not be used, depending upon the patterns of the branches executed in the
program. McFarling [41] described a variant of the GAg architecture where he uses an exclusive-or of the global
history register and the branch address as an index into the PHT. This effectively spreads out the usage of the
2-bit counters across the table.

The Per-Set Pattern History table (PAs), shown in Figure 2.2, is a correlated conditional branch
prediction method proposed by Yeh and Patt [65]. It uses a table of history registers instead of a single history
register as in the degenerate case. Yeh and Patt found that the best performance for this architecture came from
concatenating part of the branch address with the history register and using this as an index into the pattern

2 Bit Counter State Diagram

Pattern History Table ONT

2 Bit Counters o Predict Srongly Not Taken

I E T

PC—».

NT

Predict Not Taken

NT

Predict Taken

~

. T NT

T

° Predict Strongly Taken

Figure 2.1: Pattern History Table and State Diagram for 2-Bit Counter.

10

Global History Register Table, GAg Per-Set Pattern History Table, PAs
; . 2 Bit Counters
. : History
2 Bit Counters Registers

History
Register

NH. PC

%

Figure 2.2: Correlated Conditional Branch Prediction.

11

history table. This effectively partitions the pattern history table into subtables partitioned by the low order bits
of the branches address.

Pattern history architectures are very effective at predicting conditional branches, but they provide no
mechanisms for instruction fetch prediction. This is because the PHT provides the predicted branching direction
but not does not provide the taken target address. Misfetch penalties can be reduced by using a branch target
buffer (BTB) [38, 39, 48, 52]. A branch target buffer is a cache that stores the target addresses for the most
recently executed branches. For unconditional branches, direct procedure calls, and conditional branches that
are predicted as taken, the target address stored in the BTB can immediately be fetched, effectively eliminating
the misfetch penalty. The BTB also acts as a branch prediction mechanism for indirect jumps by storing the
indirect branches’ most recent destination. A BTB can also be used for return instructions, but a return stack [33]
is much more accurate. When using a return stack, the BTB does not provide the destination address for return
instructions. Instead, the BTB can be used to indicate the instruction is a return instruction so the return stack
can be used for the next instruction fetch, avoiding the misfetch penalty.

Typically, a BTB contains from 32 to 512 entries with varying degrees of associativity. A BTB requires
considerable storage, because it stores the address of the branch, representing the tag, and the branches’ target
address. Different kinds of branches use different mechanisms to predict their branch destinations. To be able to
select among the different mechanisms, we need to be able to identify the branch type, and some BTB designs
store the branch type in the BTB. Figure 2.3 represents the instruction fetch architecture proposed by Yeh and
Patt [66]. This is called the “BTB-PAs” architecture, where each BTB entry contains a 6-bit history register.
This history register is concatenated with the branch’s address in order to form an index into the PHT when
predicting conditional branches, as described above for the PAs architecture. In the BTB-PAs architecture, the
branch type, along with the conditional branch prediction, is used to indicate whether the “fall-through” address,
the “taken” address stored in the BTB, or the return stack address is to be used for the next instruction fetch. We
call this a coupled branch architecture because the branch prediction information is coupled with the instruction
fetch prediction information.

The Intel Pentium is an example of a modern architecture using a coupled BTB design — it has a 256-
entry BTB organized as a four-way associative cache. Only branches that are taken are entered into the BTB. If a
branch address appears in the BTB and the branch is predicted as taken, the stored address is used to fetch future
instructions, otherwise the fall-through address is used. This is called the “BTB-2Bit” architecture because
each BTB entry has a two-bit saturating counter used to predict the direction of the conditional branch [38].
The Intel P6 architecture adds to this design by increasing the BTB to a 512 entry 4-way associative design
replacing the 2-bit counters with 4-bit history counters. In both the BTB-2Bit and BTB-PAs architectures,
the conditional branch prediction information (the two-bit counter and 6-bit history register), is associated or
coupled with the BTB’s instruction fetch prediction information. Therefore, the dynamic conditional branch
prediction information can only be used for branches in the BTB, and branches that miss in the BTB must use
less accurate static branch prediction.

A decoupled branch architecture separates the conditional branch prediction information from the
branch target buffer, so that it can be used to correctly predict a branch even when that branch is not in the
BTB. The PowerPC 604 [54] is an example of a decoupled BTB design, where the conditional branch prediction
information is not associated with the BTB and is used for all conditional branches, including those not recorded
in the BTB. The PowerPC 604 has a 64-entry fully associative BTB that holds the target address of the most
recently taken branches, and uses a separate 512 entry PHT to predict the direction of conditional branches. In
this architecture, the BTB’s main purpose is instruction fetch prediction by providing the taken target address
and the branch type. Figure 2.4 shows a decoupled BTB architecture (BTB-GAg) using McFarling’s correlated
PHT-GAg architecture, described earlier, for predicting conditional branches even on a BTB miss. In related
work [7], we showed that a decoupled branch architecture provides similar performance to a coupled design.

The BTB designs described above and the BTB designs used on current processors can be very
expensive to implement in terms of chip area costs, and they can have a slow access times since associative
BTB configurations are used in order to increase the BTB’s hit rate. Part of goals for this dissertation is to

Instruction
Fetch
Size

Branch Target

Buffer
Index
| Instruction et o
Eetch o AHABIE
Address Address Tag
Return Address oarget Address ...,
Stack
Fall Through
Top Of Stack \i Y History Register
MUX || Prediction Bit
Branch Type
Y I
Yy MUX |-
ADD

MUX

= BTB Hit

+

Next Instruction
Fetch Address

SHL

Figure 2.3: A Schematic Representation of the Coupled PAs and Branch Target Buffer Architecture.

12

Two Level Prediction Table

13

Instruction
- Fetch -
]
e Address
<
=
o
8
4 Instruction
E Y Fetch Size Return
§ Branch Target Address Stack |
= Buffer
al
[Branch Type Top Of Stack
9 Address Tag
§ Target Address
|
= Add
o'
=y
— \
§ Select Next
& Fetch > MUX
|
|
Next Instruction
Fetch Address

Figure 2.4: A Schematic Representation of a Decoupled GAg and Branch Target Buffer Architecture.

14

improve upon the BTB design by examining alternative ways of representing the target address for instruction
fetch prediction. In Chapter 6, we examine using cache indices instead of full target addresses for instruction
fetch prediction. In Chapter 7 we examine using precomputed branches instead of PC-relative branches. These
precomputed branch offsets are then used for instruction fetch prediction. Both of these designs require fewer
hardware resources then the BTB design, are simple direct mapped designs which have a fast access time, and
they achieve better instruction fetch prediction performance than the BTB.

2.3 Profile Code Transformation Optimizations

There has been considerable work on profile-driven program optimization, and this section describes
related work on optimizations for instruction caches and branch mechanisms.

2.3.1 Optimization for Memory Hierarchies

Due to the expense of memory on early computers, most early optimizations focused on reducing
paging in virtual memory systems. Several researchers explored ways to group related subroutines or basic
blocks onto the same virtual memory page [1, 24, 27, 28, 35]. Other researchers extended this work to lower
levels of the memory hierarchy, optimizing the performance of instruction caches. McFarling [40] described an
algorithm to reduce instruction cache conflicts for a particular class of programs. Hwu and Chang [43] describe
a more general and more effective technique using compile time analysis in the IMPACT-I compiler system.
Using profile-based transformations, the IMPACT-I compiler inlines subroutines and performs trace analysis.
For each subroutine, instructions are packed using the most frequently executed traces, moving infrequently
executed traces to the end of the function. Following this, global analysis arranges functions to reduce inter-
function cache conflicts. Similar transformations were applied by Pettis and Hansen [49] for programs on the
HP PA-RISC.

2.3.2 Optimizations for Control Flow

McFarling and Hennessy [42] described a number of methods to reduce branch misprediction and
instruction fetch penalties, including profile-driven static branch prediction, delay slots, delayed slots with
squashing, and a form of branch alignment. Their goal for branch alignment was to make the “taken” path the
most commonly executed path to improve the performance of the delayed slots with squashing branch prediction
architecture. Later, Bray and Flynn [6] studied the same idea, except they examined making the “fall-through”
the most common case. They studied the performance gain of their algorithm in terms of conditional branch
prediction accuracy for only the branch target buffer architecture.

Yeh et al. [66] commented that taken branches could only be reduced from & 62% of the executed
conditional branches to = 50% of the executed conditional branches with trace scheduling. An earlier study by
Hwu and Chang [43] showed an ~ 58% fall-through rate after branch alignment. The papers by McFarling and
Hennessy, and Bray and Flynn did not report their change in the percentage of taken branches, and they did not
describe the basic block order in which their algorithms where applied when laying out the basic blocks in a
procedure.

The branch alignment reordering algorithm proposed by Hwu and Chang [43] is a general algorithm
which grows the basic block layout list, first forwards then backwards, starting with the basic block edge that
has the highest execution count for a given procedure. The work by Pettis and Hansen [49] describes a greedy
algorithm for branch alignment which is similar to Hwu and Chang’s. The Pettis and Hansen greedy algorithm is
more general than the Hwu and Chang algorithm, and performs better in terms of reducing the cost of branches.
The Pettis and Hansen algorithm is described in detail in Chapter 5 on branch alignment. One of the goals of
this research is to try to improve instruction fetch prediction using compiler optimizations. In Chapter 5 we
examine using the Pettis and Hasen algorithm for improving instruction fetch prediction for current static, PHT
and BTB architectures. Where the goal is to remove misfetch penalties by making the fall-through path the most
frequently executed path.

15

2.4 Reducing Branch Penalties in C++

This dissertation provides branch and instruction fetch prediction results for many applications, in-
cluding applications written in the object-oriented programming language C++. These studies are among the
first to examine the effects of branch and instruction fetch prediction on object-oriented programming languages.

In a previous study [16], we examined the behavioral differences between C and C++ applications.
In this study we found that C++ programs execute many more indirect jumps than C programs since dynamic
dispatch calls in C++ are implemented using indirect jumps. This effect is also shown later in Chapter 3, where
conditional branches only account for 61% of the branches executed in C++ programs, compared to 80% of the
branches executed in C programs and 87% of the branches executed in FORTRAN programs. The difference
in the branch execution mix comes from the C++ programs executing many more procedure calls, indirect
procedure calls, and return instructions. Another difference we found in our previous study comparing C++
and C programs [16], is that C++ procedures execute 3 times fewer instructions than C procedures, and the
average procedure size of C++ methods are 50% smaller the average C procedure size. The small C++ static
function size and number of instructions executed, implies that optimizations such as procedure in-lining may
be very effective for C++ applications. These optimizations can only be applied to direct procedure calls, and
dynamic dispatch calls (indirect jumps) can cause serious problems for procedure in-lining and other compiler
optimizations.

This prompted us to perform a related study [9], where we examine eliminating dynamic dispatch calls
through compiler optimizations and study the accuracy of existing branch prediction architectures on predicting
C++applications. In this study, we found that many of the dynamic dispatch calls can be eliminated and that C++
programs can be accurately predicted using existing branch prediction architectures. We showed that many of
the dynamic dispatch calls can be eliminated using either a link-time compiler optimization called Unique Name
elimination or a compiler optimization we call If-conversion. Unique Name elimination examines the type
signature of a call site and if there is only a single function with that signature, then no other function could be
the destination of this call site and the call site can be implemented as a direct procedure call. We found that the
Unique Name optimization eliminates on average 32% of the indirect procedure calls, converting these into direct
procedure calls. The other optimization, called If-conversion, converts a dynamic dispatch call to a series of
if/then/else or switch statements. We can convert an indirect function call, e.g.,object -> foo();
to a conditional procedure call with the run-time type check:

if (typeof (object) == A)
object -> A::foo();
else
object -> foo();

This transformation is useful for three reasons. First, once this code transformation has been performed,
function call A: : foo () can be in-lined. Secondly, if there is a high likelihood of calling A: : foo (), this code
sequence may be less expensive than performing the indirect procedure call. Lastly, if an architecture providing
conditional branch prediction but does not support prediction for indirect function calls, the transformed code
can avoid many mispredict penalties. The idea of If-conversion was used to perform in-line cache optimizations
in Smalltalk [21], and was used by Holzle et.al. [30] to improve the performance of the SELF language.
Normally these optimizations would be performed in an optimizing compiler, possibly eliminating the need to
predict indirect jumps. Note, there is a trade off for using the If-conversion optimization, since more conditional
branches will be executed, and this may degrade the performance of a PHT conditional branch architecture
by creating alias effects. There are many such trade-offs that need to be considered when performing these
optimizations.

CHAPTER 3
EXPERIMENTAL METHODOLOGY

In evaluating solutions for instruction fetch prediction, large programs were sought, both in terms
of source code size and in terms of number of instructions executed. Where possible, programs that were
in widespread use and familiar to a broad audience of users were selected. The SPEC92 programs met this
requirement. C++ programs were also included to examine the predictability of object-oriented languages.

3.1 Experimental Tools

This dissertation studies many branch prediction architectures using information from direct-execution
simulation. Three tools were used to gather the results for this dissertation: ATOM, OM and Zippy. ATOM
is a tool from DEC-WRL [55] used to instrument programs. OM is a link-time optimization tool, also from
DEC-WRL [56, 57], that was used to perform the branch alignment optimizations. Zippy is a pipeline-level
simulator used to measure program execution time and to attribute portions of that time to different processor
subsystems.

3.1.1 ATOM

The trace generation tool ATOM [55] was used to gather static and dynamic statistics of programs and
to simulate several different branch prediction architectures. Due to the nature of this tool, it was not necessary
to record traces. Instead, the programs were traced and the simulations were ran all at the same time. This
allows for the tracing of very long-running applications. The simulators constructed were typically run once to
collect information on call and branch targets, and a second time if needed using profile information from the
prior run.

312 OM

The OM [56, 57] linker translates the object code of an entire program into symbolic form, recovering
the original basic block and procedure structure of the program. OM also provides a symbolic form of the
program that can easily be manipulated to delete, insert and reorder instructions. When OM is invoked, it
analyzes and optimizes this symbolic form, and when it is finished it outputs the transformed code, generating a
new executable. OM was used to implement different branch alignment algorithms, creating a link-time branch
alignment code optimizer.

3.1.3 Zippy

Zippy is a cycle-level simulator for the DEC Alpha architecture that simulates all resources on the
Alpha, including the processor bus, the first and second level caches, the main memory, the functional units and
all the hardware interlocks. Zippy is a direct-execution simulator; the program being measured is executed, and
events generated by the program execution are fed to an event-driven simulator. The version of Zippy used in
this study used the ATOM instrumentation system to instrument the applications. A considerable amount of
analysis can be performed during the instrumentation phase. For example, interlocks and dependence between
instructions can be computed statically. Some aspects of the simulation can be simplified as well. Since
virtually-indexed direct-mapped caches are used, instruction references to a cache line can be precomputed and
need only occur when a cache line might be fetched. Zippy was used to perform the system level study of
different branch and instruction fetch prediction architectures in Chapter 4.

17

3.2 Program Statistics

We instrumented all the programs from the SPEC92 benchmark suite, the Perfect Club benchmarks,
some other C programs, and object-oriented programs written in C++. The description for all the FORTRAN
programs are given in Table 3.1, the C programs in Table 3.2, and the C++ programs in Table 3.3. The default
input was used for each of the Perfect Club benchmarks. All the programs were compiled on a DEC Alpha
3000-400 running OSF/1 V2.0, using either the DEC FORTRAN. C, or C++ compiler. All programs were
compiled with standard optimization (-0). The alternative C++ programs were selected because the SPECint92
suite did not typify the behavior seen in C++ programs [9, 16], and we wanted to understand the impact of
branch and instruction fetch prediction on C++ programs. For these alternate programs, sizable inputs were
used that would hopefully exercise a large part of the program.

Table 3.4 shows the basic statistics for the programs instrumented. The first column lists the number
of instructions traced, in millions, and the second column indicates the percentage of those instructions that
are branches. The third column shows the percentage of conditional branches that are taken. The next five
columns divides the number of branches encountered during tracing into five classes: conditional branches
(CBr), unconditional branches (Br), indirect jumps (LJ), procedure calls (Call), and procedure returns (Ret).

Table 3.5 shows the quantiles for the conditional branches in the traced programs. The columns
labeled ‘Q-25’, ‘Q-50’, ‘Q-75’, ‘Q-90’, ‘Q-95’, ‘Q-99’ and ‘Q-100" show the number of branch instruction sites
that contribute to 25, 50, 75, 90, 95, 99 and 100% of all executed branches in the program. Thus, in doduc,
three branch instructions constitute 50% of all executed branches. The ninth column shows the total number of
static conditional branch sites in each program.

3.3 Metrics

This section gives a brief summary of the metrics used in this dissertation to compare branch archi-
tecture performance.

3.3.1 Percent Increase in Execution Time (%IET)

Chapter 4 compares the execution time of each program to a system with an unobtainable “perfect”
branch prediction architecture. Perfect branch prediction assumes that branches are never misfetched or mis-
predicted. Program execution using other branch architectures are specified as a percent increase in execution
time (%IET), or slowdown, relative to the perfect branch execution architecture. The slowdown includes the
affect of all system components.

3.3.2 Cycles Per Instruction (CPI)

Obviously, there is a considerable variation in the number of instructions issued by different programs,
as shown in Table 3.4. Cycles per instruction provides a more application-independent performance metric for
a given architecture. In certain cases, the CPI is used to compare branch architecture performance, particularly
when determining how well other performance metrics predict program performance.

3.3.3 Branch Execution Penalty (BEP)

Many researchers [6, 48] have used the percent of mispredicted branches to compare the performance
of different branch architectures. However, this metric is too simplistic to capture the effects of misfetch
penalties. There are two forms of pipeline penalties to be concerned with: misfetching and misprediction. All
PC-relative branches can be misfetched, but only conditional branches, indirect function calls and returns can be
mispredicted. As described in Chapter 2, the penalty for misfetching is less than the penalty for misprediction.
One may be willing to misfetch more branches if it means one can reduce the number of mispredicted branches.
Thus, the percentage of misfetched branches (%MfB) and the percentage of mispredicted branches (%MpB) are
recorded. It is often difficult to understand how these metrics influence processor performance. Yeh & Patt [66]
defined a formula to combine these branch penalties called the branch execution penalty:

Table 3.1: Description of FORTRAN Applications.

Perfect Club

Programs Description

APS Air pollution, Fluid dynamics.

CSS Circuit simulation, Engineering design.

LGS Lattice gauge, Quantum chromodynamics.

LWS Liquid water simulation, Molecular dynamics.

NAS Nucleic acid simulation, Molecular dynamics.

OCS Ocean simulation, 2-D fluid dynamics.

SDS Structural dynamics, Engineering design.

TES Transonic flow, 2-D Fluid dynamics.

TIS 2-electron transform integrals, Molecular dynamics.

WSS Weather simulation, Fluid dynamics.

SPEC 92

Programs Description

doduc Monte Carlo simulation of the time evolution of a thermohydrauli-
cal modelization for a nuclear reactor’s component. Input was
ref.in. ,

fpppp Quantum chemistry benchmark measuring performance of two
electron integral derivatives in the Gaussian series of programs.
Input was ref.in.

hydro2d | Hydrodynamical Navier Stokes equations are solved to compute
galactical jets. Input was ref.in

mdljsp2 | Solves the equations of motion for a model of 500 atoms inter-
acting through the idealized Lennard-Jones potential. Input was
input.file.

nasa’7 A collection of 7 kernels. No input file.

ora ORA traces rays through an optical system composed of spherical
and plane surfaces. Input was ref.in

spice An analog circuit simulation. Input was ref.in.

su2cor Quantum physics benchmark where masses of elementary particles
are computed in the framework of the Quark-Gluon theory. Input
was ref.in.

swm256 | Shallow Water Model with 256x256 grid. Input was swm256.in.

tomcatv | A vectorized mesh generation program. Not input.

waves A two-dimensional, relativistic, electromagnetic particle-in-cell

simulation code used to study various plasma phenomena. No
input.

18

Table 3.2: Description of C Applications.

Programs |

Description

alvinn

A program that trains a neural network called ALVINN
(Autonomous Land Vehicle In a Neural Network) using
backpropagation.

compress

A file compression program, version 4.0, that uses adaptive
Lempel-Ziv coding. The test input required compressing a one
million byte file.

ear

Simulates the propagation of sound in the human cochlea (inner
ear) and computes a picture of sound called a cochleagram

eqntoftt

A translator from a logic formula to a truth table, version 9. The
input was the file int_pri_3.eqn.

espresso

A logic optimization program, version 2.3, that minimizes boolean
functions. The input file was an example provided with the release
code (cps.in).

gce

A benchmark version of the GNU C Compiler, version 1.35. The
measurements presented shows the execution of the “cc1” phase
of the compiler. The input used was a preprocessed 4832-line file
(1stmt.i).

li

A Lisp interpreter that is an adaptation of XLISP 1.6 written by
David Michael Betz. The input measured was a solution to the
N-queens problem where N=8.

SC

A spreadsheet program, version 6.1. The input involved cursor
movement, data entries, file handling, and some computation.

bc

GNU arbitrary precision calculator. Input was an example that
finds all primes between 2 and 2000.

flex

Fast lexical analyzer generator. Input was flex-scan.l.

gzip

GNU compression utility. Input was the same ref.in used for
compress.

indent

Indents and formats program source. Input was a 220 Kbyte C
program.

od

Writes the contents of a file to standard output in octal and other
formats. Input was the od’s own od.1r file.

wdiff

Compares two files, finding which words have been deleted or
added. Input, two versions of CU’s computer science /etc/hosts
files.

19

Table 3.3: Description of C++ Applications.

Programs Description

cfront The AT&T C++to C conversion program, version 3.0.2. Input was
groff.C, part of the GNU troff implementation. The input
was first preprocessed with cpp.

db++ A version of the “delta-blue” constraint solution system written in
C++. Input was an example program that comes with the Deltablue
system.

groff Groff Version 1.9 — A version of the “ditroff” text formatter. Input
was a collection of manual pages.

idl Sample backend for the Interface Definition Language system dis-
tributed by the Object Management Group. Input was a sample
IDL specification for an early release of the Fresco graphics library.

lic Part of the Stanford University Intermediate Format (SUIF) com-
piler system. It is a linear inequality calculator. Input was the
largest distributed example.

porky Part of the Stanford University Intermediate Format (SUIF) com-

piler system. It performs a variety of compiler optimizations. It
was used to perform constant folding, constant propagation, re-
duction detection and scalarization for a large C program.

20

Table 3.4: Measured Attributes of Traced Programs.

Insn Traced % % CBr || Percentage of Branches During Tracing
Program (Millions) | Branches | Taken || %CBr | %Br | %I | %Call | %Ret
APS 1490 5 51 85 6 0 5 S
CSS 379 9 56 78 10 2 5 5
LGS 956 9 67 77 3 0 10 10
LWS 14183 10 66 80 6 0 7 7
NAS 3604 5 61 64 13 2 11 11
OCS 5187 3 89 99 0 0 0 0
SDS 1109 7 53 99 0 0 0 0
TES 1694 3 77 92 3 0 2 2
TIS 1722 5 51 100 0 0 0 0
WSS 5422 5 62 87 6 3 2 2
doduc 1150 9 49 81 5 0 7 7
fpppp 4333 3 48 87 8 0 3 3
hydro2d 5683 6 73 96 1 0 1 1
mdljsp2 3344 11 84 95 4 0 0 0
nasa7 6128 3 79 81 6 0 6 6
ora 6036 8 53 70 11 0 10 10
spice 16148 13 72 92 4 0 2 2
su2cor 4777 4 73 76 9 1 7 7
swm256 11037 2 98 100 0 0 0 0
tomcatv 900 3 99 100 0 0 0 0
waves 3555 6 62 77 6 1 8 8
alvinn 5241 9 98 98 0 0 1 1
compress 93 14 68 89 8 0 2 2
ear 17006 8 90 61 4 0 17 17
eqntott 1811 12 90 93 2 2 1 2
espresso 513 17 62 93 2 0 2 2
gce 144 16 59 79 6 3 6 6
li 1355 18 47 64. 8 2 13 13
sc 1450 21 64 86 3 1 5 5
be 93 16 42 64 7 1 14 14
flex 15 15 68 85 7 1 4 4
gzip 309 13 61 89 6 0 3 3
indent 32 17 52 85 7 2 3 3
od 210 18 46 72 16 2 5 5
tex 148 10 57 76 10 3 5 6
wdiff 76 17 54 78 16 0 3 3
cfront 17 13 53 76 6 3 8 8
db++ 86 18 57 54 2| 15 7 22
groff 57 18 49 66 10 3 9 11
idl 21 20 47 50 8 12 9 21
lic 6 17 52 66 9 0 13 13
porky 164 20 60 55 3 3 18 21

21

Table 3.5: Conditional Branch Quantiles for Traced Programs.

Conditional Branch Quantiles

Program || Q-25 [Q-50 { Q-75 1 Q-90 [Q-95 { Q-99] Q-100 [Static
APS 18 44 123 283 357 524 | 1,617 | 8,926
CSS 8 32 109 211 262 467 | 2,202 | 9,670
LGS 3 8 22 42 56 86 | 1,344 | 17,306
LWS 2 3 9 18 26 38 | 1,148 | 6,927
NAS 2 5 14 34 69 125 | 1,663 | 7,614
0OCS 1 3 10 46 79 197 | 1,447 | 7,084
SDS 1 9 25 43 67 169 | 1,669 @ 7,585
TFS 6 15 38 122 220 464 | 1,598 | 17,270
TIS 2 8 20 31 36 66 863 | 6,292
WSS 10 41 145 275 344 533 | 1,756 | 7,592
dodoc 1 3 40 175 231 296 | 1,447 | 7,073
fpppp 5 10 28 51 73 109 744 | 6,260
hydro2d 7 14 43 74 111 230 | 1,613 | 7,088
mdljsp2 3 6 10 14 16 23| 1,010 | 6,789
nasa7 3 8 21 55 94 277 | 1,083 | 6,581
ora 2 5 8 11 12 17 641 5,899
spice 1 2 12 38 63 116 | 1,762 | 9,089
su2cor 3 8 15 26 34 60 | 1,569 | 7,246
swm256 1 2 2 3 3 13 795 | 6,080
tomcatv 2 3 4 5 7 7 515 5,474
waves 6 18 40 82 132 276 | 1,331 8,149
alvinn 1 2 2 2 3 102 430 1,622
ear 1 2 4 6 8 32 530 1,846
compress 2 4 7 12 14 16 230 1,124
eqntott 1 2 2 14 42 72 466 1,536
espresso 14 44 104 163 221 470 | 1,737 | 4,568
gce 55 | 245 804 | 1,612 | 2,309 | 3,724 | 7,640 | 16,294
Ii 5 16 33 52 80 127 556 | 2,428
sc 3 14 41 94 153 336 | 1,471 4,478
bc 14 41 97 160 204 273 753 1,956
flex 4 29 102 190 260 421 | 1,204 | 2,969
gzip 2 3 13 29 36 49 342 | 2,476
indent 8 27 74 159 244 457 | 1,065 | 2,272
od 14 30 56 76 84 118 433 1,702
tex 11 39 111 259 416 790 | 2,365 | 6,050
wdiff 4 7 11 19 24 29 502 1,618
cfront 33 112 | 345 946 | 1,540 | 3,055 | 5,783 | 15,509
db++ 2 9 40 96 137 173 421 | 1,639
idl 4 9 15 38 67 154 | 1,001 3,839
groff 26 86 182 372 564 | 1,021 | 2,511 | 7,434
lic 42 82 123 146 154 161 | 2,311 | 18,897
porky 2 7 43 122 238 557 | 2,553 8,808

22

23

%MIB x misfetch penalty + %MpB X misprediction penalty
100 '

which reflects the average penalty suffered by a branch due to misfetch and misprediction. A BEP of 0.5
means that, on average, each branch takes an extra half cycle to execute; values close to zero are desirable. 1
have assumed a one cycle misfetch penalty and a four cycle misprediction penalty for the performance studies
presented in Chapters 5, 6, and 7 of this dissertation.

BEP =

CHAPTER 4
SYSTEM LEVEL PERSPECTIVE

Previous branch prediction studies compare different branch prediction architectures using mispre-
diction rates, branch penalties, or an idealized cycles per instruction. With these ideal cycles per instruction
and branch miss rate metrics, one cannot really quantify how these branch and instruction fetch prediction
architectures will effect a real processor. Therefore, this chapter provides a system level study of several branch
and instruction fetch prediction architectures, including recently proposed two-level correlated branch history
architectures. The system-level simulations were performed for the Alpha AXP 21064, a dual-issue statically-
scheduled processor. The performance of various branch architectures is reported using execution time and
cycles-per-instruction. This chapter also shows that the branch execution penalty metric used throughout this
dissertation is highly correlated with program performance and is a suitable metric for architectural studies. !

4.1 Introduction

Usually, branch architectures are studied in isolation, ignoring other aspects of the system. In those
studies, a variety of metrics are used to assess the performance of different branch architectures, but it is rare
that the performance of an entire system is reported. There are numerous reasons for this. The complexity of
accurately simulating a complex architecture is daunting and the results are specific to that architecture. This
makes it is difficult to translate the performance of that architecture to another, possibly different architecture.
However, there are advantages to system-level simulations. They provide the reader with a sense of the magnitude
and importance of the problem being solved, and indicate where further effort should be placed. Furthermore,
the performance metrics, such as execution time and cycles per instruction, are more understandable to the
casual reader. Lastly, such studies provide a method to calibrate the performance metrics used in other studies
with the impact on system level performance.

This chapter studies several branch and instruction fetch prediction architectures using information
from direct-execution simulation. A pipeline-level simulator was used to measure program execution time
and attribute portions of that time to different processor subsystems. We first describe the simulator used
and compare measurements from that simulator to measurements from an actual system. We then describe
the branch architecture’s examined in this chapter, followed by their system level performance. The chapter
concludes by showing that the BEP is an appropriate metric for comparing branch and instruction fetch prediction
architectures.

4.2 Verification of Zippy Simulation Methodology

The system level performance results were gathered using Zippy. Zippy can be configured to use
one of a number of processor and system configurations. The system we simulated is a DEC Alpha 3000-500
workstation, with a DECchip AXP 21064 processor clocked at 150Mhz. The system contains an 8KB on-chip
direct-mapped instruction cache and an 8KB on-chip direct-mapped store-around data cache. The data cache is
pipelined, and has a two-cycle latency and single cycle access time. There is a 512KByte second-level, unified
direct-mapped cache with a five cycle latency and access time. Main memory has a 24 cycle latency and 30 cycle
access time. The branch misfetch penalty is 1 cycle and the mispredict penalty is 5 cycles. More information
about the AXP 21064 can be found in the processor reference manual [22].

Table 4.1 compares the cycle count reported by Zippy to the actual cycle count taken for the same
application, recorded by the processor cycle counter on an Alpha 3000-500 processor. We ran each application
1000 times, and the measured values had a 95% confidence interval typically less than 0.06% of the mean.

"Parts of this chapter were published in the 28th International Symposium on Microarchitecture [13].

Table 4.1: Verification of Zippy Architecture Model

{ Program [Zippy Estimate]

Measured] % Diff l PAL Calls [%PAL Increase |

doduc 3744530000 | 3852783497 | -2.89 - 43 0.0
tomcatv 4211550000 | 3428500986 | 22.83 128 0.0
compress 305373000 | 305036415 0.00 208 34
eSpresso 820013000 | 798971677 2.63 86 0.2
gee 383407000 | 406986172 | -6.14 180 1.1
li 3446060000 | 3840210240 | -11.43 32949 0.0
be 223635000 | 227787352 | -1.85 535 0.6
flex 30794800 34237883 | -11.18 35 1.0
gzip 552878000 | 559296680 | -1.16 67 0.7
indent 76213700 80816742 | -6.03 133 3.1
od 591999000 | 545321384 8.55 193 2.9
cfront 61496200 68785345 | -11.85 81 1.5
lic 15324900 17928028 | -16.98 337 49
porky 439329000 | 472871359 | -7.63 241 0.7

25

Shows the number of cycles estimated by Zippy while simulating the Alpha 3000-500 (Estimated), the number
of actual executed cycles measured on an Alpha 3000-500 minus the Pal call cycles (Measured), the percent
difference in the Zippy model and measured cycle counts (% Diff), the number of dynamic PAL calls executed
in the measured programs (PAL Calls), and the percent increase in number of cycles executed if PAL calls were
taken into account.

