Introducing designers to
programming through
self-disclosing tools

Chris DiGiano

Technical Report #CU-CS-770-95

Introducing designers to
programming through
self-disclosing tools

Chris DiGiano

Overview

Programmable tools for design offer users an expressive new medium for
their work, but current support for becoming acquainted with their tool’s
language is limited. The goal of my proposed dissertation research is to
devise mechanisms that can be embedded in a programmable tool to sup-
port the acquisition of its language. In this proposal I hypothesize that a
programmable design tool which discloses programming language infor-
mation relevant to users’ current activity can be an effective means of
introducing them to the language. 1 identify the essential characteristics
of this self-disclosure technique and the type of learning it supports. This
leads to guidelines for the use of self-disclosure specifically for embed-
ding language learning opportunities into design tools. I present a proto-
type information graphics design tool called Chart 'n' Art for exploring
self-disclosure techniques. Finally, I propose a method for comparing the
insights gained through self-disclosure to other means of instruction.

1.0
2.0

3.0

4.0

5.0

6.0

Table of contents

Introduction

Introducing designers to programming

2.1 Who are designers?

2.2 A case for programming in design

2.3 Challenges to the use of programming in design

2.4 The problem: lack of support for beginning end-user
programmers

Using self-disclosure to gently introduce designers to
programming

3.1 Self-disclosure in action

3.2 Learning from disclosures

3.3 Characteristics of self-disclosing systems

3.4 Guidelines for the effective pedagogical use of self-disclosure
3.5 Related learning theories

Chart ‘n’ Art: a prototype self-disclosing design tool
4.1 The Chart ‘n’ Art interface

4.2 Self-disclosure in Chart ‘n” Art

4.3 Related systems

Assessing and refining self-disclosure
5.1 Formative assessment

5.2 Summative assessment

5.3 Outline of proposed work

Summary

References

A\ W NN

10
12
13
16

18
18
20
23

25
25

25

28
28

- 29

Introducing designers to programming through self-disclosing tools

Introduction

1.0

Introduction

In the 1950’s, poet, educator and scholar I.A. Richards published a series
of books called Language through Pictures (Richards, 1973) as a teach-
ing tool for second language learners. Each page consists of a picture and
one or more sentences describing the scene in the language to be learned.
By following the sequence of pictures and sentences from simple situa-
tions to more complex ones, the reader is supposed to acquire a basic
understanding of the language.

Richards’ pedagogical approach is compelling in that it enables learners
to teach themselves a language at their own pace simply by observing
connections between images and symbols. His work raises an interesting
question for the area of computer science education: Can similar
approaches be found to support the acquisition of programming lan-
guages? This proposal outlines one possible method of introducing pro-
gramming concepts that not only supports self-paced learning as in
Language through Pictures, but also situates the learning experience in
authentic activity.

For my dissertation I will focus on supporting designers—architects,
graphic artists, and dress makers to name a few—Ilearning to write short
programs for their creative activity. Increasingly, designers are turning to
computers to aid their tasks. For some forms of design, such as architec-
ture, computers have become indispensable tools. Nonetheless, the utility
of a computer-based design tool is limited by the coverage it provides
over the functionality required by the user. One response to this limita-
tion is programmable applications (Eisenberg, 1991). Programming
offers the opportunity to transcend the built-in functionality of software,
empowering users to be more creative and expressive.

For most designers programming is not a natural activity. Rarely is pro-
gramming part of their formal training. And yet many designers have an
interest in increasing their skills and have some sense that programming
could be beneficial. Others might be interested in learning programming
if only they knew its potential benefits for their design activity. The chal-
lenge then is informing designers of the utility of programming and sup-
porting them in their pursuit of programming expertise. These challenges
stand in the way of a user eventually accepting an application-oriented
language and employing it creatively, and are in fact the central problem
for the entire field of programmable applications (DiGiano and Eisen-
berg, submitted 6 October 1994).

Introducing designers to programming

2.0

Introducing designers to programming

2.1

In this section I explore the issues involved in introducing programming
to designers. First, I describe who designers are and what it is they do,
and then discuss how programming might be useful to them, and what
form a programmable tool might take. Finally, I conclude by identifying
barriers to designers using programming in their creative process.

Who are designers?

A designer is one who devises or creates the form or structure of an arti-
fact, whether it be a work of art such as a dress or a scheme such as for
stage lighting. According to Simon, designers devise “courses of action .
aimed at changing existing situations into preferred ones.” (Simon, 1981,
p. 129) A key feature of their activity is that it rarely follows a fixed pro-
cedure, but rather involves searching a space of alternatives for a candi-
date which satisfies design criteria. These criteria often reflect designers’
tacit informal knowledge of their domain acquired by reflecting-in-action
(Schoen, 1983, p. 54). Designers’ training is often highly specialized,
involving several years learning the notation and tools of their domain.
Apprenticeships under master designers, especially in the areas of

graphic and architectural design are common forms of training.!

Although my proposed dissertation research is relevant to a variety of
design domains, I have chosen to focus on information graphics. Infor-
mation graphics designers create visual presentations of data whether
they be financial, meteorological, chronological, or astronomical. Criteria
used by designers to evaluate information graphics include expressive-
ness—whether designs portray the desired information, and effective-
ness—whether designs exploit the capabilities of the output medium and
the human visual and conceptual systems (Mackinlay, 1986). Tufte in his
book Envisioning Information describes the essence of information
graphics:

We envision information in order to reason about, communicate, document,
and preserve that knowledge—activities nearly always carried out on two-
dimensional paper and computer screen. Escaping this flatland and enriching
the density of data displays are the essential tasks of information design... all
the history of information displays and statistical graphics—indeed any com-

1. Simon points out in The Sciences of the Artificial, (Simon, 1981, p.129) that design
education for many domains such as medicine and engineering has shifted toward
decontextualized instruction. Nonetheless, the “softer” design professions such as
graphic design and architecture have resisted this shift.

Introducing‘designers to programming through self-disclosing tools

Introducing designers to programming

2.2

2.2.1

munication device—is entirely a progress of methods for enhancing density,
complexity, dimensionality, and even sometimes beauty (Tufte, 1990, p. 33).

A case for programming in design

If ease of use was the only valid criterion, people would stick to tricycles and
never try bicycles. —Doug Engelbart ;

A programming language embedded in a design tool gives designers
access to potentially large libraries of commands, and empowers them
with the ability to compose their own functions which encapsulate com-
plex or iterative behavior. Thus programming offers designers the oppor-
tunity to transcend the built-in functionality of software, enabling
entirely new kinds or processes of designs that were not otherwise possi-
ble or practical. The following scenario illustrates the need for program-
ming in the design of non-standard information graphics.

Alice and the Denver-Lyons bus route’

Alice is a free-lance graphic artist recently hired by a transit company to
design a schedule for a new bus route whose timetable is shown in
Table 1. Her task is to produce an informative design which indicates
arrival/departure times, relative speeds of different buses, where transfers
can be made, and how long buses wait at particular stops, among other
things. Alice decides her design should consist of two parts: something
similar to Table 1 to help answer specific arrival/departure questions, and
a time-space diagram similar to that in Figure 1 to help quickly answer
speed, transfer, and stop questions. Notice the following features of her
time-space diagram:

 Both directions of the route can be represented in a single diagram.

 Relative distance between stations is captured in the distance between
stop labels.

» Speed of the buses can be determined by the slope of their lines. The
steeper the slope, the faster the bus.

» A wait at a stop causes a bus’s line to appear horizontal. The length of
that line is proportional to the amount of time waiting at the stop.

1. This scenario is based on a real design problem illustrated in Envisioning Informa-
tion for depicting train activity over the Hava railroad line, Soerabaja-Djokjakarta.
The incredibly complex one-page solution drawn in November 1937 cleverly depicts
16 variables concerning the movement of some 40 trains over a 24 hour period.

Introducing designers to programming

 Possible transfers from a bus arriving at a particular stop can be found
by scanning across the stop’s row to the right of the line representing
arriving bus.

