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Abstract. In a digraph with real-valued edge capacities, we pack the greatest number of ar-
borescences in time O(n3mlog(n?/m)); the packing uses at most m distinct arborescences.
Here n and m denote the number of vertices and edges in the given graph, respectively.
Similar results hold for integral packing: we pack the greatest number of arborescences in
time O(min{n, log (nN)}n?mlog (n*/m)) using at most m +n — 2 distinct arborescences;
here N denotes the largest (integral) capacity of an edge. These results improve all previ-
ous strong- and weak-polynomial bounds for capacitated digraphs. The algorithm extends
to related problems, including packing spanning trees in an undirected capacitated graph,
and covering such graphs by forests. The algorithm provides a new proof of Edmonds’ theo-
rem for arborescence packing, for both integral and real capacities. The algorithm works by
maintaining a certain laminar family of sets.

1 Introduction

Packing arborescences and spanning trees are among the most basic packing problems. They prob-
ably provide the best-known examples of the so-called strong integrality and integer rounding
properties of packing, respectively [Tro]. Many eflicient algorithms for both problems have been
presented for (unit capacity) graphs. This paper presents the most efficient algorithms known for
graphs with arbitrary capacity functions. We give both strong- and weak-polynomial bounds.

We now state our results and compare them to previous work. In the time bounds throughout
this paper, n and m denote the number of vertices and edges of the given graph, respectively. The
parameter N represents the largest capacity. A bound involving N assumes that all given capacities
are integers (between 0 and N) and so is a weak-polynomial bound.

The bulk of this paper is devoted to packing arborescences (more precisely a-arborescences).
Edmonds proved the strong integrality property for arborescence packing [E72] (stated precisely
at the end of this section). Other proofs are in [F79, G91, L, Mad, TL]. Algorithms for packing
arborescences in (unif capacity) graphs are presented in [Ta, S, TL]. The most efficient algorithm for
general unit capacity graphs finds k edge-disjoint arborescences in time O((kn)?) [G91]. Polynomial-

time algorithms for packing arborescences in capacitated graphs are given in [GLS, Mad].
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We present two related algorithms for packing arborescences in capacitated graphs. The first
finds a maximum packing in a digraph with arbitrary real-valued capacities. We call this a fractional
packing — a given arborescence can be used o times for any nonnegative real value . (This type
of packing is needed for the problems of [PW], see below.) The second algorithm finds a maximum
integral packing in a digraph with integral capacities. The two algorithms provide independent
proofs of the real and integral cases of Edmonds’ theorem respectively [E72]. The proof differs from
previous ones in that it is based on maintaining a laminar family of sets.

Our fractional packing algorithm runs in time O(n®*mlog(n?/m)). Our integral packing algo-
rithm has a slightly better time bound, O(min{n, log(nN)}n?mlog(n?/m)). These are the best-
known bounds for both versions of the problem. Our algorithms find packings with essentially the
fewest possible number of distinct arborescences: we use at most m distinct arborescences for frac-
tional packing and m + n — 2 distinct arborescences for integral packing. (We note that Mader’s
- approach to packing by splitting off edges [Mad] can be implemented efficiently using the ideas of
_this paper. However the best bound on the number of distinct arborescences that we can prove for

this approach is O(n?).)

We present four applications of the packing algorithms. Fach runs in the above time bounds
(for the fractional and integral cases) and finds a packing or covering, the number of whose distinct
members is close to the above nmnber of distinct arborescences. Two applications are for capacitated
digraphs. The first is finding a minimum (fractional or integral) covering of a digraph by branchings.
The second is finding a maximum root-constrained packing of arborescences. (In this problem lower
and upper bounds are given for the number of times each vertex can be the root of an arborescence.)
Minimax formulas for root-constrained packing are given in [F78, Mao].

The two other applications are for capacitated undirected graphs. They are finding a maximum
packing of spanning trees, and finding a minimum ‘covering by forests. Edmonds gave the first
polynomial-time algorithms for these problems, establishing the integer rounding property [E65).
Efficient algorithms are given in [G95, GW, I, RT] for (unit capacity) graphs and [GLS, PW] for
capacitated graphs. The most efficient algorithms for packing and covering in capacitated graphs
are due to Trubin [Tru91] running in the time for O(n®) network flow computations. We improve
this by a factor of max{n,n?/log (nN)}. Our algorithms for these undirected problems are based
on the reduction in [G95] of undirected packing and covering to the directed case.

The paper is organized as follows. Section 2 discusses the greedy algorithm for fractional ar-
borescence packing. It proves the fractional case of Edmonds’ arborescence packing theorem. Section

3 provides the last part of our fractional packing algorithm, an efficient method to compute the ca-
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pacity of an arborescence. Section 4 presents an integral packing algorithrﬂ that finds arborescences
one-by-one. It proves the integral case of Edmonds’ theorem. Section 5 extends this to our efficient
integral packing algorithm. Section 6 presents the applications to digraph covering and undirected
packing and covering. Section 7 discusses root-constrained packing. The rest of this Section,gives

notation and definitions.
Rt denotes the set of positive real numbers.

Consider a universe V containing elements s,¢ and subsets §,T. S denotes the complement
V — 5. We often denote singleton sets by omitting set braces, e.g., S U s. An st-set contains s but
not t; a t-set is a nonempty set not containing t. Sets S and T are intersecting if SNT, S — T
and T — § are all nonempty. A family of subsets of V' is laminar if every two sets in the family are

either disjoint or one contains the other.

Consider a directed or undirected graph G = (V,E). If A is a set of edges V(A) denotes the
set of all vertices on these edges. A capacity function is a mapping ¢ : E — R*. By definition any

edge has positive capacity. If an edge has zero capacity we always delete it from E.

An edge uv enters any vu-set and leaves any uv-set. For a set of vertices W, the in-degree
pc(W) equals the total capacity of all edges entering W. Any graph in this paper will have a
capacity function, so this notation always makes sense. On the other hand if A is a set of edges,
we shall implicitly assume that each edge has unit capacity in A. Thus p4(W) denotes the number
of edges entering W. This convention will be used frequently, but to prevent confusion the set of

edges will always be named A when the convention is used.

The following submodular-type identity is well-known and easy to verify. Let dg(9,T) denote
the total capacity of all edges having one end in S — T and the other in T'— 5. Then for any sets
S, TCV,p(S)+p(T)=p(SUT)+ p(SNT)+d(S,T). Here we abbreviate pg to p and dg to d.

A branching in a digraph is a set of edges A such that any vertex v has p4(v) < 1, and ignoring
edge directions A is a forest. Branching A is an arborescence if V(A) contains a unique vertex a
with p4(a) = 0; in this case A is an a-arborescence. A is spanning if V(A) = V.

Consider a digraph G = (V, E) with distinguished vertex @, and a capacity function ¢ : E —
R*. A fractional packing of a-arborescences is a family A of spanning a-arborescences A, each with
an associated multiplicity a(A) € Rt such that for any edge e, Y {a(A4):e € A € A} < ¢(e). The
total multiplicity of A is 3 {a(A): A € A}. An integral packing has all multiplicities a(A) integral.
A mazimum fmcking has maximum total multiplicity. The main problem of this paper is to find

maximum fractional and integral packings of a-arborescences.
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Let A(G) denote the minimum in-degree of an @-set, i.e., \(G) = min{pg(X):0 # X C V—a}.
Edmonds showed that in any digraph with integral capacities, a maximum integral packing A has

total multiplicity A(G) [E72]. Throughout this paper we always define A(G) using the vertex named

a.