26

The measurements in Table 4.1 shows that the average difference between the cycle time reported by
the Zippy model and the actual execution time is less than 8% (absolute error) for the programs we measured.
There are a number of reasons why the estimated performance of Zippy would differ from the measured
performance. First, we used a prototype 3000-500 for our measurements, and the memory subsystem was
slightly different for that architecture; we think this explains the large variance of tomcatv, since it has a large
data cache miss rate. Second, Zippy simulates the processor executing a single program; it does not simulate
the underlying operating system and other programs running on the system. Normally, when a process requests
a system service, system code displaces parts of the instruction and data cache. Likewise, when a program
begins execution, the pages are demand-faulted into the program address space. The layout of pages in memory
may cause cache conflicts [5, 36]; these are not detected by Zippy, because it assumes a perfect page coloring
scheme. These problems should be most visible in short-running programs or those that make a large number of
system calls. Table 4.1 confirms this; short-running programs such as £lex, indent, cfront and 1ic have
a high variance. On the Alpha, a “PALcall” is used to access system routines and for system-specific functions;
the column showing the number of PALcalls shows that 11 executes many system calls, and also has a large
variance. Other programs with a large difference in the execution time initiate I/O, which causes cache flushes
and more system level disturbances. Even with these aspects of the system not being modeled by Zippy, the
measurements in this experiment show that Zippy provides a reasonably accurate performance estimate for the
21064 architecture.

4.3 Processor Performance with Perfect Branch and Fetch Prediction

Table 4.2 shows the average execution time in seconds and the cycles-per-instruction (CPI), assuming
perfect branch and instruction fetch prediction, for each program included in this chapter’s system level study.
The remaining columns give the break down of cycles executed, and attributes those cycles to the instruction
issues (Issues), stall cycles due to the inability to issue instructions (Stalls), instruction cache (ICache), data
cache (DCache), and the translation look-aside buffer (TLB). For example, in doduc, 25.4% of the execution
time is from issued instructions. Stalls account for 47.7% of the execution time. Waiting for misses in the
instruction and data caches consumed 9.7% and 17.0% of the cycles, and TLB misses accounted for 5.2% of the
time. We combined all cache misses from the first and second level cache into the ICache or DCache value.

The “Stalls” entry includes interlocks and data dependence constraints that can be computed statically.
For example, the result of a load is not available until two cycles after it is issued. An instruction using the result
of that load immediately following the load would have to stall at least that long. The cycles induced by the
dependence constraint are attributed to stalls, but any additional cycles induced by cache misses are attributed to
those misses. Most hardware interlocks encountered in the 21064 can be statically determined; some interlocks,
particularly for floating point computations, may span several basic blocks, and are reported in the “Stalls”
column.

4.4 Metrics

We used several metrics to compare branch architecture performance in this chapter. The first two are
the increase in execution time and cycles per instruction. The third metric, branch execution penalty (BEP),
is often used to select one branch architecture over another. The percent increase in execution time (%IET)
compares the execution time of a program for each branch architecture on a 21064 processor to a system with
an unobtainable “perfect” branch prediction architecture. This reports the slowdown seen when using a specific
branch and instruction fetch prediction architecture relative to perfect branch prediction. Cycles per instruction
provides an application-independent performance metric for a given architecture. The CPI is also used to
compare branch architecture performance, particularly when determining if the BEP branch performance metric
predicts program performance. The BEP reflects the average cycle penalty suffered by branch instructions due
to misfetch and mispredict penalties. These three metrics are described in more detail in Chapter 3.

27

Table 4.2: Zippy Performance Assuming Perfect Branch Prediction

Exec % of Cycles
Program || Time (s) || CPI || Issues | Stalls | ICache | DCache | TLB
doduc 24.249 || 3.195 254 | 47.7 9.7 170 | 02
tomcaty 27.654 || 4.657 163 | 126 0.1 709 | 02
compress 1.897 || 3.103 27.0 8.5 0.0 223 | 422
eqntott 14.969 || 1.253 741 | 11.0 2.5 114 1.1
espresso 4.666 | 1.378 623 | 194 32 13.9 1.2
gce 2.314 || 2.439 350 | 13.6 20.8 25.1 5.5
li 20.718 || 2.317 367 174 15.5 303 00
bec 1.338 || 2.171 387 17.0 22.9 19.9 14
flex 0.185 | 1.811 479 19.1 11.9 206 | 04
gzip 3.363 || 1.646 545 19.2 1.6 246 | 00
indent 0463 | 2.154 40.6 | 227 18.4 1771 0.7
od 3.648 || 2.628 31.7 | 113 23.7 31.5 1.9
wdiff 0.984 | 1.956 4351 415 0.1 149 | 0.0
cfront 0.392 || 3.594 2371 103 23.2 2951 133
idl 0.287 || 2.058 411 14.6 104 262 | 7.7
lic 0.093 || 2.361 36.2 | 19.6 20.0 199 | 43
porky 2.592 || 2.399 3551 16.6 12.1 2791 79
Avg 6.460 | 2.419 394 | 18.9 11.5 249 52

The first column shows the estimated execution time, followed by the cycles per instruction (CPI). The remainder
of table indicates what fraction of the processor cycles were attributed to different subsystems in the AXP 21064
system.

28

4.5 Branch Architectures Simulated

This section briefly describes the branch architectures we simulated for this system level study.
Table 4.3 gives a summary of these architectures. Chapter 2 gives amore detailed description of each architecture.
We simulated the DECchip 21064 implementation of the Alpha AXP architecture using perfect branch prediction
(Perfect), no branch prediction (No-Pred), backwards taken/forwards not taken (BTFNT), the default 1-Bit
branch prediction provided on the 21064 (Alpha-Ev4) architecture, pattern history tables (PHT), branch target
buffers (BTB), and two types of correlated conditional branch prediction architectures (PAs and GAg).

For Perfect branch prediction we assume that all branch targets are fetched correctly without any
penalties, so there are no misfetch or mispredict penalties. This establishes an upper-bound that the branch
architecture can have on system performance. For no branch prediction (No-Pred), we assume that the instruction
fetch pipeline halts whenever a branch is encountered and the pipeline stalls until the correct branch destination
address is known. This is the worst possible branch architecture, and establishes a lower bound on branch
performance for the 21064 architecture. For No-Pred, all branches either cause a misfetch penalty or a
mispredict penalty depending on the branch type. The only static branch prediction architecture we simulated
was the simple backward-taken, forward not-taken (BTFNT) architecture. The BTFNT architecture predicts
that backwards branches are looping branches which will be taken, and forward branches are predicted as not
taken.

The Alpha 21064 used in the 3000-500 we simulated (Alpha-Ev4) adds one bit to each instruction in
the 8K direct mapped instruction cache to dynamically predict the direction of conditional branches. This bit
is initialized with the sign-bit of the PC-relative displacement when the cache line is read in, initializing the
dynamic 1-bit predictors to a BTENT prediction. Thus, the BTENT rule is used the first time the branch is
encountered, and a dynamic one-bit predictor is used thereafter.

The pattern history table (PHT) branch architecture is an example of an architecture using two-bit
saturating up-down counters. It contains a table of two-bit counters used to predict the direction for conditional
branches. In the direct mapped PHT architecture (PHT-Direct), the branch address is used to directly index
into the pattern history table to find the two-bit counter to use when predicting the branch. In comparison, the
correlated global history architecture uses the history of previous branches to determine which two-bit counter in
the table to use. The PHT-GAg method we modeled uses a variant of the correlated branch prediction schemes
described by McFarling [41]. This method used the exclusive-or of the global history register and the branch
address as the index into the PHT.

The BTB-2Bit architecture models the architecture used in the Pentium, where each BTB entry has
a two-bit saturating counter to predict the direction of a conditional branch [38]. The BTB-PAs architecture
models the architecture proposed by Yeh and Patt [66], where each BTB entry contains a 6-bit history register.
This history register is used as the lower bits of an index into a PHT when predicting conditional branches. The
upper bits of the index are the lower bits of the branch address. In both the BTB-2Bit and BTB-PAs architectures,
the branch prediction information (the two-bit counter and 6-bit history register), is associated or coupled with
the BTB entry. Therefore, the dynamic conditional branch prediction information can only be used for branches
in the BTB, and branches that miss in the BTB must use less accurate static prediction. The BTB-GAg is an
example of a decoupled design, where the branch prediction information is not associated with the BTB and
is used for all conditional branches, including those not recorded in the BTB. For this architecture, the BTB is
used only to identify when a branch has been fetched and to provide target addresses, and a separate PHT-GAg
architecture is used to predict the direction of conditional branches.

We simulated a number of configurations of these architectures. In particular, we varied the number
of BTB entries, associativity of the BTB, and the size of the PHT. All of the BTB designs we simulated only
update the BTB with taken branch addresses. This was shown to be more effective for both the coupled and
decoupled architectures because the BTB is not filled with fall-through addresses that are easily calculated [7, 48].
Therefore, on a BTB miss for the coupled design, the branch is predicted as not-taken. The other static prediction
alternative is to predict the branch using the BTFNT scheme on a BTB miss. In our studies we have found that
statically predicting the fall through direction performs better than BTFNT in this case.

Table 4.3: Architectures Simulated for System Level Study

Perfect All branches are correctly predicted, so there are no mispredict nor
any misfetch penalties.

No-Pred No Branch Prediction. All branches are either mispredicted or
misfetched.

BTENT Backwards Taken, Forwards Not Taken. Static branch prediction.

Alpha-Ev4 1-bit dynamic branch prediction for each instruction in the instruc-
tion cache.

PHT-Direct Direct mapped Pattern History Table (PHT)

PHT-GAg A single global history register is XORed with the program counter
(PC) and used to index into the PHT.

BTB-2Bit A BTB with each entry containing a 2-Bit counter for conditional
branch prediction.

BTB-PAs A BTB where each entry contains a 6-bit history register. This
history register is used as the lower bits of an index into a PHT for
predicting conditional branches. The upper bits of the index are
the lower bits of the branch address.

BTB-GAg A decoupled BTB that contains no conditional branch prediction

information. Instead, conditional branches are predicted with the
decoupled PHT-GAg architecture.

Infinite BTB’s

An infinite BTB that only suffers from misprediction and cold-
starts misfetches. We simulated this model for both the PAs and
GAg (XOR) conditional branch prediction schemes.

29

30

4.6 Branch Architecture Performance

Throughout this section, the reader should be aware of the limitations of this study, and should not
draw inferences beyond the systems model. In particular, the Alpha AXP 21064 is a statically scheduled, dual-
issue processor. Dynamically-scheduled processors may be able to mask the effects of the branch architecture.
Alternatively, dynamically-scheduled processors may be more sensitive to branch architecture performance,
because more instructions would be “in-flight,” increasing the mispredict penalty. It is difficult to extrapolate
how these results would differ with out-of-order execution, and this topic is an issue of future work.

Table 4.4 shows the increase in execution time over an architecture using Perfect branch prediction
for all the branch architectures that do not provide instruction fetch prediction (a branch target buffer). These
simulations show that the dynamic branch prediction schemes reduce the branch overhead by approximately
50%, from 11% using BTENT to ~5% using a PHT architecture. Table 4.4 also shows that the simple direct-
mapped PHT has slightly better performance than the more elaborate global history register (GAg) for a small
PHT, but that the GAg method is slightly better for larger tables. The GAg method has better performance than
the Direct method for large PHTs, since it uses a large number of PHT entries for a single branch, depending
on the history of the previously executed branches. This leads to improved performance for a larger PHT, but
can lead to more conflicts for a smaller PHT. Table 4.4 demonstrates that the marginal benefit of adding more
PHT entries rapidly declines after 512 entries. The 4096-entry table uses eight fold more storage, but it only
decreases the execution time by 0.6%. Larger improvements can be had by devoting those resources to more
TLB entries or other scarce resources.

For the majority of the programs, further improvement from the branch architecture for the execution
time requires that the misfetch penalty be reduced by providing instruction fetch prediction. For example,
the id1l program executes a large number of indirect branches, and additional conditional branch prediction
accuracy provides very little performance improvement. Table 4.5 shows the percent increase in execution time
for all the branch architectures examined for a subset of the programs simulated. Doduc is examined because it
represents a branch intensive FORTRAN program. Gce and cfront are examined because they have a large
number of static branch sites, and idl because it has a large number of indirect jumps caused by dynamic
dispatch calls in C++. The other SPECint92 programs are provided because they have been examined in detail
in earlier branch studies.)

Table 4.5 shows two obvious trends: a larger BTB is better than a smaller BTB, and a higher
associativity BTB is better. These results aren’t surprising, but it is interesting to note how little improvement
is gained by adding a larger BTB or PHT, or by increasing the associativity of the BTB. The table shows that
changing the architecture from a 64-entry direct mapped BTB-GAg architecture with a 512-entry PHT, to a
costly 512-entry 4-way associative BTB-PAs architecture with a 4096-entry PHT, reduces the execution time by
only 0.5% for the FORTRAN program doduc and up to a 2.7% for the C++ program id1.

The rows for the infinite BTB show the added benefit of removing all misfetch penalties except for
those due to cold-start BTB misses. The infinite BTB also shows improvement from increased indirect jump
prediction, and the prediction accuracy of the infinite BTB-PAs architecture will be further improved because
each BTB entry has its own conditional branch history register. In each case, the programs with complex
conditional branching behavior (espresso, gcc) are slightly improved by increasing the size of the PHT —
but only by 1% of total execution time. Highly object-oriented C++ programs like id1 gain the most from a
large BTB because they execute a large number of indirect jumps that can be predicted by a BTB. However,
even a modest BTB, such as a 64-entry direct-mapped BTB, provides most of the benefits achievable with this
program.

Tables 4.6 and 4.7 show performance for all the branch architectures averaged over all programs.
The different branch architectures are sorted by percent increase in execution time; architectures with poorer
performance appear earlier in the table. Table 4.6 shows the average contribution of the instruction issues (Is),
stalls (St), instruction cache (IC), data cache (DC), TLB (TB), mispredict branch (MpB), and misfetch branch
(MfB) penalties to the overall execution time, as described earlier for Table 4.2. Table 4.7 shows the actual
percentage of mispredicted branches, misfetched branches, and the branch execution penalty, which combines

31

Table 4.4: Percent Increase in Execution Time for Conditional Branch Architectures

512-Entry PHT | 4096-Entry PHT
| Program || No Pred | BTENT | Alpha-Ev4 | Direct | GAg | Direct | GAg

doduc 9.68 1.88 1.92 1.02 1.26 | 096 0.94
tomcatv 2.59 1.74 0.51 0.51 0.51 0.51 0.51
compress 18.72 8.98 6.25 5.00 504 | 5.00 4.73
eqntott 44.05 24.15 11.12 | 9.63 9.29 9.57 9.27
espresso 56.62 19.28 1598 | 12.03 | 10.11 | 11.93 8.90
gcc 24.84 11.34 9.34 6.79 7.73 6.24 6.23
i 25.82 8.69 9.78 5.82 5.34 5.80 4.59
bc 23.70 7.94 10.28 5.75 6.69 5.32 4.40
flex 34.62 15.30 9.82 7.67 7.81 745 6.78
gzip 33.22 12.75 8.51 7.09 7.25 7.06 6.77
indent 32.83 12.29 8.65 6.53 7.89 5.87 6.01
od 22.31 9.15 7.11 3.70 4.55 3.55 3.24
wdiff 34.48 15.52 7.31 5.80 5.85 5.80 5.74
cfront 10.68 3.57 3.51 2.24 3.04 1.87 1.97
idl 35.09 16.44 18.60 | 10.72 | 10.85 | 10.64 10.37
lic 24.23 8.74 9.24 541 6.35 5.17 5.07
porky 28.22 11.02 11.86 545 5841 540 5.49
Avg 27.16 11.10 8.81 5.95 620 | 577 5.35

Percent increase in execution time over perfect branch prediction for an architecture using no branch prediction
(No Pred), BTFNT, a direct mapped pattern history table, and a degenerate pattern history table.

Table 4.5: Percent Increase in Execution Time for a Subset of Programs

32

BTB PHT Percent increase in Execution Time

Size |Assoc |Size |doduc |compress |eqgntott |espresso [gcc li cfront |idl
No Pred 9.68 18.72 44.05 56.62| 24.84] 25.82| 10.68| 35.09
BTFNT 1.88 8.98 24,15 19.28] 11.34| 869 357| 16.44
Alpha-Ev4 1.92 6.25 11.12 1598 9.34| 978| 3.51| 18.60
PHT-Direct
PHT-GAg
PHT-Direct 4096/ 0.96 5.00 11.93] 6.24] 580 1.87] 10.64
PHT-GAg 4096] 0.94 473 890] 6.23] 459 197] 1037
BTB-2Bit 64 1 0.90 2.91 9.44{ 651 461 3.42] 5.28
BTB-2Bit 64 4 0.79 2.39 711 6.21] 396| 325 209
BTB-2Bit 512 1 0.55 2.39 6.32| 4.00] 294 205 119
BTB-2Bit 512 4
BTB-GAg 64 1 512
BTB-GAg 64 1| 4096
BTB-GAg 64 4 512
BTB-GAg 64 4] 4096
BTB-GAg 512 1
BTB-GAg 512 1
BTB-GAg 512 4
BTB-GAg 512 4
BTB-PAs 64 1
BTB-PAs 64 1
BTB-PAs 64 4
BTB-PAs 64 4
BTB-PAs 512 1
BTB-PAs 512 1
BTB-PAs 512 4
BTB-PAs 512 4
BTB-GAg Inf
BTB-GAg Inf
BTB-GAg Inf
BTB-PAs Inf
BTB-PAs Inf
BTB-PAs Inf

Percent increase in execution time for a subset of the simulated programs for all the branch architectures we
studied. The branch architecture configurations are listed roughly by their order of complexity and cost. All of
the configurations using a 512-entry PHT have been darkened in an effort to make the table more readable.

33

the %MpB and %MTIB into one metric. The %MpB contains all branches that can be mispredicted, including
indirect jumps, returns and conditional branches.

These tables reaffirm what was shown in Table 4.5; once a reasonable number of BTB entries have been
added to a branch architecture, overall performance is best improved by adding resources to other architectural
components, including TLB entries and the data cache. The results show that it is very important to have 2-bit
conditional branch prediction, such as a PHT, although little performance improvement is seen as the size of
the PHT is increased from a 512 entry PHT to a 4096 entry PHT. We found that increasing the PHT size for an
infinite BTB beyond 32768 entries provided almost no improvement.

Table 4.7 also shows the improved performance when a BTB is added to the PHT branch architecture.
For the 512 or 4096 entry PHT-GAg architecture, adding a direct mapped 64 entry BTB decreases the execution
time by 3% and the CPI by 2.4%. Increasing the number of BTB entries beyond 64 results in only a very
small performance improvement, and even less improvement is seen by increasing the associativity of the BTB.
When increasing the BTB-GAg architecture from 64 entries to 512 entries, the execution time is decreased by
0.65% and the CPI by 0.57%. Increasing the associativity for a direct mapped 64 entry BTB-GAg to 4-way
associativity decreases the execution time by 0.22% and CPI by 0.16%. For a 512 entry BTB-GAg architecture,
the execution time is decreased by 0.12% and the CPI by 0.12% when the associativity is increased from direct
mapped to 4-way. Each decrease in execution time comes with a price, in area, architecture complexity, and
access time. Therefore, for a statically scheduled architecture like the Alpha 21064, the most aggressive branch
prediction architecture that is justified by our experimentation is a direct mapped 64 entry BTB with a decoupled
512 entry direct mapped PHT.

Table 4.7 lets us directly compare the performance of the decoupled GAg and coupled PAs architectures
with equivalent BTB sizes. For the 64 entry BTB designs, the GAg scheme performs better than the PAs
architecture because the coupled PAs architecture can only use the conditional branch prediction information on
a BTB hit, while the decoupled GAg uses the PHT predictors for all conditional branches. When increasing the
size of the BTB to 512 entries, the PAs scheme performance usually surpasses that of the GAg, largely because
of the increased BTB hit rate. However, this is not true in all cases; for example, a direct-mapped GAg with 512
BTB entries and 4096 PHT entries has (marginally) better performance than the corresponding PAs method. We
feel the simpler GAg design should be used in an actual implementation, because the PAs architecture associates
a 6-bit history register with each BTB entry, and this extra storage and complexity is not needed in the GAg
architecture.

4.7 Validating the Branch Execution Penalty Metric

Branch architecture research, like all computer architecture research, is a computationally intensive
undertaking. Normally, researchers try to identify a number of performance metrics that can be easily calculated,
yetindicate the likely impact of a particular architectural feature. For example, the simulations used to accurately
simulate the Alpha 21064 and calculate the CPI are approximately 500-1000 times slower than a simulation
that only calculates the branch execution penalty (BEP). Numerous studies, including those in the remainder
of the dissertation, have used the BEP for this very reason: it yields an intuitive performance metric, and it
is significantly easier to calculate than the CPIL Other studies have used the percent of mispredicted branches
(%MpB) for the same purpose.

We were curious how accurately the BEP and %MpB predict the CPI for the architectures we examined.
The standard statistical test for this problem is to compute the sample correlation coefficient, p. Given p for
two series, p? represents the probability that the series are linearly related; p*> = 99% indicates that 99% of the
variation in one series is predicted by a change in the second series. The CPI and BEP for all branch architectures
averaged over all programs resulted in p> = 99.9%; i.e., over all the architectures studied, a change in the BEP is
a very accurate predictor for the CPL The corresponding measurement for the %MpB is p?> = 96.9%, indicating
that the %MpB is a slightly less accurate predictor of the CPI than the BEP. This is only natural, since the BEP
includes the misfetch penalty as well as the mispredict penalty.

The predictive accuracy of the BEP and %MITfB is also consistent across a range of branch architectures.

Table 4.6: Average System Level Performance

BTB PHT % % of Cycles
Arch Size | A | Size IET CPI Is [St [IC]DC [TB | MpB | MiB
No Pred 27.16 || 2.981 30 | 15 9 20 4 1 17.87 | 2.70
BTENT 11.10 |} 2.647 || 35 | 17 | 11 23 5 442 | 533
Alpha-Ev4 8.81 || 2.605 || 36 | 18 | 11 23 5 1.56 | 6.39
PHT-GAg 512 6.20 || 2.549 || 37 | 18 | 11 24 5 0.86 | 4.91
PHT-Direct 512 595 || 2.542 || 37 | 18 | 11 24 5 0.72 | 482
PHT-Direct 4096 577 || 2538 || 37 | 18 | 11 24 5 0.64 | 474
PHT-GAg 4096 535 || 2530 || 37 | 18 | 11 24 5 0.51 | 451
BTB-2Bit 64 1 427 || 2512 || 38 | 18 | 11 24 5 2.75 1.29
BTB-2Bit 64 4 3.65 || 2.500 || 38 | 18 | 11 24 5 241 | 1.06
BTB-2Bit 512 1 2.40 || 2471 38119 11 24 5 1.94 | 0.39
BTB-2Bit 512 4 2.00 || 2462 | 39 | 19 | 11 25 5 1.81 | 0.14
BTB-PAs 64 1 512 3.86 || 2504 || 38 | 18 | 11 24 5 243 | 1.25
BTB-PAs 64 1 4096 3.72 || 2.501 38 | 18 | 11 24 5 232 | 1.23
BTB-PAs 64 4 | 512 322 || 2492 || 38 | 18 | 11 24 5 2.06 | 1.02
BTB-GAg 64 1 512 3.13 2489 || 38 | 18 | 11 24 5 1.21 1.80
BTB-PAs 64 4 | 4096 305 || 2488 || 38 | 18 | 11 24 5 193 | 1.00
BTB-GAg 64 4 | 512 291 2485 || 38 | 18 | 11 24 5 1.37 | 143
BTB-GAg 512 1 | 512 249 | 2475 || 38 | 19 | 11 24 5 1.77 | 0.63
BTB-GAg 512 4 1 512 237 || 2472 || 38 | 19 | 11 24 5 2.09 | 021
BTB-GAg Inf 512 2.33 || 2471 39119 11 24 5 2.25 | 0.01
BTB-GAg 64 1 4096 226 || 2469 || 39 | 19 | 11 24 5 0.66 | 1.54
BTB-GAg 64 4 | 4096 2.04 || 2465 || 39 | 19 | 11 24 5 0.79 | 1.19
BTB-PAs 512 1 512 1.89 || 2.461 39 {19 | 11 25 5 1.48 | 0.36
BTB-PAs 512 1 4096 1.74 || 2458 || 39 | 19 | 11 25 5 1.35 | 0.35
BTB-GAg 512 1 4096 1.61 2455039 | 19 | 11 25 5 1.02 | 0.56
BTB-PAs 512 4 | 512 149 || 2452 | 39 | 19 | 11 25 5 133 | 0.13
BTB-GAg 512 4 | 4096 149 || 2452 | 39 | 19 | 11 25 5 1.25 | 0.21
BTB-GAg Inf 4096 144 || 2451 || 39 | 19 | 11 25 5 140 | 0.01
BTB-PAs 512 4 | 4096 1.35 || 2448 || 39 | 19 | 11 25 5 1.19 | 0.13
BTB-PAs Inf 512 135 || 2448 || 39 | 19 | 11 25 5 1.32 | 0.01
BTB-PAs Inf 4096 1.21 2445 {1 39 | 19 | 11 25 5 1.19 | 0.01
BTB-PAs Inf 32768 1.17 || 2444 || 39 | 19 | 11 25 5 1.14 | 0.01
BTB-GAg Inf 32768 1.08 || 2443 || 39 | 19 | 11 25 5 1.06 | 0.01
Perfect 01 2419 || 39 {19 | 12 25 5 0 0

34

Average results for all the branch architectures sorted in terms of Percent Increase in Execution Time. The
average cycles executed for each architecture is broken down into Issues, Stalls, I-Cache, D-Cache, TLB,
Mispredicted Branches (MpB),and Misfetched Branches (MfB).

35

Table 4.7: Average Branch and Instruction Fetch Prediction Performance

BTB PHT Branch Penalties
Arch Size | A | Size %IET || CPI || %MpB | %MfB | BEP
No Pred 27.16 | 2.981 86.85 | 13.15 | 4.47
BTENT 11.10 || 2.647 3095 | 39.00 | 1.94
Alpha-Ev4 8.81 || 2.605 1412 | 6331 | 1.34
PHT-GAg 512 6.20 || 2.549 10.51 | 63.93 | 1.16
PHT-Direct 512 5.95 || 2.542 8.88 | 64.91 | 1.09
PHT-Direct 4096 577 || 2.538 801 | 6539 1.05
PHT-GAg 4096 5.35 || 2.530 690 | 65.74 | 1.00
BTB-2Bit | 64 1 427 1| 2.512 14.72 8.03 | 0.82
BTB-2Bit | 64 4 3.65 || 2.500 12.92 691 | 0.72
BTB-2Bit 512 |1 240 || 2471 8.73 2.20 | 046
BTB-2Bit | 512 | 4 2.00 || 2.462 7.36 0.77 | 0.38
BTB-PAs 64 1512 3.86 || 2.504 13.51 8.03 | 0.76
BTB-PAs 64 1 | 4096 3.72 || 2.501 13.04 8.03 | 0.73
BTB-PAs 64 4 | 512 322 |1 2492 11.69 6.91 | 0.65
BTB-GAg | 64 1| 512 3.13 || 2.489 9.62 | 1551 | 0.64
BTB-PAs 64 4 | 4096 3.05 || 2.488 11.13 6.91 | 0.63
BTB-GAg | 64 4 | 512 291 || 2.485 9471 12.59 | 0.60
BTB-GAg | 512 |1 |512 249 || 2475 9.35 394 | 0.51
BTB-GAg | 512 |4 | 512 2.37 || 2472 9.32 1.22 | 048
BTB-GAg | Inf 512 2.33 || 2471 9.29 0.04 | 0.46
BTB-GAg | 64 1 | 4096 2.26 || 2.469 6.02 | 1643 | 047
BTB-GAg | 64 4 | 4096 2.04 || 2.465 5.87 | 13.44 | 043
BTB-PAs 512 |1]512 1.89 || 2.461 7.17 220 | 0.38
BTB-PAs 512 |1 | 4096 1.74 || 2.458 6.58 2.20 | 0.35
BTB-GAg | 512 |1 | 4096 1.61 || 2.455 5.74 420 1| 0.33
BTB-PAs 512 | 4 | 512 1.49 || 2.452 5.77 0.77 | 0.30
BTB-GAg | 512 | 4 | 4096 1.49 || 2.452 5.71 1.35 | 0.30
BTB-GAg | Inf 4096 144 || 2.451 5.68 0.04 | 0.28
BTB-PAs 512 | 4 | 4096 1.35 || 2.448 522 0.77 | 0.27
BTB-PAs Inf 512 1.35 || 2.448 5.09 0.03 | 0.25
BTB-PAs Inf 4096 1.21 || 2.445 4.57 0.03 | 0.23
BTB-PAs Inf 32768 1.17 || 2.444 4.40 0.03 | 0.22
BTB-GAg | Inf 32768 1.08 || 2.443 4.13 0.05 | 0.21
Perfect 01 2419 0 0 0

Average results for all the branch architectures sorted in terms of Percent Increase in Execution Time. Branch
penalties gives the percent of mispredicted branches, percent of misfetched branches and the branch execution
penalty.

36

Table 4.8 lists p? for each program across all the branch architectures considered and shows that CPI can be
accurately predicted by the BEP and the %MpB, although the BEP is a more accurate metric. As expected, the
BEP also predicts the %MpB with reasonable accuracy. It is essential to understand that we are asserting that
the predictive quality of the BEP for the CPI only applies to the statically-scheduled architecture we model.

It is understandable that the BEP would be correlated with the CPI on the Alpha 21064 architecture.
The nominal branch misprediction penalty is five cycles. In some circumstances. these penalties can vary. For
example, if a load that follows a conditional branch misses in the data cache, the branch will be resolved before
the load issues, masking any misfetch penalty that would have occurred if the load had hit in the cache. Likewise,
if only one instruction in an issue-pair can actually be issued, the processor has an additional cycle to determine
the next fetch address, effectively masking the misfetch penalty. However, the high correlation indicates that
these are infrequent occurrences.

Note that the correlation coefficient does not indicate the degree of importance of the BEP. It simply
indicates that the BEP and CPI are linearly correlated. The least-squares solution for all architectures over all
programs indicates that CPI = 2.35 4 0.073 x BEP. Thus, although the BEP is important in the overall CPI, a
difference of 1.0 in the BEP results in a 3.1% increase in the CPI, and most of the branch and instruction fetch
prediction architectures examined in this dissertation have a BEP between 0.2 and 1.0.

4.8 Implications of System Level Study

A valid question to ask is how the results presented in this chapter apply to future wide-issue architec-
tures that have wider instruction issues, deeper pipelines, larger branch penalties or out-of-order execution? We
feel it is important to understand the scope of these results, and the intent of the evaluation we have conducted.
All of the results we have described are relatively specific to the 21064 implementation of the Alpha architecture.
Although some general conclusions can be drawn from these results, many branch architecture issues are not
addressed.

Within the limitations imposed by the particular architecture examined, this study is important because
it provides detailed system performance showing the actual gain in going from no branch prediction (27% increase
in execution time) all the way down to Perfect prediction, using various branch and instruction fetch prediction
architectures. We are not aware of a previous study that has provided this detailed performance comparison for
modern branch prediction architectures. This also demonstrated that the BEP is an accurate predictor for the CPI
for the class of architectures we considered. Therefore, the BEP metric can be used when comparing different
branch prediction architectures if the real CPI or execution time is not available; however we recommend that
this be confirmed for architectures radically different than the 21064 architecture.

These observations come with an important proviso — the importance of a branch architecture is
highly dependent on the underlying architecture and the penalties introduced by other subsystems, such as the
instruction or data cache. For example, data cache overheads constitute &~ 24% of the total execution time in
the programs we measured. Larger first and second-level caches will reduce the cache overhead. Likewise,
a dynamically-scheduled architecture may be able to mask a larger fraction of the cache latency, but is very
dependent on the ability to predict branches. Similarly, if profile-directed optimization becomes commonplace,
the importance of hardware support for branch architectures will diminish. However, simulating the interaction
between the operating system and an application or a mixture of applications may indicate that other branch
architectures are more desirable.

4.9 Summary

Microprocessor design is an art that balances many issues, including area and power budgets, design
complexity, patent issues, robustness across anumber of applications and a particular implementation technology.
Itis important to understand the contribution of individual architectural features in the context of the full processor
design.

This chapter provided a system level study of several branch and instruction fetch prediction archi-
tectures including recently proposed two-level correlated branch history schemes. We provide the performance

Table 4.8: Validating the Branch Execution Penalty Metric

Correlation Coeff. (p%)

CPl vs. | CPI vs. | BEP vs.
Program BEP | %MpB | %MpB
doduc 0.98 0.99 0.94
tomcatv 0.99 0.88 0.89
compress 1.00 0.92 0.92
eqntott 1.00 091 0.90
espresso 1.00 0.96 0.94
gce 1.00 0.94 0.93
4 0.99 0.95 0.92
be 0.99 0.96 0.93
flex 1.00 0.92 0.92
gzip 1.00 0.93 0.93
indent 1.00 0.95 0.95
od 0.99 0.97 0.94
wdiff 1.00 0.93 0.93
cfront 0.97 0.99 0.94
idl 1.00 0.95 0.95
lic 1.00 0.93 0.91
porky 0.99 0.94 0.90

37

The square of the correlation-coefficient for each program across all branch architectures. A p? = 1 indicates
that changes in the BEP due to a particular branch architecture are predictive of the CPI for that program using

that architecture.