« Passing buses are indicated by intersecting lines. (this information
might be useful to bus operators)

TABLE 1. The original bus schedule data given to Alice
Lyons to Denver South Monday-Friday
Lyons Boulder Westminster Denver
depart arrive depart arrive depart arrive
800AM 840 900 930 931 959
905 935 936 1010 1011 1030
1000 1040 1100 1130 1131 1159
1105 1135 1136 1210PM 1211 1230
1200 1240PM 100 130 131 159
105PM 135 136 210 211 230
200 240 300 330 331 359
305 335 336 310 311 330
400 440 500 530 531 559
505 535 536 610 611 630
Denver to Lyons North Monday-Friday
Denver Westminster Boulder Lyons
depart arrive depart arrive depart arrive
808 828 835 909 915 1002
900 928 935 1005 1015 1100
1008 1028 1035 1109 1115 1202PM
1100 1128 1135 1205PM 1215 100
1208PM 1228 1235 109 115 202
100 128 135 205 215 300
208 228 235 309 315 402
300 328 335 405 415 500
408 428 435 509 515 602
500 528 535 605 615 700

2.2.2 Limitations of traditional tools
The major drawback to the otherwise elegant and information rich pre-
sentation in Figure 1 is the difficulty in producing it. No charting soft-
ware that is currently available has a “transportation schedule” chart type
or any other type for that matter which could reproduce the details of

Alice’s concept. DeltaGraph Pro’s” X-Y Line chart would generate the

1. DeltaGraph is a registered trademark of DeltaPoint Corporation.

4 Introducing designers to programming through self-disclosing tools

Introducing designers to programming

connected lines but only after one mapped times to X values and the stop
names to Y values. Even then, the graph would be missing the shading
used to highlight each stop. On the other hand, Alice could use a drawing

package such as MacDraw! to reproduce the subtle nuances of her dia-
gram, including the stop shading and the image of the front range on the
left side. However, the drawing program approach requires that Alice
tediously maps the times for each bus onto a location in the time-space
graph, possibly leading to inaccuracies.

FIGURE 1.

\| Lvons

Alice’s information-rich design concept

8AM 9 10 11 12 IPM 2 3 4 5 6

RN O N |

Boulder

Westminster

SENE

Denver

JAA AN WANL

2.2.3

Programmable tools for design

A solution to Alice’s diagram-production dilemma is an end-user pro-
grammable design tool. Programmable systems allow end-users—people
with specific tasks in mind, and little or no intrinsic interest in comput-
ers—to employ a formal language to specify information structures and
transformations on those structures. Such programmable tools are
becoming more and more prevalent. Microsoft, for instance, has begun
integrating its Visual BASIC language into most of its personal produc-

tivity software including Word and Excel.?

For my dissertation I will focus on a specific type of end-user program-
mable system, the programmable application, which combines a direct
manipulation interface with a domain-specific programming language

1. MacDraw is a registered trademark of Claris Corporation.

2. Microsoft, Visual BASIC, Word, and Excel are registered trademarks of Microsoft
Corporation.

Introducing designers to programming

2.3

2.3.1

interpreter. Programmable applications include the drawing program
SchemePaint (Eisenberg, 1991), the computer aided design (CAD) pack-

age AutoCAD,! the Microsoft Excel spreadsheet, and the symbolic mani-

pulation tool Mathematica.? A programmable tool for our end-user Alice
would ideally have direct manipulation operations for entering tables of
numbers and for producing freehand artwork such as the Front Range.
Likewise, the tool’s application-oriented language would include func-
tions for perusing the data in a table and mapping them to locations in a
drawing and to various choices of shading and coloring.

Alice could use her programmable application’s language to compose a
small procedure which looked up the departure time for a bus leaving
Lyons and started a polyline at the corresponding point along the latitude
line for Lyons. Another procedure could add a point to the polyline corre-
sponding to the bus’s next stop. By calling this procedure repeatedly,
Alice could generate a complete time-space representation for the bus’s
route and, by refining the procedure, she even could produce shaded lines
during stops. Alice could either generalize or copy and modify these pro-
cedures to handle buses going in the opposite direction.

Challenges to the use of programming in design

The above scenario highlights the important role programming can play
in design activity. However, there are critical barriers which designers
must overcome in order to realize the power of programming. Some of
these barriers are imposed by the programmable systems themselves,
while others are the result of individual factors. Experience with end-user
modifiable environments such as the Athena X Window System indicates
that users will not take advantage of programmability unless these barri-
ers are somehow addressed (Mackay, 1991). Below I outline the major
issues concerning the usefulness and usability of programmable tools.

Programming language issues

Approachability. The initial experience with a language has a large influ-
ence on whether designers will continue to use it. As a general heuristic,
Nardi suggests that “end-user programming systems should allow users
to solve simple problems within their domain of interest within a few
hours of use.[original italics]” (Nardi, 1993, p. 45) Approachability, how-
ever, must be balanced with support for designers who gradually become
more sophisticated programmers.

1. AutoCAD is a registered trademark of Autodesk Corporation.
2. Mathematica is a registered trademark of Wolfram Research Corporation.

Introducing designers to programming through self-disclosing tools

Introducing designers to programming

23.2

Domain orientation. The success of a programming language for a
designer is largely dependent on how well it is adapted to his or her
design domain. One of the most troublesome tasks for programmers,
especially beginners, is mapping problems to the solution space offered
by a programming language (Eisenberg and Fischer, 1994; Fischer,
1987).

Language granularity. High-level programming expressions are .only
useful when they exactly match the designer’s tasks, but low-level
expressions tend to be more abstract and introduce the additional prob-
lem of composition. For beginning programmers, “it is hard to see what
combination of primitives will produce the correct task-related behavior”
(Lewis and Olson, 1987)

Individual user issues

Time for learning. Perhaps the most critical issue is whether designers
have time to begin acquiring a programming language. Designers face a
“production paradox” (Carroll and Rosson, 1986): learning the language
requires time but using the language can potentially save time. Mackay
concludes her study by suggesting that users must choose between
“activities that accomplish work directly and activities that may increase
future satisfaction or productivity.” (Mackay, 1991)

Knowing the possibilities. Awareness of the functionality offered by pro-
gramming is critical before most designers will consider using it in their
creative activity. Knowledge of a system’s capabilities is in fact a com-
mon issue for any complex system (Fischer, 1991a). This problem of
“cognitive bootstrapping” (Resnick, 1989) is a challenge for tool devel-
opers since they cannot assume awareness will naturally develop as a
result of designers’ curiosity about their system.

Estimating the effort. Programming is potentially a significant digression
from a designer’s task at hand, especially if it involves having to learn
new programming knowledge. Mackay’s study of Athena users suggests
a large number of them are “not willing to risk spending an unknown
amount of time on customization.”(Mackay, 1991) An important issue,
then, is whether designers can estimate the effort involved in using pro-
gramming in a task.

Mapping instruction to authentic use. Instructional resources such as
manuals and training courses are often available for programmable tools.
However, the effectiveness of these resources is limited by how easily
designers can map instructed knowledge to knowledge-in-use (Resnick,

Introducing designers to programming

24

1989). This problem is also confounded by the domain-orientation issue,
since no matter how appropriate the instruction, designers will have diffi-
culty applying a poorly-oriented language to their authentic tasks.

The problem: lack of support for beginning end-user programmers

Although end-user programmable systems represent a burgeoning class
of software, support for users interested in becoming acquainted with
their tool’s language is limited. Few organizations formally support the
social channels by which experienced users can communicate the cost
and benefits of programming to colleagues (Gantt and Nardi, 1992; Nardi
and Miller, 1991). Furthermore, the domain specificity and granularity of
many embedded languages such as Emacs Lisp (Stallman, 1981) are
inappropriate for beginning users (Nardi, 1993, p. 52). With the excep-
tion of spreadsheet formulas, most end-user languages fail Nardi’s
approachability test of success within a few hours.

Printed tutorials, on-line tutoring programs, and training classes are some
of the few support mechanism widely available to users learning pro-

grammable tools.! These resources typically have three major draw-
backs: 1) they require a significant time investment, 2) they expect the
learner to process a large amount of information at once, and 3) they
expect the learner to be able map the topics covered to his or her particu-
lar tasks. Because of the time and effort required on the part of the user,
tutorials and training classes are usually only a last resort (Gantt and
Nardi, 1992; Nardi and Miller, 1991).