2 Fractional Packing

This section discusses the greedy approach to fractional packing. It proves the fractional case of
Edmonds’ arborescence packing theorem and gives our efficient algorithm for fractional packing.
Consider an arbitrary set of edges A (the following notions will be used mainly when A is an
arborescence). Define :
" p#(A) = min{c(e) : e € A}. |
For any a, 0 < a < p(A), let G — aA denote the graph G with the given capacity function ¢
decreased by « on the edges of A. (As mentioned in Section 1, in G — aA we delete any edge that
has zero capacity.) As an example when all capacities are one, G — A is the graph with the edges
A removed. ’
The capacity of A is the largest value o < p(A) having A(G — aA) = A(G) — a. The capacity
always exists, although it may be 0. We sometimes use the notation a(A) to denote the capacity

of A.

Section 3 discusses this notion of capacity in detail. For now the following characterization will

suffice. If a set of edges A has u(A) > 0 yet a(A) = 0 then some @-set U has

pc(U) = AMG) and pa(U) > 1.
In proof suppose the opposite, i.e., every a-set U has pg(U) > A(G) or pa(U) = 1. Then
pc-aa(U) = pa(U) — apa(U) > MG) — a holds for small enough positive « in the first case
and for any « in the second case (since pg(U) > AM(G)). Thus p(A) > 0 as desired.

Consider the following greedy algorithm fqr fractional packing: Choose any spanning a-
arborescence A of G that has positive capacity a. Place A in the packing with multiplicity «
and replace G by G — aA. If AM(@) is still positive then find the rest of the packing recursively.

We will prove that the greedy algorithm works (in particular A exists) and does essentially the
best job possible: It constructs a maximum packing, using at most m distinct arborescences. The
main ingredient of the proof is a laminar family of sets . We will use different versions of F for

fractional and integral packing. We begin with remarks about F that hold for both versions.
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- F is a laminar family of nonsingleton @-sets. Thus F contains at most n — 2 sets (since F
plus all singleton @-sets is a laminar family on n — 1 elements). We always initialize F to §. We
only change F using the following operation, defined for an @-set U. To uncross ¥ U {U} means to

execute the following procedure:

Y I — the family of maximal sets of F that are intersecting wif;h U;
Z—~UU{Y :YeYI};
add Z to F;

~ The family YT can be empty. If U is a nonsingleton set (as will always be the case) then so is

Z. The new family F is laminar. (In proof let F denote the family before{uncrossing. There is a
unique minimal set X € F U {V} that contains U. Any set of F contained in X is either disjoint
from Z or contained in U or contained in some Y € YI. Hence F U {Z} is laminar.)

The uncrossing operation may not change F since F may have already contained Z. We will
always prove that when we uncross, F actually gets enlarged.

Now we return to the specific case of fractional packing. The complete specification of F is
that it consists of nonsingleton @-sets X that satisfy

pa(X) = MG).

Recall that our algorithm changes the graph G as it constructs the packing; in this equation G refers
to the current graph. Let us summarize the properties of various sets of the uncrossing operation

in fractional packing.

Lemma 2.1. Suppose we uncross F U {U} for an @-set U that has pg(U) = M(G). LetY and Y’
be any setsin YI. Then pg(Z) = pa(Y NU) = MG) and dg(Y,U) = dg(Y - U,Y'-U) = 0.

Proof. In this argument we omit the subscript from pc and dg. The submodular identity p(Y) +
p(U)=p(Y NU)+p(YUU)+d(Y,U) implies p(Y NU) = p(Y UU) = A(G) and d(Y,U) = 0. A
similar argument applied to YUU and Y'UU shows d(YUU,Y'UU) = d(Y —U,Y'-U) = 0. Finally
repeated applications of the argument, using Z = |J{YUU : Y € YIU{0}}, show p(Z) = A(G). O

It is convenient to work with a more detailed version of the greedy algorithm. (We relate this
version to the original greedy algorithm after Theorem 2.1.) The following version of the greedy

algorithm uses F to find an arborescence A with nonnegative (possibly 0) capacity.



procedure fractional_pack; begin
F 0
while A(G) > 0 do begin
A «— a spanning a-arborescence of G with p4(X) = 1 for every X € F;
a « the capacity of A; /* possibly a =0 %/ '
G — G - ad;
if (A) > 0 then begin /* no edge was voided */
U « a minimal @-set with pg(U) = A(G) and p4(U) > 1;
uncross F U {U}; end; end; end;

This algorithm implicitly assumes that each arborescence A with positive capacity a gets added
to the packing with multiplicity c.

- The existence of the set U was shown above (since A has capacity 0 after aA is deleted). U is
not a singleton set since p4(U) > 1. To show fractional_pack is well-defined we must prove that the
spanning a-arborescence A exists. We begin with a key fact.

Fix any set X € FU{V}. Define Gx as the subgraph of G induced by X, with every maximal
set of F that is properly contained in X contracted. Choose a vertex bin Gx as follows: If X =V

then b = a. If X # V then choose b so that some edge of G entering X is directed to b.
Lemma 2.2. Gx has a spanning b-arborescence.

Proof. Tt suffices to show that for every b-set S in Gx, some edge of G goes from X — § to S. If
X =V this follows from A(G) > 0. Suppose X # V. The edge defining b contributes to ps(X) but
not pg(S). Yet pa(X) = MG) < pa(5). Thus some edge contributes to pg(.S) but not pg(X), i.e.,
it enters S but not X. This is the desired edge. a

Now we show the arborescence A of fractional_pack exists by giving an algorithm to construct
it. Initialize A to a spanning a-arborescence of G'y. Then repeat the following step until A spans
G: Choose a set X € F such that A contains an edge directed to a vertex b of Gx but A does not
span Gx. Enlarge A by adding a spanning b-arborescence of Gx.

Lemma 2.2 shows the spanning a- and b-arboresééﬁces exist. A simplé induction shows that A
is an arborescence. Each X € F has p4(X) = 1 (by construction). Thus the algorithm constructs

A as specified in fractional_pack.



Theorem 2.1. Procedure fractional_pack finds a fractional packing with total multiplicity A\(G), 7

containing at most m distinct arborescences.

Proof. The definition of capacity implies that any iteration decreases A(G) by a and increases
the multiplicity of the packing by «. Thus if fractional_pack halts (necessarily with A(G) = 0) the
packing has the desired multiplicity. So to prove the theorem we need only show that fractional_pack

halts having found at most m distinct arborescences.

We will show that the family F gets enlarged by any uncrossing operation. This implies the
theorem. To see this note that F gets enlarged at most n — 2 times. An iteration that does not
enlarge F voids an edge of G when aA is deleted. Before the last iteration this occurs at most
m —n + 1 times (since the last arborescence contains n — 1 edges). Thus the number of iterations,

- and hence the number of distinct arborescences, is at most (m—n+ 1)+ 14 (n —2) = m.

To complete the proof consider an iteration that does an uncrossing operation. We wish to
show that uncrossing FU{U} enlarges F,i.e., the set Z of the uncrossing procedure was not already
in F. We claim pa(Z) > pa(U). Since p4(U) > 1 (by the choice of U) the claim implies p4(Z) > 1.
Hence Z ¢ F before uncrossing (by the choice of A). Thus the claim suffices to prove the theorem.

