Implementation and Performance of a Grand Challenge 3d
Quasi-Geostrophic Multi-Grid code on the Cray T3D and IBM

%

SP2

Clive F. Baillie
James C. McWilliams
Jeffrey B. Weiss
Irad Yavneh

CU-CS-771-95

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

“Technical paper for Supercomputing '95, December 4-8, 1995

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Implementation and Performance of a Grand Challenge 3d
Quasi-Geostrophic Multi-Grid code on the Cray T3D and IBM SP2 *

Clive F. Baillie
Department of Computer Science
University of Colorado, Boulder, CO 80309
email: clive@cs.colorado.edu
phone: (303) 492-7852

James C. McWilliams
Department of Atmospheric Science
University of California, Los Angeles, CA 90095-1565
email: jcm@arapahoe.atmos.ucla.edu

Jeffrey B. Weiss
Program in Atmospheric and Oceanic Sciences
Department of Astrophysical, Planetary, and Atmospheric Sciences
University of Colorado, Boulder, CO 80309
email: jweiss@Qcolorado.edu

Irad Yavneh
Department of Computer Science
Technion - Israel Institute of Technology, Haifa, Israel
email: irad@csa.cs.technion.ac.il

15 March 1995

Keywords: Grand Challenge, Quasi-Geostrophic, Multi-Grid, Turbulence, Rotating Stably Strat-
ified Fluids, Massively Parallel Processors, Cray T3D, IBM SP2

Abstract

We have taken our existing auto-tasked vector Cray C-90 3d Quasi-Geostrophic Multi-Grid
(QGMG) code and implemented it in a portable way on most of todays MPPs. Here we report
on its performance for the Cray T3D and IBM SP2. On all 16 processors of the C-90 the code
achieved 6 Gflops; currently on 256 processors of the T3D we obtain almost 4 Gflops and on
256 processors of the SP2 we obtain 5 Gflops. We find almost perfect scaling of performance
with processor number for the T3D all the way up to 256 processors, and good scaling for the
SP2 up to 128 processors. In this paper we describe how we parallelized the QGMG code and
report performance measurements of it.

*Technical paper for Supercomputing ’95, December 4-8, 1995

1 Introduction

One of the most important computational problems today is the numerical simulation of high
Reynolds number fluid turbulence. As members of the NSF HPCC Grand Challenge Applications
Group (GCAG), “Coupled Fields and Geophysical and Astrophysical Fluid Dynamical Turbulence”,
we are studying incompressible fluid dynamics in several regimes involving environmental rotation
and/or stable or unstable density stratification, all of which are motivated by geophysical phenom-
ena. The common theme in this GCAG research is that significant new insights into the dynamics
of turbulence can be obtained from high resolution, high Reynolds number computational solu-
tions obtained with efficient algorithms on Massively Parallel Processors (MPPs). Three equation
sets are used which are applicable to different physical regimes: quasi-geostrophic, balanced and
Boussinesq flows.

Here we concentrate on the quasi-geostrophic equations which describe the nonlinear dynamics
of rotating, stably stratified fluids; this is the relevant regime for most planetary-scale motions
in the Earth’s atmosphere and ocean. The computational methods used to solve these equations
are explicit and implicit multigrid (MG) solvers. We have developed an efficient implicit Quasi-
Geostrophic Multi-Grid (QGMG) solver and used it to investigate fluids with periodic horizontal
boundary conditions and various vertical boundary conditions: periodic, solid-boundary and Ekman
drag [1].