One possible response to the deficiencies of traditional resources for
beginning end-user programmers is to embed contextualized program-
ming language learning opportunities into design tools themselves.
Examples of such a mechanism include context-sensitive on-line help

such as found in MacroMedia Director for its Lingo language2 and cri-
tiquing systems such as the Lisp Critic (Fischer, 1987). However, both
approaches assume the user has a basic knowledge of programming: con-
text-sensitive help systems typically provide information on selected
keywords from the language (i.e. system rather than task indexed), and
critics react to programs already being constructed.

1. Experimental intelligent tutoring systems such as the Lisp Tutor (Anderson and
Reiser, 1985) could hardly be called “widely available,” but they do nonetheless suf-
fer from some of the same problems as traditional on-line tutorials.

2. Lingo is a registered trademark of MacroMedia Corporation.

Introducing designers to programming through self-disclosing tools

Using self-disclosure to gently introduce designers to programming

3.0

Using self-disclosure to gently introduce designers
to programming

3.1

Experience with existing resources for users learning their tool’s applica-
tion-oriented language suggests effective support mechanism must 1)
reduce both time and effort required by the user, 2) facilitate estimation
of costs and benefits, 3) minimize prerequisite programming knowledge,
and 4) situate learning in authentic use. In this section I describe an
approach which, like context-sensitive help, embeds short, situated learn-
ing opportunities into the design tool, but unlike such help systems this
approach has no programming knowledge prerequisites. The technique

involves using what has been termed “self-disclosure”! to gently intro-
duce designers to programming. That is, the programmable tool “dis-
closes” elements of its language to designers as they use it. First, I
present an anecdote which illustrates the effective use of self-disclosure,
and then I characterize both the type of learning which took place and the
essential system behavior which enabled it. Finally, I present guidelines
for tuning self-disclosure to best fit the needs of designers learning pro-
gramming for the first time.

Self-disclosure in action

One of the earliest examples of programmable design tools is the still-
popular computer aided design system, AutoCAD, shown in Figure 2,
which has evolved over the years from a simple command line-based
DOS program to a mouse-driven multiplatform behemoth. Although
users can now interact with the interface by points and clicks alone, the
system still makes its command line available in a text-only “Command
Window” for backwards compatibility, the entering of exact values, and
the execution of library functions. AutoCAD cleverly coordinates these
two modes of interaction. For example, mouse clicks on one of its exten-
sive toolbars causes the system to disclose the equivalent historical com-
mand name in the Command window. Users can also enter coordinate
parameters either by typing their values or by using the mouse to select
screen locations. ‘

1. Computer scientists have used the term “self-disclosure” to describe interactive tech-
niques for acquainting users to stylus gestures recognized by pen-based systems
(Venolia, 1994). Psychologists use “self-disclosure” to describe the act of publicly
expressing personal thoughts or feelings. (Derlega and Berg, 1987)

Using self-disclosure to gently introduce designers to programming

FIGURE 2.

" & File Edit Modify Dimension Uiew Setti

AutoCAD’s self-disclosing interface. Drawing a rectangle with the mouse reveals the
command _rectangle in the bottom Command window.

ASE Rend

Model

Special

= Mt Sneffeis:Desktop Folder:-Temp:autocad ====0]

14.2545,2.2989

3.2

Command: _rectang
irst corner:
Other corner:

ommand: |

I once interviewed an experienced architect and graphic designer who
had started using AutoCAD several months before to calculate the perim-
eter and area of a floor plan. Her initial approach involved selecting parts
of the floor plan with the mouse, applying a menu command to find their
points intersection, and finally using another menu command to compute
perimeter and area from these points. When she began with AutoCAD,
she had little, if any, programming experience and certainly no knowl-
edge of the system’s command language. But as she started using the
tool’s mouse to click on her drawing and pull down menu commands she
noticed a pattern: each mouse action was followed by text appearing in a
‘window beneath her drawing. She soon realized these were commands
she could use to automate her task. It was not long before she learned
from AutoCAD’s printed manuals how to compose the textual commands
into an executable file. Designer had become programmer.

Learning from disclosures

Psychologists and linguists might describe the kind of learning which
took place in the AutoCAD anecdote as learning by observation or inci-
dental learning. The basic theory of learning by observation is that peo-

10

Introducing designers to programming through self-disclosing tools

Using self-disclosure to gently introduce designers to programming

ple notice patterns in the world from which they can make useful
generalizations (DeJong, 1983; Gleitman, 1994). The AutoCAD
designer, for example, observed that direct manipulation actions caused
their equivalent linguistic forms to appear in the Command window and
from this began acquiring knowledge about the semantics of specific
AutoCAD commands as well as the general organization of the language.

Learning by observation is not a new idea. In 1690 British philosopher
John Locke wrote about how observation plays a key role in human lan-
guage acquisition:

If we will observe how children learn languages, we will find that to make
them understand what the names of simple ideas or substances stand for, peo-
ple ordinarily show them the thing whereof they would have them have the
idea; and then repeat to them the name that stands for it, as “white.” “sweet,”
“milk,” “sugar,” “cat,” “dog.” (Locke, 1964)

Although linguists have identified other mechanisms employed by lan-
guage learners most agree that our first steps towards acquisition involve
forming word-to-world mappings through observation. Learning by
observation can be considered a specialized form of learning by example
(Hayes-Roth, 1978) involving the analysis of pairs of short-term percep-
tible events. Types of paired events include an action by the learner and
the environment’s reaction, two closely-timed actions by another agent
(as described by Locke), or an environmental event followed by a reac-
tion by another agent.

Learning by observation seems to occur most readily when new knowl-
edge is appropriate to the learner’s current level of competence. For
example, it is widely believed by linguists that graduated child-directed
speech or “motherese,” in which adult speech is adapted to an infant’s
abilities, helps accelerate mother tongue acquisition (Gleitman, 1984).
Nonetheless, learning by observation can be a powerful strategy even
without well-structured input. Consider how infants manage to develop
word meanings despite the fact that their language input is not particu-
larly organized to facilitate the categorization of objects. For instance, the
language learner will eventually acquire the appropriate concept of “dog”
most likely without anyone having pointed to a series of different kinds
of dogs saying the word “dog” after each example. Instead, learners seem
to periodically revise stored word meanings as the terms are presented in
an essentially random order. Certainly in the AutoCAD anecdote, the sys-
tem made no attempt to structure its command language feedback, and
yet the designer made the correct assumptions.

11

Using self-disclosure to gently introduce designers to programming

3.3

Characteristics of self-disclosing systems

AutoCAD’s disclosures allowed the designer I interviewed to begin
learning the command language by observation. Users of many spread-
sheet programs can learn their system’s formula languages in a similar
way. For example, selecting a column of spreadsheet cells and clicking
the mouse over a summation icon generates an expression such as
=sum(A1:A10) in the cell immediately below the column, thus revealing
part of the formula language to the user. However, it is doubtful that
developers of these tools specifically provided disclosures to help users
learn to program them. More likely, self-disclosure is employed to inform
users of direct manipulation shortcuts to already known language con-
structs (e.g. the summation icon as a short cut for the sum expression), or,
in the case of AutoCAD, to help wean traditional users off a command
line interface. ’

What are the attributes of a programmable application which enable lan-
guage learning to occur even when pedagogy is not the main intent of the
system’s use of self-disclosure? I characterize such systems as having
three essential properties:

1. For every elementary mouse action which has a command language
analog, the system will disclose that expression to the user.

2. The system will indicate to the user groups of disclosed expressions
connected with a single operation.

3. Had the user entered the most recently disclosed group of expressions
instead of specifying the operation through direct manipulation, the
results would have been identical.