To prove the claim we first note two relations. Let the iteration end with graph G. Any set
Y € YI has

paY NU) = 1. (1)
This follows since Lemma 2.1 shows pg(Y NU) = A(G), so if (1) fdils then Y N U contradicts the

minimality of U. (This is the only place the proof uses the minimality of U. This fact will be used

below.)

The second relation is that any sets Y, Y’ € Y I have
da(Y,U)=da(Y -U,Y' = U) = 0. (2)
In proof, Lemma 2.1 shows (2) for the function dg. Since an uncrossing operation is done, no edge

of A was voided, i.e., every edgé of A has positive capacity in G. Thus (2) holds for d4.

To pi‘ove the claim it suffices to show that any edge e € A entering U corresponds to a unique
edge of A entering Z. If e enters both U and Z it corresponds to itself. Suppose e enters U but
not Z. Thus for some Y € Y1, e leaves Y — U. Now (2) shows e goes from Y — U to Y N U. Thus
(1) shows e is unique for the set Y. Since some edge f € A enters Y, (1) shows f goes from Y to
Y — U. Now (2) shows f goes from Z to Y — U. Since f enters Z we can let e correspond to f. It

is clear that e is the only edge corresponding to f. O

7



The theorem implies our claim for the greedy algorithm, i.e., it finds a maximum packing, and
this packing contains at most m distinct arborescences A. This follows because any arborescence A
chosen by the greedy algorithm can be chosen by fractional_pack, so the two algorithms construct
the same packing.

The theorem also gives an independent proof of the real-valued case of Edmonds’ theorem [E72]:
Any digraph with real capacities has a fractional packing of a-arborescences of total multiplicity
XG).

To implement fractional_pack efficiently Section 3 gives an algorithm to compute the capacity
of A. The algorithm also computes a set U that satisfies all the properties of U in fractional_pack
except minimality. To use U instead of U in fractional_pack replace the line that computes U by

the following two lines:

U — an @-set with pg(U) = A(G) and pa(T) > 1;
U~ UnNX for X aminimal set of F U {V} having p4(U N X) > 1;

Let us show that Theorem 2.1 holds for this implementation of fractional_pack. It suffices
to show that the set U constructed above has all the necessary properties of U in the original
algorithm. The first property is that ps(U) = A(G). This translates to pa(UNX) = A(G), which is
true by the submodularity argument of Lemma 2.1. The second property of U is p4(U) > 1. This
translates to pA(U N X) > 1, which holds by definition. The final property of U is its minimality,
but recall this is only used to establish (1). Since in (1) Y is intersecting with U = Un X, Y C X.
Thus ¥ NU =Y N U. The minimality of X shows pa(Y N U) = 1. This implies (1).

Now we show that assuming the results of the next section, this implementation of frac-

tiondl_pack achieves our time bound for fractional packing.
Corollary 2.1. Procedure fractional_pack as implemented above runs in time O(n?’mlog(n2/vm)).

Proof. We find the arborescence A in time O(m) using the recursive procedure given above. Suppose
a = p(A) (i.e., deleting oA voids an edge). In this case Lemma 3.1 shows the capacity is found in
time O(nmlog(n®/m)). Since there are < m < n? iterations of fractional_pack, the total time for
these iterations is within the desired time bound.

Next suppose a < u(A). In this case the capacity is found in time O(‘n2mlog(n2/m)), as well
as the set U of the implementation (by Lemma 3.1 and the remark following it). Sets X and U are

found in a straightforward way in time O(n?). (Find X by testing each set of F.) The uncrossing
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operation can also be done in this time bound. There are at most n iterations with a < u(A) since

each enlarges F. This gives the desired time bound. : o

3 Capacity Computation

Let A be an arbitrary set of edges. This section computes the capacity a(A) using a version of
Newton’s method for finding a root.

We begin by reviewing the definition of capacity. An équivalent version of the definition is
that the capacity is the largest value o < u(A) such that for each @-set U, pg—aa(U) = pc(U) —
apa(U) > MG) — a. If pa(U) = 1 the desired inequality holds for any a, since pg(U) > A(G). If
pa(U) > 1 then the desired inequality holds if and only if & < ay, where we define

_ pa(0) - NE)

| pa(lU) -1
It is possible that ay = 0.

This characterization of a motivates the following algorithm to compute the capacity.

a — p(A);
while A(G — aA) < A\(G) — o do begin
U « an @-set of minimum in-degree in G — a4;

a — ay; end;

To verify this algorithm is correct we must check two facts. First the algorithm never divides
by 0 in computing ay, since it is easy to see that p4(U) > 1. The second fact is that the algorithm
halts. We will prove this by showing there are at most |A| + 1 iterations.

First observé that the sequence of values of « is strictly decreasing. In proof, recall that U has
in-degree > A\(G)— a exactly when a < ay. Thus each iteration changes a from a value larger than
ay to ay. |

Next we claim that if an iteration computes the set U, then any @-set X with p4(X) > pa(U)
has ax > ay. Observe that the claim implies the desired bound: It implies the sequence p4(U) is
strictly decreasing. Since 0 < p4(U) < |A| the desired bound of at most |A| + 1 iterations follows.

To prove the claim let « equal its value when the iteration begins and U is computed. The
definition of U implies ps(X) — apa(X) > pg(U) — apa(U). Using ay < a and the assumption
pa(X) > pa(U) gives pg(X)—avpa(X) > pa(U)—avpa(U) = MG)—ay. This inequality implies

the claim ax > ayp.



Lemma 3.1. The capacity a(A) of an arborescence A can be computed in time O(min{n, log (nN)}
nmlog(n?/m)). If a(A) = p(A) the time is O(nmlog(n?/m)).

Proof. We check the termination condition of the loop and find the set U using the global minimum
cut algorithm of Hao and Orlin [HO]. This.gives time O(nmlog(n?/m)) for one iteration.

Now the general time bound follows from the fact that the number of iterations is
O(min{n, log(nN)}). The bound n was proved above (since |A| = n — 1). The bound O(vlog(nN))
(in the case of integral capacities) holds for any implementation of the Newton-Dinkelbach method
for ﬁnding the minimum of a function u(z)/v(z) [R]. It is easy to show that our algorithm is an
implementation of this method. (Alternatively we can achieve the bound O(log(nN)) by doing a

binary search for the capacity.)

If a(A) = p(A) there is only one iteration. This gives the second time bound. o

We close with two remarks. If a(A) < p(A), the last set U has p4(U) > 1 and a(4A) = ay;
writing a = a(A) we have pg_q4(U) = A(G) — a = A(G — aA). This set U can be returned as the
set U of procedure fractional_pack.

The integral packing algorithm of Section 5 computesv the floor of the capacity. It is easy to
see that our algorithm works if we change the last line to @ «— |ay]. Lemma 3.1 continues to hold.

The advantage of this version is that all computations preserve integrality.

4 One-by-one Packing

This section presents an integral packing algorithm. It finds each arborescence (of multiplicity
one) individually. The algorithm gives an independent proof of Edmonds’ theorem for integral
arborescence packing, and is used in our general integral packing algorithm.