38

comparison in terms of execution time using a full Alpha AXP 21064 architectural simulation model. The results
show that, for the 21064 processor examined, a significant performance gain is achieved by adding a small 512
entry PHT to the architecture, and little benefit is gained by increasing the size of the PHT. An additional
reduction in execution time, half of that provided by adding the PHT, is seen by adding a small 64-entry direct
mapped BTB. A processor using a 64 entry direct mapped BTB with a decoupled 512 entry PHT achieves an
execution time within 3% of the execution time for prefect branch prediction. The results show that increasing
the BTB size and associativity past the 64-entry direct mapped BTB provides minimal improvements.

These results indicate that continuing to improve the branch behavior for processors and programs
similar to the ones we studied is simply “polishing a round ball”. This does not mean that reducing the BEP by
improving branch and instruction fetch prediction is an unimportant problem; rather, it means that for further
reductions in the BEP to become meaningful, other pipeline stalls such as cache and TLB stalls first need
to be greatly reduced on this type of architecture. Alternatively, researchers proposing new branch prediction
architectures should demonstrate how they will work on a processor with dynamic out-of-order execution, deeper
pipelines and wider issue widths. They also should emphasize designs that are faster, less complex, easier to
test or easier to implement. This point of striving for a simpler and faster branch architecture design is the focus
of the hardware models examined later in this dissertation.

CHAPTER 5
BRANCH ALIGNMENT

This chapter examines a software approach calied Branch Alignment to improve the performance of
branch and instruction fetch prediction architectures by eliminating misfetch penalties and reducing the number
of unconditional branches executed. This chapter in effect, describes how to layout basic blocks when compiling
a program so that one can get the most from a branch architecture. !

5.1 Introduction

Several researchers have proposed algorithms for basic block reordering. The primary emphasis for
these algorithms has been on improving instruction cache locality, and the few studies concerned with branch
prediction reported small or minimal improvements. As wide-issue architectures become increasingly popular,
the importance of reducing branch costs will increase, and branch alignment is one mechanism which can
effectively reduce branch costs.

This chapter examines algorithms that reorder the structure of a program to improve the accuracy of
the instruction fetch and branch prediction architectures. These code transformations help reduce the number
of mispredicted branches and the number of misfetched instructions. Essentially, the method is this: restructure
the control flow graph so that fall-through branches occur more frequently. Profile information is used to
direct the transformation, and an architectural cost model is used to decide if the transformation is warranted.
Transformations include rearranging the placement of basic blocks, changing the sense of conditional operations,
moving unconditional branches out of the frequently executed path, and occasionally inserting unconditional
branches.

5.2 Related Branch Alignment Work

There has been considerable work on profile-driven program optimization. Almost all the basic
block reordering optimizations have concentrated on reducing the instruction cache miss rate, as described in
Chapter 2, since this has been one of the most important factors in achieving high throughput in past processors.
Branch and instruction fetch prediction is a prime candidate for profile-based optimizations, since it is already
becoming increasingly important as future static and dynamic architectures execute four to eight instructions
at a time. This means that almost every instruction fetch will contain a branch instruction. Thus, insuring the
target of the conditional branch is the fall-through path or eliminating unconditional branches from the control
flow will improve a processors performance without adding any additional hardware.

McFarling and Hennessy [42] described a number of methods to reduce branch misprediction and
instruction fetch penalties. Their goal was to make the “taken” path the most common path. Later, Bray and
Flynn [6] studied the same idea, except they examined making the “fall-through” the most common case, but
they only studied the performance gain of their algorithm in terms of conditional branch prediction accuracy
and for only the branch target buffer architecture.

Yeh et al. [66] commented that with trace scheduling, taken branches could only be reduced from
~ 62% of the executed conditional branches to = 50% of the executed conditional branches. An earlier study
by Hwu and Chang [43] showed a ~ 58% fall-through rate after branch alignment. The papers by McFarling
and Hennessy, and Bray and Flynn did not report their change in the percentage of taken branches, and they did
not describe the basic block order in which their algorithms where applied when examining all the basic blocks
in a procedure.

'Parts of this chapter were published in the 6th International Conference on Architectural Support for Programming Languages and
Operating Systems [8].

40

The branch alignment reordering algorithm proposed by Hwu and Chang [43] is a general algorithm
which grows the basic block layout list, first forwards then backwards, starting with the basic block edge that
has the highest execution count for a given procedure. The work by Pettis and Hansen [49] describes a greedy
algorithm for branch alignment which is similar to Hwu and Chang’s, but their greedy algorithm is more general
than the Hwu and Chang algorithm, and performs better in terms of reducing the cost of branches. Therefore,
we only describe the Pettis and Hansen algorithm in detail in this chapter.

This chapter describes an algorithm which is an extension of the Pettis and Hansen algorithm, and
compares the simulated results to their greedy algorithm. We also improve upon the analysis and the effectiveness
of branch alignment over that of McFarling and Hennessy, Bray and Flynn, Hwu and Chang, and Pettis and
Hansen. We describe how to efficiently apply branch alignment to various static and dynamic prediction
architectures and we measure the effectiveness of branch alignment on these architectures. When performing
branch alignment, we do not inline functions, perform global analysis or duplicate code as in previous studies.
We perform the analysis using an object code post-processor rather than a compiler. This simplifies the analysis
and avoids recompiling the full program for these simple transformations. This also allows us to apply branch
alignment to the full program, including portions normally not compiled by the user, such as program libraries,
and to process many programs generated by a number of different compilers. With such a post-processor tool,
branch alignment would normally be only one of several optimizations applied to the program.

5.3 Branch Prediction Architectures

Not all branch architectures include a mechanism for providing the taken target address to indicate
which instruction to fetch from the instruction cache. For these studies the fall-through instruction is assumed
to be fetched while a branch is decoded. Therefore, all PC-relative taken branches can incur a misfetch penalty
while the branch is decoded and the target address is calculated, and all branch architectures that do not include a
BTB always incur this misfetch penalty. In evaluating branch alignment, three static prediction architectures and
three dynamic prediction architectures were studied. The architectures we examined in the previous Chapter 4
that are also examined in this chapter are the BTFNT, PHT-Direct, PHT-GAg, and the BTB-2Bit branch and
instruction fetch prediction architectures. In addition to these four architectures we also examine two additional
static branch prediction architectures. ‘

5.3.1 Static Branch Prediction Architectures

The “Fall-Through” model assumes the fall-through execution path is always executed. The “BTFNT”
(backward-taken, forward not taken) assumes backward branches are always taken while forward branches are
not taken. This branch model is fairly common, and variants of it are implemented on the HP PA-RISC and the
Alpha AXP-21064. The “Likely” model assumes that encoded information in the branch instruction indicates
whether the branch is likely to be taken or not-taken. This branch model is used by several architectures
including the Tera [2]. The “likely/unlikely” flag can be set either using compile-time estimates [4] or profile
information [25], as described in Chapter 2. We use profile information since it is accurate and simple to gather
with the appropriate tools [S5].

Program transformation can help these branch prediction architectures reduce misfetch and mispre-
diction delays. In the Fall-Through architecture, the fall-through path should be executed most frequently, both
to reduce misfetch penalties and to improve prediction. In the BTENT architecture, it is useful to have the
fall-through be the most common path, but if that is not possible or cost-effective, the branch target should be
placed before the conditional branch so a backwards branch is predicted. Since the branch mispredict penalty
is larger than the misfetch penalty, it may be better to correctly predict the backwards branch even if this results
in a misfetch. In the Likely model, the compiler can specify the likely branch outcome, therefore the code
transformations can only eliminate misfetch penalties by making the fall-through the most frequently executed
path. We should expect that there are more opportunities for optimization with the Fall-Through architecture
than the BTFNT model because all taken branches will be mispredicted in the Fall-Through method. Likewise,
we would expect more optimization opportunities for the BTENT model than the Likely model since we can

41

only improve the misfetch rate when transforming programs using the Likely model.

Figure 5.1 shows how code transformations can help each static prediction model. Figure 5.1 shows
a portion of the control flow graph from the routine elim_lowering in the ESPRESSO benchmark. Nodes are
labeled with numbers and the number in parenthesis indicates the number of instructions in that basic block.
Edges are labeled by frequency of execution. The edge labeled “16” is executed for 16% of all edge transitions
in that subroutine. Unlabeled edges are executed less than 1% of the time. Fall-through edges are darkened
while “taken” edges are dotted.

In the original code in Figure 5.1(a), the Likely architecture can correctly predict the most likely
targets having misfetch penalties on edges 27 — 29, 31 — 25, and 25 — 31. In comparison, the Fall-Through
architecture will mispredict edges 27 — 29, 31 — 25, and 25 — 31 since these are all taken branches. The
BTENT architecture will also mispredict edges 27 — 29 and 25 — 31, but will correctly predict edge 31 — 25
since the target is before the branch instruction resulting in a backwards branch.

The transformed code in Figure 5.1(b) is an efficient layout in terms of branch costs for each of the
static prediction architectures. Since node 25 is now the fall-through of node 31, all of the architectures can
correctly predict edge 31 — 25 without any penalty, and since 31 is laid out before 25 the BTENT can accurately
predict edge 25 — 31 with only a misfetch penalty. Also, since node 29 is laid out before 27 the branch 27 — 29
can be accurately predicted by the BTENT architecture with only a misfetch penalty. The transformed program
gives an optimal layout for the BTENT since it will have the same prediction as the Likely architecture. This
is also a good layout for the Fall-Through architecture. It still suffers by mispredicting edges 27 — 29 and
25 — 31, but it can correctly predict the frequently executed edge 31 — 25. Notice that in the transformed
code there are two taken edges coming out of node 28. Since one of the edges has to be the fall-through, we
need to add an unconditional branch to the fall-through, which will in turn jump to the correct destination node.
The transformed code in Figure 5.1(b) gives an efficient transformation for each of the static architectures, but
in general, a single branch alignment transformation will not always give an optimal alignment for the different
architectures.

There are many optimizations such as un-rolling loops that we did not investigate. For example when
we traced the alvinn program, which is a neural net simulator, we found that 46% of the time was spent in
routine input_hidden and another 46% was spent in hidden_input. Figure 5.2 shows the control flow
graph for input_hidden. Nearly 100% of the branches in that subroutine, or ~ 46% of all branches in
alvinn, arise from a single branch from basic block 4. If we unrolled that loop, duplicating this 11-instruction
basic block, we could reduce the misfetch penalty for all architectures and improve the branch prediction for
the Fall-Through architecture. Normally, loop unrolling is a more complex transformation that also attempts to
reduce the total number of executed branches within the unrolled code. We feel that simply duplicating the basic
block 4 and then inverting (aligning) the branch condition for the added conditional branches in this example
would offer some performance improvement, even if the other optimizations offered by loop unrolling were
ignored.

5.3.2 Dynamic Branch Prediction Methods ,

While static prediction mechanisms, particularly profile-based methods, accurately predict 70-90% of
the conditional branches, many current computer architectures use dynamic prediction, such as branch target
buffers (BTB) and pattern history tables (PHT) to accurately predict 90-95% of the branches. For this study,
we simulated two PHTS, a direct mapped PHT and the degenerate two-level correlation PHT (GAg) using a
variant that McFarling [41] found to be highly accurate. This method performs an exclusive-or of the branch
address with the global history register and uses this as an index into the PHT. Both of the PHTs we simulated
contained 4096 2-bit saturating up-down counters, for a total of 1KBytes of storage. We also simulated two
BTB configurations. We modeled a 64-entry 2-way associative BTB and a 256-entry 4-way BTB — the latter
configuration is used in the Intel Pentium. The BTBs we simulated store only taken branches in the BTB, and
predict fall-through on a BTB miss. Each BTB entry contains a 2-bit saturating up-down counter used to predict
the destination for conditional branches. The BTB in our simulations hold entries for conditional branches,

42

(a) Original Code (b) Transformed Code

Figure 5.1. Benefits of code transformation for elim_lowering in espresso. The darkened edges are
fall-through and the dotted edges are taken. Nodes represent basic blocks.

Figure 5.2: Routine input_hidden from alvinn

43

44

unconditional branches, indirect jumps, procedure calls and returns.

5.4 Branch Alignment Algorithms

We implemented the branch alignment algorithm suggested by Pettis and Hansen [49] since their
algorithm is more general and performed better for branch alignment than previous algorithms. In our results,
branch alignment is performed for each procedure in a program. We are mainly concerned with reducing branch
cost, although instruction cache performance may also be improved. We

Procedures were represented by a directed control flow graph containing a set of basic blocks repre-
sented by nodes and edges between nodes. The program’s execution was traced, recording the number of times
each edge is traversed. This is called the edge’s execution weight.

When transforming a program we look at all nodes that have an out degree of one or two. An
unconditional branch is a basic block with a single out-going edge, the ‘taken’ edge. A conditional basic
block has two edges, the ‘taken’ and the ‘fall-through’ edges, and a fall through basic block has an out-going
‘fall-through’ edge. All other edges are given a weight of zero and are not considered when applying branch
alignment. Thus, we ignore indirect branches, procedure returns and subroutine calls.

54.1 Greedy

Pettis and Hansen [49] proposed two heuristics to align branches. We only describe their bottom-up
(‘greedy’) algorithm, since it has better performance. The Greedy algorithm was directed towards the BTENT
architecture, and did not consider the implications of different branch architectures. In the terminology of [49],
a chain is a contiguous sequence of basic blocks threaded by ‘head’ and ‘tail’ pointers. The first basic block in
each chain has a null head pointer and the last basic block in each chain has a null tail pointer.

The algorithm aligns each procedure in turn. The edge § — D, where S is the source and D the
destination, with the largest weight, that has not already been added to the layout, is selected. The algorithm
then attempts to position node D as the “fall-through” of node §. If S does not already have a fall-through basic
block, and D does not already have a head, then these two basic blocks are combined into a chain. Otherwise,
these blocks cannot be linked. If these basic blocks are part of existing chains, the two chains are merged when
the basic blocks are linked. This is repeated until all edges have been examined and chains can no longer be
merged. Pettis and Hansen implemented their technique for the HP PA-RISC architecture. This architecture
uses the BTFNT conditional branch prediction model. After all the edges in a procedure have been examined, a
precedence relation is defined between chains to determine an ordering between chains that would achieve the
best prediction using the BTFNT model. The chains are then positioned using this precedence relation, inserting
unconditional branches when needed.

5.4.2 Adding a Branch Cost Model

The Greedy algorithm does not consider the underlining architecture when constructing chains. We
include these underlining architecture costs in our algorithms in order to reduce the cost of branches beyond that
of the Greedy algorithm. Our architecture assumes specific costs for different branches, shown in Table 5.1. A
“Cost” transformation algorithm would try to minimize the cost of the branches for a procedure using simple
heuristics, hoping that each local minimization will result in a global performance improvement.

Table 5.1: Cost, in Cycles, for Different Branches.

Unconditional branch

Correctly predicted fall-through
Correctly predicted taken
Mispredicted

(instruction + misfetch)
(instruction)

(instruction + misfetch)
(instruction + mispredict)

N B —| N

As in the Greedy algorithm, the Cost algorithm starts with the edge with the highest weight. When

45

we pick an edge § — D, we determine if having D be the fall-through for § will locally benefit the program
using our cost model before trying to link § and D. We examine all the predecessors of D to see if it is more
cost effective to connect D to another node. The algorithm only considers basic blocks with one and two exit
edges. We consider two possible alignments for single-exit nodes; examining the cost of aligning the edge as a
fall through (thereby avoiding an unconditional branch) or adding an unconditional branch. For example, if S
were a single-exit node, we could either include S and D in the same chain, or insert a jump to D at the end of
S, allowing S and D to be in different chains. For conditional branches we examine three possible alignments.
Assume § has another edge, § — D,. We consider including the § — D or the § — D, edge in the current
chain or adding a jump to the end of §, making the jump the fall-through of S. This latter transformation may
be useful if it is more cost effective to have both D and D, as fall-through in other chains.

In certain cases, not aligning either edge of a conditional branch can improve performance on the
Fall-Through and BTENT architectures. For example, consider a loop consisting of a single basic block, such as
that shown in Figure 5.2. Using the Fall-Through model, the original loop in node 4 incurs a five cycle penalty
(one cycle for the branch instruction and four cycles for the misprediction penalty) using our cost-model. It
is cost-effective to invert the sense of the conditional ending the block and follow the block with an inserted
unconditional branch instruction. This combination takes only three cycles (the correctly predicted conditional
branch, the unconditional branch and a single misfetch penalty). Any loop can be structured this way - we
illustrated the point using the single block loop because the Greedy algorithm would not restructure such loops.

543 Tryls

Simulation results showed that the ‘Cost’ heuristic gave sizable improvements for the Fall-Through
architecture, modest improvements for BTENT and negligible improvements for Likely and dynamic branch
architectures. We decided to considered using the cost model to assess the cost of every possible basic block
alignmentusing an exhaustive search and selecting the minimal cost ordering. In practice, this sounds expensive,
but in the common case procedures contain between 5 to 15 basic blocks. However, most programs have some
procedures containing hundreds of blocks, which makes an exhaustive search impossible for those procedures.
For example, the gcc program contains a procedure (yyparse) containing 712 basic blocks. However, many
edges were never executed in those large procedures, and a few basic blocks contribute most of the execution
time.

In order to examine an upper bound on how well a ‘Cost” heuristic algorithm could perform over
a Greedy algorithm we devised a heuristic that balanced time against performance called “Try15’. For each
procedure, we select the 15 most frequently executed edges and attempt all possible alignments for these nodes.
We then select the next 15 edges, and so on. This allows us to try all possible combinations for each group of 15
nodes. The possibilities to try for each node is similar to that described for the Cost algorithm. For single-exit
nodes (unconditional and fall-through basic blocks) the two possibilities are to make the outgoing edge either a
fall-through or taken edge, and for nodes with two-exit-edges (conditional branches) we try aligning separately
each of the two outgoing edges as the fall-through and then try having neither of the out-going edges as the
fall-through. This heuristic takes more time than the Greedy heuristic algorithm, but produced better results
and still ran in a few minutes. Considering 10 nodes at a time gave slightly worse results than Try15 for a few
programs, taking less than a minute to run and still resulting in better performance than the Greedy algorithm.

To improve the performance of the Try15 algorithm we only examined edges that were executed more
than once. This eliminated over half of the edges from consideration in each program. If more profiles were
used or combined for a program, one could reduce the execution time of the Try15 algorithm by examining only
those conditional branches that account for 99% of the executed branches.

For branch alignment algorithms, aligning loops is difficult, and this is one case where the Try15
heuristics perform better than the Greedy algorithm. Figure 5.3(a) shows a fragment of code with a loop.
The Greedy algorithm would not modify this code because it chooses to align edge A — B before it chooses
edge B — A since the cost of A — B (201) is greater than the cost of edge B — A (160). The Greedy
algorithm would then align the edge B — C since this edge has the highest cost (41) out of the remaining

46

alignable edges. Whereas, the Tryl5 algorithm transforms the code as shown in Figure 5.3(b). Note that in
the transformed code the unconditional branch from D — C' is removed. Using our cost model in Table 5.1
for the Likely and BTFNT architecture, the execution cost for the original code with the edge-weights shown
is 201 + 40 % 5 + 160 x 2 4- 41 x 5 4+ 40 % 2 = 1,006 cycles, while the cost for the Tryl5 algorithm is
160 + 41 % 54 201 % 2 + 40 x 5 = 967 cycles. The main differences between these two alignments is that the
unconditional branch from D — C' is eliminated from the program, and the loop between A and B is laid in
the opposite order. This reduces the branch execution cost by 4%. A larger or smaller percent reduction can be
achieved, depending upon the edge weights.

81 Infinity

(a) Original Code (b) Aligned

Figure 5.3. Example illustrating where Try15 reduces branch costs. The darkened edges are fall-through and
the dotted edges are taken. Nodes represent basic blocks.

Ideally, we want the most likely path through the loop to be in a single chain. The Greedy algorithm
does not examine enough of the loop to minimize this cost. This is one of the main reasons why the Tryl5
heuristic is able to produce better results. The Try15 heuristic can try all the combinations to find the correct
place to “break” a loop. '

5.5 Methodology

ATOM was used to create several tools to study the behavior of branch alignment on current branch
and instruction fetch prediction architectures. The first tool gathered profiles and recorded the control flow of
the program. The profiles and the program’s control flow were then read into a branch alignment algorithm,
which when ran outputted the new control flow graph. This was then read into the branch prediction simulators
in order to gather the simulation results. The different branch alignment algorithms were also implemented
using the OM [56, 57] system for the Alpha 21064 architecture. The control flow graphs used in the ATOM
simulations were the same as those read into OM in order to perform branch alignment on the programs.

5.6 Greedy and Try15 Branch Execution Penalty Results

For all of our results, the branch alignment algorithms only rearrange basic blocks within a procedure.
The algorithms do not perform procedure splitting, basic block duplication, or any procedure rearranging. In
order to evaluate the performance of the different alignments and architectures, we use a modified version of
the branch execution penalty (BEP) described in Chapter 3. When performing branch alignment, the number of
branches executed by a program can change because unconditional branches may be added or removed from the
execution stream. Since the BEP is based on miss rates, for branch alignment the BEP is calculated by dividing

47

the branch penalties by the number of branches executed in the original program. This gives us a normalized
branch execution penalty. This normalized BEP captures the branch performance even for unconditional
branches that are added or removed from the programs execution stream. Removing or adding unconditional
branches through branch alignment can eliminate or increase misfetch penalties, and this performance is taken
into account by reducing or increasing the BEP. What the BEP does not take into account is the increase or
decrease in the number of instructions executed by adding or removing unconditional branches. The overall
effect of adding or removing unconditional branches is examnined Iater in this section.

For these simulations we assumed a misfetched branch causes a one cycle misfetch penalty and a
mispredicted branch causes a four cycle mispredict penalty. For the static branch and PHT architectures, all PC-
relative branches cause misfetch penalties, and all indirect jumps are mispredicted. Since the BTB architecture
tries to predict all branch types, the misfetch penalty for any PC-relative branch found in the BTB can be
eliminated, and the mispredict penalties for indirect jumps can also be eliminated. In all of our static and

dynamic architecture simulations we simulated a 32-entry return stack [33] for predicting return instructions.

k Table 5.2 shows the relative BEP for each program using the various alignments on the three static
branch architectures. Table 5.3 shows the percent of executed conditional branches which are fall-through
branches after the alignment has been performed for the various architectures. The percent of fall-through
branches does not change for the Greedy algorithm on the varying branch architectures, whereas the fall-through
percentage for the Tryl15 algorithm changes for each architecture since the cost model algorithm is different
for each architecture. The fall-through percentages for the PHT and BTB architectures are similar to the
Likely architecture for the Try15 algorithm. Table 5.4 shows the relative BEP for the PHT architectures and
Table 5.5 shows the relative BEP for the BTB architectures. Arithmetic averages are shown for each group of
programs (SPECfp92, SPECint92, and the ‘Other’ programs). The ‘Orig’ column for each architecture shows
the performance when we instrumented and traced the original program. For each branch architecture, we use
the same input to ‘align’ the program and to measure the improvement from that alignment.

The branch alignment heuristics that use the Try15 architectural cost model usually perform better
than the simpler Greedy algorithm — this is particularly notable in the Fall-Through architecture. The Fall-
Through architecture is no longer a realistic architecture to consider, but is used in combination with BTBs
— the fall-through can be predicted on a BTB miss. This works especially well for branch target buffers that
only store taken branches. The improved performance occurs because the Try15 heuristic does not align either
of the out-going edges for some conditional branches. Instead, unconditional branches are added to one of
the conditional branch edges to take advantage of the Fall-Through prediction cost model. In fact, the Try15
heuristic converts up to 99%, as seen in Table 5.3, of all conditional branches in some programs to be fall-through
in the Fall-Through model. Adding an unconditional jump works especially well for single basic block loops
which end with a conditional branch, as described earlier for alvinn and many of the FORTRAN programs.

The BTFNT architecture sees reasonable improvement from branch alignment. In the BTFNT archi-
tecture, it is difficult to create and layout chains. When forming chains, it is not known where the taken branch
will be located in the final procedure until the chains are formed and laid out. The destination of a taken branch
could be placed before or after the current node, affecting the final branch prediction costs.

The small benefit for the Likely architecture occurs because the Greedy and Try15 algorithms eliminate
the misfetch penalty for many branches and they remove unconditional branches from the likely execution
path. Eliminating instruction misfetches will be increasingly important as super-scalar architectures become
more common — an eight-issue super-scalar architecture could fetch a branch instruction each cycle. These
architectures will benefit from having frequent “fall-through” branches.

The cost model used for the static architectures is different than that for the dynamic architectures.
When examining the costs of aligning a conditional branch for the static architecture only one of the targets of
the conditional branch can be predicted and the other must always be mispredicted. In the dynamic architectures
this is not the case. In order to compensate for the increased accuracy for predicted conditional branches, our
cost model for the PHT architectures assume that conditional branches are mispredicted only 10% of the time.
Similarly in the BTB architectures we also assume that conditional branches are mispredicted only 10% of

Table 5.2: Branch Execution Penalty for Static Branch Prediction Architectures with Branch Alignment.

Fall-Through BTFNT Likely
| Program || Orig | Greedy | Tryl5 || Orig | Greedy | Tryl5 || Orig | Greedy | Tryl5
alvinn 3.86 3.79 0.97 1.03 0.97 0.98 0.99 0.97 0.97
doduc 1.70 1.09 0.45 1.10 0.51 0.51 0.64 0.45 0.45
ear 243 2.05 0.82 || 095 0.82 0.82 0.94 0.82 0.82
fpppp 176 | 062 | 056 1.68| 064 0601 08| 055| 055
hydro2d 2.84 1.52 0.60 1.56 1.46 0.66 || 0.88 0.61 0.63
mdljsp2 3.23 0.63 0.54 || 2.83 0.80 0.54 1.19 0.55 0.54
nasa7 2.72 2.48 0.76 1.01 0.79 0.78 0.88 0.77 0.77
ora 1.69 0.31 0.31 1.55 0.32 0.71 0.72 0.31 0.32
spice 2.69 2.31 1.79 1.22 1.11 1.06 0.98 0.88 0.89
su2cor 2.42 1.65 0.79 1.15 091 0.93 1.00 0.81 0.84
swm256 3.93 3.92 1.00 1.01 1.01 1.01 1.01 1.01 1.01
tomcatv 3.97 2.25 0.58 || 2.30 0.59 0.59 1.02 0.59 0.59
wave5s 2.07 1.64 0.65 1.11 0.69 0.67 0.82 0.66 0.67
SPEC{p92 Avg 2.72 1.87 0.76 1.43 0.82 0.76 0.92 0.69 0.69
compress 2.51 0.86 0.77 1.89 1.10 0.77 1.12 0.76 0.77
eqntott 347 1.75 0.57 || 2.28 0.61 0.60 1.02 0.58 0.58
espresso 2.36 1.34 0.89 || 1.64 1.47 140 || 1.14 0.89 0.90
gce 2.11 0.96 0.71 1.87 0.90 0.88 1.05 0.72 0.72
li 1.51 0.70 0.65 1.48 0.81 0.77 0.86 0.62 0.62
sC 242 1.27 0.64 1.73 0.83 0.77 0.96 0.65 0.66
SPECint92 Avg || 2.40 1.15 0.71 1.81 0.95 0.86 1.02 0.70 0.71
cfront 1.85 0.92 0.70 1.70 0.79 0.79 0.97 0.70 0.70
db++ 1.93 1.24 0.98 1.69 1.05 1.03 1.19 0.99 0.99
idl 1.59 0.79 0.70 1.52 0.72 0.73 0.96 0.71 0.71
tex 2.01 1.02 0.73 1.74 0.91 0.93 1.05 0.75 0.75
groff 1.87 0.67 0.52 1.60 1.03 0.62 0.83 0.52 0.52
Other Avg 1.85 0.93 0.73 1.65 0.90 0.82 1.00 0.73 0.73

Table 5.3: Percent of Fall-Through Branches with Branch Alignment.

% of Fall-Through Conditional Branches
Orig | Greedy Tryl5

Program Fall-Through | BTENT [Likely
alvinn 2.23 376 99.57 3.71 3.75
doduc 51.32 68.90 95.08 68.77 | 92.24
ear 9.87 25.87 92.85 25.80 | 25.80
fpppp 52.26 84.68 87.38 8339 | 83.62
hydro2d 26.66 57.68 95.44 5343 | 5345
mdljsp2 16.38 87.08 90.20 7779 | 77.79
nasa’7 20.70 26.35 96.84 2627 | 26.32
ora 46.76 94.67 94.96 90.36 | 90.50
spice 28.37 38.37 92.31 3742 | 3774
su2cor 26.93 52.27 89.82 38.12 | 38.12
swm256 1.58 1.78 99.42 1.76 1.76
tomcatv 0.72 43.71 99.38 4371 | 4371
wave5 38.21 51.27 94.09 5096 | 51.04
SPEC{p92 Avg || 24.77 48.95 94.41 46.27 | 48.14
compress 31.75 81.73 84.14 68.72 | 68.72
eqntott 9.70 55.20 97.56 54.89 | 54.90
espresso 38.10 62.66 84.30 60.97 | 65.83
gce 40.57 76.63 87.37 7479 | 75.35
li 52.70 83.03 85.63 83.03 | 83.11
sc 33.12 66.37 9091 65.66 | 65.72
SPECint92 Avg || 34.32 70.94 88.32 68.01 | 68.94
cfront 46.82 81.05 89.64 80.52 | 81.20
db++ 43.14 | 73.96 90.23 | 7347 | 7435
groff 45.86 84.20 94.06 82.16 | 84.53
idl 53.30 90.37 96.11 89.96 | 90.00
tex 42.53 73.23 87.43 70.67 | 71.43
Other Avg 46.33 80.56 91.49 79.36 | 80.30

Table 5.4: Branch Execution Penalty for Pattern History Table Architectures with Branch Alignment.

4096 Direct Mapped PHT 4096 Correlation PHT
| Program || Orig [Greedy | Tryl5 | Orig | Greedy | Tryl5
| alvinn 0.99 0.97 097 || 0.98 0.96 0.96
doduc 0.66 0.46 0.47 || 0.66 0.43 0.46
ear 0.95 0.86 0.87 || 0.91 0.83 0.82
fpppp 0.73 042 | 042 070 | 038]| 037
hydro2d 0.85 0.58 0.60 || 0.83 0.57 0.59
mdljsp2 1.08 0.49 0.49 || 1.08 0.48 0.50
nasa’ 0.87 0.77 0.76 || 0.87 0.76 0.75
ora 0.73 0.33 0.33 || 0.68 0.28 0.31
spice 0.98 0.88 0.88 || 0.87 0.81 0.77
su2cor 1.04 0.84 0.89 || 1.06 0.85 091
swm256 1.01 1.00 1.00 || 1.01 1.02 1.02
tomcatv 1.01 0.58 0.58 || 1.01 0.58 0.58
wave5 0.82 0.69 0.67 || 0.75 0.62 0.59
Fortran Avg || 0.90 0.68 0.69 || 0.88 0.66 0.67
compress 1.11 0.76 0.73 || 1.05 0.70 0.69
eqntott 1.02 0.57 0.57 || 0.99 0.55 0.54
espresso 1.00 0.79 0.79 || 0.81 0.62 0.61
gce 1.08 0.75 0.75 1.07 0.68 0.68
li 0.87 0.63 0.62 || 0.70 0.49 0.46
sc 0.82 0.53 0.54 || 0.79 0.50 0.51
C Avg 0.98 0.67 0.67 || 0.90 0.59 0.58
cfront 1.02 0.72 0.72 || 1.06 0.69 0.69
db++ 1.13 0.95 095 || 1.02 0.84 0.84
idl 0.95 0.70 0.70 || 0.93 0.67 0.67
tex 1.04 0.74 0.74 || 0.95 0.63 0.65
groff 0.82 0.50 0.51 || 0.77 0.47 047
Other Avg 0.99 0.72 0.72 || 095 0.66 0.66

50

Table 5.5: Branch Execution Penalty for Branch Target Buffers with Branch Alignment.

