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ABSTRACT

Visual programming languages have often been criticized
for their lack of scalability, particularly in the way in which
they become unusable when used to describe large
programs. This lack of scalability manifests itself in three
ways: complex and unreadable diagrams, viscosity of
representation, and excessive use of screen real estate. We
describe a way in which language design and programming
environment design may be integrated to address this
problem. The VIPR [Visual Imperative PRogramming]
language and its associated environment address this
problem through the use of potentially unlimited nesting,
fixed bounds on the screen real estate occupied by
procedures regardless of their complexity, and the use of
perspective in the language paradigm, along with the use of
zooming and animation in the programming environment.
Since VIPR is an ongoing project, the paper also describes
ways in which we plan to address scalability issues in the
future.
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INTRODUCTION

One of the main criticisms leveled against visual
programming languages concerns their lack of scalability.
This lack of scalability may take three forms. First, in
visual languages based on graphs (that is, with nodes and
edges), as programs or program fragments become more
complex, the diagrams become hopelessly complex and
unreadable. This increase in complexity seems to occur
whether the language is based on a data-flow or a control-
flow model. The problem stems from the existence of edges
in the diagram, and the fact that the edges may connect
widely separated nodes, leading to arbitrary graph
complexity, Numerous measures have been proposed for
this complexity as it affects readability, including edge
density, node density, edge crossing density, and edge
angular resolution [6].

A second, related, scalability problem concerns what Green
refers to as viscosity [8, 9]. Viscosity refers to the
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resistance of a representation to local changes. For example,
as nodes are added to a graph-based visual language, it may
eventually become necessary to rearrange the entire graph in
order to maintain readability, the alternative being overly
crowded or otherwise complex diagrams. Because of this,
most visual languages are referred to as being highly
viscous, unlike less viscous textual representations. Green
shows that viscosity is related to other usability issues,
including the necessity of planning ahead when laying out a
program.

The third problem related to scalability is the reputed lower
density of visual representations, manifested in greater
screen real estate requirements for visual programs.
Although many investigators seem to accept this claim
without question, comparative studies indicate that
programs in certain visual languages may actually be more
compact than equivalent textual programs. (The
representation of certain programs in R-technology, a
Russian visual language [14], is more compact than the
equivalent Pascal or LabView [12] programs, for example.)
In many, if not most, cases, however, experience shows
that visual programs do take up more space.

The VIPR [Visual Imperative PRogramming] language and
its associated programming environment address these
issues in a number of ways. Through the use of spatial
relations (particularly containment) to indicate semantic
relations, VIPR reduces diagram complexity by minimizing
the number of explicit edges that must be drawn and
viewed. The viscosity problem is addressed by limiting the
number and types of transformations the VIPR environment
may perform on a program as it is entered. The screen real
estate problem is addressed in several ways. First, the use of
spatial containment for semantics means that the size
(screen area) of a procedure remains fixed, regardless of how
complex the procedure grows. Second, the use of
containment may lead to interpretation of the programs in
an apparent third dimension that may be used to handle the
growing complexity. Third, programs may be arbitrarily
shrunk while retaining a great deal of recognizable detail.
Fourth, the environment employs zooming in the editor in
order to view and modify deeply nested constructs, and it
employs animation in the execution in order to trace
execution into those constructs.
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Figure 1. VIPR example

VIPR OVERVIEW

VIPR is a completely visual imperative programming
language based on the model provided by Pictorial Janus
[11]. By “completely visual,” we refer to those languages in
which the static program and current program state (that is,
both the static and dynamic aspects of the program) are
incorporated in the same diagram, and the language
semantics are specified by a set of allowable graphical
transformations on the current program configuration. In
the latter respect, completely visual languages resemble the
graphical transformation languages [1, 7, 15]. Kahn [10,
11] conjectures that the simpler and more transparent
semantics of completely visual languages make programs
easier to write.