Consider a digraph G = (V, E) with distinguished vertex a. G may have an integral capacity
function, in which case we consider each edge to have multiplicity equal to its capacity. Throughout
this section we write A = A(G). We will grow an a-arborescence A of the packing edge-by-edge.
Initially A is empty, and eventually it becomes a spanning arborescence. We maintain A to always

satisfy the invariant, -
| AMG=A)>A=1. (3)
When a spanning a-arborescence A satisfies (3) then (3) holds with equality. In that case we add
A to the packing and recursively pack the graph G — A.
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To guide the construction of A we maintain a laminar family F of G-sets X, each of which has

pG-a(X)=A—1lor pa(X) = A , (4)

Note that a set X € F that does not satisfy the first condition has p4(X) = 0 (since (3) implies
pG-a(X) > A, which with pg(X) = X implies the desired conclusion).

When the packing algorithm begins to grow the very first arborescence, F is initialized to @.

Thereafter the only operation on F is to uncross F U {U}, where U is a (nonsingleton) @-set with

pG-a(U) = A — 1. Now we summarize the properties of various sets when we uncross ¥ U {U}.

Lemma 4.1. Suppose we uncross F U {U} for an @-set U that has pg_4(U) = A — 1. Then
pG-a(Z)=A—1. For any set Y € YI, pa_4(Y) = pg—a(Y NU) and dg—4(Y,U) = 0.

Proof. In this argument p and d refer to the graph G — A. We first prove the two claims involving
Y, as well as the relation p(Y UU) = XA — 1. Consider the submodular identity p(Y) + p(U) =
p(YNU)+p(YUU)+d(Y,U). Using (3), p(Y UU) > A—=1 = p(U). Thus to show the three desired
equations it suffices to prove p(Y NU) > p(Y).

If p(Y) = XA — 1 then (3) shows p(Y NU) > p(Y) as desired. Suppose p(¥Y) > A — 1. Since
Y € F, (4) shows p(Y) = pa(Y) = X and pa(Y) = 0. Since A is an arborescence the latter implies
pa(Y NU) = 0. The definition of A now implies p(Y N U) > A as desired.

To complete the proof it remains to show that p(Z) = A—1. Since Z = J{YUU : Y € YIU{}},
repeated applications of the submodular identity, using (3) and the relations p(Y UU) = A -1, give

~the desired equation. ; O

The following algorithm constructs one spanning a-arborescence A for the packing.

procedure grow; begin
A « any edge leaving a;
while A' is not spanning do begin
let e be an edge leaving V(A) that does not enter any set X € F with pg-4(X)=A-1;
if AU e satisfies (3) then add e to A else begin
U « the minimal set entered by e and having pg-4(U) = A — 1;

uncross F U {U}; end; end; end;

To show this algorithm is well-defined, note there is a unique minimal set U (if e = vw, U

is a wa-set of minimum in-degree). Next we will prove that the edge e exists. For X € F U {V}
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recall the definition of Gx from Section 2. Choose any minimal set X € F U {V} where A contains
at least one but not every vertex of Gx (strictly speaking we do not mean A here, but rather the

arborescence corresponding to A in the contracted graph Gx).
Lemma 4.2. Gx contains an edge leaving V(A).

Proof. Let S be the set of vertices of Gx not contained in A. A contains every vertex of G that
isin X — S or in a contracted vertex in X — S (by the minimality of X'). Thus it suffices to show
that some edge of G goes from X — § to S. This is clear for X = V since A > 0. For X # V the
fact that A enters X but not S shows that pg_4(S) > A = pg_4(X)+ 1. Thus G — A contains an
edge entering S but not X. This is the desired edge. a

It is easy to see that the edge of the lemma éan be used for e in grow.

We will show below that grow actually halts, finding a spanning a-arborescence A. Assuming
that, consider the following packing élgorithm, one-by-one_pack: Initialize F to (. Execute grow to
find a spanning arborescence A. Then add A to the packing (with multiplicity one) and replace G

by G — A. If A(G') > 0 then repeat the process.

Theorem 4.1. Procedure one-by-one_pack finds an integral packing of A(G) arborescences.

Proof. Assume temporarily that every iteration of grow either adds an edge to A or enlarges F. The
latter can occur at most n — 2 times. Thus each execution of grow eventually returns a spanning
arborescence A. Adding A to the packing increases its multiplicity by 1 while deleting A from G
decreases A by 1 (by (3)). Furthermore deleting A preserves (4), since immediately before deleting
each X € F has pg-4(X) = A — 1. Thus it is clear that the desired packiﬁg of A(G) arborescences
is eventually obtained.

It remains to prove the assumption. Suppose an iteration does not enlarge A, i.e., AU e does
not satisfy (3). The uncrossing operation adds a set Z to F. Lemma 4.1 shows pg—a(Z) = A -1,
i.e., (4) holds. U is not a singleton (if e = vw, pg_4(w) > A). We claim that edge e enters Z. This
shows Z ¢ F before uncrossing (by the choice of e). Thus F is actually enlarged as desired.

To prove e enters Z we assume the contrary and derive a contradiction. Let e = vw. Since e
enters U but not Z, v € Y — U for some Y € YI. This implies w € Y NU, since e € G — A and
dg-4(Y,U) = 0 (Lemma 4.1). Thus e enters Y N U. Furthermore pg_4(Y NU) = A — 1. (To see
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this note that p4(Y) > 0. Since Y € F this implies pg—4(Y) = A—1 by (4). Now Lemma 4.1 gives
the desired equation.) The last two properties of Y N U contradict the minimality of U. O

The theorem gives an independent proof of Edmonds’ theorem [E72], i.e., any digraph with
integral capacities has a packing of A(G) a-arborescences. Procedure one-by-one_pack can be effi-
ciently implemented on a graph: We use the matroid approach of [G91] to check condition (3) and
find the set U if (3) fails. This algorithm achieves the same time bound as [G91]: if G has kn edges
and A(G) = k, it finds a packing of k arborescences in time O((kn)?). In practice one-by-one_pack
may be faster, since it may be easier to maintain F than to do the graph contraction operations of
[G91].

The efficient integral packing algorithm of Section 5 uses a modified version of grow, that gains
efficiency by not checking (3) for each edge e. For e € A let A/e dénote the set of all edges added to
A strictly before e. The following fast_grow procedure is called with A a spanning a-arborescence
satisfying p4(X) < 1 for every X € F. The procedure halts with A a spanning a-arborescence that
satisfies (3).

procedure fast_grow;
while A does not satisfy (3) do begin
e - the last edge added to A with A/e satisfying (3);
A— Ale;
U « the minimal set entered by e having pg-4(U) = A - 1;
uncross F U {U};
repeat /* “grow loop” */
add an edge to A that leaves V(A4)
and does not enter any set X € F with pg_a(X)=A-1;
until A is spanning; |

" end;

In the first iteration of fast_grow, assume the edges of A have been added in an order consistent
with the grow loop, i.e., for each e, A/e is an a-arborescence.

To show that fast_grow is correct first note that A/e is an arborescence (by the grow loop and
the definition of /). Next observe that the grow loop constructs a spanning arborescence A. This
follows from repeated application of Lemma 4.2. Finally observe that fast_grow is correct because

it works exactly the same as grow. More precisely immediately after each uncrossing operation in
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fast_grow, A and F are exacﬂy the same as they are in an execution of grow that has construg:ted
the arborescence A/e Ue.

The integral packing algorithm of Section 5 calls fast_grow with an initial arborescence A that
does not satisfy (3). Now we give some implementation details of fast_grow and also show that the
total time for all such executions of fast_grow is

O(n*mlog (n?/m)logn).