64-Entry, 2-way BTB

256-Entry, 4-way BTB

| Program Orig | Greedy | Tryl5 || Orig | Greedy | Tryl5
alvinn 0.07 0.02 0.02 || 0.03 0.02 0.02
doduc 0.39 0.22 0.24 || 0.24 0.19 0.19
ear 0.22 0.22 0.21 || 0.20 0.20 0.20
fpppp 0.33 0.26 028 || 0.24 0.24 0.24
hydro2d 0.13 0.19 0.13 || 0.13 0.19 0.13
mdljsp2 0.27 0.27 027 || 0.27 0.27 0.27
nasa7 0.13 0.10 0.10 || 0.10 0.09 0.09
ora 0.19 0.17 0.16 || 0.16 0.16 0.16
spice 0.31 0.29 042 || 0.28 0.29 041
su2cor 0.35 0.35 035 || 0.35 0.35 0.35
swm?256 0.02 0.02 0.02 || 0.02 0.02 0.02
tomcatv 0.03 0.02 0.02 || 0.02 0.02 0.02
waves 0.34 0.25 0.25 || 0.22 0.22 0.22
Fortran Avg || 0.21 0.18 0.19 || 0.17 0.17 0.18
compress 0.54 0.47 047 || 047 0.47 0.47
eqntott 0.14 0.09 0.08 || 0.08 0.08 0.08
espresso 0.65 0.53 052 || 043 0.47 0.46
gce 1.14 0.65 0.66 {| 0.77 0.53 0.53
i 0.76 0.43 045 || 038 0.35 0.35
s¢ 0.39 0.20 0.20 }| 0.18 0.17 0.17
C Avg 0.60 0.40 0.40 || 0.39 0.34 0.34
cfront 1.39 0.70 071 || 0.94 0.55 0.56
db++ 0.46 0.24 025 || 0.22 0.17 0.17
idl 0.56 0.15 0.17 || 0.15 0.11 0.11
tex 0.83 0.52 052 || 0.52 045 0.45
groff 0.79 0.40 0.35 || 0.35 0.29 0.25
Other Avg 0.80 0.40 040 || 044 0.32 0.31

51

52

the time and in addition, we assume that the BTB architectures have a 10% miss rate. This means that taken
PC-relative branches will only cause a misfetch penalty 10% of the time.

As seen in Table 5.4, branch alignment offers reasonable improvement for the PHT architectures.
Table 5.5 also shows reasonable improvement for a 64-entry BTB, but only a small improvement is seen for the
256-entry BTB. As with the Likely architecture, the major improvement in performance for the PHT architecture
comes from moving unconditional branches from the frequently executed path and reducing the misfetch penalty
that occurs for taken conditional branches. The BEP performance for the BTB architecture is already small in
comparison to the PHT architecture since it can eliminate misfetch penalties. The small BTB architecture can
benefit more from branch alignment than the larger BTB because removing unconditional branches and making
more conditional branches execute the fall-through will cause the aligned programs to use less entries in the
BTB.

One important observation from these results is that branch alignment reduces the difference in
performance between the various branch architectures. The performance of the BTFNT architecture is slightly
better than the Likely and PHT architectures, while the BTB architecture has the best overall performance.
Before branch alignment was applied to the original program the BTFNT architecture had a 74% higher BEP
than the correlated PHT architecture. After Greedy alignment, the BTFNT architecture only has a 34% higher
BEP than the PHT architecture. Also, the Greedy aligned BTFNT architecture performs better than the original
programs with PHT branch prediction. What is even more interesting is that the 64 entry BTB with branch
alignment has similar performance to the 256 entry BTB without branch alignment.

Note that there is a significant difference between the different program classes. The SPECint92 and
‘Other’ programs see more benefit from branch alignment than the SPECfp92 programs. A reason for this, as
seen in Table 3.5 in Chapter 3, is that for the SPEC{p92 programs ~ 6.5% of the instructions executed cause a
break in control flow. Whereas in the the SPECint92 and the ‘Other’ programs ~ 16% of the instructions cause
a break in control.

5.7 Breakdown of Greedy Alignment Results

The previous sections results show that the Try15 algorithm has essentially the same performance as
the Greedy algorithm for the dynamic branch and instruction fetch prediction architectures. In practice, one
would implement the Greedy and not the Try15 algorithm. The Tryl5 algorithm was examined to give an
indication of how well the Greedy algorithm performance could be improved.

Tables 5.6, 5.7, 5.8, and 5.9 show the percent of misfetched branches (MfB), percent of mispredicted
branches (MpB), the relative number of instructions executed (RIE), and a combined relative cycles per in-
struction (CPI) for all the dynamic prediction architectures, for the original program and the Greedy branch
alignment algorithm. The RIE is calculated by dividing the number of instructions executed in the Greedy
aligned program by the number of instructions executed in the original program. This shows the increase or
decrease in the number of instructions executed for each program aligned with the Greedy algorithm. The only
difference in the number of instructions executed between the original program and a program aligned with
the Greedy algorithm is in the number of unconditional branches executed. The relative CPI shows the impact
of adding or removing unconditional branches along with the reduction in branch execution penalties achieved
by branch alignment assuming an ideal single issue architecture. The CPI is calculated by adding the branch
execution cycle misfetch and mispredict penalties to the number of instructions executed for a given alignment,
and dividing this by the number of instructions executed in the original program. This CPI metric is provided
as a check to make sure that when unconditional branches are added, the overall program performance is not
actually worse than the original program performance.

Table 5.6 for the direct mapped PHT architecture shows that for 1d1, the Greedy alignment executes
1.2% fewer instructions (has an RIE of 0.988) than the original program because of the reduction in unconditional
branches executed. In contrast, espresso executes 1.4% more instructions than the original program because
of the additional unconditional branches executed. Even though the number of instructions executed increases
for espresso, the overall number of cycles to execute the aligned program, when branch execution penalties

53

Table 5.6. Branch Alignment Miss Rates and Relative Instructions Executed for Direct Mapped PHT Architec-

ture.

4096-entry, Direct Mapped PHT

Original Alignment Greedy Alignment
| Program %MIB | %MpB | CPI || %MiB | %MpB | RIE | CPI
alvinn 97.00 [048 [1.09 [[95.18 0.45] 1.000 | 1.09
doduc 4847 | 427 | 1.06 || 29.72 4.19 | 0.996 | 1.04
ear 74.54 516 | 1.08 || 65.24 5.16 | 1.001 | 1.07
fpppp 50.56 566 | 1.02 || 19.69 560 | 1.000 | 1.01
hydro2d 72.01 320 | 1.05 || 4534 313 | 1.006 | 1.04
mdljsp2 80.64 | 684 | 1.11 || 2144 6.84 | 1.010 | 1.06
nasa’ 76.52 | 263 | 1.03 || 66.04 2.62 | 0998 | 1.02
ora 56.78 4.02 | 1.05 || 17.09 4.02 | 0997 | 1.02
spice 6870 | 726 | 1.12 || 59.12 726 | 1.000 | 1.11
su2cor 68.01 891 | 1.05 || 4835 8.90 | 1.000 | 1.04
swm256 98.27 0.60 | 1.02 || 98.02 0.60 | 1.000 | 1.02
tomeaty 99.19 0.54 | 1.03 || 56.36 0.53 | 1.000 | 1.02
wave5 60.08 544 | 1.05 || 46.63 550 | 0.998 | 1.04
Fortran Avg || 73.13 423 [1.06 || 51.40 4.22 [1.000 [1.04
compress 63.83 | 11.67 | 1.15 || 29.69 | 11.67 | 1.016 | 1.12
eqntott 86.44 377 | 112 || 4199 374 | 0.998 | 1.06
espresso 5825 | 1048 | 1.17 || 3729 | 1045 | 1.014 | 1.15
gee 5376 | 1347 | 1.17 || 2324 | 1299 | 0.999 | 1.12
li 47.45 9.77 | 115 || 23.94 9.77 | 0.994 | 1.11
s¢ 63.99 | 456 | 1.17 || 34.89 4.56 | 1.000 | 1.11
CAvg 62.29 895 | 1.16 || 31.84 8.86 | 1.004 | 1.11
cfront 4941 | 1310 | 114 [[2403 | 12.09 [0.997 | 1.09
db++ 37.84 | 1882 | 1.20 || 19.64 | 1887 | 0.999 | 1.17
idl 39.33 | 1399 | 1.19 || 1421 | 1394 | 0988 | 1.13
tex 5642 | 11.83 | 1.10 || 2749 | 11.60 | 0.996 | 1.07
groff 54.36 700 | 1.14 || 23.67 6.70 | 1.002 | 1.09
Other Avg 4747 | 1295 | 1.15 || 2181 | 12.64 [0.99 | 1.11

54

Table 5.7: Branch Alignment Miss Rates and Relative Instructions Executed for Correlated GAg Architecture.

4096-entry, Correlated GAg PHT

Original Alignment

Greedy Alignment

[Program %MfB | %MpB | CPI || %MfB | %MpB | RIE | CPI
alvinn 97.09 0.24 | 1.09 95.29 0.23 | 1.000 | 1.09
doduc 48.51 439 | 1.06 30.35 3.16 | 0.996 | 1.03
ear 75.03 398 | 1.07 65.96 4.15 | 1.001 | 1.07
fpppp 50.58 475 | 1.02 20.71 436 | 1.000 | 1.01
hydro2d 72.13 279 | 1.05 45.49 294 | 1.006 | 1.04
mdljsp2 81.00 6.69 | 1.11 21.37 6.60 | 1.010 | 1.06
nasa7 76.29 256 | 1.03 65.90 243 1 0998 | 1.02
ora 57.49 2.61 | 1.05 17.79 2511 0997 | 1.02
spice 70.36 422 | 1.11 60.74 5.05 | 1.000 | 1.10
suZcor 67.68 9.50 | 1.05 48.07 9.31 | 1.000 | 1.04
swm256 98.27 0.59 | 1.02 97.86 0.93 | 1.000 | 1.02
tomcatv 99.20 0.50 | 1.03 56.38 0.50 | 1.000 | 1.02
waves 60.39 3.57 | 1.04 46.97 3.67 | 0.998 | 1.03
Fortran Avg 73.39 3.57 | 1.06 51.76 3.53 | 1.000 | 1.04
compress 65.36 9.86 | 1.15 31.54 9.67 | 1.016 | 1.11
eqntott 86.88 297 | 1.11 42.68 297 | 0998 | 1.06
espresso 59.54 525 1.14 39.68 547 1 1.014 | 1.12
gce 53.58 1342 | 1.17 24.82 10.76 | 0.999 | 1.11
li 49.66 5.08 | 1.12 26.68 549 | 0994 | 1.08
sc 64.38 3.59 | 1.16 35.30 3.64 | 1.000 | 1.10
C Avg 63.23 6.70 | 1.14 33.45 6.33 | 1.004 | 1.10
cfront 48.02 1441 | 1.14 23.87 11.16 | 0.997 | 1.09
db++ 39.43 1571 | 1.18 21.56 15.65 | 0.999 | 1.15
idl 39.42 13.36 | 1.18 14.73 13.08 | 0.988 | 1.12
tex 55.71 9.83 | 1.09 27.73 8.84 | 0.996 | 1.06
groff 55.11 549 | 1.13 25.04 549 | 1.002 | 1.08
Other Avg 47.54 1176 | 1.14 22.58 10.85 | 0.996 | 1.10

55

Table 5.8: Branch Alignment Miss Rates and Relative Instructions Executed for a 64 entry BTB Architecture.

64 entry, 2-way associative, 2-Bit BTB

Original Alignment Greedy Alignment
| Program %MfB | %MpB | CPI || %MiB [%MpB | RIE [CPI
alvinn 0.83 1.56 [1.01 0.45 0.48 | 1.000 | 1.00
doduc 4.04 8.64 | 1.03 1.65 520 | 0.996 | 1.02
ear 0.36 5.34 | 1.02 0.23 534 | 1.001 | 1.02
fpppp 1.38 7.88 | 1.01 0.54 6.41 | 1.000 | 1.01
hydro2d 0.03 3.34 | 101 6.01 3.30 | 1.006 | 1.02
mdljsp2 0.02 6.80 | 1.03 0.00 6.84 | 1.010 | 1.04
nasa’7 0.65 3.01 | 1.00 0.33 237 | 0998 | 1.00
ora 1.51 432 | 101 020 | 412 | 0997 | 1.01
spice 0.66 7.62 | 1.04 0.78 7.14 | 1.000 | 1.04
su2cor 0.13 8.82 | 1.02 0.07 8.78 | 1.000 | 1.02
swm256 0.02 0.54 | 1.00 0.02 0.55 | 1.000 | 1.00
tomeatv 0.09 0.68 | 1.00 0.04 0.54 | 1.000 | 1.00
waveS 4.33 7.35 | 1.02 2.03 5.84 | 0.998 | 1.01
Fortran Avg 1.08 507 | 1.02 0.95 4.38] 1.000 [1.01
compress 0.01 [13.50 | 1.08 0.00 | 11.67 | 1.016 | 1.08
eqntott 0.87 340 | 1.02 0.04 2.12 | 0998 | 1.01
espresso 153 | 1579 | L11 803 | 1128 | 1.014 | 1.10
gee 1041 | 2588 | 1.18 8.07 | 1430 | 0.999 | 1.10
li 1254 | 1580 | 1.13 5.96 9.34 | 0.994 | 1.07
sc 4.72 8.67 | 1.08 2.27 4.46 | 1.000 | 1.04
C Avg 501 [13.84 [1.10 4.06 8.86 | 1.004 | 1.07
cfront 17.18 | 3040 | 1.19 || 1235 | 14450997 | 1.09
db++ 7.24 9.64 | 1.08 372 507 | 0999 | 1.04
idl 892 | 11.69 | 1.11 3.49 293 | 0.988 | 1.02
tex 8.93 | 18.59 | 1.08 543 | 11.69 | 0996 | 1.05
groff 1120 | 1688 | 1.13 || 1060 | 7.28 | 1.002 | 1.07
Other Avg 1070 | 1744 | 1.12 7.12 8.28 [0.996 | 1.05

56

Table 5.9. Branch Alignment Miss Rates and Relative Instructions Executed for a 256 entry BTB Architecture.

256 entry, 4-way assoc, 2-Bit BTB

Original Alignment Greedy Alignment
| Program %MfB | %MpB | CPI || %MIB [%MpB | RIE | CPI
alvinn 0.09 0.68 | 1.00 0.04 0.48 | 1.000 | 1.00
doduc 1.10 5.60 | 1.02 0.44 4.67 | 0.996 | 1.01
ear 0.00 5.11 | 1.02 0.00 511 | 1.001 | 1.02
fpppp 0.02 6.09 | 1.01 0.00 6.04 | 1.000 | 1.01
hydro2d 0.02 330 | 1.01 5.99 327 | 1.006 | 1.02
mdljsp2 0.00 6.84 | 1.03 0.00 6.84 | 1.010 | 1.04
nasa7 0.12 246 | 1.00 0.02 229 | 0998 | 1.00
ora 0.00 402 | 1.01 0.00 4.02 | 0997 | 1.01
spice 0.01 7.09 | 1.04 0.55 7.06 | 1.000 | 1.04
su2cor 0.01 8.74 | 1.02 0.01 8.73 | 1.000 | 1.02
swm256 0.00 0.53 | 1.00 0.00 0.53 | 1.000 | 1.00
tomcatv 0.03 0.56 | 1.00 0.00 0.52 | 1.000 | 1.00
wave5 0.02 548 | 1.01 0.01 5.44 1 0998 | 1.01
Fortran Avg 0.11 435 | 1.01 0.54 423 1 1.000 | 1.01
compress 0.00 11.67 | 1.06 0.00 11.67 | 1.016 | 1.08
eqntott 0.00 2.08 | 1.01 0.03 2.07 | 0998 | 1.01
espresso 0.36 10.63 | 1.07 533 10.36 | 1.014 | 1.09
gce 4.98 17.96 | 1.12 2.88 12.60 | 0.999 | 1.08
li 2.10 9.10 | 1.07 0.20 872 | 0994 | 1.06
sc 0.40 447 | 1.04 0.19 4.11 | 1.000 | 1.03
C Avg 1.31 9.32 | 1.06 1.44 8.25 | 1.004 | 1.06
cfront 9.73 2119 | 1.13 5.19 1241 | 0997 | 1.07
db++ 0.69 535 | 1.04 0.62 420 | 0999 | 1.03
idl 1.91 322 1.03 1.18 241 | 0988 | 1.01
tex 2.80 12.33 | 1.05 227 10.77 | 0.996 | 1.04
groff 2.80 8.16 | 1.06 5.76 587 | 1.002 | 1.05
Other Avg 3.59 10.05 | 1.06 3.00 7.13 1 0996 | 1.04

57

are taken into account, decreases from 1.17 CPI down to 1.15 CPL In this case it is more advantageous to
execute a few more unconditional branches if it allows the algorithm to align more conditional branches, greatly
reducing the number of misfetched branches.

Tables 5.6 and 5.7 show that for the PHT architectures all the programs that have an RIE greater than
one, meaning that the number of instructions executed is increased, all have an aligned relative CPI for the Greedy
algorithm smaller or equal to the Original CPL This shows that increasing the number of instructions executed
by adding unconditional branches does not decrease the programs performance for the PHT architectures. For
the BTB architectures shown in Tables 5.8 and 5.9 this is not always true. For the 64-entry BTB architecture,
two programs, hydro2d and mdljsp2, actually have a slightly worse CPI for the aligned program using the
Greedy algorithm than the original alignment. For the 256-entry BTB architecture there are four programs,
hydro2d, mdljsp2, compress, and espresso, that have a slightly worse CPI for the Greedy aligned
program than the original alignment. This occurs because the BTB architecture can eliminate misfetch penalties
by storing PC-relative target address in the BTB, while the PHT architecture can not eliminate any of these
misfetch penalties. Therefore, for the BTB architecture it is not always advantageous to make a conditional
branch execute the fall-through if it causes an unconditional branch to be added to the execution stream.

5.7.1 Link-Time Performance of Branch Alignment

We implemented both the Greedy and Try15 alignment algorithms. Figure 5.4 indicates the improve-
ment in the total execution time for the SPEC92 C programs on a DEC 3000-600 with an Alpha AXP 21064
processor running OSF/1 version 2.0. For each program, we show the execution time for the original program,
as compiled by the native compiler, the transformed program using the Greedy algorithm, and the transformed
program using the Try15 algorithm. We scaled the execution time for each program by the time for the original
program.

The programs were compiled as previously described, and then OM [57] was used to link the resultin
object files and standard libraries. Therefore, the Original program execution times shown in Figure 5.4 use the
standard OM link time optimizations. We then modified OM to produce the desired branch alignments and used
this to link the programs.

The Alpha AXP 21064 is a dual issue architecture which uses a combination of dynamic and static
branch prediction. Each instruction in the on-chip cache has a single bit indicating the previous branch direction
for that instruction. When a cache line is flushed, all the bits are initialized with the bit from each instruction
where the sign displacement should be located. Thus the performance expected by this architecture is a cross
between a direct mapped PHT table and a BTENT architecture.

Not surprisingly, the floating point programs, alvinn and ear, do not see any benefit from the
branch alignment, which agrees with our simulation results. We believe some benefit could be gained if the
single loop basic blocks (shown in Figure 5.2) were duplicated. The gcc, eqntott and sc programs benefit
the most from branch alignment. It is difficult to understand the origin of the actual performance improvement
from branch alignment, because our tools did not allow us to instrument and measure the transformed programs,
and our trace simulations did not completely model the Alpha AXP 21064 architecture.

For the simulations described in the previous sections, two different chain layout algorithms where
used for the Greedy and Tryl5 alignments. One algorithm laid out chains for a procedure starting with the
highest executed chain continuing down to the lowest executed chain. The other algorithm laid out chains using
the BTFNT model described by Pettis and Hansen [49] for their Greedy algorithm. We implemented both chain
layouts in OM and found that the algorithms that laid the chains out from highest executed to lowest executed
performed slightly better than the one that laid out chains using the BTENT model. We believe this performance
comes from the fact that laying out the chains from highest to lowest executed satisfies many of the branch
priorities for the BTENT model, and at the same time allowing better cache locality. Therefore the results shown
in Figure 5.4 uses the same Greedy alignment used for all of the simulations (except the BTFNT simulation)
with the highest to lowest chain ordering.

In OM we also implemented all the BTENT, PHT and BTB alignments for the Try15 algorithm

Relative Execution Time

Original
_Greedy
Try15

58

Figure 5.4. Branch Alignment Total Execution Time Improvement on a DEC 3000-600 Alpha AXP for the

SPEC92 C Programs.

59

that were used in the simulations. We found that the Tryl5 BTB alignment performed the same or slightly
better than the Try 15 PHT alignment which was better than the Try15 BTENT alignment. Recall that when
creating a PHT alignment, all taken conditional branches and unconditional branches have a one cycle misfetch
penalty in the cost model. In contrast, our BTB cost model assumes a 10% BTB miss rate, which means it
assumes the one cycle misfetch penalty only occurs for 10% of the taken branches. In the Alpha AXP 21604
architecture, misfetch penalties can be squashed if the pipeline is currently waiting on other stalls. Therefore,
a cost model which would more accurately fit the Alpha AXP 21604 architecture would assume that taken
branches are squashed anywhere from 10% to 30% of the time. The Try15 results shown in Figure 5.4 use the
same alignment as used for the BTB simulations shown in Table 5.5.

5.8 Summary

This chapter provided BEP simulation results for a number of branch prediction architectures and
showed that branch alignment is useful for each architecture. As wide-issue processors become more popular,
branch alignment algorithms will have a larger impact on the performance of programs by reducing branch
penalties. When these alignment algorithms were implemented, we saw up to 16% improvement in execution
time for the dual issue Alpha AXP 21604 architecture. The total reduction in program execution time results
from a combination of reduction in the misfetch and misprediction penalties, the instruction cache miss rates,
and the number of instructions issued.

We have shown how a simple object code transformation, taking less than a minute to run, even for
very large programs, can improve a programs performance. Branch alignment does not benefit all programs, but
for C++ and integer programs a reasonable improvement is seen for the various branch prediction architectures.
The idea of performing branch alignment as a link-time optimization does not require the recompilation needed
by Hwu and Chang [43] or Pettis and Hansen [49]. Branch alignment and other link time optimizations can
be applied to all parts of a program, even shared libraries. In related work, we performed a study showing that
programs use library code in a very similar fashion between applications [15]. This indicates that it would be
beneficial to apply profile-directed optimizations such as Branch Alignment even to shared libraries.

CHAPTER 6
NEXT CACHE LINE SET PREDICTION

As processors issue more instructions concurrently, the likely-hood that a fall-through instruction fetch
will be executed decreases. A branch target buffer (BTB) is one mechanism for efficiently predicting the next
instruction fetch when a branch is encountered. This chapter proposes the use of an alternative architecture to
the BTB called the Next Cache Line and Set (NLS) prediction architecture. A NLS predictor is a pointer into
the instruction cache indicating the target instruction of a taken branch. Johnson [32] proposed a similar design
using cache indices to predict the next instruction fetch. We propose an alternate organization that improves
fetch prediction accuracy. !

6.1 Introduction

Chapter 4 showed that branch target buffers can be used to effectively eliminate branch misfetch
penalties by storing the target addresses of taken branches. However, branch target buffers can lead to a complex
architecture and large BTB’s can be costly to implement. In order to examine the cost of the BTB architecture
we use the register bit equivalent (RBE) cost model for on-chip memories proposed by Mulder et al. [45], where
one RBE equals the area cost of a bit storage cell. Figure 6.1 compares the area cost of a direct mapped and
4-way associative 128, 256 and 512 entry BTB to a direct mapped 8K and 16K on-chip instruction cache. The
costs assume that static memory cells are used, and that the architecture has a 32-bit address space. The figure
shows that the cost for a 512 entry BTB is almost half the cost of an 8K on-chip instruction cache for a 32-bit
address space. As the address space increases to 64-bits the BTB costs will double. The fact that a BTB is
a costly design is the main motivation for the work in this chapter. One of the goals of this dissertation is to
examine alternative architectures that achieve the same or better instruction fetch performance as a BTB for a
lower cost, with a simpler design and with a fast access time.

This chapter proposes an alternative instruction fetch and branch prediction architecture called the
Next Cache Line and Set prediction (NLS) architecture. We examine two varieties of the NLS architecture.
The NLS-cache is similar to the branch architecture described by Johnson [32], where each NLS predictor is
associated with a cache line. The NLS-table uses NLS predictors stored in a separate direct mapped tag-less
memory buffer. We also examine the effects of combining the NLS predictors with modern two-level correlated
branch prediction architectures.

Johnson’s previous studies associated each NLS predictor with a cache line and provided only one-
bit conditional branch predictors. His cache index predictor stores either the fall-through index or the taken
index depending upon the direction of the conditional branch the last time it was executed. The downside to
this approach is that the cache index can not take advantage of highly accurate conditional branch prediction
information if only one of the target indices, either the fall-through or taken, is available. In contrast, we
only store the taken index in the NLS predictor and the fall-through index is calculated during the instruction
cache lookup. This effectively provides both the fall-through and taken index and allows the NLS predictor
to take full advantage of highly accurate two-level correlated conditional branch prediction architectures. The
effect of only storing the taken index in the NLS architecture will also allow the NLS architecture to benefit
from compiler optimizations such as Branch Alignment described in the previous chapter. Branch Alignment
rearranges basic blocks in order to reduce the number of taken branches, and for the NLS architecture this means
that fewer NLS predictors would be used, increasing the NLS architecture’s hit rate. In contrast, Johnson’s
predictor provides either the fall-through or the taken index and his predictors would not benifit from such code
optimizations. Another difference between the two approaches is that we use the NLS predictors to predict

"Parts of this chapter were published in the 22nd Annual International Symposium of Computer Architecture [10].

Register Bit Equivalent Costs

61

100000

90000

Direct

80000

M 4-way

70000

60000

50000

40000

30000

20000

10000

O,

128 BTB 256 BTB

512 BTB

8K I-cache

16K l-cache

Figure 6.1: Register Bit Equivalent Costs for On-chip BTB and Instruction Cache Architectures.

62

all PC-relative branches and indirect jump instructions, whereas Johnson’s predictors are used to only predict
PC-relative branches.

In this chapter, we examine associating the NLS predictors with the instruction cache, as in Johnson’s
design, and we examine the performance of decoupling the NLS predictors from the cache line and storing
them in a separate tag-less memory buffer. Our results show that the decoupled architecture performs better
than associating the NLS predictors with the cache line, that the NLS architecture benefits from reduced cache
miss rates, and it is particularly effective for programs containing many branches. We also provide an in-
depth comparison between the NLS and BTB architectures, showing that the NLS architecture is a competitive
alternative to the BTB design.

6.2 The BTB Instruction Fetch Prediction Architecture

Figure 6.2 is a schematic representation of the decoupled BTB and PHT branch prediction and
instruction fetch architecture we simulated. In Figure 6.2 the next instruction fetch address is concurrently
offered to: the instruction cache, the BTB, and the PHT. The address is also used to compute the fall-through
instruction’s address. A 32-entry return address stack [33] predicts return instructions, and conditional branches
are predicted using the pattern history table organization described by McFarling [41]. This is the degenerate
scheme of Pan et al. [47] (GAg), where we XOR the global history register with the program counter and use
this to index into a 4096 entry (8192 bits) PHT. In this model, we store only taken branches in the BTB, since
previous studies have shown this to be more effective [7, 48]. If a branch is not taken while it is in the BTB, we
leave the branch (target address) in the BTB until it is removed due to the LRU replacement policy, since we
might need the taken target address again in the near future. In this architecture, the BTB’s main purpose is to
eliminate misfetch penalties by providing the taken target address and the branch type.

6.3 Next Cache Line and Set Prediction Architecture

The NLS architecture is similar to the BTB architecture and is illustrated in Figure 6.3. The difference
between these two architectures is that the NLS architecture is a tagless table, providing a pointer into the
instruction cache to the next instruction to execute rather than the target address, as in the BTB. Like the BTB,
the main purpose of the NLS architecture is to eliminate misfetch penalties by providing a pointer to the cache
line and the instruction that is the target of a branch. This allows the next instruction to be correctly fetched
from the instruction cache while the branch instruction is decoded and the target address is calculated. The NLS
predictor also predicts indirect jumps and provides the branch type.

As shown in Figure 6.3 there are three predicted addresses available for the next instruction fetch.
These are the NLS predictor, the fall-through line (previous predicted line + fetch size), and the top of the return
stack. Each NLS predictor contains the following fields:

Type Field: Table 6.1 shows the possible prediction sources represented by the NLS type field. The type field
is used to determine the proper prediction mechanism, shown in Figure 6.3, to use when fetching the next
instruction. Unused NLS entries have “00” stored in the type field indicating the entry is invalid.?

Table 6.1: NLS Prediction Sources

Branch Type Prediction Source
0 | 0 | Invalid Entry Fall-Through PC
1 | Return Instruction Return Stack
1 | 0 | Conditional Branch NLS Entry, or Fall-Through PC
Depending the PHT Prediction
1| 1 | Other Types of Branches | Always use NLS Entry

The type field is not needed for the NLS or BTB architectures if the type information can be easily extracted from the fetched
instruction before the fetch cycle completes, or from the instruction cache if the information has been pre-decoded.

63

Instruction
-4 Fetch -
(9]
) Address
<
=
>
8
.2 Instruction
E Y Fetch Size Return
§ Branch Target Address Stack
2 Buffer
A —
e Branch Type Top Of Stack
5 Address Tag
g Target Address y
L -]
e~ Add
= ,
= \/
g Select Next
o Fetch > MUX
I
|
Next Instruction
Fetch Address

Figure 6.2. A schematic representation of a decoupled BTB branch prediction architecture using two-level
correlated branch prediction for conditional branches and a return stack for return instructions.

Global XOR Two-Level Pattern History Table

64

Instruction
- Fetch -t
Line
] Instruction
. Fetch Size Return
Next Line & Set Address Stack
Table
Branch Type Top Of Stack
Set
Line
| —— Add
¢ Y \ |
Select Next
Fetch MUX
|
|
\j
Next Instruction
Ferch Line

Figure 6.3: A Schematic Representation of the NLS-Table Architecture.

65

Line Field: This field contains the line number to be fetched from the instruction cache. The high-order bits
indicate the line in the instruction cache and the low-order bits are used to indicate the actual instruction in
that line.

Set Field: In a multi-associative instruction cache, the destination line may be in any set. The set field is used
to indicate where the predicted line is located if a multi-associative cache is used. It is not needed for a
direct mapped cache.

The NLS architecture assumes that during the instruction fetch stage of the pipeline, each instruction
can easily be identified as a branch or non-branch instruction. The BTB does not have to make this assumption
since an instruction is known to be a branch if it hits in the BTB. We assume that if the instruction set encoding
does not contain such a distinguishing bit in the instruction, that information can be stored in the instruction
cache. Encoding this information in the instruction or the instruction cache improves the fetch accuracy for
the NLS architecture, since non-branch instructions fetch the fall-through address while branch instructions use
NLS predictors.

If the instruction being fetched from the instruction cache indicates that it is a branch instruction, the
NLS predictor is used and the type field is examined to choose among the possible next fetch addresses. Return
instructions use the return stack, and unconditional branches and indirect branches use the cache line specified
by the NLS entry. If the type field indicates a conditional branch, the architecture uses the prediction given by
the PHT, as is done in the BTB architecture. If the branch is predicted as taken, the NLS line and set fields are
used to fetch the appropriate cache line and instruction from the instruction cache. If the conditional branch is
predicted as not-taken, the precomputed fall-through line address is used on the next instruction fetch.

The NLS entries are updated after instructions are decoded and the branch type and destinations are
resolved. The instruction type determines the type field and the branch destination determines the set and line
field. Only taken branches update the set and line field, but all branches update the type field. A conditional
branch which executes the fall-through should not update the set and line field, since that would erase the pointer
to the target instruction. For conditional branches, this allows the branch prediction hardware to use either the
NLS predictor for taken conditional branches or to use the precomputed fall-through line, depending on the
outcome of the PHT.

6.3.1 NLS-Table Versus NLS-Cache

There are several possible variations on the basic NLS architecture design, and they share many
common structures. Figure 6.3 showed one possible design. The intuition behind this architecture is that a
branch target address is actually a pointer into the instruction cache. This pointer can be represented by an index
pointing to the target instruction of a taken branch.

We considered two possible designs: “NLS-caches” and “NLS-tables”. Inthe NLS-cache, we associate
the NLS predictors with each cache line. Thus, the NLS entries share the instruction address tag with the cache
line. There may be multiple NLS predictors per cache line and we studied various replacement policies and
methods of associating the NLS predictors with specific instructions in a cache line. The second design, the
NLS-table, is a simpler and more effective design that uses a tag-less direct-mapped table of NLS predictors.
The table is indexed by the branch instruction’s address. Both architectures use the NLS entries to predict the
next line to fetch for a branch instruction, both architectures use the same conditional branch prediction and
return-prediction mechanisms used in the BTB, and both designs replace the BTB with the NLS information.

The NLS-table has three advantages over the NLS-cache design and one disadvantage. These points
arise because the NLS predictors are coupled with the cache lines in the NLS-cache design and they are decoupled
from the cache in the NLS-table design. For the NLS-cache architecture, we found that associating two NLS
predictors with an eight instruction cache line to be the most effective organization. This design restricts the use
of the NLS predictors in the NLS-cache, since some cache lines may not have any branches while other cache
lines may contain several branches.