The Cray C-90 and current MPPs (Massively Parallel Processors) are very different machines:
the former is a shared memory vector supercomputer and the latter are distributed memory com-
puters whose nodes contain superscalar RISC processors. The Cray C-90 is a physically shared
memory machine, which means that there is only one memory which all the processors can ac-
cess. One typically writes a data parallel program and the compiler distributes the loop iterations
amoung processors (auto-tasking). :

MPPs, on the other hand, have physically distributed memories, which means that each pro-
cessor has its own local memory; in order to share data the processors must send messages. One
therefore writes a message passing program with each processor responsible for part of the problem
domain. The message passing system used on the T3D is Cray’s version of the Parallel Virtual
Machine (PVM) software from Oak Ridge National Laboratory [2]. The IBM SP2 also has PVM
but it is not as efficiently implemented as the Message Passing Interface (MPI) software, a new
message passing standard which has been widely adopted and implemented by vendors [3]. There-
fore we wrote our parallel Quasi-Geostrophic Multi-Grid (QGMG) code with two interfaces, one
for PVM and one for MPI, thereby ensuring a completely portable code across all MPPs as well as
workstations. In fact we initially tested and debugged the code on a workstation running PVM.

This paper is organized as follows. In section 2 we explain the quasi-geostrophic equations. In
section 3 we outline parallel multigrid algorithms and in section 4 describe the implementation of
the QGMG code in detail. The performance of the code on the Cray T3D and IBM SP2 is given
in section 5, and we finish with some conclusions.

2 The Quasi-Geostrophic equations

Planetary-scale fluid motions in the Earth’s atmosphere and oceans are influenced by strong stable
stratification and rapid planetary rotation. The appropriate equations of motion for this asymptotic
regime are the Quasi-Geostrophic (QG) equations [4]. The extremely turbulent nature of planetary
flows leads us to perform high-resolution numerical simulations of QG turbulence in an effort to
better understand the large-scale flows which are so important to the Earth’s climate.

Due to stratification and rotation, QG flow is nearly incompressible in horizontal planes, and can
be described in terms of horizontal velocities u and v, and an associated streamfunction ¢(z, v, z):
u = —0v%/dy, v = d¢/0z. The resulting small vertical velocities, together with the thinness of
the Earth’s atmosphere and oceans, make it appropriate to use a vertical coordinate stretched by
N/f. Here, f is the Coriolis frequency, equal to twice the vertical component of the planetary
rotation rate, and IV is the vertical average of N(z), the Brunt-Vaisila frequency, which is related
to gradients in the mean density profile p(z) and the acceleration due to gravity g by N?(z) =
gdIn p/8z. On the Earth, N/f is typically of order 100. In this stretched coordinate system the
QG equations of motion are

¢ , 9999 9% 9q , j0¢ _

ot 0z 8y Oyoz dz -b (1)

where the potential vorticity ¢ is

% % 91 O
1= 52 53,7*5(5(;«)5;‘)- (2)

Vertical inhomogeneity in the stratification is represented by $(z) = N%(z)/NZ, and the so-called
B-plane approximation is used to include the effect of the variation in f with latitude, 8 = 8f/08y.
The dissipation operator D represents the effects of all scales of motion smaller than those explicitly
resolved in the numerical calculation; we typically use hyperviscous diffusion, D = vV*q, where v
is a small hyperviscosity [5]. Thus there are only two main variables in the QG code: % and q.

Over the last few years considerable effort has been invested into adapting and developing
multigrid techniques for non-elliptic and singular perturbation problems, such as the flows found
at high Reynolds number in stably stratified fluids. Using tools developed by Yavneh [6] we now
have multilevel algorithms for time-dependent systems that describe geophysical flows, such as QG.
Integration of the QG equations requires solving an elliptic boundary-value problem in three di-
mensions even if the nonlinear advection equation for the potential vorticity is integrated explicitly.
Moreover, the vertical-derivative term in this equation generally varies along the vertical coordi-
nate z. We use a multigrid algorithm, which is one of the best known methods for this problem.
Furthermore, we discretize the nonlinear advection equation implicitly in time and solve the en-
tire system simultaneously, employing the so-called Full Approximation Storage (FAS) version of
the multigrid algorithm. We employ grid-coarsening only in the horizontal directions, using line
Gauss-Seidel relaxation in the vertical. The efficiency of the resulting solver is then insensitive to
the vertical variation of S(z). Also, the timestep is unrestricted by CFL stability constraints and
can be determined by accuracy criteria.