Detailed discussion of the semantics of VIPR is beyond the
scope of this paper; see [2] for such a discussion. In brief,

a VIPR program (figure 1) consists of a set of nested rings,
one of which is distinguished as the state ring. The state
ring carries program state (particularly, the values of
variables), and the other rings carry guards and actions.
Execution occurs at the boundary of the state ring and the
outermost ring within the state ring; if that outermost
ring’s guard is true, that ring merges with the state ring and
disappears, and the state is altered according to the action
associated with the merged ring. Selection rules control
execution when more than one outermost ring is a candidate
for execution, and substitution mechanisms, denoted by
arrows, allow the normal flow of control to be altered.
Using this small set of simple mechanisms, VIPR can
model conventional conditionals, case statements, iterators,
procedure calls, and parameter passing.

Figure 1 shows a simple VIPR program displayed in the
VIPR programming environment. The outer ring is the state
ring, and is assumed to carry the program state. (Note that



the environment shown in this paper is a preliminary
version — subsequent versions will include a graphically
distinguished state ring, including explicit representation of
current variable values.) Inside the state ring are three
instruction rings (two of which have further contents) and a
pair of substitution arrows.

Of the three outermost instruction rings, the two upper
rings are considered candidates for execution, since the third,
lower, ring is the target of substitution arrow (see below)
and execution of such target arrows is suppressed.

Each candidate ring has a guard. The guards are tested, and
one ring whose guard evaluates to true is selected as the
next instruction to execute. All other candidate rings and
their contents are eliminated. Assuming that the current
value of X is 1, the upper left ring is selected for execution,
and the other candidate ring is eliminated. This stage in the
computation is shown in figure 2a.

At this point, the candidate ring executes by merging with
the state ring, and by altering the state carried by the state
ring, in this case by setting the value of X to 2. The
candidate ring itself vanishes and its contents now become
the new candidate rings, as is shown in figure 2b.

The current candidate ring has no guard and no action, but
has an arrow exiting it. This arrow indicates that the
construct at the destination of the arrow may be substituted
for the ring at the source. Thus, the right-hand ring is
substituted for the left-hand ring, as is shown in figure 2c.
Substitution arrows are used to mimic the effects of gotos,
procedure calls, and any other non-sequential constructs.

Finally, the remaining statement ring executes by merging
with the state ring, and the state is altered by setting y to 4.
At this point, the state ring is empty and execution halts. It
can be seen that the construct shown in figures 1 and 2
models the if-then-else construct.

Through the explanation above, it can be seen that nesting
of rings is used to denote normal sequencing — a given ring
executes before the rings nested inside it. Although the
other mechanisms are significant in the language (in
particular the substitution arrows shown in figure 1), they
are not relevant to the treatment of VIPR scalability and
will not be further discussed in this paper.

Although figure 2 shows snapshots of an executing VIPR
program, the graphical transitions representing computation
steps are smoothly animated. A number of sample
animations of VIPR programs are available on the World
Wide Web at http://soglio.colorado.edu/Web/vipr.html.

Although VIPR constructs map closely onto conventional
textual program constructs, VIPR differs significantly from
other such visual constructs, such as flow charts and Nassi-
Shneiderman diagrams [16]. Most significantly, VIPR
programs possess a completely visual semantics, but

equally important, from the point of view of scalability,
VIPR programs express sequencing through a spatial
containment relation, while the other representations
employ connectedness or adjacency. The next section shows
that such differences are extremely significant.
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Figure 2. Execution of a VIPR program. (a) After application of selection
rule. (b) After application of sequencing rule. (c) After application of
substitution rule



VIPR AND GRAPH COMPLEXITY

Research on graph complexity and its relation to drawing
and readability has identified a number of factors influencing
the readability of a graph [6]. These factors include
minimization of the number of edge crossings and
minimization of the graph area. Graph complexity is a
problem in most graph-based visual languages because all
data and control flow are represented by graph edges, and
visual programs quickly become complex. A typical
solution, employed by popular visual languages like
Prograph [5] and LabView [12], is to divide the graphs into
multiple pages or windows, but requiring multiple windows
decreases usability, particularly on small screens.