In contrast, the NLS-table uses the lower order bits of the branch instructions address to index into a

66

tagless table. This allows a cache line to use as many NLS predictors as needed. The second advantage comes
when an instruction cache line is replaced. In the model we simulated, we assumed that the NLS-cache prediction
information associated with a replaced cache line would be discarded while the prediction information for the
NLS-table is preserved across cache misses. The final advantage appears when examining different instruction:
cache sizes. As the instruction cache size doubles, the number of NLS-cache predictors must also double to
achieve the same branch prediction performance. Therefore the NLS-cache size increases linearly with an
increase in instruction cache size, while the NLS-table size increases only logarithmically. This can greatly
increase the cost of the NLS-cache design for large caches.

There is a disadvantage for the NLS-table in making it a tagless table, because prediction information
from one branch may be erroneously used for another branch. Our results show that this effect is small for the
NLS-table design when compared to the benefits of the three advantages mentioned above.

6.3.2 Using Next Line Addresses with the Instruction Cache

Unlike the BTB architecture, the NLS architecture does not have a full next target address to offer to
the instruction cache. It only has the lower order bits of the full target address (the cache line index). This is
not a problem for a direct mapped cache, since the tag check against the target address can be performed in the
decode stage of the pipeline. When an associative cache is used, the cache needs to be slightly modified in order
to properly use the next line address. The following two different approaches may be taken.

The traditional implementation of an associative cache selects the appropriate line from a set by
performing a full tag comparison on the tags from the different sets. For all branch instructions, the set field in
the NLS predictor is used to predict the instruction cache set instead of performing the tag comparison. When the
precomputed fall through line address is used, a full tag comparison is performed. The full fall-through address
can be calculated by the time the cache needs to perform the tag comparison using the precomputed fall-through
line address, the carry bit from the addition of the fall-through line address calculated in the previous cycle, and
the previous instruction’s tag.

The second approach to using next line addresses with an associative cache is more elegant and can
lead to improved cache performance. In this approach we assume that each cache line has a set field associated
with it. This set field has the same use as the NLS set field, and it predicts the set where the fall-through line is
located for each cache line. For each instruction cache lookup, either the NLS predictor’s set field, for a branch
instruction, or the previous cache line’s set field, for a non-branch instruction, is used to predict the set for the
current cache access. Since the set field is used on every cache access, only one cache set is driven at a time
during the lookup and the tag comparison can be performed in the decode stage as if the cache where direct
mapped. If the set prediction was incorrect and the tag does not match the destination address computed in the
decode stage, the other sets in the cache need to be checked in order to find the correct entry or to find if there
is a cache miss. This design is suitable for a two-way associative cache. If the first set prediction is incorrect,
the remaining set is checked for the instruction. For higher degrees of associativity, other prediction techniques
may be applied when the NLS set predictor is incorrect.

This second approach only drives one cache associative set at a time. Therefore the NLS architecture
with a fall-through set prediction field in the instruction cache could be used to allow a direct mapped cache to
achieve associative cache performance. This idea is similar to the MRU approach by Kessler et al. [37], where
each pair of cache blocks uses an “MRU bit” to indicate the most recently used block. When searching for an
instruction, the set indicated by the MRU bit is probed first. If the instruction is not found, the second set is
probed. If the instruction is found in the second set, the MRU bit is inverted, indicating the second set is more
recently used than the first set. Other studies have also examined techniques to predict which set information
is located in for instruction and data caches in order to achieve associative behavior from a direct mapped
cache [12, 18, 53] .

67

6.3.3 Identifying Instructions as Branch Instructions

The idea of using a NLS predictor could easily be added to the BTB design where one replaces the
target address with the NLS predictor. The main difference between this new BTB design and the NLS-table
would be that the BTB design still has a tag associated with each BTB entry. We did not examine this design
because we felt that there are better mechanisms for achieving what the tag offers. Having a tag in the BTB
achieves two objectives. The first is that a match with the tag in the BTB indicates that the current instruction
fetch contains a branch. The second feature is that a hit in the BTB indicates that the target address or NLS
predictor being used matches the branch being fetched from the instruction cache. If this second feature is
compromised, as in the NLS-table design, one branches’ prediction information may erroneously be used by
another branch, but this is not a problem for the NLS-table since it has many more predictors than the BTB. If
this second feature is sacrificed, then the only use for the tag in the BTB design is it indicates that the current
instruction fetch contains a branch. We felt there are better and more efficient ways of providing this information.
Therefore, we did not examine associating a tag with the NLS-table design.

Information can be added to the instruction cache or stored in a separate table indicating if the current
instruction fetch contains a branch or not. These bits can easily be initialized when a cache line is read into the
cache for the first time. These branch bits will indicate whether or not the NLS prediction information should be
used, since it indicates if the current instruction fetch contains a branch or not. This can easily be accomplished
by having a distinguishing bit in the instruction encoding indicating if the current instruction contains a branch.
If the instruction encoding is too dense to allow this, then a small amount of predecoding would be necessary to
determine this information as the instructions are brought into the instruction cache. The hardware cost for this
design is small in comparison to storing a tag with each BTB entry, and the initialization of the branch bits only
needs to be performed once when a cache line is place into the instruction cache.

6.4 Simulation Methodology

For each program, we simulated 8KB, 16KB, and 32KB instruction caches with 32 byte cache lines
and 4 byte instructions. For each cache size, we simulated direct mapped, 2-way and 4-way associative LRU
replacement caches. When simulating the NLS-cache architecture, we used one to four NLS predictors per cache
line with varying replacement policies. When simulating the NLS-table architecture, we simulated NLS-table
sizes with 512, 1024 and 2048 NLS predictors. For the BTB architecture, we simulated 128-entry and 256-entry
BTB organizations with direct mapped, 2-way and 4-way associativity with LRU replacement. We chose these
configurations because of their chip area costs. Both the BTB and NLS architectures used a 32-entry return
stack [33] to predict procedure returns and a two-level correlated 4096-entry pattern history table for conditional
branches. The accuracy of the pattern history table is the same for both the BTB and NLS architectures.
This allows us to isolate the instruction fetch prediction performance differences between the BTB and NLS
architectures.

Table 6.2: Instruction Cache Misses Rates for Traced Programs.

‘ I-Cache Size [Assoc |] Doduc] Espresso | Gece | Li [Cfront | Groff }

8K Direct 291 0.40 | 435 | 3.27 7.03 | 4.81
8K 2-way 1.62 0.17 | 3.76 | 0.66 6.28 | 3.92
8K 4-way 1.32 0.10 | 3.52 | 0.21 584 3.07
16K Direct 2.15 0.25]2.76 | 0.49 469 | 2.89
16K 2-way 0.89 0.08 | 1.97 | 0.30 370 | 1.72
16K 4-way 0.71 0.02 | 1.50 | 0.03 321 1.29
32K Direct 0.48 0.16 | 1.67 | 0.06 258 1.63
32K 2-way 0.50 0.03 1091 | 0.02 175 0.82
32K 4-way 0.53 0.00 | 0.65 | 0.01 1.44 | 0.54

68

Due to the large number of configurations we only simulated the following six programs: doduc,
espresso, gcc, 1i, cfront, groff. This also allows us to examine the performance of each program
in more detail. We chose these programs because most of them have a high instruction cache miss rate.
Table 6.2 shows the instruction cache miss rates for these programs for an 8K, 16K and 32K direct mapped,
two-way and 4-way associative instruction caches. Since the NLS architectures performance is correlated with
the instruction cache miss rate (especially the NLS-cache design), these programs would bring to light any
performance concerns for the NLS architecture.

We compare the branch architectures using the branch execution penalty performance metric. We
record the percentage of misfetched branches (%MfB), and the percentage of mispredicted branches (%MpB).
We compute the branch execution penalty as before to be:

%MIB x misfetch penalty + %MpB X misprediction penalty
100 '
The results in this chapter assume a one cycle misfetch penalty and a four cycle mispredict penalty.
In all of our BEP graphs, we break the results into two parts. The top part shows the fraction of the BEP caused
by the misfetch penalties and the lower part shows the fraction due to the mispredict penalties.

BEP =

6.5 Calculating Register Bit Equivalent Costs

In order to compare the NLS ‘architecture to the BTB we must first determine the resource costs for
each architecture. To evaluate the area implementation costs of the NLS and BTB architectures we used the
register bit equivalent (RBE) model for on-chip memories proposed by Mulder et al. [45], where one RBE equals
the area of a bit storage cell. For the NLS architecture, we used the areaiqtic memory Model since the NLS
architecture is a tagless direct mapped memory buffer. Table 6.3 shows the values used for the NLS architecture,
where size,, is the size of the structure in words, and liney, is the size of each NLS predictor in bits. The NLS
predictor consists of the Line and Set fields along with the 2-bit Type field to predict the branch type. For an
8K instruction cache, the NLS architecture we modeled needs 8 bits to indicate the cache line, 3 bits to indicate
the instruction in the cache line to start fetching at, plus 2-bits for the branch Type field. Note that this assumes
only one instruction is fetched per cycle. If more instructions are fetched per cycle, fewer bits are needed to
represent which instruction to start fetching at for each NLS predictor.

For the BTB architecture, we used the areases associative cache for calculating the costs for on-chip
caches. Table 6.4 shows the values used for the BTB architectures, where size is the size of the data-side of the
cache in bits, liney, is the size of each BTB-entry in bits, tags is the number of tags used in each configuration, and
tsby, is the size in bits for each tag. We assumed a 32-bit address architecture, and we assumed each instruction
was four bytes. Therefore, the number of bits needed for tsby is 32 bits, minus 2 bits since each instruction is
four bytes, plus 2 bits for the Type field (as in the NLS architecture), and minus lg(tags/associativity) bits.
Also note that as the address size of the processor increases the cost of the BTB can increase significantly.

Figure 6.4 shows the RBE costs for implementing the NLS and BTB architectures using Mulder et
al. [45] on-chip memory area model. The figure shows the RBE costs for the NLS-cache (with two NLS
predictors per cache line) and a 512, 1024, and 2048 entry NLS-table for cache sizes of 8K, 16K, 32K and 64K.
It also shows the RBE cost for a 128 entry and 256 entry BTB with associativities of one, two and four.

The RBE cost of the NLS architectures depend on the size of the instruction cache. The NLS-table’s
RBE cost increases logarithmically as the instruction cache size increases, since the line field for each NLS
predictor has to also increase. When the number of lines in the instruction cache are doubled, another bit must
be added to each NLS predictor’s line field. In the NLS-cache architecture, the number of NLS entries per cache
line is constant, and as the cache size increases, the space devoted to NLS entries increases linearly. The RBE
cost of the BTB architecture depends on the associativity of the BTB and the size of the address space not on the
size of the instruction cache. In performing the BTB calculations, we assumed a 32-bit address space is used.
If the address space is increased, the cost of the BTB would also increase.

Table 6.3: Values Used to Calculated RBE Costs for NLS Architectures.

I NLS Configuration | Cache Size | size, | line, |
NLS Cache, 512 predictors 8K 208 13
NLS Cache, 1024 predictors 16K 448 14
NLS Cache, 2048 predictors 32K 960 15
NLS Cache, 4096 predictors 64K | 2048 16
512 NLS Table 8K 208 13
512 NLS Table 16K 224 14
512 NLS Table 32K 240 15
512 NLS Table 64K 256 16
1024 NLS Table 8K 416 13
1024 NLS Table 16K 448 14
1024 NLS Table 32K 480 15
1024 NLS Table 64K 512 16
2048 NLS Table 8K 832 13
2048 NLS Table 16K 896 14
2048 NLS Table 32K 960 15
2048 NLS Table 64K | 1024 16

Table 6.4: Values Used to Calculate RBE Costs for BTB Architectures.

] BTB Size ” Associativity ’ sizep] liney | tags] tsby }

128 BTB Direct | 4096 32| 128 | 23
128 BTB 2-way | 4096 32| 128 | 24
128 BTB 4-way | 4096 32 128 25
256 BTB Direct | 8192 32 256 | 22
256 BTB 2-way | 8192 32 256 | 23
256 BTB 4-way | 8192 32| 256 | 24

70

Register Bit Equivalent Costs for NLLS and BTB Architectures
30,000

25,000

20,000

15,000

Cost in RBE

10,000

5,000 -

8K 16K 32K 64K 8K 16K 32K 64K 8K 16K 32K 64K 8K 16K 32K64K 1 2 4 1 2 4

NLS Cache 512 NLS Table 1024 NLS Table 2048NLS Table 128 BTB 256 BTB

Figure 6.4. Register bit equivalent costs for the NLS-cache and a 512, 1024 and 2048-entry NLS-table for cache

sizes of 8K, 16K, 32K and 64K, and for a 128-entry and 256-entry BTB with associativities of one, two and
four.

71

6.6 NLS Architecture Results

This section provides performance results for the NLS-cache and NLS-table architectures, discusses
ideas for improving the NLS-cache design, and describes how our designs differ from related work.

6.6.1 Performance of the NLS-Cache Architecture

There are many possible designs and configurations for the NLS-cache architecture. We examined
associating from one to four NLS predictors per eight instructions in the instruction cache, and we examined
directly (Direct) mapping the predictors onto the instructions and using fully associative mappings with least
recently used (LRU) as the replacement policy. Figure 6.5 shows the branch execution results averaged over all
the programs in Table 6.5 for the configurations we examined. The figure shows the results for associating 1, 2
and 4 NLS predictors with an eight instruction cache line, directly mapping the predictors onto the cache line.
It also shows results for using 2 and 3 NLS predictors with a fully associative mapping onto the cache line with
LRU replacement. The results show that two NLS predictors per eight instruction cache line (2-Direct) gives
the most cost effective performance. In this configuration, the first NLS predictor is associated with the first
four instructions in the cache line and the second NLS predictor is associated with the last four instructions in
the cache line. Additional performance is seen by adding more predictors and increasing the associativity, but
the improvement in performance is minimal in comparison to the cost of adding the predictors and increasing
the associativity.

Tables 6.5, 6.6, and 6.7 show the percent of misfetched branches (MfB), the percent of mispredicted
branches (MpB), and the branch execution penalty (BEP) for these NLS-cache configurations and each of the
programs we examined.

6.6.2 Performance of the NLS-Table Architecture

Figure 6.6 shows the branch execution penalty results averaged over the programs in Table 6.2. The
figure shows results for the 2-Direct NLS-cache, and for 512, 1024 and 2048 entry NLS-tables for varying
instruction cache sizes and associativities. Each branch execution penalty (BEP) value is broken into two parts
with the upper part representing the fraction of the BEP due to the misfetch penalty, and the lower part the
mispredict penalty.

Figure 6.6 shows that the NLS-table consistently outperforms the NLS-cache when architectures with
equivalent costs are examined: the NLS-cache and the 512 NLS-table have equivalent costs when using an 8K
instruction cache, the NLS-cache and the 1024 NLS-table have equivalent costs when using a 16K instruction
cache, and the NLS-cache and the 2048 NLS-table have equivalent costs when using a 32K instruction cache. In
terms of the RBE cost, the NLS-cache is practical for only small caches (8K and 16K), but even then, the NLS-
table architecture has better performance when comparing architectures with equivalent costs. The difference in
performance arises from the NLS-cache discarding useful prediction information for each instruction cache miss
and because the predictors in the NLS-cache can only be used for the cache line with which they are associated.
In contrast, the NLS-table preserves prediction information across cache misses and a NLS-table predictor’s use
is not restricted to a given cache line. Figure 6.6 also shows that the difference in performance between the 512
and 1024 NLS-tables is small, and the difference between the 1024 and 2048 NLS-tables is smaller still. In the
remainder of this chapter we focus on the NLS-table design and only give results for the 1024 entry NLS-table.
Tables 6.8 and 6.9, show the percent of misfetched branches (MfB), the percent of mispredicted branches (MpB),
and the branch execution penalty (BEP) for all the NLS-table configurations for each instruction cache size and
associativity and for each of the programs examined.

6.6.3 Increasing the Performance of the NLS-Cache Architecture

Other NLS-cache organizations, not examined in this dissertation, can be studied in order to try and
match the performance of the NLS-table. The 512 entry NLS-table and the 2-Direct NLS-cache have the same
number of predictors for an 8K instruction cache. The difference in performance, as stated above, in these
two architectures comes from restricting the usage of the predictors in the NLS-cache design to a fixed number

72

Overall Average for NLS-Cache Architecture

0.6 (I 1 NLS Direct
: 2 NLS Direct
[]2NLSLRU
E= 4 NLS Direct
[]3NLSLRU

0.5 -

Branch Execution Penalty
o
w

o
—

S I R
B S S
I

0 *"8K Direct Direct I-Cache — 32K Direct I-Cache

Figure 6.5. Average NLS-Cache Performance. The BEP value is broken into two parts with the upper part
representing the fraction of the BEP due to the misfetch penalty, and the lower part the mispredict penalty.

Table 6.5: NLS-Cache Performance for Doduc and Espresso.

I-Cache Size | # NLS | Replace Doduc Espresso
& Assoc. Entries | Policy %MIB | %MpB | BEP || %MIiB | %MpB | BEP
8K 1 Direct 12.73 439 | 030 15.34 5.11 1 036
Direct 2 Direct 10.87 439 | 0.28 6.11 507 | 0.26
4 Direct 10.83 439 | 0.28 3.48 507 | 0.24
2 LRU 10.80 439 | 0.28 4.52 5.07 | 0.25
3 LRU 10.80 439 | 0.28 1.99 507 | 0.22
8K 1 Direct 7.29 439 | 0.25 14.79 511 | 035
2-way 2 Direct 5.11 439 1 023 5.33 5.07 | 026
4 Direct 5.06 439 | 0.23 2.49 5.07 | 023
2 LRU 5.03 439 | 0.23 3.53 507 | 024
3 LRU 5.03 439 | 0.23 1.00 5.07 | 021
8K 1 Direct 6.18 439 | 0.24 14.55 5.11 | 035
4-way 2 Direct 3.86 439 | 021 4.99 507 | 025
4 Direct 3.81 439 | 021 2.13 507 | 022
2 LRU 3.78 439 | 0.21 3.17 5.07 | 0.23
3 LRU 3.78 439 | 0.21 0.62 5.07 | 0.21
16K 1 Direct 10.15 439 | 0.28 14.92 5111 035
Direct 2 Direct 7.94 439 | 0.26 5.51 5.07 | 0.26
4 Direct 7.90 439 | 0.25 2.79 507 | 023
2 LRU 7.87 439 | 0.25 3.83 507 | 024
3 LRU 7.87 439 | 025 1.29 507 | 022
16K 1 Direct 5.24 439 | 023 14.50 5.11 1§ 0.35
2-way 2 Direct 2.89 439 | 0.20 4.89 5.07 | 025
4 Direct 2.83 439 | 0.20 2.03 5.07 | 0.22
2 LRU 2.81 439 | 0.20 3.08 5.07 | 023
3 LRU 2.80 439 | 0.20 0.53 5.07 | 0.21
16K 1 Direct 4.58 439 | 022 14.27 5.11 | 035
4-way 2 Direct 2.24 439 | 0.20 4.58 5.07 | 025
4 Direct 2.19 439 | 0.20 1.66 507 | 022
2 LRU 2.16 439 | 020 2.71 507 | 0.23
3 LRU 2.16 439 | 020 0.15 5.07 | 0.20
32K 1 Direct 3.93 439 | 022 14.64 511 | 035
Direct 2 Direct 1.55 439 | 0.19 5.12 5.07 | 0.25
4 Direct 1.47 439 | 0.19 232 507 | 023
2 LRU 1.43 439 | 019 || - 3.37 507 | 0.24
3 LRU 1.42 439 | 0.19 0.82 5.07 | 0.21
32K 1 Direct 4.11 439 | 022 14.32 5111 035
2-way 2 Direct 1.75 439 | 0.19 4.66 507 | 0.25
4 Direct 1.68 439 | 0.19 1.78 507 | 022
2 LRU 1.64 439 | 0.19 2.83 507 | 023
3 LRU 1.64 439 | 0.19 0.27 5.07 | 0.21
32K 1 Direct 4.21 439 | 0.22 14.22 5.11 1 035
4-way 2 Direct 1.80 439 | 0.19 4.50 507 | 0.25
4 Direct 1.74 439 | 0.19 1.57 5.07 | 0.22
2 LRU 1.71 439 | 0.19 2.62 507 | 0.23
3 LRU 1.71 439 | 0.19 0.06 5.07 | 0.20

73

Table 6.6: NLS-Cache Performance for Gece and Li.

I-Cache Size | # NLS | Replace Gee Li
& Assoc. Entries | Policy %MfB | %MpB | BEP || %MfB | %MpB | BEP
8K 1 Direct 25.63 12.63 | 0.76 23.80 4.14 | 040
Direct 2 Direct 19.97 12.54 | 0.70 17.90 4.14 | 0.34
4 Direct 17.93 12.53 | 0.68 15.70 414 | 032
2 LRU 18.05 12.53 | 0.68 16.50 4.14 | 033
3 LRU 17.44 12.53 | 0.68 15.70 4.14 | 032
8K 1 Direct 24.44 12.58 | 0.75 14.45 4.09 | 0.31
2-way 2 Direct 18.73 12.48 | 0.69 6.56 4.04 | 0.23
4 Direct 16.60 12.46 | 0.66 3.64 4.04 | 0.20
2 LRU 16.75 12.46 | 0.67 4.93 4.04 | 0.21
3 LRU 16.06 12.46 | 0.66 3.64 4.04 | 0.20
8K 1 Direct 23.58 12.58 | 0.74 12.45 4.08 | 0.29
4-way 2 Direct 17.69 12.48 | 0.68 4.08 4.03 | 0.20
4 Direct 15.62 12.46 | 0.65 1.06 403 | 0.17
2 LRU 15.76 12.46 | 0.66 2.38 4.03 | 0.19
3 LRU 15.10 12.46 | 0.65 1.06 4.03 | 0.17
16K 1 Direct 21.17 12.58 | 0.71 13.69 4,13 | 0.30
Direct 2 Direct 14.59 1248 | 0.65 5.53 4.08 | 0.22
4 Direct 12.14 12.46 | 0.62 2.52 408 | 0.19
2 LRU 12.44 1246 | 0.62 3.85 408 | 0.20
3 LRU 11.63 12.46 | 0.61 2.52 4.08 | 0.19
16K 1 | Direct 19.26 12.53 | 0.69 13.21 4.09 | 030
2-way 2 Direct 12.40 1242 | 0.62 5.08 4.04 | 0.21
4 Direct 9.84 12.40 | 0.59 2.09 404 | 0.18
2 LRU 10.16 12.40 | 0.60 342 4.04 | 020
3 LRU 9.31 12.40 | 0.59 2.09 4.04 | 0.18
16K 1 Direct 17.60 12.52 | 0.68 11.80 4.07 | 0.28
4-way 2 Direct 1041 12.41 | 0.60 3.29 4,02 | 0.19
4 Direct 7.72 12.38 | 0.57 0.20 4,02 | 0.16
2 LRU 8.08 12.38 | 0.58 1.54 4.02 | 0.18
3 LRU 7.16 12.38 | 0.57 0.20 4.02 | 0.16
32K 1 Direct 17.69 12.54 | 0.68 11.85 4.06 | 0.28
Direct 2 Direct 10.36 1243 | 0.60 343 401 | 0.19
4 Direct 7.62 12.41 | 0.57 0.40 401 | 0.16
2 LRU 8.03 1241 | 0.58 1.73 401 | 0.18
3 LRU 7.07 1241 | 0.57 0.40 4,01 | 0.16
32K 1 Direct 15.33 12.50 | 0.65 11.75 406 | 0.28
2-way 2 Direct 7.67 12.39 | 0.57 3.23 4.01 | 0.19
4 Direct 4.82 12.36 | 0.54 0.15 401 | 0.16
2 LRU 525 12.36 | 0.55 1.49 401 | 0.18
3 LRU 4.26 1236 | 0.54 0.15 4,01 | 0.16
32K 1 Direct 14.29 12.48 | 0.64 11.68 4,06 | 028
4-way 2 Direct 6.46 12.37 | 0.56 3.16 4,01 | 0.19
4 Direct 3.52 1234 | 0.53 0.07 4,01 | 0.16
2 LRU 398 1234 | 0.53 1.41 401 | 0.17
3 LRU 2.95 12.34 | 0.52 0.07 401 | 0.16

74

Table 6.7: NLS-Cache Performance for Cfront and Groff.

I-Cache Size | # NLS | Replace Cfront Groff
& Assoc. Entries | Policy %MfB | %MpB | BEP || %MfB | %MpB | BEP
8K 1 Direct 32.77 14.01 | 0.89 27.94 6.38 | 0.53
Direct 2 Direct 29.52 14.00 | 0.86 22,07 6.24 | 047
4 Direct 29.23 14.00 | 0.85 21.16 6.23 | 046
2 LRU 29.20 14.00 | 0.85 21.24 6.23 | 0.46
3 LRU 29.08 14.00 | 0.85 21.11 6.23 | 046
8K 1 Direct 31.01 13.92 | 0.87 25.00 6.20 | 0.50
2-way 2 Direct 27.54 1391 | 0.83 18.50 6.06 | 043
4 Direct 27.26 1391 | 0.83 17.52 6.04 | 0.42
2 LRU 27.22 1391 | 0.83 17.62 6.04 | 0.42
3 LRU 27.11 1391 | 0.83 17.46 6.04 | 042
8K 1 Direct 29.80 13.90 | 0.85 21.70 5.89 | 045
4-way 2 Direct 25.94 13.89 | 0.81 14.31 576 | 0.37
4 Direct 2551 13.89 | 0.81 13.27 575 | 036
2 LRU 2547 13.89 | 0.81 13.41 575 | 0.36
3 LRU 25.36 13.89 | 0.81 13.21 575 | 0.36
16K 1 Direct 26.16 1391 | 0.82 21.60 6.04 | 046
Direct 2 Direct 21.00 13.90 | 0.77 14.15 5.89 | 0.38
4 Direct 20.56 13.90 | 0.76 13.05 5.87 | 0.37
2 LRU 20.51 13.90 | 0.76 13.23 5.88 | 0.37
3 LRU 20.32 13.90 | 0.76 13.00 5.87 | 0.36
16K 1 Direct 23.64 13.87 | 0.79 17.68 5.65 | 0.40
2-way 2 Direct 18.32 13.85 | 0.74 9.26 5.48 | 0.31
4 Direct 17.76 13.85 | 0.73 8.07 5.46 | 0.30
2 LRU 17.73 13.85 | 0.73 8.28 547 | 0.30
3 LRU 17.52 13.85 | '0.73 8.01 546 | 0.30
16K 1 Direct 22.03 13.86 | 0.77 15.80 5.53 | 0.38
4-way 2 Direct 16.14 13.83 | 0.71 6.81 535 | 0.28
4 Direct 15.56 13.83 | 0.71 5.50 533 | 027
2 LRU 15.51 13.83 | 0.71 572 534 | 027
3 LRU 15.31 13.83 | 0.71 5.43 534 | 027
32K 1 Direct 20.09 13.82 | 0.75 17.16 5.62 | 040
Direct 2 Direct 13.83 13.80 | 0.69 8.73 546 | 031
4 Direct 13.04 13.80 | 0.68 7.49 544 | 0.29
2 LRU 12.99 13.80 | 0.68 7.68 545 | 0.29
3 LRU 12.75 13.80 | 0.68 7.42 544 | 0.29
32K 1 Direct 17.30 13.78 | 0.72 14.36 548 | 0.36
2-way 2 Direct 10.16 13.76 | 0.65 531 529 | 0.26
4 Direct 9.32 1375 | 0.64 3.90 527 | 0.25
2 LRU 9.27 13.76 | 0.64 4.15 528 | 0.25
3 LRU 9.01 1376 | 0.64 3.82 527 | 0.25
32K 1 Direct 15.95 13.75 | 0.71 13.36 536 | 0.35
4-way 2 Direct 8.47 1372 | 0.63 3.98 5.16 | 0.25
4 Direct 7.56 13.72 | 0.62 2.51 5.14 | 0.23
2 LRU 7.50 13.72 | 0.62 2775 5.14 | 0.23
3 LRU 7.24 1372 | 0.62 2.42 5.14 | 0.23

75

05
[_INLS Cache
=512 NLS Table | |
' - 11024 NLS Table
0.4 [12048 NLS Table
> ! |
o .
e .
(@) .
0.3
ie)
5
O
D
>
Lo.2
=
O
c
©
m l
0.1

76

Overall Average for NLS Cache and NLS Table

8K Direct 8K4-way 16K Direct 16K 4-way 32K Direct

Instruction Cache Size and Associativity
Figure 6.6. Branch execution penalty for the NLS-cache architecture and the 512, 1024 and 2048 entry NLS-
table architectures for direct mapped and 4-way associative caches of size 8K, 16K and 32K. The BEP value is
broken into two parts with the upper part representing the fraction of the BEP due to the misfetch penalty, and
the lower part the mispredict penalty.

32K 4-way

Table 6.8: NLS-Table Performance for Doduc, Espresso and Li

Instr NLS Doduc Espresso Li
Cache | Size || %MfB | %MpB | BEP || %MfB [%MpB [BEP || %MfB | %MpB | BEP
8K 512 6.88 439 | 0.24 1.55 507 | 0.22 8.15 410 | 0.25
Direct | 1024 6.02 439 | 0.24 0.90 5.07 | 0.21 7.35 409 | 0.24
2048 5.72 4.39 | 0.23 0.79 507 | 0.21 6.92 4.09 | 0.23
8K 512 4.88 439 | 0.22 1.40 5.07 | 0.22 4.49 4.04 | 0.21
2-way | 1024 4.01 439 | 0.22 0.76 5.07 | 0.21 3.60 4.04 | 0.20
2048 3.96 439 | 022 0.68 5.07 | 0.21 3.19 4.04 | 0.19
8K 512 4.17 439 | 0.22 1.23 5.07 | 0.21 3.42 4.03 | 0.20
4-way | 1024 3.35 4.39 | 0.21 0.59 5.07 | 0.21 2.54 4.03 | 0.19
2048 3.22 439 | 0.21 0.51 5.07 | 0.21 2.10 4.03 | 0.18
16K 512 5.55 439 1 0.23 1.34 5.07 | 0.22 3.74 4.09 | 0.20
Direct | 1024 4.67 439 | 0.22 0.67 5.07 | 0.21 2.84 4.08 | 0.19
2048 436 439 | 0.22 0.55 5.07 | 0.21 2.39 4.08 | 0.19
16K 512 3.59 439 1 0.21 1.20 5.07 | 0.21 3.79 4.04 | 0.20
2-way | 1024 279 439 | 0.20 0.53 5.07 | 0.21 2.89 4.04 | 0.19
2048 2.52 439 | 0.20 0.41 5.07 | 0.21 245 | - 4.04 | 0.19
16K 512 3.22 439 | 0.21 1.03 5.07 | 0.21 3.05 402 | 0.19
4-way | 1024 2.39 439 | 0.20 0.34 5.07 | 0.21 2.14 402 0.18
2048 2.20 439 | 0.20 0.22 5.07 | 0.20 1.68 4.02 | 0.18
32K 512 2.72 439 | 0.20 1.22 5.07 | 0.21 3.05 402 | 0.19
Direct | 1024 1.70 439 | 0.19 0.53 507 | 0.21 2.13 401 | 0.18
2048 1.26 439 | 0.19 0.41 5.07 | 0.21 1.67 4.01 | 0.18
32K 512 2.87 439 | 0.20 1.09 5.07 | 0.21 3.04 4.02 | 0.19
2-way | 1024 1.95 439 | 0.20 0.41 5.07 | 0.21 2.13 4.01 | 0.18
2048 1.60 439 | 0.19 0.28 5.07 | 0.21 1.67 4.01 | 0.18
32K 512 2.94 439 | 0.21 1.01 5.07 | 0.21 3.02 4.02 | 0.19
4-way | 1024 2.06 439 | 0.20 0.31 507 | 0.21 2.10 4.01 | 0.18
2048 1.76 439 | 0.19 0.18 5.07 | 0.20 1.64 4.01 | 0.18

77

Table 6.9: NLS-Table Performance for Gee, Cfront and Groff

Instr NLS Gece Cfront Groff
Cache | Size %MIB { %MpB [BEP || %MI{B] %MpB] BEP || %MIB [%MpB | BEP
8K 512 15.26 12.53 | 0.65 25.06 14.05 | 0.81 17.92 6.26 | 043
Direct | 1024 12.69 12.50 | 0.63 21.11 14.02 | 0.77 14.15 6.00 | 0.38
2048 11.25 12.50 | 0.61 18.76 14.01 | 0.75 12.81 595 | 0.37
8K 512 15.90 12.50 | 0.66 26.12 1398 | 0.82 17.44 6.17 | 042
2-way | 1024 13.64 1247 | 0.64 22.64 13.97 | 0.79 13.78 592 | 0.37
2048 12.55 1248 | 0.62 20.82 1397 | 0.77 12.74 5.89 | 0.36
8K 512 1551 12.52 | 0.66 25.66 1399 | 0.82 15.79 599 | 040
4-way | 1024 13.35 12.50 | 0.63 22.48 13.98 | 0.78 12.26 573 | 035
2048 12.23 12.50 | 0.62 20.67 13.98 | 0.77 11.12 5.68 | 0.34
16K 512 12.88 12.47 | 0.63 21.91 1396 | 0.78 14.90 6.07 | 0.39
Direct | 1024 9.80 1243 | 0.60 17.26 1391 | 0.73 10.53 579 | 0.34
2048 8.12 1242 | 0.58 14.37 13.89 | 0.70 9.02 571 | 0.32
16K 512 12.48 1246 | 0.62 21.40 13.93 | 0.77 13.43 5.86 | 0.37
2-way | 1024 9.54 1242 | 0.59 17.10 13.89 | 0.73 9.04 5.59 | 0.31
2048 7.97 1241 | 0.58 14.61 13.88 | 0.70 7.55 5.51 | 0.30
16K 512 11.65 1246 | 0.61 20.44 13.92 | 0.76 12.52 5.86 | 0.36
4-way | 1024 8.49 12.42 | 0.58 16.04 13.90 | 0.72 7.99 5.53 | 0.30
2048 6.91 1241 | 0.57 13.56 13.89 | 0.69 6.50 543 | 0.28
32K 512 11.50 12.45 | 0.61 19.28 13.92 | 0.75 12.91 5.88 | 0.36
Direct | 1024 8.06 1241 | 0.58 14.09 13.87 | 0.70 8.24 5.55 | 0.30
2048 6.16 12.40 | 0.56 10.65 13.85 | 0.66 6.51 541 | 0.28
32K 512 10.70 1244 | 0.60 18.42 13.89 | 0.74 12.03 5.81 | 035
2-way | 1024 7.18 1239 | 0.57 13.10 13.84 | 0.68 7.19 548 | 0.29
2048 5.29 12.38 | 0.55 9.78 13.81 | 0.65 5.49 5.36 | 0.27
32K 512 10.32 1243 | 0.60 17.92 13.87 | 0.73 11.62 5.80 | 0.35
4-way | 1024 6.65 12.38 | 0.56 12.39 13.81 | 0.68 6.66 544 | 0.28
2048 4.66 12.36 | 0.54 8.95 13.78 | 0.64 490 5.28 | 0.26

78

79

of instructions and because the NLS-cache predictors are flushed when an instruction cache line is flushed.
Therefore, one way of improving the performance of the NLS-cache design we modeled is to not flush the
predictors when the cache line is flushed. This in itself will not bring the NLS-cache performance equal to the
NLS-table performance, because there is only one predictor, in the 2-Direct design, for every four instructions
in the cache. When the cache line is swapped out, there is a reasonably high probability that the new cache line
will contain a branch which will erase the old NLS predictor’s contents. Therefore, when the old cache line is
brought back into the cache, the NLS predictor might not contain the prediction information associated with the
previous line. If there were more predictors per cache line (e.g., one for every instruction) then the probability of
the predictor still retaining useful information across cache misses increases. This leads to the question of how
to properly map predictors onto the NLS-cache design in order to achieve similar performance to the NLS-table
design with the same number of predictors.