We check that A satisfies (3) using the minimum cut algorithm of Hao and Orlin [HO]. This
uses time O(nmlog(n?/m)). If (3) fails we find the desired edge e using a binary search. The search
maintains an interval of edges that were added consecutively to A and contain e. Each probe chooses
aﬁ appropriate edge f € A and checks if A/f satisfies (3), agaﬁn using the Hao-Orlin algorithm.
This uses time O(nm log(n?/m)logn). The last execution of the Hao-Orlin algorithm finds the

desired minimal set U.

The algorithm maintains the forest representing F. This allows us to uncross F U {U} in time
O(n). Also we find each arborescence 4 in O(m) time.

If an iteration of (the while-loop of) fast_grow starts with A not satisfying (3), the uncrossing
operation enlarges F. This follows from the proof of Theorem 4.1 and the correspondence between
fast_grow and grow. Since each call to fast_grow starts with such an A, we conclude there are a total

of O(n) iterations in all executions of fast_grow. This implies the desired time bound.

5 Integral Packing

This section presents our algorithm to find a maximum integral packing, using at most m + n — 2

distinct arborescences.

Let G = (V, E) be a digraph with a distinguished vertex ¢ and an integral capacity function

c. For a set of edges A, the integral capacity of A is the largest integral value a@ < p(A) having

MG — aA) = MG) — a. The integral capacity equals the floor of the capacity defined in Section

2. Our algorithm packs arborescences A according to their integral capacity. With each such A of

capacity < pu(A) we pack another arborescence (of multiplicity 1) that enlarges F. The details are
as follows.

Let A be a family of a-arborescences A, each with an associated integral multiplicity T(A).

G — A denotes the graph obtained by starting with G' and deleting 7(A) copies of each A € A.

A is valid if each A € A is a spanning a-arborescence and for 7(A) the total multiplicity of A,
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MG — A) = AG) — 7(A). For A € A, A/A denotes the family of all arborescences added to A
strictly before A. The integral packing algorithm is as follows.

procedure integral_pack; begin
F 0
while A(G) > 0 do begin
A —0;
repeat
A «— a maximal a-arborescence in G — A with ps(X) < 1 for every X € F;
add A with multiplicity u(A) to A;
until A is not spanning or |A| = n;
if A is valid then G —« G - A
else begin
B « the last arborescence added to A with A/B valid;
G — G- A/B;
if B is spanning then begin
B — the integral capacity of B (in the current graph G);
G — G - BB,
call fast_grow with a-arborescence B, to return a-arborescence A;

G « G — A; end; end; end; end;

As usual assume that whenever we delete arborescences from G we add these arborescences to
the packing, with the corresponding multiplicities. Also note that procedure fast_grow maintains
the laminar family 7. Finally we remark that B can be the first arborescence of A, and it can have
capacity 0.

We now show that integral_pack finds an integral packing of total multiplicity A(G). Whenever
we delete a valid family of arborescences from G, the packing is enlarged correctly (i.e., the decrease
in A\(G) equals the increase in total multiplicity of the packing). Also every set X € F always
satisfies (4) of Section 4. In particular throughout the execution of integral_pack except during the
execution of fast_grow, pg(X) = A(G). This condition is preserved when we delete a valid family of
arborescences (since any arborescence in the family necessarily enters X only once). These remarks
show that integﬁzl_pack works correctly when A is valid.

Suppose A is invalid. Procedure integral_pack works correctly when A/ B is deleted. Consider

the case when arborescence B is not spanning. We claim that the current graph has A(G) = 0.
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In proof, when B was added to A (in the repeat-loop) the graph G — A was precisely the current
~ graph G. In general during the repeat-loop constructing .4, the arborescence A is spanning if A is
valid and A(G —.A) > 0. This follows from Lemma 4.2. The claim now follows. It is easy to see that
integral_pack halts with the desired packing in this case.

Finally consider the case when B is spanning. The algorithm works correctly when B is
deleted. After the deletion each edge of B still has positive capacity and B is a spanning arborescence
with integral capacity 0. Thus fast_grow is called with an arborescence as described in Section 4. (In
particular B does not satisfy (3). Also as noted above, (4) holds for all sets in F.) Hence fast_grow
returns An arborescence A that is valid and can be added to the packing.

* Since each iteration of integral_pack adds at least one arborescence to the packing, the procedure

eventually halts with a packing of total multiplicity A(G).

Theorem 5.1. Procedure integral_pack finds an integral packing with total multiplicity A(G), con-

taining at most m + n — 2 distinct arborescences.

Proof. Let A be the packing obtained for the original input graph. It remains only to check the
number of distinct arborescences in A. At most m —n + 2 arborescences A have multiplicity p(A) in
A. This follows since each such A voids an edge, and the last arborescence added to A contains n—1
edges. The remaining arborescences of A come in pairs B, A that are the input and output of an
execution of fast_grow. Section 4 shows that each execution of fast-grow does an uncrossing operation
that enlarges F. Hence there are at most n—2 such calls. Thus |.A] S (m—=n+2)4+2(n-2) = m+n-2.

O

We conclude by giving the remaining implementation details of integral_pack and computing

the time bound.

Corollary 5.1. Procedure integral_pack runs in time O(min{n, log(nN)}n?mlog(n?/m)).

Proof. Each iteration starts by finding < n arborescences in time O(nm). Consider the iterations
having A valid. Validity is checked using the Hao-Orlin minimum cut algorithm [HO]. Thus the
time for such an iteration is O(nmlog(n?/m)). An iteration with A valid has |A| = n. (If |A] < n
the last arborescence of A is not spanning and A is invalid.) We conclude that there are < m/n < n

iterations having A valid. The total time for these iterations is O(n?mlog(n?/m)).
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Next consider the iterations having A4 invalid. The arborescence B is found by a binary search
in time O(nmlog(n?/m)logn). Lemma 3.1 shows that the integral capacity of B is found in time
O(min{n, log(nN)} nmlog(n?/m)). As noted in the analysis of fast_grow, at most n iterations
have A invalid. (This includes at most one iteration where fast_grow is not called, since as noted
above such an iteration, where B is not spanning, is the last.) This contributes total time equal
to the desired bound. Also the total time for all executions of fast-grow (computed at the end of

Section 4) is within the desired bound. o

6 Applications of Packing

This section applies our packing algorithms to related problems, specifically, covering digraphs by

branchings, and packing and covering in undirected graphs.

Sections 6 and 7 use various graphs having a parametrized capacity function. Specifically the
given graph G has a capacity function ¢,, where the parameter p can take on any real value that is
at least some fixed lower bound (e.g., 0). Unless otherwise specified we use G to denote the given
- graph with capacity function c,, where the value of p is determined by the context. Similarly the

function p denotes pg where G uses capacity function c,.

We first consider the problem of covering a digraph by branchings. More precisely let G be
a digraph with capacity function ¢. We use terminology anaiogoué to packing. The problem is to
find a family of branchings, each with an associated multiplicity, such that each edge e occurs
in branchings of total multiplicity equal to ¢(e) and the family has the minimum possible total
multiplicity. This minimum multiplicity is called the branching covering number. We consider both
fractional and integral covering; correspondingly we have the fractional and integral branching

covering numbers.