Consider how AutoCAD fits each property. 1) Mouse actions for select-
ing tools, drawing figures, indicating locations, etc. are translated by
AutoCAD into the corresponding command language expressions which
appear in the system’s Command window. 2) Initiating an operation
causes a command name to appear after the “ Command:” prompt. Subse-
quent mouse actions then specify the parameters named in the Command
window. Completion of the operation is indicated by a new Command:
prompt. 3) If users undo their last mouse operation and type the disclosed
expressions which were generated in the Command window, the effect is
aredo.

Simply by ensuring that a system exhibits the three self-disclosure prop-
erties above, developers can make important progress towards addressing
the issues involved in introducing an end-user language. For example,

12

Introducing designers to programming through self-disclosing tools

Using self-disclosure to gently introduce designers to programming

3.4

3.441

self-disclosing systems of this nature provide a partial solution to the pro-
duction paradox, since learning from disclosures can take place after
every mouse action while the designer is designing. Such self-disclosing
systems also expose designers to some of the possible uses of program-
ming: at the very minimum, programming expressions used to imitate
direct manipulation actions. Finally, the use of self-disclosure, as speci-
fied by the above properties, naturally situates learning opportunities in
the context of authentic design activity. That is, the designer can learn
about programming expressions directly related to the operations they are
currently invoking with the mouse.

Guidelines for the effective pedagogical use of self-disclosure

Ensuring that a system exhibits the three self-disclosure properties is only
the first step in addressing the needs of designers learning their tool’s
application oriented language. For example, although AutoCAD fits each
property, the designer in the anecdote still had to digress from her task to
read manuals on composing operations using the command language. I
claim that the issues from Section 2.3 can be more thoroughly addressed
by shrewdly designing disclosures and the language environment for
using them. The primary goal of my proposed dissertation research is to
develop guidelines for the pedagogical use of self-disclosure in program-
mable design tools. My hypothesis is that by using these guidelines self-
disclosure can be an effective instructional technique which addresses
the specific needs of designers learning to program their tools while per-
forming authentic tasks. Below is a preliminary set of guidelines, some of
which are already followed in existing programmable applications.

Disclosures should be maximally generalizable:

Disclosures offer the designer the opportunity to begin constructing bit
by bit a vocabulary of application-oriented programming terms and a
model for the general schema of the built-in language. Research on learn-
ing from examples suggests users can extrapolate surprisingly detailed
and accurate information about a command language from just a few
exemplars (Anderson, 1987; Lewis, 1988; Lewis, Hair, and Schoenberg,
1989). But these exemplars should be designed to facilitate the most use-
ful generalizations.

Promising strategies for structuring generalizable disclosures are found

“in the causal analysis and program comprehension literature. Lewis, Hair,

and Schoenberg posit that users employ causal analysis to make generali-
zations about a new interface. Such analysis is facilitated by systems
which honor certain common user assumptions about the consistency and

13

Using self-disclosure to gently introduce designers to programming

3.4.2

3.4.3

simplicity of the interface. Their work suggests that a self-disclosing
design tool should, for instance, ensure that every component of the
expressions has some obvious connection to components of the action.
Research in program comprehension indicates that “beacons” or “sig-
nals” such as appropriately-named functions and the consistent use of
capitalization can contribute to the readability and understandability of
code (Gellenbeck and Cook, 1991a; Gellenbeck and Cook, 1991b).

The system should facilitate experimentation with disclosures

By allowing designers to easily experiment with disclosures, a program-
mable application can reduce the effort required to use its language and
make it more approachable. Systems can facilitate experimentation by

1. supporting undo in both the direct manipulation and linguistic modes
of interaction,

2. enabling disclosed expressions to be easily edited and reinterpreted, so
that designers can play with parameter values, and by

3. allowing disclosed expressions to be easily composed into functions.

AutoCAD provides none of the above support for the beginning end-user
programmer, which may partly explain why the designer from the anec-
dote resorted to language reference manuals so soon.

Self-disclosure should be scaffolded

The language embedded in a programmable application may support pro-
gramming at more than one level, thus operations invoked using the
mouse might have a number of corresponding linguistic expressions. In
this case disclosures should be adapted to designer’s current program-
ming knowledge in order to avoid presenting material which the designer
already knows or which is far beyond the designer’s present competence.
This idea of providing incremental learning support is often called “scaf-
folding.” (Bruner, 1975) For example, if Alice from Section 1 uses a
menu command to align the left sides of each bus stop name in Figure 1
the system might respond with any one of the possible disclosures in
Table 2 depending on the concepts it determined were appropriate for her

Programmable applications can employ a user model (Wenger, 1987, p.
126-135) to represent competence levels for each designer, and as shown
in Figure 2 to filter disclosures. The figures illustrates how a user action
is handled by the tool’s interface which provides a collection of feedback
possibilities such a, b, and c in Table 2 to an “expander” module. Each
possibility is annotated with some indication of the programming compe-
tence required to understand it. The expander attempts to derive addi-

14

Introducing designers to programming through self-disclosing tools

Using self-disclosure to gently introduce designers to programming

tional alternate possibilities automatically. For instance, option c in
Table 2 could have been derived from option b, simply by substituting
list accessors for coordinate accessors. Finally, an arbiter module

employs the user model to choose the most appropriate of all the disclo-
sure possibilities..

TABLE 2. Possible feedback for the align left menu command.
Option Possible disclosure Relevant concepts
a (align-gobjects :how :left) keyword parameters
b (dolist (Gobject (selected-gobjects)) coordinate constructors

(if (> (lpoint-x (gobject-position Gobject)) 58)

: . coordinate accessors
(move-gobject Gobject

(make-lpoint iteration over selections
220 conditionals
(lpoint-x

(gobject-position gobject))))))

¢ (dolist (Gobject (selected-gobjects)) iteration over selections
(if (> (first (gobject-position Gobject)) 58)
(move-gobject Gobject
(list lists as coordinates
220
(first
(gobject-position gobject))))))

conditionals

FIGURE 3. A data flow model of graduated self-disclosure.
user model
annotated
feedback
user actlon pos51b111tles disclosure
expander

3.4.4 Disclosures should provide coverage of essential programming concepts
A programmable tool can increase designers’ awareness of the possible
uses for programming by seeding disclosures in such a way that typical

15

Using self-disclosure to gently introduce designers to programming

3.4.5

3.4.6

3.5

sessions with the system will generate information covering fundamental
language concepts. For example, if developers know that an average ses-
sion with their system involves the use of certain menu commands and
direct manipulation tools, they should attempt to devise disclosures for
each of these mouse actions which cover major language concepts. Fol-
lowing this guideline requires that developers conduct users studies or
walkthroughs of their system in order to predict the types of direct
manipulations users will employ. Similar studies may also be necessary
to determine essential programming expressions in the system’s applica-
tion-oriented language.

Designers should be able to specify operations through a combination of direct
manipulation and textual commands

A programmable application should allow designers to use its applica-
tion’s language experimentally, without committing to the exclusive use
of the linguistic mode of interaction. For example, designers should be
able to select a drawing object with the mouse and then type a command
to change the attributes of that object, thus users can play with the lan-
guage without knowing the programming structures for specifying
objects. The ability to “intertwine” interaction modes increases the
approachability of the language by allowing users to start employing it
with only limited programming knowledge. Intertwining also enables
designers to better estimate the effort required for a task involving some
programming, since they are likely to already have good estimates for the
portions of the task involving direct manipulation.

Disclosures should be subtle and browsable

Designers do not always have the time to interrupt their current activity
to reflect on disclosures. Even if they do have time to attend to disclo-
sures, designers undoubtedly do not want to have to memorize expres-
sions which might seem useful in the future. In combination, these two
factors suggest that disclosures should be both subtle and browsable.
Subtle, so that designers are not forced to pay attention to the linguistic
feedback being generated by the system. Browsable, so that designers
can review previously disclosed expressions and learn at their own pace.
An example mechanism to support browsable disclosures is the scrolla-
ble Command window in AutoCAD as shown in Figure 2. Unfortunately,
AutoCAD disclosures do not persist between sessions.

Related learning theories

The above self-disclosure guidelines represent a preliminary framework
for make learning programming a natural part of design activity. The self-

16

Introducing designers to programming through self-disclosing tools

Using self-disclosure to gently introduce designers to programming

disclosure approach is related to several other educational modalities
which I present below.