Our implementation of the above equations of motion allow us to study QG turbulence at
unprecedented resolutions. Previous computations on the Cray C90 focused on the maximally
symmetric case, S = 1,8 = 0[1, 7, 8], where we found significant discrepancies from a long-standing
theoretical prediction of isotropy [9, 10]. Associated with this anisotropy is the self-organization
of the potential vorticity field into a large population of roughly spherical coherent vortices, which
then align in the vertical. Currently we are performing several computations on both the Cray
T3D and the IBM SP2 - investigating the effects of including nonconstant S and nonzero 8, in
both decaying and equilibrium turbulence.

3 Parallel Multi-Grid algorithms

Multi-grid algorithms are used to accelerate the convergence of relaxation methods like Gauss-
Seidel for the numerical solution of partial differential equations. They achieve this by using a

hierarchy of coarser grids with larger spacings to provide corrections to the approximate solution
obtained on the finest grid. Thus there are three parts to any multigrid algorithm: relaxation on a
given grid (also called level), restriction from a fine to a coarser grid and interpolation back from
a coarse to a finer grid. The main problem associated with implementing multigrid on a MPP is
the low processor utilization for the coarser grids — in the extreme case of the coarsest grid only
one processor is actually doing anything. The first systematic description of the standard parallel
multigrid algorithm was that of Brandt [11]. Since then three improved algorithms have been
invented: Concurrent Iteration MG (CIMG) [12], Parallel Superconvergent MG (PSMG) [13], and
Chopped Parallel MG (CPMG) [14]. The improved algorithms result in better parallel efficiency in
terms of the computer time but do not necessarily improve the numerical efficiency of the overall
algorithm, which is problem specific. Therefore as a first step we have implemented only the
standard algorithm and are employing it in our current production runs while we evaluate the
other algorithms for our quasi-geostrophic problem.

4 Implementation of QGMG

The QGMG code employs the typical V-cycle multigrid, restricting all the way down to a 4x4
coarsest grid. As explained above, coarsening is performed only for the two horizontal (out of the
three) dimensions so in what follows we ignore the third dimension for the sake of clarity. We
discuss each of its three parts — relaxation, restriction and interpolation — in turn, first sequentially
and then for the parallel version. '

4.1 Sequential

Relaxation of both 1 and ¢ is performed using the Gauss-Seidel algorithm. For ¢ four-color ordering
is necessary since we use the Arakawa nine-point discretization stencil for the Jacobian. However
for 1 red-black ordering is sufficient (due to five-point stencil for Laplacian). We shall discuss only
the simpler code for the red-black checkerboard case i.e. all the even points are updated first, then
all the odd points. The sequential relaxation code for ¢ looks like:

do ij = 0,1

do j = 1, bny
do i = 1+mod(j+ij,2), bnx, 2
psi(i,j,1v) = 0.25*%(psi(i-1,j,1lv) + psi(i+1,j,1lv) +
> psi(i,j-1,1v) + psi(i,j+1,1v) - rhs(4i,j,1v))
end do
end do

call update(psi,bnx,bny,1lv)
end do
where 1j=0 is red and ij=1 is black. Note the call to update, which exchanges the information
on the periodic boundaries.

The restriction operation averages each 2x2 block of points on the fine grid into one point of
the coarse grid (X denotes point which remains, 0 is point which is destroyed):

Xoxox0oxo -> X XXX
00000000
X0X0X0X0 XXXxxXx
00000000

First the residual is calculated on the fine grid and then used on the coarse grid to calculate the
right-hand-side. The sequential code for this is straight-forward:

do j = 1, bny
doi=1, bnx
res(i,j,lv) = -((psi(i-1,j,1v) + psi(i+i,j,1lv) +
psi(i,j-1,1v) + psi(i,j+1,1v) - rhs(4i,j,1v))
- 4.0 * psi(i,j,1v))
end do
end do

call update(res,bnx,bny,lv)

do bj = 1, bny/2
do bi = 1, bnx/2
i = bi*2-1
j = bj*2-1
rhs(bi,bj,1lv+1l) = res(i,j,1lv) +