We characterize the branching covering number as follows. Form the digraph G from G by
adding a new vertex a and an edge av for every vertex v € V. Let d = max{pg(v) : v € V}. For
p > d define a parameterized capacity function ¢, on G as follows: If edge e leaves vertex a, say
e = av, then ¢,(e) = p—p(v); otherwise ¢p(e) = c(e). The expression A(G) is interpreted according
to two of our conventions: As stated above, G uses the capacity function c;,. As stated in Section 1,
AM(G) is defined using a as the root vertex. Note that A(G) < p since each vertex # a has in-degree
pin G.
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Lemma 6.1. The (integral or fractional) branching coverihg number of G is the smallest (integral

or fractional) value p such that )\(_Cj) =p.

Proof. Let b be the (integral or fractional) branching covering number of G. Let p be the smallest

(integral or fractional) value as specified in the lemma. We prove b = p in two steps.

We first show b > p. In this argument fix ¢, as the capacity function on G. We convert a
covering of G having multiplicity b to a packing of a-arboresences in G having total multiplicity b,
as follows: Add edge av to each branching that has v as a root, for each v € V. This gives a packing
of arborescences, in which each edge av has multiplicity b — pc(v) = cp(av). Hence this is a valid

packing in G. (Note this argument also ensures the existence of the quantity p.)

Next we show p > b. In this argument fix ¢, as the capacity function on G. We convert a
packing A of a-arborescences in G having total multiplicity p to a covering of G having total
multiplicity p, as follows: Delete all occurrences of edges av from A. Note that 4 contains every
edge of G with multiplicity equal to its capacity (since as noted each vertex # a has in-degree p).

Thus the resulting family of branchings is a cover of G. O

We use the parametric s-set algorithm of [G95] to calculate the quantity of the lemma. This
algorithm is also used in Section 7. We now summarize the parametric s-set problem and all

properties of the algorithm needed in Sections 6 and 7.

The parametric s-set problem is defined by a digraph G with distinguished vertex a, capacity
function ¢, parémeterized by p > 0, and target function 7(p). The problem is to find the smallest
value of p such that using capacity function c,, A(G) > 7(p) (this value is infinite if no such p
exists).

We make several assumptions to ensure this problem is well-defined and tractable: Any @-set S
has a value pg (possibly infinite) such that p(5) > 7(p) exactly when p > pg. Furthermore given §
we can compute pg in time O(m). Also given p and an edge e we can compute cp(e) in O(1) time.
Finally we assume monotonicity properties for the capacities: Any edge e leaving vertex a has c,(e)
a nondecreasing function of p, and any other edge e has cp(e) constant. For arbitrary real-valued
capacities ¢,, the algorithm of [G95] solves the parametric s-set problem in time O(nmlog(n?/m))

and space O(m).
The parametric s-set algorithm starts with p = 0. Then it repeatedly finds a set § with

p(8) < 7(p) and increases p to ps (so p(5) > 7(p)) until A(G) > 7(p). (Each time we change p this
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changes the capacity function c,.) The values ps and c,(e) are computed by a subroutine — they
can be chosen as the algorithm executes.

We use the parametric s-set algorithm to calculate the branching covering number as follows.
The parametric s-set problem is defined as in Lemma 6.1, i.e., the graph is G with distinguished
vertex a, capacity function ¢, and target function 7(p) = p. (Our parameter p has lower bound d
rather than 0 but this is inconsequential.) Lemma 6.1 shows the branching covering number equals
the answer to the parametric s-set problem.

Note that the values pg are defined and easy to calculate: Any set S having p(S) > d for
capacity function ¢4 has ps = d (for example this includes any singleton set §). Any other set .S
has ps = d+ (d — p(5))/(|S| = 1), where p uses capacity function cq. (For fractional covering this
formula follows easily from the definitions. For integral covering use the ceiling of this value.) The

monotonicity property for ¢, is obvious.

Theorem 6.1. The (integral or fractional) branching éovering number of a digraph can be found
in time O(nmlog(n?/m)). A corresponding fractional covering can be found in the time bound of
Corollary 2.1, using at most m + n distinct branchings. For integral covering the time is the same

as Corollary 5.1, using at most m + 2n — 1 distinct branchings.

Proof. We have shown how to calculate the branching covering number b in the desired time. A
corresponding minimum cover can be found by executing our packing algorithm on G with capacities

¢p. The bounds on fhe number of distinct branchings in the cover follow from Theorems 2.1 and

5.1. O

We turn to problems on undirected graphs G, specifically, covering G by forests and packing
spanning trees in G. [G95] shows that the integral and fractional versions of both of these problems
reduce to packing a-arborescences in a digraph D. (D is called the reverse of the equivalent graph,
EGE, in [G95).) D is constructed as follows. We begin with a subgraph SG of G. For the covering
problem SG = G. For the packing problem [G95] constructs SG; it is the union of all spanning tfees
of the desired packing (with corresponding capacity function). Form D by replacing each edge vw
of SG by directed edges vw and wv, and adding a new vertex a and an edge av for each v € V. The
capacity function on D is derived from a maximum ﬂbw'computation. For the covering problem
let k be the total multiplicity of a minimum covering by forests of G. For the packing problem let

k be the total multiplicity of a maximum packing of spanning trees of G. Then D has a packing
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of a-arborescences of total multiplicity k. Deleting a from these arborescences and ignoring edge

directions gives the desired covering or packing on G.

We make three remarks on this construétion. First consider fractional cdvering and packing
on G. [G95] assumes rational capacities to prove that a packing on D gives the desired covering or
packing on G. Our proof of Edmonds’ theorem for real capacities shows (a minor modification of)
the argument of [G95] is valid for real capacities. Next consider integral covering and packing on
G. In this case D has integral capacities, and we use an integral packing on D. Finally note that
[G95] shows D can be constructed in time O(nmlog(n?/m)) for covering and O(n?mlog(n®/m))

for packing.

We find the desired covering or packing on G using our packing algorithm on D. Since D has
at most 2m + n edges we obtain a minimum covéring by forests using at most 2m+n (2m+2n—1)
distinct forests for fractional (integral) covering, by Theorem 2.1 (5.1). The same two bounds hold
for the number of distinct spanning trees in a maximum packing. We now reduce these bounds by

reducing the number of edges in D.

First we review the construction of D from [G95] in more detail. Let SG = (V,E) with
capacity function ¢sg. Let s and a be new vertices not in V. Define a digraph G* to have vertex
set {s,a} UV UE and edge set {se : e € E} U {ev,ew : e = vw € E} U {va : v € V}. Define a
capacity function ¢ on G* by the identities c(se) = csg(e), c(ev) = c(ew) = oo and ¢(va) = k. As

above, k denotes the (integral or fractional) covering or packing number of G.

Next take f to be a maximum flow from s to a on G*. Use an integral flow for integral covering
or packing. ([G95] shows that f saturates all edges leaving s.) Form the residual graph of f. Delete
vertex s and delete all edges leaving a. Then do the following for each e = 2y € E: delete the vertex
e and replace it by edges zy and yz of capacities f(ex) and f(ey) respectively. Digraph D is the

reverse of this graph.

An edge of D not incident to a corresponds to an edge ev of G* with positive flow. We achieve
a small number of such edges as follows. Call a flow on G* acyclic if there is no undirected cycle of
edges ev where each edge has positive flow. G* has a maximum flow that is acyclic. In proof, any
edge ev has infinite capacity. Hence for any undirected cycle of edges ev carrying flow, we can push
flow around the cycle in a direction that voids an edge. Doing this repeatedly gives the desired
acyclic flow. This proof can be implemented efficiently ﬁsing the dynamic tree data structure. This
allows us to convert any maximum flow on G* to a maximum acyclic flow in time O(m logn). This

result is due to Sleator and Tarjan [ST].
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Theorem 6.2. A minimum fractional covering of a capacitated undirected graph by forests can be
found in the time bound of Corollary 2.1, using at most m + 2n — 2 distinct forests. For integral

covering the time is the same as Corollary 5.1, using at most m + 3n — 2 distinct forests.