Learning by observation. Self-disclosure allows designers to learn by
observing patterns in programming expressions generated in response to
their own interactions with the tool. As mentioned earlier, humans seem
uniquely adapted for this kind of learning as evidenced by our impressive
ability to acquire languages. One might even consider disclosure as being
analogous to caregivers’ spoken feedback to an infant exploring the
world.

Increasingly complex microworlds and ZPD. Scaffolded self-disclosure
seeks to adapt feedback appropriately for the present competence of the
designers. This technique resonates with approaches to incremental
instruction such increasingly complex microworlds (Burton, Brown, and
Fischer, 1984) and methods based on Vygotsky’s idea of zones of proxi-
mal development (ZPD) (Vygotsky, 1978). A ZPD delineates an appro-
priate level of instruction and a degree of reliance on a supporting
context. Educators have applied ZPD with some success in the classroom
(Brown, et al., 1993) and have also integrated ZPD into computer-medi-
ated educational environments such as CSILE (Scardamalia and Bereiter,
1991).

Situated learning. Disclosed programming information is naturally situ-
ated to the designer’s current task, since the feedback is in direct
response to user activity. Situated learning represents the thrust of prom-
ising instructional theories such as cognitive apprenticeship (Collins,
Brown, and Newman, 1989), discovery learning (Elsom-Cook, 1990),
and learning on demand (Fischer, 1991b). These methods seek to provide
learning opportunities directly related to what the learner is doing.

Optimal flow. Disclosures are ideally short, subtle, and unobtrusive.
Designers can choose to ignore their tool’s feedback or do away with it
altogether. Thus self-disclosing tools allow designers to concentrate
almost continuously on their work, a requirement for what Mihaly Csik-
szentmihalyi calls optimal flow (Csikszentmihalyi, 1990). Norman
applies this idea to computer based tools:

All attention should be concentrated upon the task itself, not upon the tool.
When the tool calls attention to itself, that creates a breakdown in the work
flow. Tools should stay in the background, becoming a natural part of the task...
The tools, the person, and the task meld into a seamless whole (Norman,
1993).

17

Chart ‘n’ Art: a prototype self-disclosing design tool

4.0 Chart ‘n’ Art: a prototype self-disclosing design tool

Chart ‘n” Art (CNA) is a programmable information graphics tool I have
begun developing in order to test and refine guidelines for the use of self-
disclosure. One of CNA’s goals is to provide sufficient functionality to
support information graphics designers in creating non-standard dia-
grams such as those depicted in Figure 4 which could not easily be made
with commercial packages such as DeltaGraph Pro. Figure 4a is a
weather map which was generated directly from forecast data. A short
function was written so that a new forecast could be translated to an
updated map at the touch of key. Figure 4b is a reconstruction of a unique
time line featured in Diagram Graphics (Nishioka, 1992) depicting the
acceleration of information technology. Each figure represent a human
generation, its color the level of information technology available for that
generation. Red figures show generations using written language—they
number some 200, but in Figure 4b all but 5 have been clipped. Orange
- figures represent the use of the printed books—some 19 generations. The
single blue figure symbolizes the current use of computers. Again, a short
function was written, this time to translate essentially a diagram “key”
“into a time line.

FIGURE 4. Some non-standard diagrams produced by Chart ‘n’ Art

Bntithad Orawing

Baily Forecash DRAING

A
% % Boulder
¢ Y)

& Dillon

4.1 The Chart ‘n’ Art interface

Like many charting programing such as DeltaGraph, CNA combines the
functionality of a spreadsheet and drawing package. The spreadsheet is
used to maintain a “kit” of data, graphical objects (“gobjects”), and func-
tions related to some particular diagram or diagram type. The drawing

18 " Introducing designers to programming through self-disclosing tools

Chart ‘n’ Art: a prototype self-disclosing design tool

package is used to construct the actual information displays for the data
in the kits.

Chart ‘n’ Art direct manipulation operations

Designers can employ direct manipulation to perform standard drawing
and spreadsheet operations. Using a tool palette and color palette, design-
ers can created colored rectangles, ovals, lines, and text which are mov-
able and resizable with the mouse. Users can also employ the mouse to
select spreadsheet cells. Menu commands are also considered part of the
direct manipulation interface. CNA menus currently offers functions for
pasting color pictures into drawings or kits and for aligning graphical
objects.

The Chart ‘n’ Art application-oriented language

The CNA application-oriented language is an extension of Lisp designed
to support the kind of data-to-picture translations shown in Figure 4. The
language can be used to create or modify spreadsheet cells, introduce
new graphical objects into a drawing, or adjust the attributes of existing
graphical elements. Each of the direct manipulation tools mentioned
above has a corresponding gobject-maker function such as make-rect-
angle Or make-oval. Furthermore, CNA programming expressions can
be used as a computational “adhesive” that connects the (typically dis-
joint) worlds of spreadsheet and drawing program by mapping spread-
sheet data into graphical elements and vice versa. An example of such a
language construct is copy-gobject which designers can use to dupli-
cate a kit element and introduce it into a drawing. Since many CNA
expressions affect selected gobjects in a window, there is considerable
language support for manipulating selections such as select-up and
select-down for affecting a selection relatively, and select-at for
affecting it absolutely. '

Chart ‘n’ Art windows

To illustrate CNA’s self-disclosing features I return to the bus schedule
scenario in Section 2. Figure 5 depicts CNA’s main windows and palettes
as they might appear during one of Alice’s first sessions. Alice has
entered the bus departure and arrival times into a kit called Bus Schedule.
The kit also includes a graphical element, a picture of Colorado’s Front
Range. A drawing window labeled “Bus Schedule: DRAWING-91”
shows the beginnings of the line drawing for depicting a bus’s path
through space and time. By this window are the standard drawing pro-
gram palettes for selecting drawing tools and colors. The window labeled
“Transcript” is where disclosures appear—note, CNA has already
revealed the make-line function in response to the use of the mouse-

19

Chart ‘n’ Art: a prototype self-disclosing design tool

driven line tool. At the bottom-right of the figure is the Listener window
for entering programming language expressions.

FIGURE 5. Chart ‘n’ Art main windows and palettes. The “BUS-SCHEDULE” window is instance of a
kit which can hold data, pictures, and procedures for creating the diagrams in a drawing
window; the “Transcript” window reveals linguistic equivalents to direct manipulation
operations; and the “Listener” window is where users can experiment with expressions.

& File Edit Gobject Group Text Diew Macro

Tronseript

(set-color *Pink-Color#)

al, isize '(22 16> :position (2838 96))

(set-color *Black-Color#)
(set-color *Red-Colort)
(mgke=ling point=1 <125 241) :point~2 ‘<143 153))

ipoint=1 "C159 153> :point-2 ‘(174 81))

<k
(set-color *Light-Blue-Color#)>

rpoint=1 'C174 81) :point-2 (188 50))

(make=ling :point-1 'C142 153 :point-2 ' (160 153))

(X Hot Spots

Listeney

BUS-SCHEDULE - Loading binary file "ecl;binariesiuser:Chart 'n’ Art:E
“Lyaes™ nd-User
Language. fas| "
-~ Loading binary file "cel;binaries:user:Chart ‘n'
Art:Chart-n-Art. fasl”
= Loading binary file "ccl;binaries:user:Chart 'n'
Lyons Boulder estminster nver useful Art:Methods-To-Remove . fas |
elements ~ Providing system chart-n-art
Welcome to Macintosh Common Lisp Uersion 2.0. 11
depart arrive depart arvive depart arrive £ ° (moke—line :point-1 "(174 81) :point-2 (176 813>
800 840 900 930 931 959 ——
805 835 836 1010 1011 1030 —=
i

4.2 Self-disclosure in Chart ‘n’ Art

Chart ‘n’” Art employs self-disclosure to gently introduce its application-
oriented language to the designer. The system exhibits the three essential
properties from Section 3.3 for the pedagogical use of self-disclosure:

1. For every elementary mouse action which has a command language
analog, the system will disclose that expression to the user.