> 0.5 *x (res(i-1,j,1v) + res(i+i,j,1lv) +
> res(i,j-1,1v) + res(i,j+1,1v)) +
> 0.25 * (res(i-1,j+1,1lv) + res(i+i,j-1,1lv) +
> res(i-1,j-1,1v) + res(i+1,j+1,1v))
end do
end do

where bnx X bny is size of grid points on fine level; bnx/2 X bny/2 is size of grid points on coarse
level; i, j are indices of fine grid points on level 1v; bi, bj are indices of coarse grid points on
level 1v+1. res is the residual and so-called full-weighting (in which diagonal points are included
in the average) is used to average it to obtain the right-hand-side rhs.

The most complicated part of the multigrid algorithm is the interpolation from the coarse to
the fine grid. The picture is the opposite of the restriction operation (now 0 is a point which is
created):

XXXX -> X0X0X0X0
‘ 00000000
XXXX X0X0X0X0
00000000

There are actually two ways to do this. The most obvious way is to just send the “top-left-
corner” point to the other three points: “top-right-corner”, “bottom-left-corner” and “bottom-
right-corner”, where it is then averaged. However this method is only simple for linear interpolation;
for cubic and higher-order interpolation schemes it rapidly becomes complicated due to the number
of points required to calculate the average for the “bottom-right-corner” point. Therefore we use a
two-step implementation: during the first step the points in the i-direction are interpolated, then
in the second step the points in the j-direction. This looks like:

¥XXXX -> X0X0X0X0 -> X0X0X0Xo
00000000
XxXxx X0X0X0X0 X0X0X0X0
00000000

and is coded sequentially as follows:

do bj = 1, bny
do bi = 1, bnx
i = bi*2-1
j = bj*2-1 ,
C intermediate top-left-corner
tpsi(i,j,1v-1) = psi(bi,bj,1v)
C intermediate top-right-corner
tpsi(i+l,j,1lv-1) =
> 0.5 * (psi(bi,bj,1lv) + psi(bi+i,bj,1lv))
end do
end do

call update(tpsi,bnx*2,bny*2,lv~1)

do bj = 1, bny
do i = 1, bnx*2
j = bj*2-1
C final top-left-corner and final top-right-corner
psi(i,j,1lv-1) = psi(di,j,1lv-1) +'tpsi(i,j,1v-1)
C bottom-left-corner and bottom-right-corner
psi(i,j+1,1v-1) = psi(di,j+1,1lv-1)
> + 0.5 * (tpsi(i,j,lv-1) + tpsi(i,j+2,1v-1))
end do
end do

where tpsi is used as a temporary variable to store the partially updated points in the i-direction.
Note the call to update between the two steps which is necessary to take care of the periodic
boundaries for tpsi on the fine grid.

4.2 Parallel

It is relatively straight-forward to parallelize both of the sequential implementations detailed above
assuming a square grid, and square processor mesh, and that the number of points per processor
is always at least one. However, in practice none of these assumptions are valid! We can of course
choose to use a square rather than arectangular grid, but only if the physical system being simulated
is in a horizontally 1:1 ratio box. We cannot choose the processor mesh to be square because it
unduly limits the number of processors that can be used. Finally, the multigrid algorithm restricts
all the way down to a 4x4 (or sometimes even a 2X2) grid, therefore having at least one point per
processor would restrict simulations to a maximum of 16 (or 4) processors.

Thus, we must develop a general parallel multigrid code which works on non-square girds,
on non-square processor meshes and where the number of points can be less than the number of
processors. It is this last condition which causes the parallel multigrid code to be more complicated

than one would initially think. We discuss only the two-step implementation of the interpolation
scheme because is easier to parallelize. First the easy case where each processor has at least one
point, and then the harder case when some processors do not have any points (which only happens
on the more restricted levels).