Proof. We need only prove the bounds on the number of distinct forests. In an acyclic flow at most
m + n — 1 edges ev have positive flow. Using a maximum acyclic flow in G* gives a graph D with
<(m+n-1)4+n=m+2n -1 edges. The desired bound for integral covering now follows from

Theorem 5.1.

Theorem 2;1 shows we use at most m + 2n — 1 forests for fractional covering. This number
décreases by 1 if we initialize fractional_pack so the laminar family F contains a set S. Such a set is
available from the algorithm of [G95] that constructs D. (This follows from the arboricity algorithm
of [G95], Section 5. To show this we use the terminology of [G95]. Assuming the graph G has some
edge of positive capacity, the fractional arboricity is strictly greater than the fractional density,
I > d. This implies the second step of the arboricity algorithm, which executes the parametric s-set
algorithm, increases the parameter p at least once. The last such increase makes some nonsingleton

@-set of vertices S have pp(S) = I'. In our notation I' is k. Hence S can be added to F.) o

The above discussion also holds for packing. But we can further reduce the number of distinct

trees in the packing.

Theorem 6.3. A mazimum fractional packing of spanning trees in a capacitated undirected graph
can be found in the time bound of Corollary 2.1, using at most m+ n — 2 distinct trees. For integral

packing the time is the same as Corollary 5.1, using at most m + 2n — 4 distinct trees.

Proof. We need only prove the bounds on the number of distinct spanning trees. To do this we

modify the construction of D as follows.

Fix an arbitrary vertex b. G* has a maximum flow with edge ba void. This is easy to show
using the max flow min cut theorem ([G95] gives similar arguments). Here is an alternate proof:
By definition SG has a packing 7 of spanning trees of total multiplicity k. Root every tree of 7 at
~ vertex b. For any edge e = vw define f(ew) (f(ev)) to be the total multiplicity of all arborescences
that contain the directed edge vw (wv). Extending f in the natural way gives a flow on G* that

saturates all edges leaving s (i.e., f is maximum). Observe that f(ba) = 0 (no flow enters b since it
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is the root of every tree of 7') and any other edge va has f(va) = k (since v is not the root of any
tree of 7).

Now make the above flow f acyclic. At most m +n — 2 edges ev have positive flow (recall that
no edge eb has positive flow). In the residual graph of this flow only one edge ba enters a, since
any other edge va is saturated. Thus we get a graph D with < m + n — 1 edges. Observe that in
the packing of a-arborescences of multiplicity £ in D, each arborescence contains edge ab. So we
can delete this edge from D, and pack b-arborescences in D — {ab} to get the desired packing of
spanning trees in G.

In summary we pack arborescences in a digraph having m 4+ n — 2 edges. Now the desired

bounds follow from Theorems 2.1 and 5.1. a

7 Root-constrained Packing

Consider a packing of spanning arborescences where each arborescence is rooted at an arbitrary
vertex v. Let r(v) denote the total multiplicity of all arborescences rooted at v. In a mazimum root-
constrained packing we seek a packing of spanning arborescences with the largest total multiplicity
subject to the constraint that each value 7(v) lies in a given real interval [£(v), u(v)]. We allow u(v)
to be infinite (which is equivalent to letting u(v) equal the out-degree of v). The case £(v) = u(v) =
0 means v is never a root. This section gives an algorithm that computes the above maximum
multiplicity, as well as each value r(v) in the desired packing. It is then a simple matter to find the
desired packing.

Our algorithm is based on minimax formulas due to Frank [F78] (which treats the case of
upper bounds only) and Mao-Cheng [Mao] (which treats the case of lower bounds only). In fact
our algorithm is similar to the proof of [F78]. Frank and Tardos [FT] showed that the two minimax
formulas can be combined to give the following theorem: A digraph has k edge-disjoint arborescences
such that £(v) < r(v) < u(v) for every vertex v iff these two conditions hold:

pc(S)+ u(S) > k for every nonempty set S CV (5a)

Z{pg(&) 11 <3<t} > 0(So)+ k(t—1) for e\}ery partition of V into sets §;, 0 < ¢ <t, (5b)
where ¢ > 0 and §; is nonempty for 1 < ¢ <t

Here and throughout this section if S is a set of vertices then u(S) denotes > {u(v) : v € S},

and similarly for £(.9). Our develbpment gives another vproof of this result, for both the fractional

and integral cases. We discuss the fractional case as the default, and note the minor modifications

needed for the integral case.
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"The algorithm uses the digraph G which is formed from G by adding a new vertex a. Every
vertex v € V has a new edge av of capacity u(v). (This capacity, which we always denoté u(v),
gets decreased during the algorithm.) We use two in-degree functions: p and p denote pg and pg
respectively (p changes as G changes.) Observe that A(G) = u(V) iff G has a packing of total
multiplicity u(V'), with each vertex v the root of exactly u(v) arborescences. (As always AG) is
defined using @ as the root.) Thus our plan is to decrease u values until eventually the desired
packing exists.

Inequalities (5a-b) will guide the decrease, so let us verify that they are necessary conditions
for the desired root-constrained packing: Suppose G has a root-constrained packing of multiplicity
k. (5a) holds since A(G) > k. To show (5b) consider a spanning arborescence A of G, rooted at a
ve‘rtex v. Any set S; not containing v has p4(Si) > 1. Thus A contributes t — 1 to the left-hand
side of (5b) if v ¢ Sp and t if v € Sp. (5b) follows.

Our algorithm maintains a variable k that decreases to the maximum multiplicity of a root-
constrained packing (if such exists). The values u(v) also decrease from their given values but not
below £(v). The algorithm returns the final values of k£ and u, where k is the maximum multiplicity

of a root-constrained packing A, and each vertex v is the root of arborescences of total multiplicity

u(v) in A.

procedure find-roots; begin
Ee M@)o
while true do begin
decrease values w(v),v € V as much as possible
maintaining u(v) > £(v) and A(G) > k; [/ “decrease step” */
if (V') =k then return k,u;
T « {5 :5 is a maximal a@-set with p(S) = k}; t — |T|;
if ¢ <1 then return “no root-constrained packing exists”;
So =V —-U{S:5€T}
k= (2{n(8): 5 €T}~ L(S))/(t—1);
/* for integral packing set k to the floor of this value %/

end; end;

Now we prove that find_roots returns the correct answer. The argument also proves that (5a-b)
are necessary and sufficient conditions for root-constrained packing (in particular when no root-

constrained packing exists it exhibits a violated condition).
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Lemma 7.1. Procedure find _roots is correct.

Proof. We begin by showing that k is nonincreasing. Note this implies the algorithm maintains the
invariant A(G) > k. Let an iteration start with the value k and end with the value k'. We will show
k>K.

The definitions imply Y {p(S): 5 € T} = Y {p(S)—u(S): S € T} = kt —u(V)+u(Sp). Since

we can assume that A(G) > k after the decrease step,

V)=5(V) 2 k. (6)
If w(v) > {(v) then v is in a set of 7. Thus u(Sy) = £(Sp). Hence
D {p(S): 8 € TY—U(So) =kt —u(V) < k(t - 1). (7)

Thus k > ¥'.