One solution is to have the cache lines share predictors so that each cache line has one predictor
associated with every instruction. Then, if a cache conflict exists, the likelihood that the NLS predictor still
contains useful information increases. If we assume we have an 8K instruction cache, with eight instructions
per cache line (32 bytes each) and 256 lines, we could achieve this goal by having 4 cache lines share 8 NLS
predictors. This design would have the same number of NLS predictors for the instruction cache as the 2-Direct
NLS-cache design. In this case the first predictor is associated with the first instruction in each cache line, the
second predictor with the second instruction in each of the four cache lines and so on. This in effect would
allow a branch intensive cache line to use more predictors if it needs, and would also increase the likelihood of
predictors retaining their prediction information across cache misses. This could be implemented by spreading
the 4 cache lines, that share the 8 NLS predictors, 32 cache lines apart in the 8K instruction cache. This may
work better than having the 4 cache lines right next to each other in the instruction cache because of the principle
of locality. It would be better to have cache lines that are not used together to share predictors rather than having
instructions that are close together share predictors. Notice that each time we modify the NLS-cache design so
that cache lines share predictors in this way, we are getting closer and closer to the NLS-table design, and the
one disadvantage of this design is that one predictor for a given cache line can be erroneously used to predict a
branch for a different cache line.

6.6.4 Related Work

There are several branch prediction strategies related to the NLS design. Our NLS-table architecture
was derived from the BTB: each uses a table holding pointers to branch destinations. The primary difference,
besides eliminating the tag, is that the BTB encodes the full address, while the NLS encodes only the instruction
cache line and set, allowing for larger NLS-tables.

Bray and Flynn [6] described a design similar to the NLS-cache that associated branch target addresses
with each cache line. As in our study, they found approximately one entry per four instructions provided the
most cost effective design.

Johnson [32], suggested the idea of using cache successor indices as in the NLS-cache architecture
for instruction fetch and branch prediction. His architecture associated the cache indices with each cache line
as the NLS-cache architecture does. The architecture he studied is slightly different than our NLS-cache design
since he only considered using the index for one bit conditional branch prediction. With one bit prediction,
the cache index stores either a pointer to the fall-through line or the target line for the next instruction fetch.
In order to predict the fall-through line, the cache index is updated even when a non-taken branch is executed.
By comparison, we only update the NLS predictor when taken branches are encountered to obtain improved
branch prediction accuracy when using a decoupled PHT. In addition, we expanded the design by examining
various configurations for associating the predictors with each cache line, including set prediction for associative
instruction caches, and we decoupled the predictors from the cache line forming the NLS-table design.

Variations on the NLS-cache design can be found in recent microprocessor architectures. The TFP
microprocessor (MIPS R8000) [31] has a 1024 entry NLS-cache architecture similar to the design proposed by
Johnson. It has one NLS predictor for every four instructions, and a one-bit branch predictor coupled with each

80

NLS predictor. The UltraSPARC microprocessor also uses a similar 1024 entry NLS-cache design, associating
an NLS predictor with every four instructions. Instead of using one-bit prediction as in the TFP, the UltraSPARC
uses a 2-bit dynamic conditional branch predictor for every two instructions in the instruction cache.

The NLS-table design uses an independent table of next line and set predictors. This basic design was
recently patented by Steely and Sager [58]. However, they have not published any performance comparisons,
and the patented design only addresses direct mapped caches, while our design addresses both direct mapped
and associative caches. Furthermore, the patented architecture uses a single “computed goto” register to store
the destination of indirect jumps. By comparison, we use the NLS predictor to provide the predicted cache index
for all branch destinations other than fall-through branches and return instructions. Although we developed
our NLS architecture independently, there are other similarities as well as other differences; see [58] for more
details.

6.7 Performance of the BTB Architecture

Figure 6.7 shows the average branch execution penalty (BEP) for the programs simulated in this paper.
The 1024 entry NLS-table has better performance than the similar costing 128 entry BTB, even when the BTB
has a high degree of associativity. The 1024 entry NLS-table and 256 entry BTB exhibit comparable performance
even though the 1024 entry NLS-table has roughly half the RBE cost of the 256 entry BTB. Table 6.10 gives
the detailed percentage of misfetched branches (MfB), mispredicted branches (MpB), and the BEP for all the
BTB configurations simulated.

Table 6.10: Branch Target Buffer Performance

128 entry BTB 256 entry BTB 512 entry BTB
Program | A || %MfB | %MpB [BEP || %MfB | %MpB | BEP | %MiB | %MpB | BEP
doduc 1 5.69 439 | 0.23 3.03 439 | 0.21 1.80 439 | 0.19
2 3.15 439 | 0.21 2.03 439 | 0.20 0.89 439 | 0.18
4 2.52 439 | 0.20 1.77 439 | 0.19 0.76 439 | 0.18
espresso | 1 5.25 5.07 | 0.26 1.78 5.07 | 0.22 0.97 5.07 | 0.21
2 2.12 5.07 | 0.22 0.76 5.07 | 0.21 027 { - 507 | 021
4 1.68 5.07 | 0.22 0.44 5.07 | 0.21 0.10 5.07 | 0.20
li 1 11.01 4.00 | 0.27 4.69 3.95 | 0.21 227 401 | 0.18
2 8.56 4.06 | 0.25 1.50 4.02 | 0.18 0.50 401 | 0.17
4 7.44 4.06 | 0.24 0.66 4.01 | 0.17 0.05 401 | 0.16
gee 1 18.64 12.46 | 0.68 12.78 1241 | 0.62 8.26 12.38 | 0.58
2 17.43 12.46 | 0.67 10.56 1240 | 0.60 5.63 1235 | 0.55
4 16.24 12.45 | 0.66 9.09 12.39 | 0.59 3.90 12.35 | 053
cfront 1 28.86 13.94 | 0.85 21.70 1387 | 0.77 13.64 13.79 | 0.69
2 27.21 13.90 | 0.83 17.98 13.85 | 0.73 10.70 1378 | 0.66
4 25.12 1393 | 0.81 15.84 13.82 | 0.71 8.56 1373 | 0.63
groff 1 2341 6.29 | 049 15.03 5.87 | 0.39 9.41 5.70 | 0.32
2 19.78 596 | 044 12.16 5.65 | 035 5.07 5.30 | 0.26
4 17.60 5.84 | 041 8.46 542 | 0.30 3.63 521 | 0.24

When comparing the NLS-table to the BTB, one must keep in mind that a direct mapped BTB has a
shorter access time than an associative BTB. Figure 6.8 shows the estimated access time, in nanoseconds, for a
128 entry BTB and 256 entry BTB with direct mapped, two, and four way associativity. These estimates were
derived using the CACTI timing model of Wilton and Jouppi [63]. Their model derives access times for direct
mapped and associative caches such as BTBs, but not for tag-less direct mapped memory buffers. Therefore we
do not show the access times for the NLS-table, but we believe it would be similar to that of a direct mapped
BTB. This figure shows the access time differences between direct mapped and associative cache structures.
The differences arise from the extra time needed to perform the tag comparison. In a direct mapped cache, the
tag comparison can be done in parallel while the data output is being driven to the next stage. The figure shows
that the 4-way associative BTB access time is 30 to 40% longer than the same sized direct mapped BTB. This

81

Overall Average for BTB and 1024 NLS Table

Misfetch
W Mispredict

Branch Execution Penalty

o o0 m m @))) ©))
s b 5 B 5. 5 8. 3. 8. 3.
T ©> ©8 ®© ®8 ©3
B > 3] >, ko g HQO F3z FO 3
o) @ @ o = = : = ;
= = = = 35 33 %8 9s 45 9+
A z &) < Zv Zv ZxX Zx zZx Zx
9 © Q © O o L <+ <+ <8

N Q Tl N N N N Nl N

- - N = = =) =) S =)

- e ¥ b - -

Figure 6.7. Branch execution penalty for the 1024 entry NLS-table architecture for direct mapped and 4-way
associativity instruction caches of size 8K, 16K and 32K, and for a 128 entry and 256 entry BTB.

82

should be considered when comparing the performance of the direct mapped BTB and NLS architecture to the
associative BTB architectures since the cycle limitation of the instruction fetch may effect the entire machine.
In [31], the designers of the TFP (MIPS R8000) microprocessor stated:

We evaluated several well-known branch prediction algorithms for layout size, speed, and prediction
accuracy. The most critical factor affecting area was the infrastructure required to support a custom
biock: power ring and power straps to the ring, and giobal routing between the branch prediction
cache and its control logic. Speed was a problem with tag comparisons for those schemes that are
associative. Accordingly we chose a simple direct-mapped, one-bit prediction scheme which can be
implemented entirely with a single-ported RAM.

6.8 Comparison of NLS-Table and BTB Architectures

Figures 6.9,6.10,6.11,6.12,6.13, and 6.14 compare the performance of the NLS and BTB architectures
using the branch execution penalty (BEP) for the programs in Table 6.2. Each graph compares the direct mapped
and 4-way setassociative 128 and 256 entry BTBs to the 1024 entry NLS-table. It was shown in previous sections
that the 1024 entry NLS-table and the 128 entry BTB have similar implementation costs using the RBE model,
that the 256 entry BTB implementation cost is twice that of the 1024 entry NLS-table, and that the access time
of an associative BTB is 30 to 40% longer than similar sized direct mapped structures.

The differences in the BEP between the BTB and NLS architectures is attributable to differences in
the number of misfetched branches. Remember that the BTB and NLS architectures are not used to predict
the direction for conditional branches. Conditional branch prediction information is stored in a separate pattern
history table (PHT) and the conditional branches are predicted using the PHT. The NLS and BTB architectures
are used to eliminate the misfetch penalty associated with the extra cycle taken to determine the branch type and
to compute the target address for the next instruction fetch. Once the branch type and target line are predicted,
the next fetch line can be chosen from the return stack, precomputed fall-through line, or the predicted target
line. Both the NLS and BTB architectures are used to predict the destination for indirect jumps. Table 3.4 shows
that indirect jumps constitute 0-5% of the breaks in the programs we instrumented. In these BEP figures, any
difference in the mispredict penalty for a given program is attributed to the variation in the mispredict penalty
for indirect jumps across the different architectures. The figure shows that the difference in mispredict penalty
across the different architectures is only noticeable for grof £, and even then the difference is insignificant.

These figures show that the BEP for the NLS architecture decreases as the cache size increases or the-
cache associativity increases. Recall that each NLS predictor indicates the cache line that should be fetched.
The information associated with a NLS predictor is only useful if the actual destination of a branch is in the
predicted location in the instruction cache. In smaller caches, the NLS predictors will often point to the proper
cache line and set, but the desired instruction may not be present or may have been reloaded into a different set.
With a NLS predictor, a branch destination that has been displaced from the instruction cache causes a misfetch
penalty. When the current instruction is fully decoded, the misfetch is detected and the actual instruction is
fetched. In this case, the misfetch penalty is associated with a cache miss. In contrast, the BTB always uses the
full target address. This allows the BTB architecture to possibly locate the proper instruction in set associative
caches, or to initiate an instruction cache miss a cycle earlier than the NLS architecture. If an associative cache
is used, the NLS architecture would have to look in the other set on a misfetched branch, or do a full set lookup.
When the cache miss rate is lowered, there is an increased probability that a cache line will still be resident when
a NLS predictor is used. The BTB architecture will not benefit from the lower cache miss rate, and there is no
change in the BEP for varying cache configurations. Whole-program restructuring [40, 43, 49] is one technique
that can be used to reduce the instruction cache miss rate at no additional architectural cost.

Why does the NLS architecture have significantly better BEP performance than the BTB for some
programs, such as gcc, cfront and groff, but only slightly better or comparable performance for other
programs, such as doduc and espresso? The program characteristics in Table 3.5 show the programs that
benefit most from the NLS architecture have more static branch sites then the programs that show little benefit.

Nanoseconds

ime in

BTB Access T

83

. Access Time for BTB Architecture

~

M Direct

»

¢}

N
)

w
:

N
i

—k
!

128 Entry BTB 256 Entry BTB

Figure 6.8. Access time for the BTB architecture with varying associativities. The relative values between the
BTB access times are more important than the absolute values for a particular processor technology.

84

»
O

o
©

Misfetch
W Mispredict

o
o3

o
\l

o
o

o
&)

©
~

Branch Execution Penalty
o
'oa

m o m m [0}) @) [})
5 & & & &, 8. 8. 3. 3. 3.
T 5 T > ®O0 T = T D T 3
s > 5 > Fo T FO Fz FO k3
@ ®© @ © = > on = : = w3
= = £ s 98 83 %8 9< 95 9B
A z A § Zv Zv Zx Zx Zx Zx
ee] © © © +©® <o @ 9@ <y <+ &
N Y Lo re) Q Q Ql l Q Q
- N a & o o) S o o o
- - - -— - -

Figure 6.9. Performance comparison between the NLS and BTB architectures using branch execution penalty
for Doduc. Each value is broken into two parts. The top represents the fraction of the BEP due to the misfetch
penalty and the lower part the fraction due to the mispredict penalty. The NLS results are given for an 8K, 16K
and 32K instruction cache with direct mapped and four-way associativity. The BTB results are only shown once,
since their results do not change for the different instruction cache configurations. The 1024 entry NLS table and
the 128 entry BTB have equivalent implementation costs, and the cost for the 256 entry BTB is approximately
twice that of the 1024 NLS-table.

85

Rem-t Mze
‘slqel SN ¥201

198410 Mce
‘8|qel STIN 20l

Misfetch
W Mispredict

Aem-t Y91
‘®|qel STIN ¥20L

198410 M91L
‘8lqeL STIN 20}

Aem-1 Mg
‘@|qe] SN ¥20l

1o81Id M8
‘8|qeL STIN ¥201

Cfront

a1g Aem- 962

g14d 8413 992

g19 fem-y gzgi

g.14g19241d 8¢t

¥

T
© N © 1 <+ o

o o [e] (e (=)

o o
Ajeuad uonnoax3 youeiqg

T 1 i 1 T

0.1 -

9.
o

Table and BTB Performance for Cfront

NLS-

Figure 6.10

86

Espresso

Rem-v Mze
‘@|qel STIN v20l

Misfetch

108410 Mee
‘8jgel STIN ¥2ol

Aem-y Mol
‘a|del SN ¥201

M Mispredict

10811g M91L
‘e|qel STIN ¥20l

Kem-v M8
‘algel SN ¥20}

108110 M8
‘8|qeL STIN 2ot

g1¢g Aem-f 962

d.14d 1981l 95¢

glg Aem-v gz1

g14d310841d 8¢l

o
o

® K 9 0w ¥ o
© ©o o o

S S
>:.mC®n_ uolindeX4 youelig

Figure 6.11: NLS-Table and BTB Performance for Espresso.

87

|
|
kS
O
o
Q
L
=
n
&)
&)
Q)
T 1 T 1 1 m T
@ © N © v ¥ o o
(@] (@] o o o (@] (e} (@] (o)
Ajjeusad uonnosx3 youeiyq

Kem-v Mze
‘s|qel SN v20L

10811 Mce
‘8|qel STIN ¥20}

Kem-y M9l
‘s|qe L SN ¥201

198410 M9l
‘8|qel SN ¥20}

fem-y 38
‘e|lqel STIN 201

18d1Ig M8
‘8jgel SN ¥20}

g19 Aem-t 962

.14 109lid 9G¢

g19 fem-v 821

g14g10941g 8¢l

Figure 6.12: NLS-Table and BTB Performance for Gece.

88

Rem-p yze
‘@lge L SN v20t

198410 Mce
‘8|qel STIN 20}

Aem-y 391
‘8|qel SN 201

Misfetch
M Mispredict

108410 Mol
‘8|qeLl SN 720t

Aem-¥ Mg
‘8|qe L STIN #7201

Li

18dig M8
‘e|qel SN ¥20t

g19 Aem-t 96¢

g14d 30911g 95¢

a19g Aem- gzt

g14d 15841 821

© N © 1 T o
o o o o

o o
\ﬁ_m.cmn_ uollNndvX3 youelig

o
o

Figure 6.13: NLS-Table and BTB Performance for Li.

89

Misfetch

M Mispredict

Groff

Rem-t Mee
‘s|qel STIN #20}

108110 McE
‘e|qel STIN ¥20l

Aem-y 9L
‘s|qel STIN 20t

10841 M9t
‘8|qeL STIN 201

Aem-1 Mg
‘@|qel SN ¥201

19841g M8
‘8|gel STIN ¥201

alg Aem-p 952

ga.1d 1v8lid 95¢

a19 Aem-y gzL

a19g1°94id 8¢l

®
o

(o0}

Ay

I~

o

©

o

L0

o

T

< ep] (8N}

o O o

0.1 -

BUS4 UOIINDBXT Yyoueig

Figure 6.14: NLS-Table and BTB Performance for Groff.

90

For example, in doduc, three individual branches constitute 50% of the branches encountered during program
execution. One need only store those three branches to achieve 50% fetch accuracy. By comparison, gcc,
cfront and groff have many more branches encountered during execution. The larger number of branches
leads to capacity misses and conflicts in any prediction mechanism using a fixed-size resource. Because each
NLS predictor in the NLS architecture is smaller than the comparable BTB entry, the NLS architecture has many
more prediction entries using the same resources. Overall, the larger number of less-precise NLS predictors
benefits program performance more than the fewer, more precise, BTB entries.

A larger program address space poses several problems for BTB architectures, but is inconsequential
for the NLS architecture. As the program address space increases, the tag size used to identify branches in the
BTB must either increase, or the information stored in the BTB will become less precise. Likewise, the size of
the destination address field must also increase, or the BTB architecture would store only partial target addresses,
decreasing the prediction accuracy of the BTB and making the address stored more like a NLS predictor. In our
RBE calculations we assumed a 32-bit address space, so the target address stored in the BTB is 30 bits. If the
address space was increased, the area needed by the BTB would also increase. By comparison, the NLS-table
design does not use a tag nor does it store the full target address, so an increased address space has no effect on
the size of the NLS-table. The size of a NLS predictor depends only on the number of lines in the cache and the
number of instructions in the line. As the instruction cache size is increased the size of the NLS-table increases
logarithmically. In contrast, an increase in cache size has no effect on the size of the BTB.

6.9 Summary

In this chapter, we have presented two alternative NLS architectures, the NLS-cache and NLS-table.
Our results show that decoupling the NLS predictors from the instruction cache (NLS-table) performs better
than Johnson’s [32] approach of associating the NLS predictors with the cache line (NLS-cache), and that
the NLS predictors can be combined with highly accurate two-level correlated branch prediction architectures
instead of using the NLS predictors for one-bit branch prediction as in Johnson’s design. We also found that the
NLS-cache is not a scalable design, since the number of NLS predictors increases linearly with the cache size.
For the NLS-table design, the results show that there is little benefit from increasing its size past 1024 entries
for the programs we examined.

The NLS-table is a tag-less, direct mapped buffer with better instruction fetch prediction than direct-
mapped BTBs with similar costs. When comparing the performance of the NLS architecture to associative
BTBs, one shouid keep in mind that the access time for an associative BTB is 30 to 40% longer than the similar
sized direct mapped structures. Our results show that the 1024 entry NLS-table performs better than the 128
entry BTB, with similar RBE costs. For a 256 entry BTB, the 1024 NLS-table had comparable performance
for approximately half the RBE cost. The NLS-table can offer better performance than the BTB because the
cost of a NLS entry is much less than a BTB entry, allowing the NLS-table to contain many more entries than
BTB architectures with similar implementation costs. This allows the NLS-table to perform better than the BTB
design especially for programs with many branches. For programs with fewer branches, the architectures have
comparable performance. The performance of the NLS architecture improves as the instruction cache miss rate
is lowered, and its performance can be improved by using whole-program analysis, basic block reordering, and
intelligent procedure layout.

CHAPTER 7
PRECOMPUTED BRANCH ARCHITECTURE

A branch target buffer (BTB) is often used to provide target addresses for taken branches and to predict
the destination of indirect jumps. The previous chapter described a next cache line and set (NLS) architecture
as an alternative design to the BTB, effectively predicting which instructions to fetch from the instruction cache.
Using a BTB or NLS architecture avoids the delay needed to calculate the destination address and they effectively
reduce the misfetch penalty. However, both of these architectures still require a fair amount of hardware. We
propose using a software solution to help solve this problem, thus eliminating the need for the BTB and NLS
architectures.

We propose that a design used in older computers, such as the PDP-8, be used in modern architectures.
We call this the Precomputed-Branch architecture. This architecture precomputes the branch destination
for most branch instructions, allowing the branch information to be stored with the instruction. We consider
computing branch destinations at link time and as instructions are fetched into the instruction cache; both
alternatives offer similar performance with different advantages. A very small branch target buffer is still useful
to predict indirect branches, which can not be precomputed. Our results show that the Precomputed-Branch
architecture performs better than an architecture using a branch target buffer, and has significant hardware
savings. This is particularly true for larger programs with many branches. !

7.1 Introduction

Architectures using a BTB or NLS architecture can issue a large number of instructions per cycle
because of accurate branch and fetch prediction. However, these architectures can lead to complex designs
and can be costly to implement. This chapter shows that we can maintain a low branch execution cost with
considerably fewer resources than those needed by architectures using a branch target buffer. Our proposed
architecture assumes a flat address space, and eliminates program-counter relative (PC-relative) branches. In
this design, the destination address is quickly computed by precomputing the low-order bits of the destination,
and concatenating those bits with the high-order bits of the current address, effectively dividing memory into a
number of program segments or “branch spaces”. Branches between branch spaces are computed and performed
as indirect jumps. This design assumes the program linker or compiler can partition the program into a number
of segments and modify the program’s structure to select between intra-space and inter-space branches [56]. We
also describe how existing architectures using PC-relative branches can be extended to benefit from precomputed
branches.

The Precomputed-Branch architecture provides area-efficient support for conditional, unconditional
and procedural branches, where the branch destination is explicitly specified. Other researchers [33] have
described inexpensive mechanisms to predict the destination of procedure returns. The only remaining branches
requiring prediction are indirect jumps, where the destination may be specified by values computed during
execution. We show that a small branch target buffer, dedicated to predicting only the outcome of indirect
jumps, benefits a number of programs, especially object-oriented programs containing a large number of
indirect jumps.

7.2 The Design of Two Branch Architectures

We used trace-driven simulation to compare the Precomputed-Branch architecture to a design that uses
an efficient branch target buffer. We simulated the decoupled branch target buffer proposed in [7], because this
architecture provides similar to better overall branch performance than the coupled models proposed in [66]. In

"Parts of this chapter were submitted to the Journal of Computer and Software Engineering [11].

92

this section, we describe this architecture and follow that with a detailed description of the Precomputed-Branch
architecture.

7.2.1 A BTB-based Instruction Fetch Architecture

Figure 7.1 is a schematic representation of a conventional branch prediction and instruction fetch
architecture using a branch target buffer. As described earlier, a BTB is used to eliminate misfetch penalties
by providing taken target addresses, while a pattern history table (PHT) is used to predict conditional branches.
In this design, the global history register is combined with the program counter using an exclusive-or, and the
result is used as the index into the PHT [41]. In both the BTB and Precomputed-Branch architecture, we assume
the branch type is encoded in the instruction, or pre-decoded and stored in the instruction cache. A 32-entry
return address stack is used to predict the outcome of return instructions. The current instruction address is
concurrently offered to the instruction cache, providing the actual instruction, and to the BTB. There are three
important types of branches: direct or indirect branches, conditional branches and returns. Depending on the
branch type and the prefetched branch prediction information from the 2-level PHT, either the BTB target
address, the computed fall-through address, or the return stack address is selected as the next instruction fetch.
If the branch misses in the BTB, an instruction may be misfetched, but the branch prediction information (PHT
and return stack) is used to predict fetch addresses after the decode stage.

When a return instruction is encountered, the branch type indicates that the instruction is a return and
the top of the return stack is used to fetch the next instruction. The first time a particular unconditional branch
is entered into the BTB, the BTB entry records the computed target address. When the branch is encountered
again, the branch type indicates this is an unconditional branch, and selects the target address in the BTB.
Conditional branches have similar actions; however, the prediction information from the PHT is used to predict
the likely outcome of conditional branches. Depending on the predicted outcome, the stored destination (which
is always the ‘taken’ address) or the fall-through address is used to fetch the next instruction.

7.2.2 The Precomputed-Branch Architecture

The BTB serves two roles. Only taken branches are entered in the BTB, so a BTB hit indicates the
instruction is a branch, and the BTB provides the precomputed target address. As mentioned in Chapter 6,
we assume that the instruction cache or the instruction itself can identify the branch type. This can either be
made explicit in the instruction encoding, or the instruction can be partially decoded when it is brought into the
instruction cache; a similar mechanism has been used in several architectures, such as the MIPS R10000 [44].
The only remaining function provided by the BTB is the precomputed destination address for taken branches.
The BTB is needed because the destination address specified by a branch instruction can not be fetched from
the instruction cache and computed all in a single cycle when using PC-relative destinations.

Figure 7.2 shows our proposed instruction fetch architecture. A program is broken into multiple
branch spaces. Branches within a single branch space can use a normal branch instruction, while branches
between branch spaces must be computed as an indirect branch. The displacement indicates the branch target
displacement within the current branch space. The lower-order bits of the branch destination are simply
concatenated with the higher-order bits of the current PC address, and no addition is needed. Issues surrounding
branch spaces, and the complications that arise, are discussed later.

The concatenating of the Precomputed-Branch eliminates misfetch penalties for conditional branches,
unconditional branches and direct procedure calls. This leaves indirect branches as the only branch type without a
precomputed branch address. Thus, we use a small BTB to predict indirect branches; otherwise they will always
be mispredicted. Since this branch target buffer is only used for indirect jumps, we call this an indirect jump
buffer (IIB) to clarify the distinction between the BTB architecture and the Precomputed-Branch architecture
using an IJB. Alternatively, we can use profile-based prediction of indirect function calls, which has been shown
to be effective for the C++ programming language [9], where such branches occur frequently.

A

Global XOR Two-Level Pattern History Table

Figure 7.1: A Schematic Representation of the Branch Target Buffer Architecture.

Global XOR Two-Level Pattern History Table

Instruction
Fetch
Address
L]
\
Instruction Instruction
Cache B nT ; Fetch Size Return
. ranch Targe
Buffer Address Stack
¢ Valid Bit
Top Of Stack
Branch Type | [Address Tag P
Target Address \
Add
LA | Y VY
Select Next .
Fetch > MUX
\/
Next Instruction
Fetch Address

A

Instruction
Fetch
I Address
/
Instruction Instruction
Cache Fetch Size Return.
Address Stac
’ Branch Type “ Displacementl Top Of Stack
Y
Y \ Add

Figure 7.2: A Schematic Representation of the Precomputed-Branch Architecture.

\/ A
Select Next

l CONCAT

\

Fetch

MUX

y

Next Instruction
Fetch Address

93

94

7.2.3 Computing the Branch Target

Traditional branch architectures use a PC-relative displacement; Figure 7.3(a), modeled after the
diagrams in [34], schematically illustrates the process. In the encodings, information in lightly outlined boxes
is provided or computed at execution time; for example, in Figure 7.3(a), the PC is available during execution.
Heavily-outlined boxes show the information provided by the branch instruction — in Figure 7.3(a), the instruction
provides n + 1 bits. On the right-hand side, the solid boxes show the range of instructions that can be addressed.
A displacement stored in the branch instruction is sign-extended to the size of the program counter and added to
the program counter. Each branch can directly address instructions at address PC' — 2»~1 — 1...PC + 27!,
For simplicity, we assume the program counter is always aligned on instruction boundaries, since we are chiefly
concerned with architectures with fixed-width instructions.

Katevenis [34] proposed several branch encodings where the branch displacement field contains the
least significant bits of the branch target address. Figure 7.3(b), shows one such encoding. Here, the sign bit for
the offset and the carry for the addition of the lower bits are computed by the compiler (or linker) and encoded
in the instruction. The lower bits can be immediately used to index the cache. Concurrent with the cache fetch,
the higher order bits are computed and matched against the address tags when the cache fetch returns. If the
tags are mismatched with the actual PC, an instruction-cache miss occurs and the pipeline is stalled. During
the stall, the program counter is corrected. Since the instruction must include both the carry and the sign bit, an
n-bit displacement can only address PC — 2""2 —1..,PC + 22

Figure 7.3(c) diagrams our proposed branch encoding. We use an explicit displacement instead of a
PC-relative displacement because we need to calculate target addresses in time to use them for the next instruction
fetch and, as Katevenis noted, an adder is usually too complex for this purpose. The n-bit displacement is used
as the lower order part of the destination address, and is concatenated with the higher order bits of the current
PC to form the new fetch address. Each branch can then jump within a branch space of 2™ instructions. Every
direct branch within a 2" branch space can only branch within that space. To branch outside that span, an
indirect jump must be used.

7.2.4 Other Non-Relative Branch Architectures

Using non-relative branches is not a new idea, although we are unaware of studies that emphasize the
branch layout algorithms, the modern branch prediction architectures, or the large diverse set of applications
examined in this chapter.

The memory for the PDP-8 was divided into eight “memory fields,” each field was divided into 32
pages of 64 locations (words). A JMP or JMS instruction could jump within a single memory page (e.g., to
one of 64 words), or could specify an indirect reference to a word containing a 12-bit destination. Branches
within the same page were precomputed, and all other branches required an indirect reference. In the Crisp
processor [23], a branch destination is included in every decoded instruction in the instruction cache, resulting
in very large instructions — 192 bits. This technique consumes a considerable amount of space and may limit
the processor cycle time. A mechanism similar to that used in the PDP-8 was used in Control Data and IBM
processors, where instructions were optimized to execute within an instruction buffer — Lee and Smith [38]
provide a good survey.

By comparison, we rely on the program linker to compensate for the limited branching by precomputing
branch destinations and reducing the number of complex operations (indirect branches). This applies the “RISC
design philosophy” to branch architectures by letting the software (compiler and linker) share the burden of
making the hardware efficient and inexpensive. The advantage of the Precomputed-Branch architecture is that
it removes all pipeline stalls caused by misfetched branches by providing the precomputed target addresses, so
it achieves a lower BEP than the BTB architecture and it requires significantly less area.