In CNA nearly every release of the mouse button causes a Lisp
expression to appear in the Transcript window: changing colors, creat-
ing, moving, resizing gobjects, etc.

2. The system will indicate to the user groups of disclosed expressions
connected with a single operation.

20 Introducing designers to programming through self-disclosing tools

Chart ‘n’ Art: a prototype self-disclosing design tool

4.2.1

Chart ‘n’ Art prints an extra line break in the transcript window to
visually group disclosed expressions connected with a single opera-
tion. Elemental operations include the simultaneous movement of a
group of selected objects which appear in the transcript as a series of
move-gobject expressions without extra line breaks.

3. Had the user entered the most recently disclosed group of expressions
instead of specifying the operation through direct manipulation, the
results would have been identical.

If users undo their last direct manipulation action, then press the “Send
to Listener” button in the transcript, and then press the enter key with
the cursor in the Listener window, the effect is a redo. A single menu
command called “Redo with Language” is planned to automate this
process.

Although CNA does not yet use self-disclosure to its fullest extent, pre-
liminary tests with Chart ‘n’ Art involving two subjects performing a
simple drawing task indicate that non-Lisp programmers can quickly
identify the basic open-parenthesis-operator-operand-close-parenthesis
syntax of the language by examining items generated in the Transcript.

The rest of this section describes how self-disclosure guidelines are fol-
lowed in CNA.

Disclosures should be maximally generalizable

As illustrated by the make-line disclosure in the Transcript window in
Figure 5, CNA attempts to aid generalizability by using Lisp keyword
parameters such as :point-1. The hope is that designers begin to notice
that these keywords are descriptors for parameters which invariably fol-
low the keywords. Designers can then better predict the role of each
parameter to a function and make generalizations about how it could be
used. Chart ‘n’ Art also tries help designers induce programming knowl-
edge by linking disclosed function names to on-line documentation about
the functions. As shown in Figure 6, designers can click the mouse on
underlined function names in the Transcript window to get information
about their semantics and legal parameters.

21

Chart ‘n’ Art: a prototype self-disclosing design tool

FIGURE 6.

Chart‘n’ Art on-line documentation for the make-1ine command. This window appeared
after the user clicked on the underlined function name in the Transcript.

File Edit Go Tools Objects Font Style

in: &key Point-1{frame-paint} Point-2 frame-point} Scale {scalek evword} Frame
{symbud | frarme-wind owsmixing moke-ougl :size (22 162 :position '(238 96>>

out: {ine-gobject}

Creates a line gobject and places it inside <Frame>. Keywords can specify the (set-color *Red-Color*)
endpoints of the line (Point-1, Point-2), the scaling mechanism used when placing . , . s
the gobject in the frame (Scale), snd the conteiner in which the gobjectshouid be | ‘Bekenling :point-1 €125 2415 :point-2 '¢143 153))
installed (Frame). No frame srgument implies the sctve frame.

Seealso:

N

) Iranserint
MAKE-LNE

entatio
[Function]

(set-color *Pink~Color#*)

(set-color *Black~Color#)

(mgke—line :point-1 '¢15@ 153) :paint=2 '(174 §1)3)

(mgke~line point-t "(174 81> :point-2 "(188 50))

(set-color *Light-Blue-Colork)
(mgke-line :point-1 '(143 153) :point-2 'C160 153))
(mgke=line ‘point-1 '¢1?74 81) :point-2 "(176 813)

(_send To Listener) (clear)

Listener
~ Loading binary file "cci;binarias|
~User

Language. fas| "
~ Loading binary Tile "cecl;binaries]
Art:Chart-n-Art. fasi”

4.2.3

4.2.4

The system should facilitate experimentation with disciosures

Currently, CNA users can experiment with disclosures by selecting lines
in the Transcript window and pressing the “Send to Listener” button.
This causes the disclosed text to appear in the interpreter’s Listener win-
dow. In the Listener, designers can optionally change parameters and
then press the return key to execute the Lisp expression. I plan additional
mechanism to specifically facilitate the composition of functions. A new
button will be added to the Transcript which will cause CNA to prompt
the user for a name, then generate a function with that name consisting of

the currently selected lines in the Transcript.

Self-disclosure should be scaffolded

I plan to develop a method of categorizing programming expressions in
terms of the knowledge required to understand them based on existing
domain models of Lisp (Mastaglio, 1990) and from observing designers
using programmable tools (see Section 6.0). These categories will also be
used by the user model to describe an individual designer’s expertise,
most likely using a list of programming concepts acquired. The arbiter
module will choose disclosures which require knowledge matching or
slightly exceeding that of the user.

Disclosures should provide coverage of essential programming concepts
Chart ‘n’ Art disclosures currently reveal the gobject maker, mover, and
resizer functions, as well as lower-level functions for manipulating

22

Introducing designers to programming through self-disclosing tools

Chart ‘n’ Art: a prototype self-disclosing design tool

4.2.5

4.3

groups of gobjects. I plan to use self-disclosure to introduce program-
ming expressions for adjusting the selection and iterating over kit cells.
Studies are planned (see Section 6.0) to determine the most important
programming concepts and determine patterns of direct manipulation use
in CNA. I will use results from these studies to seed the CNA interface in
order to provide adequate coverage of essential programming expres-
sions.

Designers should be able to specify operations through a combination of direct
manipulation and textual commands

Chart ‘n’ Art users can combine direct manipulation with linguistic oper-
ations in different ways. Chart ‘n’ Art supports the ability to select
objects with the mouse and specify the operation on those objects by typ-
ing in the Listener window. User can also combine interaction modes
when making gobjects. For example, a red line is produced by selecting
red from the color palette with the mouse and then typing the make-1line
expression. Future versions of the system will allow users to specify
coordinate parameters to typed expression by selecting the screen loca-
tion with the mouse, as is possible with AutoCAD.

Disciosures should be subtle and browsable

Disclosures in CNA are short Lisp expressions displayed in a small font
in the compact scrollable Transcript window. If the designer has a large
monitor she can move this window away from the area of design activity.
I also plan to offer designers the option of shrinking the Transcript win-
dow to a minimum size. To facilitate browsing, I am also considering
making thumbnail-sized before and after snapshots which appear in the
Transcript window beside each group of disclosures.

Related systems

The use of self-disclosure to help introduce designers to programming is
clearly influenced by a significant collection of prior work. Below are
existing systems which are related to Chart ‘n’ Art.

SchemeChart. A predecessor to the Chart ‘n’ Art system is SchemeChart
(Eisenberg and Fischer, 1994), a programmable tool with an application-
oriented language based on Scheme. Although SchemeChart does not
emphasize self-disclosure per se, it does offer chart designers unique
learning opportunities through its “query mode.” While in query mode,
user selection of a component of a previously constructed chart causes
the system to display a list of SchemeChart expressions that could be
used to manipulate that component.

23

Chart ‘n’ Art: a prototype self-disclosing design tool

The Lisp Tutor. The Lisp Tutor (Anderson and Reiser, 1985) guides
learners through a collection of problems to be solved using the Lisp lan-
guage. The system relies on a sophisticated domain model of Lisp to
anticipate user problems and offer suggestions. Learners can ask the tutor
to fill in parts of the solution program for them and explain why these
parts are necessary. Chart ‘n” Art’s learning opportunities are more con-
textualized than the Lisp Tutor; but like the Lisp Tutor, CNA will rely on
a user model to constrain pedagogical feedback.

ProNet. Although not related to language instruction, ProNet (Sullivan,
1994) demonstrates the potential for learning by observation. In this sys-
tem learners can induce knowledge about local-area networks while
designing networks. This seemingly paradoxical situation is possible
because ProNet proactively adjusts the network being built to meet pre-
defined design criteria. Users can then ask the system why adjustments
were made.

AppleScript] Script Editor. AppleScript is a general purpose language for
sending high-level events to compliant Macintosh applications, which
include the Finder file system interface, drawing programs, spreadsheets,
and word processors. The AppleScript Script Editor is a convenient tool
for composing high-level event calls. Beginning AppleScript users can
learn about the language by putting the editor in record mode. Subse-
quent user activity in a compliant application causes code to appear in an
editor window. Like AutoCAD, the record feature is mainly available for
convenience, not pedagogy. The editor does not attempt to scaffold its
feedback or provide coverage of essential language constructs.