Let us assume that the finest grid we are using has nx x ny points and the processor mesh
‘consists of n X m = np processors. We also assume n divides nx and m divides ny. We arrange
the processors, numbered me = 0,1,...,np-1, as in the following example for a 32 processor 8x4
mesh:

0 1 2 3 4 5 6 7
8 910 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

where we have drawn the first index i increasing from left to right and the second index j increasing
downwards. Using domain decomposition, each processor gets a part of the grid of size (nx/n) x
(ny/m) starting and ending as follows:

start(lv,1) = 1 + mei * (nx/n)
end(1lv,1) = (nx/n) + mei * (nx/n)
start(1lv,2) = 1 + mej * (ny/m)
end(1lv,2) = (ny/m) + mej * (ny/m)

where mei and mej are the i, j positions of processor me in the grid (e.g. processor me=17 has mei
=1 and mej = 2) and 1v is the multigrid level. Of course, each processor has its own local indices
for these global pieces of the grid, these are simply

loops(lv,1) = 1
loope(lv,1) = (nx/n)
loops(lv,2) = 1
loope(1lv,2) = (ny/m)

Hence loops in the original code looking like:

do bj = 1, bny
do bi = 1, bnx

become

do bj = loops(lv,2), loope(lv,2)
do bi = loops(lv,1), loope(lv,1)

In addition, this method of domain decomposition takes care of internal boundaries between
the processors as follows. In the original code, the 2d grid was surrounded by a layer of “ghost
points” which store copies of the points on the opposite sides of the grid in order to take care of
the periodic boundary conditions. This looks like:

i

+-——-t

Therefore when we perform the domain decomposition on, say, 4 processors, each processor will
get its own ghost points as follows:

+-=4 +--+
et
e

+m=t ==t

==t ==t
e
I N N

B T

The “outside” layer of ghost points are the original ones for the periodic boundaries. The ones
on the “inside”, i.e. between the processors, are called “internal processor boundaries” and are
an artifact of the domain decomposition. However they are an extremely useful artifact: for in
them we shall store copies of the points from the neighboring processors which we shall need while
executing the multigrid algorithm. Then we need only exchange the internal boundary data once
per call of restrict, interpolate or relax, rather than every time we see an i+1, i-1, j+1i or j-1
index in the code.

Again we discuss relaxation, restriction and interpolation. As said above the red-black Gauss-
Seidel relaxation is easily parallelized. The only complication is figuring out if a given point i,j
local to a processor is red or black i.e. even or odd. We do this by having a flag first_even telling
us whether the first point i=1, j=1 in the processor is even. Thus the parallel relaxation code
looks like:

do idum = 0,1

if (first_even(lv)) then

ij = idum
else

ij = 1-idum
endif

do j = loops(lv,2), loope(lv,2)
do i = loops(lv,1)+mod(j+ij,2), loope(lv,1), 2
psi(i,j) = 0.25 * (psi(i-1,j) + psi(i+1,j) +
> psi(i,j-1) + psi(i,j+1) - rhs(i,j))
end do
end do

call exchange_i(psi,bnx,bny,lv)
call exchange_j(psi,bnx,bny,lv)

end do

Next the parallel restriction code is obvious:

do j = loops(lv,2), loope(lv,2)
do i = loops(lv,1), loope(lv,1)
res(i,j,1lv) = -((psi(i-1,j,1v) + psi(i+i,j,1lv) +

> psi(i,j-1,1v) + psi(i,j+1,1v) - rhs(i,j,1v))
> - 4.0 * psi(i,j,1lv))
end do
end do

call exchange_i(res,1,lv)
call exchange_j(res,2,1lv)

do bj = loops(1lv+1,2), loope(lv+1,2)
do bi = loops(lv+1,1), loope(lv+1,1)
i bix2-1
j = bj*2-1
rhs(bi,bj,1lv+1) = res(i,j,lv) +

> 0.5 * (res(i-1,j,1lv) + res(i+i,j,1lv) +
> res(i,j-1,1v) + res(i,j+1,1lv)) +
> 0.25 * (res(i-1,j+1,1lv) + res(i+1,j-1,1lv) +
> res(i-1,j-1,1v) + res(i+1,j+1,1v))
end do
end do