7.3 Methodology

Table 7.1 shows the static number of instructions and number of procedures found in the programs we
instrumented. The “static” information is a property of the program binary, and is the same for all executions.

95

Target Range
1bit > =
—aN bts B N-1
I 2 4
PC Do ‘
: PC
Sign Extend P
' i 2 -1
Target ’ Do ‘
(a) Traditional Sign-Extended PC-Relative Branch
Target Range
N-2 bits
e E—
PC ‘ * i
. H N-2
Offset 4% +2
Sign Extend Ej
- N-2
Target : 2 1
(b) Compiler-Assisted Sign-Extended Branch
: Target Range
: Nbits
- - 2 bit
PC D e
: boundary A
Offset
: N
: 2
Target
1 .
1 L: | Y

(c) Precomputed-Branch (Not Sign-Extended)

Figure 7.3: Alternative Branch Methods

96

These static statistics are of interest when discussing the results for partitioning these programs into branch
spaces for the Precomputed-Branch architecture.

We used a modified version of the branch execution penalty to understand the performance improve-
ment of various branch architectures. In the Precomputed-Branch architecture, some branches are changed to
indirect branches. We assume this is done by loading the value from memory and performing an indirect jump.
A single-cycle penalty for loading the branch destination is included in the BEP for the Precomputed-Branch
architecture. Thus, we extend the BEP model to be:

%MIB x misfetch penalty 4 %MpB x mispredict penalty + %EiB x indirect br penalty

100 ’
where % EiB is the percentage of branches converted to indirect jumps, expressed as an average cost over all
branches. The %EiB is determined when the program is partitioned into branch spaces, as described in the next
section. For these simulations we used a single cycle misfetch penalty, a one cycle additional penalty for all
branches converted to indirect jumps, and a four cycle mispredict penalty.

BEP =

7.4 Partitioning Programs Into Branch Spaces

In this section, we show the overhead introduced by the explicit-displacement architecture when the
instruction set only permits small displacements. We use static methods to partition the program into multiple
branch spaces, and then compare the benefits of partitioning using information from prior execution. In practice,
most architectures provide branch instructions intended to be used within a single procedure and different
branch instructions used to transfer control to other procedures. Often, the displacements in these instructions
are different sizes; for example, the MIPS architecture uses 26-bit displacements for procedure calls, and 16-bit
displacements for conditional branches. By comparison, the DEC Alpha uses 21-bit displacements for all
branches.

When using PC-relative addresses, procedures can be placed anywhere in virtual memory. By
comparison, the explicit displacement architecture places more restrictions on procedure placement. In a
Precomputed-Branch architecture, a branch located at address X is located in a particular Z-bit branch space
specified by S(X,Z) = LZQ{Z—J Branches can only reach destinations in the same branch space; thus, to
branch from X to Y, we must insure that §(X,Z) = S(Y, Z) in order to use a precomputed branch. If
S(X,Z) # S(Y, Z) then an indirect jump must be used to branch between spaces.

Assume that conditional branches have a B-bit displacement, while function calls have a C-bit
displacement. Branches within a procedure and between procedures must be able to reach their destinations.
We reorganize the program trying to insure that all branches and their destination are in the same branch space.
If this restriction can not be enforced, the branch is converted into an indirect jump that can span a larger branch
space. Typically, several procedures can be organized into a single B-bit branch space.

In this chapter, we partition programs into branch spaces of three different sizes: 14, 16 and 21-bit
branch spaces. We choose the 16 and 21-bit branch spaces because they reflect the branch displacement in
existing microprocessors, and it is easy to argue that branch spaces of this size are easy to implement. However,
all of our sample programs fit within a single 21-bit branch space, and most of the programs fit in two 16-bit
branch spaces. Therefore, we also partitioned programs into a 14-bit branch space to give some insight of the
overheads that might be encountered by larger programs. We further stipulated that procedures are not spilt
across branch spaces; only procedure calls will span branch spaces.

There are many ways to partition programs, and a number of alternatives have been examined in the
effort to reduce page faults and and instruction cache conflicts [1, 3, 27]. Ferrari extended this work to include
information about working sets [24]. The goals of our study are different than these other studies; we are
less interested in efficient use of virtual memory than in reducing the number of indirect jumps that must be
introduced.

We used two metrics to compare the program partitioning heuristics. The first is the additional amount
of space needed by the program due to wasted space at the end of virtual memory pages. The second metric

Table 7.1: Number of Static Instructions and Procedures in Traced Programs.

Static
Program || #Insn’s | # Procs
APS 128,694 797
CSS 141,751 818
LGS 90,385 726
LWS 88,661 714
NAS 103,401 740
oCS 90,122 717
SDS 94,615 768
TFS 94,383 715
TIS 74,681 681
WSS 106,227 757
doduc 94,402 708
foppp 83,999 | 685

hydro2d || 85,808 716
mdljsp2 || 84,286 733

nasa7 83,867 706
ora 70,604 668
spice 138,312 815
su2cor 93,668 711

swm?256 73,412 677
tomcatv 65,625 617

waves 106,978 762
alvinn 17,811 212
compress 13,144 149
ear 25,079 290
eqntott 19,172 212
€spresso 60,674 551
gee 186,066 1,651
li 33,235 551
sC 59,291 512
cfront 225,064 981
db++ 20,784 329
groff 121,191 1,756
idl 79,381 1,459
lic 384,058 5,333

porky 216,678 | 3,704

98

is the percent of dynamic branches that cross branch spaces. We felt the number of dynamic branches was
more important than the additional space created by the partition, because it has a direct measurable impact on
program execution, since any additional memory needs could readily be solved by adding extra memory.

We considered a number of partitioning algorithms. Some methods use profiles, or information
about previous executions of the program. Many optimizations require such information, either from previous
executions of the program or from estimates using static analysis [14, 60, 64]. We examined depth-first, breadth-
first, pre-order, post-order, greedy and max-cut partitioning algorithms. Most of the methods had similar
performance, so we present the performance of only three algorithms.

The partitioning algorithms are illustrated in Figures 7.4 and 7.5. In this example, we assume that each
branch space can hold three procedures. Branch spaces are indicated by the darkened regions. The “Separate”
method, shown in Figure 7.4(a), partitions each procedure into a different branch space, and illustrates the
worst-case performance we could encounter. In the “Preorder” partitioning, shown in Figure 7.4(b), nodes are
added to a list in a pre-order traversal without using profile information. That list is then partitioned into branch
spaces using the size constraints of the architecture. A similar technique is used in the “Depth-First Profile”
method shown in Figure 7.5(a); a depth-first search orders the nodes, always first visiting the out-going edge
with the highest call frequency. The “MaxCut” partitioning, shown in Figure 7.5(b), uses a conventional max-cut
algorithm to partition the graph using the call frequency to guide the partitioning. The costs shown in these
figures reflect the number of branches that cross branch spaces for a particular execution of the program. There
are a total of 39 procedure calls in the example, and each partitioning algorithm attempts to reduce the number
of procedure calls that span branch spaces.

7.4.1 Performance of Program Partitioning Algorithms

All of our programs use a single branch space for 21-bit displacements, illustrating no dlfference
between the performance of the different partitioning algorithms. Table 7.2 shows the performance of the
partitioning heuristics into a 14-bit branch space and Table 7.3 shows the performance of the partitioning
heuristics into a 16-bit branch space.

Each table is broken into four major columns, showing the performance of each method. For each
method, the first sub-column (Seg) shows the number of branch spaces introduced by the partitioning, and the
number of additional program pages needed by the partitioned program over the original program. We assumed
an 8KByte page size. The next sub-column (%EiB) shows the increase in indirect function calls introduced by
this partitioning. This term is used when computing the branch execution penaity. Table 7.2 shows the average
for all the programs partitioned using the “Preorder” method with a 14-bit branch space. For the Preorder
algorithm, on average six branch spaces are used, one additional 8KByte memory page is needed and 2.29%
of the branches are converted to indirect jumps. The %EiB value is averaged over all branches to simplify the
calculation of the BEP, and provides insight to the overhead of partitioning on total branch execution. For the
profiled-based partition algorithms, the same program input was used to profile the program and to asses the
performance of the partitioning methods; the performance of other executions may differ.

The summary in Table 7.3 shows that partitioning programs into 16-bit branch spaces has little effect
on program size or the number of indirect jumps. While the profile information improves the partitioning,
it provides only a small improvement. Similar results hold for the 14-bit branch spaces, although the profile
approaches are more important for the smaller branch spaces. As mentioned above, all of our sample programs
fit into a single 21-bit branch space when using the Precomputed-Branch architecture. Another interesting result
shown in Tables 7.2 and 7.3 is that the C++ programs execute up to 7 times the number of static procedures than
executed in the C or FORTRAN programs. This causes a large increase in the number of branches converted to
indirect jumps for the C++ programs when performing the program partitioning. Many of these procedure calls
could be removed by performing inlining and object-oriented compiler optimizations such as If-conversion [9]
as described in Chapter 2.

When comparing branch target buffer architectures to the Precomputed-Branch architecture, we will
only consider the “Preorder” and “MaxCut” partitioning, and show the results for 14, 16 and 21-bit branch

99

(a) Separate - Each procedure forms a branch space, and no profile
information is used. The execution cost is 39, using the same
weights as used in Figure 7.5.

(b) Preorder - The traversal order is {A, B, C, E, D, F, G}, and
no profile information is used. The execution cost is 22, using the
same weights as used in Figure 7.5.

Figure 7.4. Partitioning a Call Graph without Profiles. In this example we assume that at most three procedures
can fit into one branch space. In these graphs the nodes labeled with letters are procedures, the edges are procedure
calls, and the shaded areas are the branch spaces the procedures are partitioned into for each algorithm. The
cost shown for each partitioning is the number of procedure calls converted to indirect jumps.

100

(a) Depth-First Profile - The traversal order is {A,B,D,C,E,E
G}. The execution cost is 21, using the weights shown.

(b) MaxCut - Order examined is {A, B, F, D, G, E, C}. The
execution cost is 16, using the weights shown.

Figure 7.5. Partitioning a Call Graph with Profiles. In this example we assume that at most three procedures
can fit into one branch space. In these graphs the nodes labeled with letters are procedures, the edges are
procedure calls, the numbers indicate the number of procedure calls, and the shaded areas are the branch spaces
the procedures are partitioned into for each algorithm. The cost shown for each partitioning is the number of
procedure calls converted to indirect jumps.

Table 7.2: Efficiency of Program Partitioning with 14-bit Branch Displacements

Seperate Preorder Prof Depth Max Cut
Program Seg | %EiB || Seg | %EiB || Seg | %EiB || Seg | %EiB
APS 797 | 4.63 9/2 1 338 | 91| 019 80| 0.19
CSS 818 | 5.24 9/2| 240 | 9/2| 247 9/0| 137
LGS 726 | 10.14 6/0 | 644 || 6/1 1.36 || 6/0 | "1.68
LWS ~714) 7.03 6/1 | 314 6/1| 000 6/0| 0.00
NAS 740 | 1099 || 7/ | 947 71| 043 7/0| 043
OCS 717 | 0.44 6/1 | 044 6/0| 006| 6/0| 0.00
SDS 768 | 0.37 6/1 | 002 60| 002 6/0| 0.14
TFS 715 | 243 6/0 | 230 6/1| 028 6/0]| 021
TIS 681 | 0.00 511 0.00| 51| 0.001] 50| 000
WSS 757 | 2.09 7/1 | 097 7/0| 054 7/0| 0.67
doduc 708 | 6.86 6/1 | 021 | 6/1 1.06 || 6/0 | 1.02
fpppp 685 | 2.66 6/1 | 022 6/3| 070]| 6/0| 0.00
hydro2d 716 | 1.38 6/1 | 000 6/1| 000| 6/0/| 0.00
mdljsp2 733 | 0.29 6/2 | 027 6/1| 000| 6/0| 0.00
nasa7 706 | 5.95 6/0 | 02214 6/2]| 1.06| 6/0| 1.08
ora 668 | 9.75 5/1 1 040 52| 0.00]| 5/0| 0.00
spice 815 | 2.28 92| 173 9/2| 0821 9/0| 033
su2cor 711 | 6.92 6/0 | 465 | 7/2| 002 6/0| 002
swm256 677 | 0.08 5/0 | 0.08 | 51| 000 50| 0.00
tomcatv 617 | 0.03 51 001 51| 000 50| 0.00
wave5 762 | 734 71 3194 71 712 7/0| 1.68
alvinn 212 | 0.64 2/0] 0.00}] 2/0| 000y 2/0| 0.00
compress 149 1.95 1/0 | 0.00 1/0 | 0.00 1/0 | 0.00
ear 290 | 17.42 2/0 | 0054 2/0| 0.00| 2/0| 0.00
eqntott 212 | 0.69 20 016 2/0| 000 | 2/0| 0.00
espresso 551 2.26 4/1 122 | 40| 049 4/0| 0.11
gce 1651 4.90 122 | 172 | 12/2 | 1.67 || 12/0 | 1.92
li 551 | 12.92 3/0 | 084 3/0| 0.84 1 3/0| 090
sc 512 | 4.55 41| 0751 40| 092 4/0| 0.03
cfront 981 | 7.69 || 16/13 | 430 || 15/7 | 3.70 || 14/0 | 4.02
db++ 329 | 6.75 2/6 | 000 2/0| 000} 2/0| 0.00
groff 1756 | 9.00 8/4 | 391 82| 319 | 80| 2.03
idl 1459 | 9.07 S/ 7920 S/ 7.66 | 5/0 | 7.50
lic 5333 | 1252 | 25/5 | 6.12 | 24/2 | 4.44 | 24/0 | 3.27
porky 3704 | 17.74 14/2) 1378 || 1472 | 4.12 || 14/0 | 3.30
| Overall Avg || 940 [557] 6/1] 229] 61] 1.23] 6/0] 091 |

101

Table 7.3: Efficiency of Program Partitioning with 16-bit Branch Displacements

Seperate Preorder Prof Depth Max Cut
Program Seg | %EiB || Seg [%EiB || Seg] %FiB || Seg] %EiB
APS 797 | 4.63 | 2/0 | 273 | 2/0| 0511 2/0| 0.00
CSS 818 | 524 3/0 | 1.76 || 3/1 2.83 || 3/0 | 0.00
LGS 726 | 10.14 || 2/0 | 0.00 | 2/0 | 0.00{ 2/0 | 0.00
LWS 7141 7.03) 2/0| 0.00 ¢ 2/0| 0.00{ 2/0| 0.00
NAS 740 | 10.99 || 2/0 | 0.00 | 2/1 0.00 || 2/0 | 0.00
OCS 717 | 044 | 2/0| 000} 2/0| 0.00| 2/0| 0.00
SDS 768 | 037 2/0 | 0001 2/0| 0.00| 2/0| 0.00
TES 715 | 2434 2/0 | 0.00] 2/0 | 0.00{ 2/0| 0.00
TIS 681 0.00 | 2/1| 0.00 1 2/1 0.00 || 2/0 | 0.00
WSS 757 | 209 | 2/0 | 044 2/0| 0221 2/0| 0.00
doduc 708 | 6.86 1 2/0 | 0.001| 2/0| 0.00 /| 2/0| 0.00
fpppp 685 | 266 | 2/0 | 000 | 2/0| 0001 2/0| 0.00
hydro2d 716 1.38 || 270 | 0.00 | 2/0 | 0.00| 2/0 | 0.00
mdljsp2 7331 029 2/0| 0.001| 2/0| 0.00| 2/0| 0.00
nasa’7 706 | 5951 2/0 0001 2/0| 0007 2/0| 0.00
ora 668 | 9.75 || 2/1 0.00 || 2/1 0.00 || 2/0 | 0.00
spice 815 | 2.28 | 3/1 1.69 || 3/0 | 082 3/0| 0.00
su2cor 711 692 | 2/0 | 0.00 | 2/0| 0.00}| 2/0| 0.00
swm256 677 | 0.08 | 2/6 | 000 2/0| 000]| 2/0]| 0.00
tomcatv 617 0.03) 2/0| 000 2/0 | 0.00} 2/0| 0.00
wave5s 762 | 734 2/0 | 0.02] 2/1 293 |1 2/0 1 0.00
alvinn 212 064 | 10| 000 1/0| 0.00 | 1/0] 0.00
compress 149 195 1/0 | 000 | 1/0 | 0.00 | 1/0 | 0.00
ear 290 | 1742 | 1/0 | 0.00 | 1/0 | 0.00 | 1/0 | 0.00
eqntott 212 | 069 || 1/0 | 000 1/0 | 0.00 || 1/0 | 0.00
espresso 551 226 || /06| 000 | 1/0| 0.00| 1/0 | 0.00
gcc 1651 490 | 3/0 1.05 | 3/0| 089 | 3/0| 097
i 551 1292 | 1/0 | 000 | 1/0| 0.00 | 1/0| 0.00
sc 512 455 1/0| 000 | 1/0| 0.00| 1/0 | 0.00
cfront 981 7.69 || 4/0 | 231 | 4/0 1.99 || 4/0 | 1.06
db++ 3201 675 1/0| 000} 1/0| 0.00{ 1/0 | 0.00
groff 1756 | 9.00 || 2/0 | 140 | 2/1 0.87 || 20} 0.84
idl 1459 | 9.07 || 2/0 | 504 || 2/0 | 504 2/0| 504
lic 5333 | 12524 6/0 | 287 | 6/0| 037 6/0| 0.29
porky 3704 | 17.74 || 4/0 | 244 || 4/0 | 3.00 | 4/0| 2.75
| OverallAvg | 940 557 [1/0] 062] 1/0] 056] 1/0] 031

102

103

displacements. The “Preorder” partitioning provides the lowest branch cost for those methods we examined
since it did not use profile information, while the “MaxCut” method provided the best profile-driven partition.

7.5 Precomputed-Branch Architecture Performance

In this section we compare the performance of the branch target buffer (BTB) architecture to the
Precomputed-Branch architecture. We use the branch execution penalty to compare performance, but also
report the mustetch and misprediction penalty.

Both architectures used a 4096-entry 2-level pattern history table, using the extension proposed by
McFarling [41]. In the BTB architecture, we simulated branch target buffers with 4, 16, 32, 64, 128, 256,
512 and an infinite number of entries. In each case, the BTB was organized as a 4-way associative BTB. The
Precomputed-Branch architecture stores the precomputed branch destination as part of the instruction for all
branches except indirect jumps and returns, with no additional overhead in the instruction cache. We used
a small 4-way associative indirect jump buffer (IIB), containing either 0, 4, 16 or 32 entries, to predict the
destination of indirect branches. We also simulated a direct-mapped IJB for the same configurations.

7.51 Comparing the BTB and Precomputed-Branch Architectures

Figure 7.6 summarizes the branch execution penalty for the different partitioning methods, branch
space sizes and architectures. The “Preorder-14” column uses the “Preorder” partitioning heuristic with 14-bit
branch spaces. The “MaxCut-14”, “Preorder-16" and “MaxCut-16" uses the obvious partitioning and branch
sizes. All these partitions are the same as shown in the previous section. The “Optimal-21” partitioning uses a
21-bit branch space, and with this branch space size each program in our benchmark suite fit into a single branch
space. Therefore, for the Optimal-21 partition there is no difference between the “Preorder” and “MaxCut”
partitioning. The Precomputed-Branch architecture has no misfetch penalty because the destination for all direct
branches is immediately known. The “BTB Misfetch=1" column shows the performance for the decoupled BTB
architecture with a single cycle misfetch penalty. A larger misfetch penalty would increase the BEP for the
BTB-based architecture, but not the Precomputed-Branch architecture.

Table 7.4 provides more details about the terms used to compute the BEP, showing the average percent
of misfetched and mispredicted branches. For the Precomputed-Branch architecture, we also show %EiB which
is the cost of converting procedure calls that span branch spaces into indirect branches. We assume that all
instructions can either be easily decoded or have been pre-decoded to indicate the branch type in both the BTB
and Precomputed-Branch architecture as described in Chapter 6. Recall, that a misfetch branch occurs because
we either do not know that an instruction is a branch, or we do not know the destination address for a branch.
Therefore, the BTB architecture can cause misfetch penalties when the computed destination has not been
entered in the BTB. In comparison, the Precomputed-Branch never misfetches because the destination is stored
in the instruction. Table 7.4 shows that the Precomputed-Branch architecture, using a non-profile Preorder
partitioning for a 16-bit branch space and only a 16 entry IJB, has the same BEP performance (0.18) as a 256
entry BTB.

Figure 7.6 shows that the Precomputed-Branch architecture with no additional prediction for indirect
branches is comparable to the BTB architecture with many more entries. The Precomputed-Branch config-
urations with 14-bit and 16-bit branch spaces fairs worse than the 21-bit design, because a larger number of
branches must span branch spaces (increasing %FEiB). The BTB results shown use a 21-bit offset. Therefore, the
BTB results are only directly comparable to the Precomputed-Branch architecture results using a 21-bit branch
space. These branches are converted into indirect jumps and they may be mispredicted (increasing %MpB).
Partitioning using profiles, as in the MaxCut partitioning, helps reduce the penalty for small branch spaces.
Figure 7.6 shows that adding a very small indirect jump buffer for indirect branches provides as much benefit
as profile-based partitioning, and reduces the BEP for each design. The results show that even without using
a small indirect jump buffer that the Precomputed-Branch architecture achieves the same performance as a 64
entry BTB.

Recall that the branch target buffer requires considerable resources, and is organized as a 4-way

104

0.45

0.4 BMNoBTB [4

0.35

0.3 1 E256 Em512
1 M Infinite
0.25 +

0.2 1

Branch Execution Penalty (BEP)
7

0.1 -

0.05 1

1

Preorder-14
MaxCut-14

Preorder-16
MaxCut-16

Optimal-21

BTB Misfetch

Figure 7.6. The branch execution penalty is computed with a 4-cycle branch misprediction penalty, a 1-cycle
misfetch penalty and a 1-cycle penalty for extra indirect branches. Results are shown for a 14-bit, 16-bit, and
21-bit branch space. All the BTB designs are 4-way associative, and for the Precomputed-Branch architecture
the BTB is only used to predict indirect jumps.

105

Table 7.4: Summary of Performance Information From Trace Driven Simulations

| Architecture | BTB Size | %MfB [%MpB | %EiB | BEP |

BTB 4| 22.88 4.85 0.0 042

BTB 16 | 12.64 4.66 0.0 | 0.31

BTB 32 8.62 443 0.0 026

BTB 64 4.57 4.37 0.0 | 022

BTB 128 2.57 431 0.0 | 0.20

BTB 256 1.08 4.27 0.0 | 0.18

BTB 512 044 4.25 0.0 | 0.17

BTB | Infinite 0.02 4.23 0.0 | 0.17
Preorder-14 0 0.0 7.75 2.29 | 0.31
Preorder-14 4 0.0 5.69 2.29 1 0.23
Preorder-14 16 0.0 4.78 2291 0.19
Preorder-14 32 0.0 4.60 2.29 | 0.18
MaxCut-14 0 0.0 6.37 091] 0.24
MaxCut-14 4 0.0 5.37 091 | 0.21
MaxCut-14 16 0.0 4.58 091] 0.18
MaxCut-14 32 0.0 446 | 091 0.18
Preorder-16 : 0 0.0 6.07 0.62 | 0.26
Preorder-16 4 0.0 5.13 0.62 | 0.22
Preorder-16 16 0.0 4.53 0.62 | 0.18
Preorder-16 32 0.0 4.46 0.62 | 0.18
MaxCut-16 0 0.0 5.77 031 0.23
MaxCut-16 4 0.0 4.97 031 0.20
MaxCut-16 16 0.0 4421 0311 0.18
MaxCut-16 32 0.0 4.35 0311 0.17
Optimal-21 0 0.0 5.45 0.0 | 0.22
Optimal-21 4 0.0 4.69 0.0] 0.19
Optimal-21 16 0.0 4.29 0.0 | 0.17
Optimal-21 32 0.0 4.26 0.0 | 0.17

The branch execution penalty is computed with a 4-cycle branch misprediction penalty, a 1-cycle misfetch
penalty and a 1-cycle penalty for extra indirect branches. The values shown are arithmetic means over all
programs.

106

associative cache, while the Precomputed-Branch architecture uses information recorded in the instructions.
Thus, the Precomputed-Branch design takes significantly less area. The access time for a cache (or a BTB)
depends both on the size and the associativity of the design [29, 50]. Chapter 6 showed that direct mapped
caches can be 40% faster than associative caches, even for very small caches. This occurs because the direct
mapped cache contents can be used speculatively, before the full tag comparison finishes. Also, small caches
are faster than large caches. Despite the advantages of direct mapped caches, many BTB designs, such as the
BTB used in the Intei Pentium and P6 and those proposed by Yeh et al. [66] use a large, multi-associative BTBs
to reduce the misfetch penalty. Since the instruction fetch cycle often limits processor performance, designs’
using a large associative BTB may lengthen the cycle time, affecting the performance of the entire processor.

We simulated the Precomputed-Branch architecture with both a direct-mapped and 4-way associative
IJB. In Figure 7.4, we only showed the information for the 4-way design to reduce the degrees of freedom in the
comparison. Table 7.5 compares the performance of the “Optimal-21” partitioning with a direct-mapped and
associative IJB, and shows that there is little difference in performance. Tables 7.6 and 7.7 show the percentage
of mispredicted branches for all the programs simulated using no 1JB, a 4, 16 and 32 entry IJB, for the Preorder
and MaxCut partitions, and for 14-bit, 16-bit, and 21-bit branch spaces. The results show that most of the
performance gain achieved by adding an IJB for all the partitions and branch spaces is provided by adding only
a4 entry IJB. The C++ programs benefit the most from the addition of a very small indirect jump buffer. For
example, the %MpB for the db++ program drops from 15.71 to 0.78 with the additional of a four-entry IJB. The
only program that significantly benefits form having a 16 entry IJB is the highly object-oriented C++ program
idl. Both of these programs contain a large number of indirect jumps, as shown by the detailed program
information in Table 3.4, and these indirect jumps are very predictable. The predictability of indirect jumps in
C++ programs was shown in an earlier study of ours [9], and we have been demonstrated this for many C++
applications.

Table 7.5: Average Direct Mapped and 4-Way Associative IJB Performance for the Optimal-21 Partitioning

IJB Entries
0 4 16 32

Direct Mapped BEP 0.22 1 0.19 | 0.18 | 0.17
B %MpB | 55| 47| 44| 43
4-way Associative | BEP 022 0.19 | 0.17 | 0.17
1JB %MpB | 55| 47| 43| 43

In general, the BTB branch architecture has worse performance for large programs in the benchmark
suite, although this is not indicated in the mean values we show. In part, this is a reflection of the application
mix we used for benchmarking. Table 3.5 indicates that many of the Perfect Club and SPEC applications are
dominated by a small number of heavily executed branches, primarily in loops. By comparison, benchmarks
such as cfront and groff have more branches, and these better illustrate the problems of fixed capacity
mechanisms such as BTB’s. We also feel that these programs better illustrate the performance of branch
architectures on actual applications. Programs such as cfront, gcc, 1ic and groff contain a large number
of branches, and the Precomputed-Branch architecture performs very well for these programs. Table 7.8, which
provides the %MfB and %MpB, shows why. Each program has a high misprediction rate in both architectures,
reflecting the unpredictability of the conditional branches in these applications. The BTB architecture has
a slightly lower %MpB than the Precomputed-Branch architecture if no IJB entries are used, because the
BTB architecture can predict indirect jumps. However, the BTB architecture must also use the BTB to avoid
instruction misfetch penalties, and even a 256-entry BTB has a considerable number of misfetches for these
large programs.

107

Table 7.6: Percent of Mispredicted Branches for IJB with Preorder Partitioning

14 bit Branch Space 16 bit Branch Space 21 bit Branch Space
Program || No | 4 [16 [32 [No [4 [16 [32 [No [4 [16 | 32
APS 66| 39| 33| 32 59 361 33 3.1 32 1 31 3.1 3.1
CSS 76 | 66| 60| 55 70| 60| 53| 51 52| 45| 42 40
LGS 11.6 | 54| 52| 51 5.1 5.1 51 5.1 5.1 5.1 5.1 5.1
LWS 85| 63| 54| 54 541 54 54| 54 54| 54| 54| 354
NAS 136 | 50| 38 33 42| 34 33 33 4.1 34| 33 33
OCS 29 | 25| 24| 24 24 1 24| 24| 24 24| 24 24| 24
SDS 3.3 33 33| 33 33 33 32| 32 3.3 33 32| 32
TFS 63| 59| 40, 39 40| 39| 39| 39 40| 39| 39| 39
TIS 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
WSS 65| 45| 39| 38 59| 40| 381 38 55| 40| 38 38
doduc 46 | 45| 45| 45 44 | 44| 44| 44 44| 44| 44| 44
fpppp 49 | 46| 46| 46 46 | 46| 46| 46 46 | 46| 46| 46

hydro2d 28 | 28] 28| 28 28 1 28| 28| 28 28 | 28| 28| 28
mdljsp2 70| 67| 67| 67 6.7 67| 671 67 67| 67| 67| 67

nasa’7 28 | 24| 23| 22 2.6 2.3 221 22 26 | 23 221 22
ora 30| 26| 26| 26 2.6 26 | 26 26 26 | 26 26 | 2.6
spice 59| 46| 41 4.1 59 45| 41 4.1 42| 41 4.1 4.1

su2cor 142 93 93] 93 95| 93 93] 93 95| 93 93| 93
swm256 07| 05 05| 05 06| 05| 05| 05 06| 05 05| 05
tomcatv 05| 05 05| 05 054 05] 05| 05 05| 05 05| 05

waveS 681 36| 35| 35 361 35] 35| 35 36 | 35| 35| 35
alvinn 02 02 02| 02 02| 02| 02 02 021 02} 02] 02
compress 991 99 991 99 9.9 99| 99| 99 9.9 9.9 99| 99
car 40| 39| 39| 39 40| 39| 39| 39 404 39| 39| 39
eqntott 3.1 1.3 131 13 30| 13 13 13 30 137 13| 13
espresso 6.5 55 5.3 52 53 5.1 5.1 5.1 53 (-51 5.1 5.1
gee 15.1 |"14.0 | 134 | 13.1 || 145 | 134 | 13.0 | 127 || 134 | 125 | 123 | 123
li 59| 48| 43| 41 51| 40| 40| 4.0 51| 40| 40| 40
sc 53| 41 40| 39 441 38| 38| 38 441 38| 38| 38
cfront 187 | 181 | 17.1 | 164 | 16.7 | 16.1 | 157 | 153 || 144 | 13.9 | 13.7 | 13.7
db++ 157 08¢ 08| 08| 157 | 08| 08| 08| 157 | 08| 08| 08
groff 114 | 96| 73| 6.6 89| 75| 6.1 | 58 75| 63| 55| 53
idl 21.1 1 209 | 34| 26| 184 | 183 | 30| 22| 133|132 22| 18
lic 13.0 | 104 | 96| 9.0 98 | 85| 80| 73 69| 68| 67| 67
porky 195 | 85| 64| 54 82| 62| 51| 44 58| 42| 35| 33
[Avg | 771 57] 48] 46 61] 51[45 44 55] 47[43 43]

The percentage of mispredicted branches using the Preorder partitioning. The results are shown for a varying
number of IJB entries; the IJB entries are only used to predict indirect jumps.