Explainer. The illustrative power of programming examples is demon-
strated by Redmiles’ Explainer system (Redmiles, 1993). This prototype
programming environment allows software designers to explore exam-
ples relevant to their current task through various “perspectives” and
“views.” Redmiles’ work acknowledges that designers can benefit from
the ability to actively investigate programming knowledge offered by the
system. In CNA this is facilitated by enabling designers to experiment
with disclosures. Explainer supports active exploration by automatically
highlighting information from various views related to the current user
selection.

1. AppleScript and Macintosh are is a registered trademarks of Apple Computer Corpo-
ration.

24

Introducing designers to programming through self-disclosing tools

Assessing and refining self-disclosure

5.0

Assessing and refining self-disclosure

5.1

5.2

The self-disclosure guidelines presented in Section 3.4 and the current
self-disclosure mechanisms in the Chart ‘n’ Art prototype system repre-
sent the first step towards a theoretical and technical framework for the
pedagogical use of self-disclosure. Iterative assessment and refinement of
this framework are necessary to achieve a valid and effective approach
for introducing designers to programming. For my dissertation research,
assessment will occur in two phases: formative and summative. Forma-
tive evaluations will consist of several informal observational studies
designed to answer specific research questions leading to iterative refine-
ments of the self-disclosure framework. Summative assessment will be a
single formal user study designed to answer more general research ques-
tions. :

Formative assessment

Formative assessment of self-disclosure will require a sufficiently func-
tional and stable prototype on which to conduct naturalistic evaluations.
This requirement motivates the need to first and foremost refine and
extend the set of direct manipulation and programming operations avail-
able in CNA. I plan observational studies of designers interacting with

AutoCAD, a scriptable version of an image processing tool, PhotoShopl,
and the current version of CNA to inform the next iteration of the system.
Through a series of informal user studies employing this revised version
of CNA, I will then begin to explore numerous alternatives to presenting
disclosures and facilitating designer-interaction with them. Over the
course of my dissertation there will be several opportunities for me to
observe CNA used in a naturalistic setting. For example, the upcoming
course “Designing Systems for Learning” will involve students using
CNA to make diagrams and learn its application-oriented language.
Table 3 outlines some of the specific research questions I will address
during formative assessment, the evaluative methods I plan to use, and
the relevance of these questions towards the self-disclosure guidelines.

Summative assessment

Similar to the evaluations used by Sullivan (Sullivan, 1994), summative
assessment will be used towards the end of my dissertation work to iden-
tify the differences in the kinds of insights disclosures provide compared
to other techniques. Indeed, alternative means of introducing designers to

1. PhotoShop is a registered trademark of Adobe Corporation.

25

Assessing and refining self-disclosure

programming—such as on-line help, interactive tutorials, or annotated
example programs—would almost surely add value to a self-disclosing
design tool. Therefore, to try to demonstrate that self-disclosure is better
than other techniques would not be a very profitable assessment strategy.
Instead, as shown in Table 4, I have identified general research questions
relevant to issues involved in introducing designers to programming (see
Section 2.3), which I will attempt to address through a formal user study
of CNA.

TABLE 3.

Research question

Research questions, evaluative methods, and relevance to self-disclosure guidelines.

Generalizability
Experimentation
Scaffolding
Coverage
Combined interface
Subtle & browsable

Proposed assessment method

What are the kinds of things
designers want/need to do with a
direct manipulation interface?
With a programming language?

Observe designers using AutoCAD,
PhotoShop, and CNA.

N
v\

What is the most generalizable
form for disclosures?

Conduct informal studies of CNA designers
reacting to disclosures using keyword parame-
ters, capitalization, and optional parameters.

What order of disclosures best
aids language acquisition?

Develop a partial ordering of CNA program-
ming knowledge based on the Lisp Critic and
refined using programming walkthroughs
(Lewis, et al., 1990) and interviews with CNA
users.

What is the appropriate level of
obtrusiveness of disclosures?

Ask CNA designers to subjectively evaluate
the size and placement of the Transcript win-
dow, as well as disclosures localized to the
mouse position.

Are the kinds of things designers
want to do with disclosures sup-
ported by the system?

5.2.1

Observe how CNA designers use disclosures
and interview them afterwards.

v

Subjects

Subjects for the summative study will be graphic arts and environmental
design students enrolled at the University of Colorado. I will interview
students in an attempt to select approximately 16 students with a minimal
background in programming and a maximal background in design who
will be randomly assigned to either a test group or a control group.

26

Introducing designers to programming through self-disclosing tools

Assessing and refining self-disclosure

TABLE 4. Research questions, evaluative methods, and relevance to issues involved in introducing
designers to programming.
0n
2
2| ¢
0| % 2
> £ 3 o
= € e 2
™ (] =
3 3 < =3
S | = o | £
g =} £ ®
2 | @ 2 E
5 o 3 £
o £ c ®
Research question Proposed assessment method < - X w
Does disclosure increase the likeli- Compare the number and quality of expressions
hood that designers will employ pro- | typed in Listener window between control and test /
gramming in their activity? groups.
Do disclosures inhibit creative flow? | Measure time taken to complete the task in control
and test groups. Ask subjective flow questions in /
the posttest.
Do disclosures increase designers’ Ask subjects in the posttest how programing might
awareness of the cost and benefits of | help a hypothetical task and how long they estimate / /
programming? a programming solution might take to devise.
What kinds of changes in program- | Compare programming knowledge scores between
ming knowledge occur because of pretest and posttest for both groups.
self-disclosure?
Are designers motivated to learn Ask subjective questions in the posttest about moti-
more about the language? vation levels.

5.2.2 Design

The study will be cross-sectional, with each subject participating once in
a single three-phase trial involving a programming and design pretest, an
information graphics design task using CNA, and a programming and
design posttest. Members of the test group will receive disclosures from
CNA while they use the system, while members of the control group will
not see disclosures but they have access to a printed CNA manual.

The pretest will assess subjects” backgrounds in design and program-
ming. The design task will be a non-trivial information graphics design
problem that does not require programming and has a number of solu-
tions. All subjects will be asked to work on the task until they feel they
have a design which best portrays the given data. CNA will be instru-
mented so that interactions with the direct manipulation and linguistic
interfaces will be recorded, supplemented by periodic screen snapshots.
The posttest will assess changes in subjects’ programming knowledge,

27

Summary

5.3

6.0

attitudes towards programming, and abilities to estimate the costs and
benefits of programming, among other things.

Outline of proposed work

Although work on the self-disclosure guidelines and a prototype self-dis-
closing tool has already begun, I have yet to initiate the bulk of my dis-
sertation efforts, including identifying appropriate operations for
information graphics designers, thoroughly applying the self-disclosure
guidelines to CNA, and using this system to evaluate the effectiveness of
self-disclosure. The key remaining research efforts (and the semester dur-
ing which they will take place) consist of

1. observing designers using commercially available programmable
design tools as well as CNA (Spring 1995),

2. refining and extending CNA direct manipulation and programming
functionality (Spring - Summer 1995),

3. iteratively assessing and refining self-disclosure guidelines (Spring -
Fall 1995), and

4. conducting a formal user study of CNA (Fall 1995 - Spring 1996).

Summary

My proposed dissertation research is significant because it explores
mechanisms for empowering designers with the skills to begin program-
ming their tools, thus providing them with an expressive medium previ-
ously reserved for computer experts. Results from my research will, if
successful, provide a model for embedding end-user language learning
opportunities into programmable applications. My work will also provide
developers with valuable insight into the coordinated design of their
tool’s direct manipulation and programming interfaces.

Self-disclosure may have applications for users other than designers, to
systems other than programmable applications, and to domains other
than programming language learning. It is possible, for example, that
computer science students could benefit from the use of self-disclosure
when learning new programming languages, perhaps embedded in inter-
preters for languages they already know. Another possibility is that
beginning designers could learn design heuristics from a self-disclosing
information graphics program which revealed presentation techniques
while they chose from high-level charting operations. Self-disclosure
may prove to be a powerful and general technique for presenting new
knowledge to users performing any number of computer-based tasks.