VIPR addresses this problem by eliminating the need for
edges to specify normal sequential control flow and
selection. Thus, most edges that would appear in a control-
flow visual program in a graph-based language need not
appear in a VIPR program. Only those constructs requiring
other types of control flow than simple sequencing (such as
iterators, procedure calls, and the joining of two branches of
a conditional) need to employ edges. Thus, VIPR programs
can be compressed substantially while maintaining their
readability, and larger programs may be displayed on a
single screen using VIPR than using other visual languages.
Figure 3 illustrates this property. Figure 3b shows a
program of two nested loops with additional loop exits in a
hypothetical graph-based control flow visual language.
Figure 3a shows the equivalent VIPR program. Figure 3c
shows the equivalent textual program. The graph-based
program contains 9 nodes and 13 edges. The equivalent
VIPR program contains 21 rings and only 4 edges. Since
readability of graphs is generally concerned with the number
of edges and the complexity of their crossings, the VIPR
program remains more readable as it is compressed than the
graph-based program, and the VIPR program, as presented,
clearly occupies less space than the graph-based program,
while maintaining readability. As graph-based programs
become more complex, graph layout becomes more
complex in a way that it does not in VIPR, since problems
of node placement and edge routing must be addressed. In
VIPR, the fact that containment is the primary spatial
relation means that layout considerations are much simpler.
Finally, the disks described by nested VIPR rings share
screen area, and therefore the space occupied by the VIPR
program does not increase as the number of rings increases
in the way that the space occupied by a graph-based
program would increase as the number of nodes increased,
since the graph nodes may not overlap.

It should be noted that the number of edges in the VIPR
program in figure 3a may be further reduced to 2 by
collapsing copies of the ring F and its contents into the
rings at the source of the arrows whose destination is F.
Thus, edges may be removed at the cost of adding rings.
There are times when such transformations may allow
further compression of the program, and future versions of
the VIPR environment may support such transformations.
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Figure 3. (a) VIPR program. (b) Equivalent control-flow graph program.
(c) Equivalent textual program (on following page)



while A do begin
while B do begin

C;
if D then break;
E;
end;
F;
if G then break;
H;
end;

©

Figure 3. (¢) Equivalent textual program
VIPR AND LANGUAGE VISCOSITY

Green [8] has identified viscosity as the resistance of a
language or environment to small local changes. For
example, in inserting a new node into a control-flow graph,
it may be necessary to rearrange other nodes and edges in
order to avoid creating overly complex graphs. To
accommodate this viscosity, users often spend a great deal
of time planning ahead the entry of program elements.

As an example of viscosity in visual languages, consider
the program in figure 3b. Suppose that the user wishes to
insert a new node to be executed between nodes D and E.
This would be impossible without either globally
rearranging the graph to provide more space between nodes
D and E, or by placing the new node outside the existing
graph and running edges to and from the new node, thereby
increasing the number of edges and probably increasing the
number of edge crossings. The latter solution is not
desirable from the standpoint of graph complexity, and the
former solution is complex to perform by hand. In theory,
an editor for this language could perform this global
rearrangement automatically, but such transformations are
complex, particularly when the nodes of the program are
not linearly arranged, as they are in figure 3b. Such
complex transformations are generally not supported in
graphical editors.

In contrast to the above example, textual languages and
their editors are generally considered low-viscosity. Text
editors take care of addition and deletion of statements
automatically; the main examples of viscosity in textual
languages concern the management of bracketing constructs
(begin-end, for example), and indentation.

The fact that most control-flow relations need not be
represented explicitly with edges allows VIPR to address the
viscosity problem. The ways in which rings may be added
to a VIPR program are severely constrained. One may add a
ring to the end of a sequence, in which case the VIPR
environment places the ring at the inside of a sequence of
nested rings (figure 4a). One may insert a ring between two
nested rings, in which case the VIPR environment

compresses the inner of the two rings (and its contents)
sufficiently to allow the new ring to be inserted (figure 4b).
One may add a sibling ring to set of alternatives. In this
case, the existing sibling rings are rearranged and they and
their contends are automatically compressed to yield
sufficient room for the new ring (figure 4c). For the reasons
discussed in the previous section, compression of VIPR
constructs may be accomplished to a large extent without
sacrificing comprehensibility, and where comprehensibility
is finally lost, the zooming facility of the VIPR editor
allows the compressed constructs to be easily navigated. It
is very important to note that these are the only graphical
transformations that need be supported by the VIPR editor
for local modifications.
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Figure 4. (a) Adding an innermost ring. (b) Inserting a ring. (¢) Adding a
sibling ring

The other way in which the user may add a ring to a VIPR
program is as an external procedure. In this case, the user
may draw the ring anywhere on the drawing surface, and the
normal viscosity problems reappear. However, the program



aggregates being dealt with are much larger than individual
statements and there are fewer such items in a typical VIPR
program than there are nodes in a conventional control-flow
or data-flow graph-based visual program. In addition, when
adding rings to the newly created external procedure, the
same constraints hold as when adding rings to the main
procedure, as described above. Thus, editing and extending
existing procedures is non-viscous; only adding new
procedures and making procedure calls exhibits viscosity.
This is a substantial advance over other graph-based visual
languages.