108

Table 7.7: Percent of Mispredicted Branches for IJB with MaxCut Partitioning

14 bit Branch Space 16 bit Branch Space 21 bit Branch Space

Program No | 4 [16 | 32 No | 4 [16 | 32 No | 4 [16 | 32

APS 34 32| 31 31 32| 3.1 3.1 3.1 32| 3.1 3.1 31
CSS 66| 55| 43| 4.1 52| 45| 42| 40 521 45| 42| 40
LGS 681 551 51 5.1 5.1 501 51 5.1 5.1 5.1 51| 51
LWS 54| 54 54| 54 54 54| 54| 54 541 54| 54| 54
NAS 46 | 36| 33 33 4.1 341 33| 33 4.1 34| 33| 33
OCS 241 24| 24| 24 24 24| 24| 24 24 | 24| 24| 24
SDS 34 33 33| 32 33 331 32| 32 33 33 32 32
TFS 42| 41 39 | 39 40 39 39| 39 40| 39 39 39
TIS 1.7 1.7 1.7 1.7 1.7 1.7 1.7 17 1.7 1.7 1.7 1.7
WSS 62 | 41 3.8 | 3.8 55| 40| 38| 3.8 55| 40| 38| 38
doduc 54 49 44| 44 44 | 44| 44| 44 44| 44) 44| 44
fpppp 46 | 46| 46| 46 46| 46| 46| 46 46 | 46| 46| 46

hydro2d 28 | 28 2.8 2.8 2.8 28 | 28| 28 2.8 2.8 281 28
mdljsp2 6.7 | 67 6.7 6.7 6.7 67| 67| 67 6.7 6.7 6.7 | 6.7

nasa’7 36 | 31 2.5 22 26 | 23 22| 22 2.6 2.3 22] 22
ora 26| 26| 26| 26 26 | 26| 26| 26 26| 26| 26| 26
spice 45| 43| 41 4.1 42| 41| 41| 41 421 41 4.1 4.1
su2cor 951 93] 93 9.3 95| 93| 93, 93 9.5 9.3 931 93

swm256 06| 05| 05| 05 061 05| 05 05 0.6 0.5 051 05
tomcatv 051 05 05| 05 051 05] 05| 05 0.5 05 05 05

wave5 53] 40| 35| 35 36| 35| 35| 35 36| 35| 35| 35
alvinn 021 021 02 o021 02 021 021 o2 o021 0271 021 02
compress 9.9 9.9 9.9 9.9 9.9 991 99 99 9.9 9.9 99 1 99
ear 40| 391 39| 39 40| 39| 39| 39| 40| 39| 39| 39
eqntott 30 13 13 13 30| 131 13| 13 30| 13 13| 13
espresso 54| 521 51| 5.1 53 511 51| 5.1 53| 51| 51| 5.1
gee 153 | 141 | 134 | 13.0 || 144 | 132 | 127 | 125 || 134 | 125 | 123 | 123
li 60| 49| 43| 4.1 50| 40| 40| 4014 511 40| 40| 40
sc 45 38| 38| 38| 44 38| 38| 381 44| 38| 38| 38
cfront 184 | 175 164 | 156 || 155 | 149 | 146 | 144 || 144 | 13.9 | 13.7 | 13.7
db++ 157 08| 08| 081157] 08| 08| 081 1571 08! 08| 08
groff 95| 80| 66| 6.1 841 69 59| 57| 75| 63| 55| 53
idl 208 1206 | 31| 25| 184|183 | 30| 221 133|132 221 18
lic 102 87| 83| 77| 72| 68| 68| 68 69| 68| 67| 67
porky 91| 721 56| 48 85| 66| 53| 46 58| 42| 35| 33
| Avg | 64] 54| 46] 45 58] 50[44] 44 55] 47] 437 43

The percentage of mispredicted branches using the MaxCut partitioning. The results are shown for a varying
number of 1JB entries; the IJB entries are only used to predict indirect jumps.

Table 7.8: Precomputed-Branch Penalties for Branch Intensive Programs

BTB cfront gce groff - lic

Config | 1B | %MfB | %MpB | %MfB | %MpB | %MfB | %MpB | %MIB | %MpB
BTB 256 | 1252 13.79 6.91 12.39 4.95 5.35 4.80 6.75
BTB Inf 0.25 13.61 0.03 12.30 0.04 | - 5.13 025 6.74
Opt-21 0 0.00 14.39 0.00 13.42 0.00 7.51 0.00 6.90
Opt-21 4 0.00 13.93 0.00 12.48 0.00 6.34 0.00 6.77
Opt-21 16 0.00 1375 0.00 12.33 0.00 545 0.00 6.74
Opt-21 32 0.00 13.66 0.00 1232 0.00 5.31 0.00 6.74

109

7.6 Practical Concerns

In the past, segment architectures have been greeted with less than overwhelming enthusiasm, due to
limited segment sizes. However, the explicit displacement branch architecture has a single instruction address
space with branch instructions that can only access a portion of that address space. The chief complication with
an explicit displacement encoding is that PC-relative code relocation, important for shared program libraries, is
no longer possible without dynamic relinking. However, consider using an architecture such as the DEC Alpha
AXP, which uses a 21-bit branch displacement for word-aligned instructions in a 64-bit instruction address
space. The instruction space is broken into 264=21+2_ or ~ 2 trillion branch spaces of 8MBytes each. Branches
within each 8MB branch space use a single explicit displacement. Each segment can be relocated to ~ 2 trillion
different locations without modification, and all branches within a given branch space are relative to that branch
space. Such large branch spaces would address almost all programs we have encountered. ,

Another interesting point about using shared libraries is that procedure calls to shared libraries are
compiled as indirect jumps on existing systems, because the procedure destinations are not known until execution
time [20]. In a related study [15], we found that on average, for 43 C and FORTRAN programs we examined
on Digital Unix, 60% of the procedure calls are indirect procedure calls because of shared libraries. Therefore,
operating systems using shared libraries may have the need for a small indirect jump buffer, even without the
increase in indirect jumps possibly caused by partitioning a program into branch spaces in the Precomputed-
Branch architecture. Furthermore, the indirect procedure calls created by the use of shared libraries would
decrease the number of procedure calls that need to be converted to indirect jumps when partitioning the
program into branch spaces for a Precomputed-Branch architecture.

7.6.1 Non-relative Branches in a Relative World A

The Precomputed-Branch architecture performs most branch computation at link or compile time.
Traditional relative branches perform the branch computation during instruction issue, and branch target buffers
can be used to cache this information. The primary objection to using non-relative branches is that most
instruction sets already use relative branches, and the precomputed branch architecture requires a change to the
instruction set architecture.

Itis also possible to precompute the branch destination when instructions are entered into the instruction
cache. Instructions in many architectures are partially decoded when fetched into the cache, simplifying
instruction dispatch and scheduling. The destination for a relative branch instruction can also be computed
during instruction fetch. This is shown diagrammatically in Figure 7.7. If the carry-bit is set after the PC-
relative part of the target address is computed, the branch destination is not in the current branch space. If the
branch instruction branches to a destination within the same branch space, a Precomputed-Bit is set to indicate
that the destination has already been computed, and the instruction stored in the instruction cache is changed
to contain the precomputed address. Then when this branch is executed the precomputed offset is concatenated
with the PC as before providing the next instruction fetch. If the destination is not in the same branch space, the
Precomputed-Bit is not set indicating that the IJB should be used to predict the branch destination. During the
normal instructionissue, the proper destination is computed and used to initialize the IJB for all non-precomputed
branches. Then on subsequent accesses to that instruction, the target address stored in the IJB will be used in
the next instruction fetch, predicting the branch’s destination.

In such an architecture, the partitioning discussed earlier reduces the number of branches that span
branch spaces. As in the Precomputed-Branch architecture, this improves the effectiveness of the 1JB entries.
With partitioning, the cost and performance for this new architecture would be identical to the Precomputed-
Branch architecture design, with the addition of an extra cycle of delay when instructions are fetched into the
instruction cache. One benefit to this alternate design shown in Figure 7.7, is that the instruction set architecture
does not need to be changed since the compiler still creates branches with PC-relative offsets.

110

Memory

PC-relative

Dist lacement

Partial Instruction Decode <—] Current PC

Precomputed?

Opcode

Predict Using
1JB

Precomputed
Opcode Distlacement V
L Instruction Cache

Figure 7.7: Using the Precomputed-Branch Architecture with a PC-Relative Instruction Set

111

7.7 Design Issues and Comparison of Precomputed-Branch and NLS Architectures

The Precomputed-Branch and NLS architectures are very similar designs, because the precomputed
offsets in the Precomputed-Branch architecture provide the same prediction information that the NLS predictors
provide. The Precomputed-Branch architecture is similar to a NLS-Cache design where there would be one NLS
predictor in the instruction cache for every branch instruction. One advantage of the precomputed offset over
using a NLS predictor is that the precomputed offset is always initialized correctly since the value is precomputed
by the linker or when the instructions are brought into the instruction cache. Another advantage is that since the
precomputed branch is stored as the offset inside the instruction, no additional hardware is needed to provide
the predictors, whereas in the NLS architecture extra hardware is needed in order to represent predicted taken
cache indices.

One design issue that needs to be addressed is how many ports are needed for these hardware designs.
Both the BTB and NLS architectures need to be dual-ported, since potentially in each cycle a predictor must be
read and a predictor must be updated. This gives the Precomputed-Branch architecture an advantage over both
the BTB and NLS architectures since it only needs a single port for reading prediction information each cycle.
The precomputed offsets do not need to be dynamically updated every cycle because their offsets are determined
- at compile time or when they are brought into the instruction cache.

Another design issues is how to implement both the NLS and Precomputed-Branch architectures
for wide-issue architectures. There are two basic options for implementing branch prediction on a wide-issue
architecture. The processor could either predict one branch for each instruction issue or predict multiple branches
for each instruction issue. When predicting only one branch for each instruction issue, the NLS architecture is a
reasonable design, since one NLS predictor would be associated with each instruction fetch predicting the taken
index for that issue of instructions. For the Precomputed-Branch architecture, one would need to add a couple
bits to each instruction fetch in the instruction cache indicating which instruction’s precomputed offset should
be used to predict the taken index. Note that this does not fully utilize the Precomputed-Branch architecture
for each instruction fetch, since there can be more than one precomputed branch instruction in each instruction
fetch. If multiple branches were predicted at the same time then the Precomputed-Branch architecture could
take full advantage of all the precomputed offsets stored in the instruction cache. One of the problems with
predicting multiple branches each cycle, is that in the decode stage it would be expensive to calculate multiple
PC-relative target addresses at a time. This is not an issue with the Precomputed-Branch architecture since all
the full target addresses could be easily calculated in the decode stage by concatenating the precomputed offsets
with the upper bits of the PC. Therefore, using the Precomputed-Branch architecture and predicting multiple
branches at the same time could be a very cost effective design resulting in very accurate branch and instruction
fetch prediction.

7.8 Summary

This chapter showed that using a precomputed or non-relative branch displacement is more effective
than an architecture that uses a large BTB to cache the destinations for branches. A variety of simple partitioning
algorithms were examined that break programs into multiple branch spaces and convert the inter-space branches
into indirect jumps. These partitioning algorithms are simple, work well without profile information and work
better with real or estimated profile information. Note that even in a PC-relative branch architecture that a
similar number of procedure calls would be converted to indirect jumps for those PC-relative displacements that
wouldn’t be able to fit within the 14-bit or 16-bit offset in the instruction for the branch spaces we examined. We
have shown that combining a small indirect jump buffer with the Precomputed-Branch architecture results in a
branch architecture that uses few resources and has excellent performance, particularly for programs with a large
number of branches. We also described how to use the Precomputed-Branch architecture in existing processors
without having to modify the instruction set architecture. One advantage of the proposed Precomputed-Branch
design is the precomputed destination does not depend on the size of the address range. By comparison, the size
of a branch target buffer would increase as the instruction address range increases, and will pose problems for
architects designing 64-bit processors.

112

This branch encoding has been used in older architectures such as the PDP-8, but is even better
suited for modern architectures when a sizable branch displacement field is provided. The results show that the
Precomputed-Branch architecture effectively eliminates all misfetch penalties, and has a lower branch execution
penalty than the BTB architecture, using very few hardware resources.

CHAPTER 8
CONCLUSIONS

This research was originally motivated by examining the predictability of C++ applications using
branch target buffers. This sparked my interest in the instruction fetch problem, since the main hardware
mechanism for instruction fetch prediction studied in previous literature is the BTB design, and as shown in
Chapter 6 this design can be costly to implement.

Historically, previous literature focused on the BTB as a means for predicting conditional branches,
and very few studies examined the BTB’s contribution to eliminating misfetch penalties. This is because the
penalty for mispredicted conditional branches is larger than the misfetch penalty associated with instruction
fetch prediction. Therefore, increasing the accuracy of conditional branch prediction would give the largest gain
in program performance. The other reason is that past architectures were single issue processors, and for these
processors it was fairly easy to eliminate misfetch penalties using branch delay slots. With the recent development
of highly accurate correlated branch prediction combined with the fact that processors are starting to issue many
instructions per cycle, making sure a processor also has accurate instruction fetch prediction is increasingly
important. This is shown in Chapter 4, where misfetch penalties can degrade a programs performance more than
the degradation due to the remaining mispredicted conditional branches. The importance of instruction fetch
prediction is also shown in recent processor designs that devote a large amount of hardware resources to branch
target buffers in order to eliminate misfetch penalties. ‘

In addressing the issue of instruction fetch prediction, I felt it was important to perform a system level
study in order to examine the impact of misfetched branches in terms of overall system performance. Chapter 4
showed that eliminating all misfetch penalties on a dual-issue Alpha 21064 architecture would decrease the
average CPI by 6%. This system level study also showed that the BEP is a valid metric for comparing branch
and instruction fetch prediction architectures for a statically scheduled processor like the Alpha 21064.

In improving instruction fetch prediction, I first wanted to examine how well I could reduce misfetch
penalties on existing branch and instruction fetch prediction architectures using only compiler optimizations.
The idea of branch alignment came from a simple observation — the less often a processor exeeutes a taken
target address the fewer number of misfetch penalties the processor will have. Chapter 5 showed that reordering
basic blocks so that the fall-through path occurs more often greatly reduces the misfetch penalty for current PHT
architectures and there is even a noticeable improvement for BTB architectures, especially for small BTBs.

BTB designs that were examined in previous studies typically associated the conditional branch
prediction information with the BTB. Once it was realized that decoupling the conditional branch prediction
information from the BTB achieves prediction accuracy similar to a coupled design, then the only use for the BTB
is for instruction fetch prediction. In Chapter 6, I proposed the idea of using next cache line and set predictors
(cache indices) in a NLS-table design, instead of target addresses for instruction fetch prediction. This idea was
realized by observing that the target address stored in the BTB is used as an index into the instruction cache,
indicating the cache line to start fetching instructions from. Chapter 6 showed that the NLS-table architecture
performs better than BTB architectures with similar hardware costs, and that the NLS architecture may be
appropriate for high-speed processor designs. '

The last solution examined for instruction fetch prediction in this dissertation eliminates the storing of
target addresses in the BTB and the use of indices in the NLS architecture. The Precomputed-Branch architecture
is an example of a hardware/software co-design solution for instruction fetch prediction. The technique uses
an idea from older computers, such as the PDP-8, where a target address is calculated by concatenating the
PC with a precomputed branch offset, creating a branch segmented architecture. Chapter 7 showed that the
Precomputed-Branch architecture eliminates all misfetch penalties and outperforms the BTB design using very

114

few hardware resources.

The final contribution of this dissertation is that these results are among the first to examine the effects
of branch and instruction fetch prediction on object-oriented programming languages such as C++. The system
level study in Chapter 4 showed that branch architectures provided on current processors accurately predict
C++ applications. The NLS architecture results in Chapter 6 also showed that the NLS architecture accurately
predicts C++ applications. The branch alignment results in Chapter 5 showed that branch alignment provides
larger improvements for C++ programs than seen in C and FORTRAN programs, when using a BTB architecture,
because C++ programs benefit more from the decrease in BTB usage resulting from branch alignment. The
Precomputed-Branch architecture, proposed in Chapter 7, does not provide support for predicting indirect
procedure calls in C++. However, the Precomputed-Branch architecture results showed that adding a small 4 to
16 entry direct mapped indirect jump buffer (IIB) can be used to eliminate indirect jump mispredict penalties
for highly object-oriented C++ applications such as db++, 1d1l and groff. Alternatively, many of these C++
indirect procedure calls could be eliminated by performing compiler optimizations such as If-conversion and
procedure inlining as described in Chapter 2.

This dissertation provided three solutions to the instruction fetch prediction problem ranging from a
software solution (Branch Alignment), to a purely hardware solution (NLS architecture), and concluded with a
combined hardware/software solution (Precomputed-Branch architecture). All three of these techniques were
shown to improve instruction fetch prediction. The hardware solutions were also shown to use fewer hardware
resources than the branch target buffer design. These results were reported using the BEP metric assuming a
statically scheduled processor. Future research is needed to verify that these results apply to future dynamic
out-of-order issue processors, threaded architectures, and multiscalar architectures.

CHAPTER 9
FUTURE WORK

This chapter describes future directions for branch and instruction fetch research, by first describing
a few important implications for branch architecture research, then discussing future research for static branch
prediction, and concluding with future directions for dynamic branch and instruction fetch prediction research
for next generation processors.

9.1 Implications for Branch Prediction Research

An important result missing from branch prediction literature is exactly how important branch pre-
diction is for current and future processors. System level studies are important for future branch architecture
research in order to understand the importance of branch prediction on the processors being examined in terms
of the overall system performance, and to understand the relevance of proposed improvements for branch pre-
diction. Performing system level studies is also useful in validating branch metrics, as in the validation of the
BEP metric in Chapter 4. The system level study performed in Chapter 4, showed that for a statically scheduled
architecture, like the Alpha 21064, that improving the conditional branch prediction accuracy is “polishing a
round ball”. This implies that researchers examining branch architectures for this type of processor should
emphasize designs that are faster, less complex, more testable or easier to implement. The performance of future
processor designs will depend more upon accurate branch and instruction fetch prediction than the Alpha 21064
architecture studied in this dissertation. Therefore, system level studies are needed in order to understand the
importance of branch prediction for these future processor designs.

Many studies that include a form of branch prediction typically only model conditional branch
prediction since this is needed for speculative execution and it achieves the largest gain in performance. This
dissertation shows that penalties from other branches such as instruction misfetch penalties and mispredicted
indirect jumps, also have a large impact on system performance especially for future wide-issue processors.
Therefore, it is important that future studies include mispredict and misfetch penalties for all branch types when
possible.

Most of the previous studies on branch and instruction fetch prediction only examine a few C and
FORTRAN programs from the SPEC benchmark suite. This is useful since these applications are widely
available and have been thoroughly studied. The downside to using these applications is that they do not
capture the branch behavior in all languages or for larger programs which are more representative of modern
applications. The number of programs examined for this dissertation was expanded to include many non SPEC
programs and C++ applications. Results presented in this dissertation show that C++ programs have a different
branch instruction mix, different conditional branching behavior, and execute many more branch sites than
C or FORTRAN programs. Even so, the results indicate that existing branch architectures accurately predict
object-oriented C++ applications. Future research is needed to verify these results by examining the effects of
branch and instruction fetch prediction on larger applications, and on other languages such as Modula, Ada, and
object-oriented languages such as SELF and Cecil.

9.2 Static Prediction

An exciting area of branch prediction research is improving the accuracy of static branch prediction.
This is an important problem, since static prediction is used to drive profile-based compiler optimizations. The
two basic methods for predicting branches for these optimizations are to either use profiles or program-based
heuristics.

Profile prediction has been studied for many years, and several researchers have shown that profiles
can accurately predict conditional branches from one run of a program to the next. Even so, there are still several

116

interesting areas of research dealing with profile prediction. In a recent study, we found that libraries have
common behavior between different applications [15]. We found that using a profile from one application’s use
of a library for predicting the library behavior for a different application, achieves conditional branch prediction
accuracy close to perfect profile prediction. These results indicate it should be beneficial to use profiles to
perform compiler optimizations on libraries before they are shipped, including shared libraries. Another recent
profile prediction result that shows promise is correlated static branch prediction. Young and Smith [69]
recently proposed a very accurate profile static branch predictor that captures the behavior of correlated branch
prediction. The correlated branch prediction can be used at compile time to accurately guide trace scheduling.
Their technique accurately predicts conditional branches, but it requires correlated profiles to be gathered for
each program in order to perform the optimizations.

The advantage of program-based heuristics over profiles is that a program’s performance can be
estimated at compile time without the expensive process of gathering profiles. Hank et al. [26] showed they were
able to perform profile-based compiler optimizations using simple heuristics for predicting conditional branch
directions that achieved speedups comparable to the same optimizations performed with profiles. Effective
heuristics for predicting branches have been proposed, such as the Ball and Larus heuristics [4], and recent
program estimation techniques based on these heuristics have been examined by Wagner et al. [60] and Wu and
Larus [64]. We have added to this research by examining machine-learning techniques for predicting program
behavior resulting in automated compiler heuristics [14]. '

Accurately estimating program behavior by either using profiles or program-based heuristics as de-
scribed above, will be an increasingly important area of research as processors rely on compilers to capture
increasing levels of instruction parallelism.

9.3 Dynamic Prediction and Future Processor Designs

As the number of instructions issued per cycle increases on superscalar processors, there may be
need to predict multiple branch instructions at the same time. One important future research area is to determine
how to expand existing branch and instruction fetch prediction architectures and the architectures proposed in
this dissertation to handle predicting multiple branches concurrently.

Another important question for dynamic instruction fetch prediction and branch prediction is how
well will these architectures perform for the next generation of processors. Future processor designs may be
moving towards either a threaded architecture design, as in the Tera [2] architecture, or a multiscalar architecture
design [51]. For both of these architectures, a program can be split into fine grain tasks, and these tasks can be run
on one to many processors. It is unclear how important branch prediction is for these processors and the effects
of misfetched and mispredicted branches. Branch prediction may be extremely important when running a single
application, even more so than on current superscalar architectures. But if many applications are executing
on the same processor, the processor may be able to avoid all branch penalties by switching to another task in
the same program or another application. In this case, branch prediction penalties may be completely masked
without any help from a branch prediction architecture. For instance, in a threaded architecture whenever a
branch is encountered, the processor could start executing a different thread, and switch back to the previous
thread when the destination of the branch is resolved. This would effectively eliminate all the branch penalties
associated with branch prediction without using any branch prediction architecture. On the other hand, if
branch prediction is needed, existing branch architectures may perform poorly since the execution streams can
change often between different applications or parts of a parallel program causing a degradation in prediction
performance due to alias affects in the branch architecture. Future research is needed to examine the importance
of branch and instruction fetch prediction for these architectures and to find the branch and instruction fetch
prediction designs that are best fitted to these future processors.

BIBLIOGRAPHY

[11 W. A Abu-Sufah, D. I. Kuck, and D. H. Lawrie. On the performance enhancement of paging sysiems
through program analysis and transformation. IEEE Transactions on Computers, C-30(5):341-356, May
1981.

[2] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porterfield, and Burton Smith.

The tera computer system. In International Conference on Supercomputing, pages 1-6, Amsterdam,
Netherlands, June 1990. ACM, ACM.

[3] Jean Loup Baer and R. Caughey. Segmentation and optimization of programs from Cyclic Structure
Analysis. In Proceedings of AFIPS, pages 23-36, 1972.

[4] T. Ball and J. R. Larus. Branch prediction for free. In 1993 SIGPLAN Confernce on Programming
Language Design and Implementation, pages 300-313. ACM, June 1993.

[5] Brian N. Bershad, Dennis Lee, Theodore H. Romer, and J. Bradley Chen. Avoiding conflict misses
dynamically in large direct-mapped caches. In 6th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 158-170, San Jose, California, 1994.

[6] Brian Bray and M. J. Flynn. Strategies for branch target buffers. In 24th International Symposium and
Workshop on Microarchitecture, pages 42-49. ACM, ACM, 1991.

[7] Brad Calder and Dirk Grunwald. Fast & accurate instruction fetch and branch prediction. In 21st Annual
- International Symposium of Computer Architecture, pages 2-11. ACM, April 1994,

| [8] Brad Calder and Dirk Grunwald. Reducing branch costs via branch alignment. In 6th International
Conference on Architectural Support for Programming Languages and Operating Systems, pages
242-251. ACM, 1994,

[9] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in C++ programs. In Proceed-
ings of the 21st Annual ACM Symposium on Principles of Programming Languages, pages 397-408,
January 1994,

[10] Brad Calder and Dirk Grunwald. Next cache line and set prediction. In 22nd Annual International
Symposium of Computer Architecture, pages 287-296. ACM, June 1995.

[11] Brad Calder and Dirk Grunwald. The precomputed-branch architecture: Efficient branches with compiler
support. Submitted to the Journal of Computer and Software Engineering, January 1995.

[12] Brad Calder, Dirk Grunwald, and Joel Emer. Predictive sequential associative cache. Submitted to the 2nd
International Symposium on High-Performance Computer Architecture, June 1995.

[13] Brad Calder, Dirk Grunwald, and Joel Emer. A system level perspective on branch architecture perfor-
mance. In 28th International Symposium on Microarchitecture, November 1995.

118

[14] Brad Calder, Dirk Grunwald, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. Corpus-
based static branch prediction. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 79-92. ACM, June 1995.

[15] Brad Calder, Dirk Grunwald, and Amitabh Srivastava. The predictability of branches in libraries. In 28th
International Symposium on Microarchitecture, November 1995.

[16] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying behavioral differences between C and C++
programs. Journal of Programming Languages, 2(4):313-351, 1994. Also available as University of
Colorado Technical Report CU-CS-698-94.

. [17] Brian Case. Intel reveals pentium implementation details. Microprocessor Report, 7(4):9, March 1993.

[18] J. H. Chang, H. Chao, and K. So. Cache design of a sub-micron CMOS System/370. In 14th Annual
International Symposium of Computer Architecture, pages 208-213. IEEE, June 1987.

[19] Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale Patt. Branch classification: a new mechanism for

improving branch predictor performance. In 27th International Symposium on Microarchitecture,
pages 22-31. ACM, 19%4.

[20] Digital Equipment Corporation. Assembly Language Programming Manual. DEC, 1994.

[21] L. Peter Deutsch. Efficient implementation of the smalltalk-80 system. In Proceedings of the 11th
Annual ACM Symposium on Principles of Programming Languages, pages 297-302. Springer-Verlag,
January 1984,

[22] Digital Equipment Corporation, Maynard, Mass. DECchip 21064 Microprocessor: Hardware Refer-
ence Manual, October 1992, '

[23] David R. Ditzel and Hubert R. McLellan. Branch folding in the CRISP microprocessor: Reducing branch
delay to zero. In 14th Annual International Symposium of Computer Architecture, pages 2-9. ACM,
ACM, June 1987.

[24] Domenico Ferrari. Improving locality by critical working sets. Communications of the ACM,
17(11):614-620, 1974.

[25] 1. A. Fisher and S. M. Freudenberger. Predicting conditional branch directions from previous runs of a
program. In Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 85-95, Boston, Mass., October 1992. ACM.

[26] Richard Hank, Scott Mahlke, Roger Bringmann, John Gyllenhaal, and Wen mei Hwu. Superblock
formation using static program analysis. In 26th International Symposium on Microarchitecture, pages
247-256. IEEE, 1993.

[27] S. J. Hartley. Compile-time program restructuring in multiprogrammed virtual memory systems. IEEE
Transactions on Software Engineering, 14(11):1640-1644, 1988,

[28] D. Hatfield and J. Gerald. Program restruéturing for virtual memory. IBM Systems Journal, 10(3):168—
192, 1971.

[29] Mark Hill. A case for direct-mapped caches. IEEE Computer, 21(12):25-40, December 1988.

119

[30] Urs Holzle, Craig Chambers, and David Unger. Optimizing dyhamically-typed object-orientred languages
with polymorphic inlined caches. In ECOOP ’91 Conference Proceedings., pages 21-38. Springer-
Verlag, July 1991.

[31] Peter Yan-Tek Hsu. Designing the TFP microprocessor. IEEE Micro, 14(2):23-33, April 1994.

[32] Mike Johnson. Superscalar Microprocessor Design. Innovative Technology. Prentice-Hall. Inc., Engle-
wood Cliffs, NJ, 1991.

[33] David R. Kaeli and Philip G. Emma. Branch history table prediction of moving target branches due to
subroutine returns. In 18th Annual International Symposium of Computer Architecture, pages 34-42.
ACM, May 1991.

[34] Manolis G. H. Katevenis. Reduced Instruction Set Computer Architecture for VLSI. ACM Doctoral
Dissertation Award Series. MIT Press, 1985.

[35] Brian Kernighan. Optimal sequential partitions of graphs. Journal of the ACM, 18(1):34-40, 1971.

[36] R. Kessler and M. Hill. Page placement algorithms for large direct-mapped real-index caches. ACM
Transactions on Computer Systems, 10(4):338-359, November 1992.

[37] R. Kessler, Richard Jooss, Alvin Lebeck, and Mark D. Hill. Inexpensive implementations of set-
associativity. In 16th Annual International Symposium of Computer Architecture, pages 131-139.
IEEE, May 1989.

[38] Johnny K. F. Lee and Alan Jay Smith. Branch prediction strategies and branch target buffer design. IEEE
Computer, 21(7):6-22, January 1984.

[39] David J. Lilja. Reducing the branch penalty in pipelined processors. IEEE Computer, pages 47-55, July
1988.

[40] Scott McFarling. Program optimization for instruction caches. In Third International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 183-191. ACM,
1988.

[41] Scott McFarling. Combining branch predictors. TN 36, DEC-WRL, June 1993.

[42] Scott McFarling and John Hennessy. Reducing the cost of branches. In 13th Annual International
Symposium of Computer Architecture, pages 396-403. ACM, 1986.

[43] Wen mei W. Hwu and Pohua P. Chang. Achieving high instruction cache performance with an optimizing
compiler. In 16th Annual International Symposium of Computer Architecture, pages 242-251. ACM,
ACM, 1989.

[44] MIPS Technologies, Incorporated. R10000 microprocessor product overview. Technical report, MIPS
Technologies, Incorporated, October 1994.

[45] Johannes M. Mulder, Nhon T. Quach, and Michael J. Flynn. An area model for on-chip memories and its
application. IEEE Journal of Solid-State Circuits, 26(2):98-105, February 1991.

[46] Ravi Nair. Optimal 2-bit branch predictors. IEEE Transactions on Computers, 44(5):698-702, May
1995.

120

[47] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamic branch prediction using branch
correlation. In Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 76-84, Boston, Mass., October 1992. ACM.

[48] Chris Perleberg and Alan Jay Smith. Branch target buffer de31gn and optimization. IEEE Transactions
on Computers, 42(4):396-412, April 1993.

[49] Karl Pettis and Robert C. Hansen. Profile guided code positioning. In Proceedings of the ACM SIGPLAN
’90 Conference on Programming Language Design and Implementation, pages 16-27. ACM, ACM,
June 1990.

[50] Steven Przybylski, Mark Horowitz, and John Hennesy. Characteristics of performance-optimal multi-level
cache hierarchy. In 16th Annual International Symposium of Computer Architecture, pages 114-121.
IEEE, 1989.

[51] Gurindar Shoi, Scott Breach, and T.N. Vijaykumar. Multiscalar processors. In 22nd Annual International
Symposium of Computer Architecture, pages 414-425. ACM, June 1995.

[52] J. E. Smith. A study of branch prediction strategies. In 8th Annual International Symposium of
Computer Architecture, pages 135-148. ACM, 1981.

[53] Kimming So and Rudolph N. Rechtschaffen. Cache operations by MRU change. IEEE Transactions on
Computers, 37(6):700-709, June 1988.

[54] S. Peter Song, Marvin Denman, and Joe Chang. The PowerPC 604 RISC microprocessor. IEEE Micro,
14(5):8-17, October 1994.

[55] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized program analysis tools.
In 1994 Programming Language Design and Implementation, pages 196-205. ACM, June 1994,

[56] Amitabh Srivastava and David W. Wall. A practical system for intermodule code optimizations at link-time.
Journal of Programming Languages, pages 1-18, March 1992. (Also available as DEC-WRL TR-92-6).

[57] Amitabh Srivastava and David W. Wall. Link-time optimizations of address calculation on a 64-bit
architecture. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language
Design and Implementation, pages 49-60. ACM, 1994.

[58] Simon C. Steely and David J. Sager. Next line prediction apparatus for a pipelined computer system. US.
Patent #5,283,873, Feb. 1994.

[59] A.R. Talcott, M. Nemirovsky, and R. C. Wood. The influence of branch prediction table interference on
branch prediction scheme performance. In 3rd International Conference on Parallel Architectures and
Compilation Techniques, pages 88-98, June 1995.

[60] Tim A. Wagner, Vance Maverick, Susan Graham, and Michael Harrison. Accurate static estimators for
program optimization. In Proceedings of the SIGPLAN’94 Conference on Programming Language
Design and Implementation, pages 85-96, Orlando, Florida, June 1994, ACM.

[61] D.W.Wall. Limits of instruction-level parallelism. In Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 176-188, Boston, Mass., 1991.

121

[62] David W. Wall. Predicting program behavior using real or estimated profiles. In Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Language Design and Implementation, pages 59-70,
Toronto, Ontario, Canada, June 1991.

[63] StevenJ. E. Wilton and Norman P. Jouppi. An enhanced access and cycle time model for on-chip caches.
Report 93/5, DEC Western Research Lab, 1993.

[64] Youfeng Wu and James R. Larus. Static branch frequency and program profile analysis. In 27th Interna-
tional Symposium on Microarchitecture, pages 1-11, San Jose, Ca, November 1994. IEEE.

[65] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive branch predictions.
In 19th Annual International Symposium of Computer Architecture, pages 124-134, Gold Coast,
Australia, May 1992, ACM.

[66] Tse-Yu Yeh and Yale N. Patt. A comprehensive instruction fetch mechanism for a processor support-

ing speculative execution. In 25th International Symposium on Microarchitecture, pages 129-139,
Portland, Or, December 1992. ACM.

[67] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch predictors that use two levels of branch
history. In 20th Annual International Symposium of Computer Architecture, pages 257-266, San
Diego, CA, May 1993. ACM.

[68] Cliff Young, Nicolas Gloy, and Michael D. Smith. A comparative analysis of schemes for correlated
branch prediction. In 22nd Annual International Symposium of Computer Architecture, pages 276
286. ACM, June 1995.

[69] Cliff Young and Michael D. Smith. Improving the accuracy of static branch prediction using branch
correlation. In 6th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 232-241, October 1994,