28

Introducing designers to programming through self-disclosing tools

References

References

Anderson, J.R. (1987). Causal analysis and inductive learning. Proceedings of the
Fourth International Machine Learning Conference, 288-299.

Anderson, J.R., and B.J. Reiser (1985). The LISP Tutor.

Brown, Ann L., Doris Ash, Martha Rutherford, Kathryn Nakagawa, Ann Gordon, and
Joseph C. Campione (1993). Distributed expertise in the classroom. In Distributed Cog-
nitions. Edited by G. Salomon. Cambridge, England: Cambridge University Press.

Bruner, J. S. (1975). The ontogenesis of language. Journal of Child Language 2 1-19.

Burton, R.R., I.S. Brown, and G. Fischer (1984). Analysis of Skiing as a Success Model
of Instruction: Manipulating the Learning Environment to Enhance Skill Acquisition. In
Everyday Cognition: Its Development in Social Context. Edited by J. L. B. Rogoff. 139-
150. Cambridge, MA - London: Harvard University Press.

Carroll, .M., and M.B. Rosson (1986). Paradox of the Active User. RC 11638.

Collins, A.M., I.S. Brown, and S.E. Newman (1989). Cognitive Apprenticeship: Teach-
ing the Crafts of Reading, Writing, and Mathematics. In Knowing, Learning, and
Instruction. Edited by L. B. Resnick. 453-494. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates.

Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. Harper-
Collins Publishers.

DeJong, G. (1983). An approach to learning from observation. Proceedings of the Inter-
national Machine Learning Workshop.

Derlega, Valerian J., and John H. Berg (1987). Self-Disclosure. Theory, Research, and
Therapy. New York: Plenum Press.

DiGiano, Chris, and Mike Eisenberg (submitted 6 October 1994). Supporting the end-
user programmer as a lifelong learner. Proceedings of the National Educational Com-
puting Conference.

Eisenberg, M. (1991). Programmable Applications: Interpreter Meets Interface.
Department of Electrical Engineering and Computer Science, MIT. 1325.

Eisenberg, M., and G. Fischer (1994). Programmable Design Environments: Integrating
End-User Programming with Domain-Oriented Assistance. In Human Factors in Com-
puting Systems, CHI'94 Conference Proceedings (Boston, MA). 431-437.

Elsom-Cook, Mark (1990). Guided discovery tutoring: a framework for ICAI research.
London: Paul Chapman Publishing.

Fischer, G. (1987). A Ciritic for LISP. In Proceedings of the 10th International Joint
Conference on Artificial Intelligence (Milan, Italy). Edited by J. McDermott. 177-184.
Los Altos, CA: Morgan Kaufmann Publishers.

Fischer, G. (1991a). The Importance of Models in Making Complex Systems Compre-
hensible. Proceedings of the Mental Models and Human Computer Communication.:
Proceedings of the 8th Interdisciplinary Workshop on Informatics and Psychology, 3-
36.

29

" References

Fischer, G. (1991b). Supporting Learning on Demand with Design Environments. In
Proceedings of the International Conference on the Learning Sciences 1991 (Evanston,
IL). Edited by L. Birnbaum. 165-172. Charlottesville, VA: Association for the Advance-
ment of Computing in Education.

Gantt, Michelle, and Bonnie A. Nardi (1992). Gardeners and Gurus: Patterns of Cooper-
ation among CAD Users. In Proceedings of ACM CHI'92 Conference on Human Fac-
tors in Computing Systems. 107-117.

Gellenbeck, Edward M., and Curtis R. Cook (1991a). Does Signaling Help Professional
Programmers Read and Understand Computer Programs? In Empirical Studies of Pro-
grammers. Fourth Workshop. 82-98.

Gellenbeck, Edward M., and Curtis R. Cook (1991b). An Investigation of Procedure
and Variable Names as Beacons during Program Comprehension. In Empirical Studies
of Programmers. Fourth Workshop. 65-81.

Gleitman, Lila R. (1984). The current status of the motherese hypothesis. Journal of
Child Language 11 (1): 43-77.

Gleitman, Lila R. (1994). The structural sources of verb meanings. In Language Acqui-
sition: Core Readings. Edited by P. Bloom. 174-221. Cambridge, MA: The MIT Press.

Hayes-Roth, Frederick (1978). Learning by example. In Cognitive Psychology and
Instruction. 27-38. New York: Plenum Press.

Lewis, C. (1988). Why and How to Learn Why: Analysis-Based Generalization of Pro-
cedures. In Cognitive Science. 211-256.

Lewis, C]ayton,’D. Charles Hair, and Victor Schoenberg (1989). Generalization, Con-
sistency, and Control. In Proceedings of ACM CHI'89 Conference on Human Factors in
Computing Systems. 1-5.

Lewis, Clayton, and Gary M. Olson (1987). Can Principles of Cognition Lower the Bar-
riers to Programming? In Empirical Studies of Programmers. Second Workshop. 248-
263.

Lewis, C.H., P. Polson, C. Wharton, and J. Rieman (1990). Testing a Walkthrough
Methodology for Theory-Based Design of Walk-Up-and-Use Interfaces. In Human Fac-
tors in Computing Systems, CHI'90 Conference Proceedings (Seattle, WA). 235-242.
New York:

Locke, John (1964). An Essay Concerning Human Understanding.” Cleveland: Merid-
ian Books (originally published in 1690).

Mackay, Wendy E. (1991). Triggers and Barriers to Customizing Software. In Proceed-
ings of ACM CHI'91 Conference on Human Factors in Computing Systems. 153-160.

Mackinlay, Jock (1986). Autoinating the Design of Graphical Presentations of Rela-
tional Information. ACM Transactions on Graphics 5 (2): 110-141.

Mastaglio, Thomas W. (1990). A User-Modelling Approach to Computer-Based Critiqu-
ing. PhD Dissertation, University of Colorado.

Nardi, B.A. (1993). A Small Matter of Programming. Cambridge, MA: The MIT Press.

30

Introducing designers to programming through self-disclosing tools

References

Nardi, Bonnie A., and James R. Miller (1991). Twinkling Lights and Nested Loops: Dis-
tributed Problem Solving and Spreadsheet Development. International Journal of Man-
Machine Studies 34 (2): 161-184.

Nishioka, Fumihiko (1992). Diagram Graphics. Tokyo: PeI*E Books.

Norman, Donald A. (1993). Things that make us smart. Reading, MA: Addison-Wesley
Publishing Company, Inc.

Redmiles, D.F. (1993). Reducing the Variability of Programmers' Performance Through
Explained Examples. In Human Factors in Computing Systems, INTERCHI'93 Confer-
ence Proceedings. 67-73.

Resnick, L.B. (1989). Introduction. In Knowing, Learning, and Instruction: Essays in
Honor of Robert Glaser. Hillsdale, NJ: Lawrence Erlbaum Associates.

Richards, I. A. (1973). English through pictures. New York: Pocket Books.

Scardamalia, Marlene, and Carl Bereiter (1991). Higher levels of agency for children in
knowledge building: a challenge for the design of new knowledge media. Journal of
Learning Sciences 1 (1): 37-68.

Schoen, D.A. (1983). The Reflective Practitioner: How Professionals Think in Action.
New York: Basic Books.

Simon, H.A. (1981). The Sciences of the Artificial. Cambridge, MA: The MIT Press.

Stallman, R M. (1981). EMACS, the Extensible, Customizable, Self-Documenting Dis-
play Editor. In ACM SIGOA Newsletter. 147-156.

Sullivan, Jim (1994). ProNet: A proactive design environment. PhD Dissertation, Uni-
versity of Colorado.

Tufte, Edward R. (1990). Envisioning Information. Cheshire, Connecticut: Graphics
Press.

Venolia, Dan (1994). T-Cube: A fast, self-disclosing pen-based alphabet. Proceedings of
the Computer-Human Interaction Conference, 265-70.

Vygotsky, L. S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan
Kaufmann Publishers.

31