Las‘dy the parallel interpolate code, which only works for bnx >= n and bny >= m, looks like:

do bj = loops(lv,2), loope(lv,2)
do bi = loops(lv,1), loope(lv,1)
i = bix2-1
j = bj*2-1
tpsi(i,j,1lv-1) = psi(bi,bj,1lv)
tpsi(i+1,j,1v-1) =
> 0.5 * (psi(bi,bj,1v) + psi(bi+l,bj,1v))
end do
end do

call exchange_j(tpsi,lv-1)

do bj = loops(lv,2), loope(lv,2)
do i = loops(lv-1,1), loope(lv-1,1)
j = bj*2-1
psi(i,j,1v-1) = psi(i,j,lv-1) + tpsi(i,j,lv-1)
psi(i,j+1,1v-1) = psi(i,j+1,1lv-1)
> + 0.5 * (¢psi(di,j,lv-1) + tpsi(i,j+2,1v-1))
end do
end do

Now for the complicated case, where we have restricted the grid to bnx X bny points where
bnx < n and bny < m. There are actually two possible approaches when the number of points

is less than the number of processors. First, we can “stay parallel” and have only the processors
with points compute and communicate, while the rest do nothing. Or, second, we can “go serial”
and send all of the remaining points to all of the processors and have them all continue doing the
restricted levels; then on the “way back up” we “go parallel” when we get back to at least one point
per processor. So far, we have implemented only the first of these alternatives, which is easier to
code.

To eXplain this, suppose the grid is 2x2 so the only processors in our 8 x4 mesh which have
points are

0 4

16 20

and when we interpolate to 4x4 we get

0 2 4 6
8 10 12 14
16 18 20 22
24 26 28 30

Therefore the processors no longer communicate with their nearest neighboring processors, as they
did when bnx >= n and bny >= m, now they communicate with processors skipi and skipj away
in the i and j directions respectively, with

skipi = n/bnx
skipj = m/bny

For both the relaxation and the restriction parts of the multigrid algorithm use of skipi and
skipj in the exchange routines works perfectly well no matter how many points per processor there
are. It is only in the interpolate phase that there is any difference. This difference can be reduced
to two extra function calls send_i and send_j invoked only when skipi and skipj are respectively
greater than 1. Thus the final parallel interpolate code looks like:

do bj = loops(lv,2), loope(lv,2)
do bi = loops(lv,1), loope(lv,1)
i bi*2-1
j = bj*2-1
tpsi(i,bj,lv-1) =
tpsi(i+1,bj,1v-1)
> 0.5 * (psi(bi,bj,1lv) + psi(bi+1i,bj,1v))
end do
end do

psi(bi,bj,1v)

if (skipi(lv) .gt. 1) call send_i(tpsi,lv-1)
call asym_exchange_j(tpsi,lv-1)
do bj = loops(lv,2), loope(lv,2)

10

do i = loops(lv-1,1), loope(lv-1,1)
j = bj*2-1
"psi(d,j,lv-1) = psi(di,j,lv-1) + tpsi(i,bj,1lv-1)
psi(i,j+1,1v-1) = psi(i,j+1,1lv-1)
> + 0.5 * (tpsi(i,bj,lv-1) + tpsi(i,bj+1,1lv-1))
end do
end do

if (skipj(lv) .gt. 1) call send_j(psi,lv-1)

Note that update has been replaced with a call to send_i if skipi > 1 and a call to asym exchange_j.
send_i sends the values of tpsi from the processors which are still “alive” to their “dead” neigh-
bors +skipi away in the i direction. asym exchange_j sends back values of tpsi from processors
+skipj*2 away in the j direction, to be computed locally. Then finally we also need to call send_j
which sends the correct interpolated values of psi from the alive processors to their +skipj dead
neighbors. Note that for the sends/receives in the j direction all the points in the i direction are

involved — this is because we are using the two-step implementation of the multigrid interpolation
algorithm.