Next we show that ¥ = k' implies the next iteration halts. The assumed equality implies
equality holds in (7) (for the integral case note that k'(¢ — 1) is at most the left-hand side). Thus
equality holds in (6). Hence u(V') = k = k' so the next iteration of find_roots halts (returning k, u).

We conclude that find_roots eventually halts. In proof suppose the current iteration computes
a family of sets 7" that was computed in some previous iteration. The current iteration computes
k' which is the same as the value computed in that previous iteration. Since k is nonincreasing we

conclude that & = &’. Thus the next iteration halts.

It remains to show that ﬁnd.roots returns the correct answer. First note that for the first value
of k there is a set S satisfying (5a) with equality (using the given values u). For subsequent values
of k thére is a family 7 satisfying (5b) with equality. (In the integral case equality need not hold
but k is the largest integer satisfying (5b).)

If find_roots returns with (V) = k the definition of G’ shows G has a root-constrained packing
with total rhultiplicity k. Furthermore k is as large as possible, by the equality in (5a) or (5b) noted

above.

Next suppose find_roots returns with ¢t < 1. If ¢ = 0 then no @-set S has p(.5) = k. Hence the
decrease step shows every vertex has u(v) = £(v). Thus £(V) = w(V) > k (recall A(G) > k). Thus
the equality in (5a) or (5b) for k implies £(V') is too large for a root-constrained packing.

' The remaining possibility is ¢t = 1, i.e., T consists of the single set S. In this case u(V) > |
k = p(S). Subtracting u(S) shows u(So) = {(So) > p(S). This violates (5b) (with t = 1) so no

root-constrained packing exists. , a
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We now prove the key fact for the efficiency of find-roots. Define F to be the family of all sets
S such that at some point in the algorithm § is a maximal @-set with p(S) = k. Any set in any
T family belongs to F. But F also contains sets S that satisfy the definition at some point during
the execution of the decrease step but not at the end of that step. This will be important when we

implement the decrease step.
Lemma 7.2. F is a laminar family. Procedure find_roots performs O(n) iterations.

Proof. Call a set S C V extreme if any nonempty subset T' C S has p(T) > p(5). (This is a slight
abuse of terminology since the usual definition of extreme set requires strict inequality.) Observe
that at any point in the algorithm every set § € F is extreme. This follows because § is extreme
when it enters F, since at that time any set 7 C S has p(T) > k = p(S5). After that § remains
extreme, since the decrease step preserves extreme sets.

Now we show that F is always laminar. After k is initialized F is a family of disjoint sets (the
maximal @-sets of in-degree k = M\(G)). Suppose a set § gets added to F,i.e., § is a newly-created
maximal G-set with B(S) = k. Take any set T € F that is not disjoint from §. The submodular
identity 5(S) +p(T) > p(SNT)+p(SUT) with 5(SNT) > p(T) (since T is currently an extreme
set) shows k = 5(S) > p(SUT). Hence k = p(SUT) and by maximality § =SUT,ie,T CS as
desired.

Next we observe two facts about sets of 7. First, a set S € 7 is the union of maximal sets of
F and vertices not in a set of F. In proof suppose S is not disjoint from T' € F. If § C T then
p(T) = k since T is extreme. Hence maximality implies § = T » ‘ |

Second note that a given set S can be in 7 for a number of iterations. S drops out of 7 when
it is no longer maximal in F or it achieves u(S) = £(.5). In both cases S never returns to 7.

Now we can prove that find_roots has O(n) iterations. O(n) iterations add a set to F (since
F is laminar). Consider any other iteration of find_roots that is not the last or next-to-last. As
shown in Lemma 7.1 the iteration changes the family 7. Thus some set of F drops out of 7. Since

|F| = O(n) this occurs O(n) times. a

Now we present the detailed implementation of find-roots, the main part of which is the decrease
step. We implement the decrease step in a number of iterations. The net result of any iteration
is that values u(v) get decreased, maintaining u(v) > £(v) and A(G) > k, and a new set S with

B(S) = k gets created. The parametric s-set algorithm is used to accomplish this. (During the
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execution of the parametric s-set algorithm values u(v) get increased, but this does not invalidate
the above description of an iteration.) The details of an iteration of the decrease step are as follows.

"Each iteration of the decrease step starts by setting ug(v) to u(v) for each vertex v. Then
compute the family 7 using the Hao-Orlin algorithm. For each S € T decrease values u(v),v € S
as much as possible maintaining u(v) > £(v) and p(S) > k (subj-ect to these constraints, the choice
of vertices to decrease is arbitrary). If now A(G) > k the decrease step is complete (test this
condition using the Hao-Orlin algorithm).

On the other hand if A(G) < k we change u(v) values by solving a parametric s-set problem.
The problem is on graph G with distinguished vertex a. The target function 7(p) equals the constant
k. The capacity function c, has c,(e) nondecreasing for edges leaving a and constant otherwise. The
exact values of ¢, get specified during the execution of the parametric s-set algorithm. It will be
apparent from the description that ¢, satisfies the required properties (each value ps exists and can
be computed in O(m) time, and capacities can be computed in 0(1) time). Recall the description
of the parametric s-set algorithm given in Section 6.

We execute the parametfic s-set algorithm, starting with all edges at their current capacity.
Suppose this algorithm finds a set S with in-degree p(5) less than the target k. Calculate a new
capacity functioh that achieves p(.S) = k as follows (this capacity function corre:'sponds to parameter
value ps): Increase values u(v),v € S, maintaining u(v) < uo(v), until p(S) = k. (This can be done
since the values uo(v) make A(G) > k.) The parametric s-set algorithm repeats this process as
necessary. It e?entuaﬂy returns with each new value u(v) < ug(v), A(G) = k and some set S having
p(S) = k but p(S) < k immediately after u values were decreased (in the current iteration of the
decrease step). This completes the iteration of the decrease step.

It is easy to implement the rest of find_roots. Use the Hao-Orlin algorithm to compute 7.

Theorem 7.1. Procedure find.roots computes the mazimum total multiplicity of a fractional
or integral root-constrained packing, along with the multiplicity of each root vertez, in time
O(n*mlog(n®/m)). A corresponding fractional packing is found in the time bound of Corollary
2.1, using at most m + n — 1 distinct arborescences. For integral packing the time is the same as

Corollary 5.1, using at most m + 2n — 3 distinct arborescences.

Proof. First consider the efficiency of find-roots. Each execution of the parametric s-set algorithm
uses time O(nmlog(n?/m) [G95]. Each such execution enlarges the family F. Lemma 7.2 implies

F gets enlarged O(n) times. Thus the parametric s-set algorithm is executed O(n) times. The
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remaining time for find-roots amounts to O(1) executions of the Hao-Orlin algorithm per iteration.
Lemma 7.2 shows there are O(n) iterations. The desired time bound follows.

We find the desired root-constrained packing by executing our packing algorithm on G. The
time is given by Corollary 2.1 or 5.1. ,

We finish the proof by bounding the number of distinct arborescences in the packing. We
initialize our packing algorithms so the laminar family F contains the set V. This is permissible
since u(V) = k = A(G). This initialization decreases the number of arborescences by 1 for fractional
packing and 2 for integral packing. Now Theorems 2.1 and 5.1 give the desired bounds. (Note that
if the given root constraints allow only r vertices to be roots, the bounds become m + r — 1 and

m + n + r — 3 respectively.) n]
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