5 Performance of QGMG

We parallelized the QGMG code in the summer of 1994 when only PVM was widely available.
Therefore we had to create and manage the processor topology ourselves as PVM contains no
functions for this. Around the end of 1994 it became generally known that IBM’s version of MPI
performed much better than their version of PVM (called PVMe) on the SP2 and so we wrote an
MPT version of QGMG. This involved changing only our exchange functions plus minor changes to
start-up and shut-down function calls. The MPI code still uses our processor topology despite the
fact that MPI provides similar functionality. More recently we discovered that the MPI code also
performs significantly better than the PVM version on the Intel Paragon.

We have been running in production on the T3D for some time and are just starting to do so
on the SP2. It turns out that the T3D has much more reliable I/O (using its host Cray to do
it) and therefore production running there is significantly easier. Of course, even today, no MPP
yet provides decent user-level parallel I/O so we had to write our own package. We shall leave
discussion of this for another time.

5.1 Cray T3D

In Table 1 we present times in seconds of a ten multigrid cycle run of QGMG using a grid of size
2562, on various numbers of processors (and for different processor topologies) for several different
versions of the code. Note that this size problem does not fit into the memory of less than 32
T3D processors. When we first implemented QGMG on the T3D, the Cray PVM available was
version 3.2 which did not have global reduction operations, that is functions like SUM, MAX, MIN,
so we had to write our own. Unfortunately they were very inefficient and did not scale properly,
as can be seen from the times in the second column of Table 1. Recently, Cray released version
3.3 of PVM which does have global reduction functions and these gave dramatic improvements
in performance (column 3). For a further smaller improvement we also tried the so-called shared
memory (SHMEM) global reduction functions (column 4). For the PVM 3.3 and SHMEM cases

11

Table 1: Total times in seconds for 10 multigrid cycles of QGMG on various numbers of processors
of the T3D.

Processors | PVM 3.2 | PVM 3.3 | SHMEM
32 (1x32) | 321.9 239.8 244.8
32 (4x8) - 209.1 | -211.7
64 (1X64) 477.6 144.3 144.6
64 (8x8) - 120.8 116.2
128 (1x128) - 99.5 99.9
128 (8x16) - 63.2 60.0
256 (1X256) - 95.1 87.2
256 (16x16) - 42.3 31.7

Table 2: Total times in seconds for 10 multigrid cycles of QGMG on various numbers of processors
of the SP2. ‘

Processors | PVMe | MPI
4 (2x2) 454.3 | 474.6
16 (4x4) 238.1 | 151.4

32 (4x8) | 376.4 | 94.1

64 (8x8) - | 595
128 (8x16) - 29.4
256 (16x16) | - 22.7

the processor topology makes a significant difference: choosing a square configuration (e.g. 16x16)
yields more than twice the performance of a linear one (1x256).

The original QGMG code running on all 16 processors of the C-90 achieved 6.0 Gflops and took
18.9 seconds for this benchmark run. Thus the fastest time we obtained on the T3D, 31.7 seconds
for 256 processors, corresponds to 3.6 Gflops.

5.2 IBM SP2

In Table 2 we present times in seconds of a ten multigrid cycle run of QGMG using a grid of size
2563, on various numbers of processors for several different versions of the code. We use the most
square processor topology possible. Note that this size problem fits into the memory of as little as
4 SP2 processors since they each have eight times as much memory as the T3D processors (512 MB
compared with 64 MB). Initially we tried our PVM version of QGMG with IBM’s PVMe software
but the performance was not impressive — again due to lack of global reduction functions — see
column 2 of Table 2. Now we are using MPI which has its own global reduction functions to obtain
very good performance (column 3). However the scaling is not a good for the SP2 as it was for
the T3D - 256 processors is only about 20% faster than 128. This is because the communication
network in the SP2 is not as good. Overall the performance on the SP2 is still faster than the T3D
because the SP2 processors are between two and three times faster for this code. '

The fastest time we obtained on the SP2 was 22.7 seconds for 256 processors which corresponds
to 5.0 Gflops.

12

Figure 1: QGMG Performance

100 —————— '
..s\ SP2 - MPI perfect scaling
. \\\‘
— \
) N
= . T3D - SHMEM
Q N E
O S N
@ Y N
L Se \\
S 10 F e N
s TS RN
D @,)
= s h
[¢)) \\ \\ 1
£ el
o F ‘s~ I
16 processor Cray C-90

1 1 L 1 Lol L 1 [L o
10 100
Number of processors

6 Conclusions

We have parallelized a 3d quasi-geostrophic multigrid code originally designed for the Cray C-90 in
a portable fashion and are running it in production on the Cray T3D and IBM SP2. We have done
this via domain decomposition and message passing using PVM and MPI. On all 16 processors of
the C-90 the original code achieved 6 Gflops; currently on 256 processors of the T3D we obtain
almost 4 Gflops and on 256 processors of the SP2 we obtain 5§ Gflops, with the parallel code. In
Figure 1 we summarize the best performance results on each machine with log-log axes in order
to display the scaling. The slope of the line for the T3D is very close to the perfect scaling slope
of —1. As mentioned above the performances of both the T3D and the SP2 have been improving
steadily as new versions of software are released. Therefore we expect that ultimately both of these
machines will surpass the C-90 in overall performance.

To date we have implemented only the standard multigrid algorithm, in the future we will try
out some of the improved algorithms we mentioned in section 3 (CIMG, PSMG and CPMG).

Currently we are performing large-scale computations of quasi-geostrophic turbulence on both
the Cray T3D and IBM SP2 with system sizes of 256% and higher.

13

Acknowledgements

This work is supported by NSF Grand Challenge Applications Group Grant ASC-9217394. CFB
is also partially supported by DOE contract DE-FG02-91ER40672 and by NASA HPCC Group
Grant NAG5-2218. JBW is also partially supported by NOAA grant DOC-NA-26-GP0O-12201.
IY and JCM were also partially supported by NSF through the National Center for Atmospheric
Research. The Cray T3D runs were performed at the Pittsburgh Supercomputing Center under
grant MCA93AS010P through funding from the National Science Foundation. We would like to
- especially thank Raghurama Reddy for his help. The IBM SP2 results were obtained on the machine
at the Cornell Theory Center through its early user program. We would like to partlcularly thank
John Zollweg and Robert Feldman for their help.

References

[1] I. Yavneh and J.C. McWilliams, “Multigrid solution of stably stratified flows: the quasi-
geostrophic equations”, submitted to J. Sci. Comp. (1995).

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, “PVM: Parallel
Virtual Machine — A Users’ Guide and Turorial for Networked Parallel Computing” (The MIT
Press, Cambridge, MA, 1994).

[3] W. Gropp, E. Lusk, A. Skjellum, “Using MPI: Portable Parallel Programming with the
Message-Passing Interface” (The MIT Press, Cambridge, MA, 1994).

4] P.B. Rhines, Annu. Rev. Fluid Mech., 11, 401 (1979).

5] R. Sadourny and C. Basdevant, C.R. Acad. Sci., 39, 2138 (1981).

[
[
(6] I. Yavneh, SIAM J. Sci. Comput., 14, 1437-1463 (1993).
[7] J.C. McWilliams, J.B. Weiss, and L. Yavneh, Science, 264, 410 (1994). .
(8] J.C. McWilliams and J.B. Weiss, CHAOS, 4, 305 (1994).
[9] J.G. Charney, J. Atmos. Sci., 28, 1087 (1971).
(10] J. Herring, J. Atmos. Sci., 37, 969 (1980).

[11] A. Brandt, “Multigrid solvers on parallel computers”, in: Elliptic problem solvers, ed. M.
Schultz (Academic Press, New York, NY, 1981).

[12] D. Gannon and J. van Rosendale, J. Parallel Distributed Comput., 3, 106-135 (1986).

[13] P. Frederickson and O. McBryan, “Parallel Superconvergent Multigrid”, in: Proceedings of the
Third Copper Mountain Conference on Multigrid Methods, ed. S. McCormick (Marcel Dekker,
New York, NY, 1989).

[14] S.N. Gupta, M. Zubair and C.E. Grosch, J. of Scientific Comput., 7, 263-279 (1992).

14