We are currently addressing viscosity issues involving
external procedures. This effort is discussed in the future
work section.

VIPR AND SCREEN AREA

It is often claimed that visual programs occupy more screen
space than equivalent textual programs. VIPR addresses this
problem in several ways.

First, the fact that spatial containment is used to denote
sequencing means that the size of a VIPR procedure is
bounded, no matter how complex the procedure becomes.
Assuming that the size of the outermost ring is fixed, new
rings are added in progressively smaller sizes in the interior.
Although the rings may become quite small, the use of
zooming allows such small rings to be read and navigated,
as described below. Figure 5 shows how a simple procedure
and a complex procedure developed from it occupy the same
amount of space.

Figure 5. Bounded size, independent of complexity

A second way in which the design of VIPR accommodates
the screen real estate problem is to expand programs into a
virtual third dimension. Although two-dimensional nesting
is the main topological relation used to relate rings, this
nesting relation may be interpreted as a perspective drawing
in a third dimension. In such an interpretation, a sequence
of nested rings may be viewed as a perspective view down a
tunnel (figure 6). In such an interpretation, zooming may
be interpreted as movement down that tunnel. Similarly,
executing programs may be visualized through travel down
that perspective tunnel. Evidence suggests that users are
willing to accept smaller and more cluttered representations
if they may be interpreted as due to receding perspective in a

third dimension and if ways are provided to navigate in that

third dimension [13].

Figure 6. Per tive interpretation of VIPR program

Third, programs may be arbitrarily shrunk while retaining a
great deal of recognizable detail. We have already seen how
VIPR procedures may be compressed with only a limited
loss in readability, due to the lack of edges needed to
express sequencing relationships. It can also be shown that
entire programs may be compressed without complete loss
of information. The form of a program, particularly its call
graph, is still visible at high compression. It is possible to
recognize individual procedures and observe their calling
relationships. This sort of recognition is more difficult
when conventional graph-based visual languages are used,
due to the fact that connectedness denotes sequentiality and
it is therefore not necessary for statements of the same
procedure to actually be close to each other, and it is
impossible with textual languages because detail and
readability are lost as the text shrinks.



Figure 7 gives an example of how large-scale details may
emerge when a VIPR program is compressed. At a glance,
we can see that the program consists of three procedures.
The two topmost procedures contain conditional constructs
with two alternative cases each, while the bottom procedure
contains a case construct with three cases. The number of
transfers of control, their sources and destinations, are all
immediately apparent, even at a high degree of reduction in
program size.

Figure 7. Observation of gestalt in a VIPR program

Finally, the VIPR environment supports zooming in order
to view and modify deeply nested constructs, and it employs
animation in the execution in order to trace execution into
those constructs. These features allow highly compressed
detail to be recovered in editing and execution, respectively.
When a complex VIPR procedure is created, so that
statement rings are deeply nested and small, it is easy to
zoom into the procedure in order to magnify the nested
rings, observe detail, and make modifications.

Figure 8 shows how the VIPR zooming facility appears to a
user. The top portion of the figure shows a complex VIPR
program in its full-program view, displaying the large
structure of the program. In the bottom portion of the
figure, the view has zoomed in on the upper left-hand
quadrant of the program, recovering detail that was difficult
to discern in the full-scale view. The VIPR environment
provides facilities for zooming in and out in large and small
units, as well as the ability to scroll horizontally and
vertically through a large or highly magnified diagram.

Similarly, when observing execution, the VIPR
environment displays the merging of the outermost state
ring with the state ring, and animates the enlargement of
the executing procedure’s interior. This animated zooming
allows detail of small rings to grow into visibility as the
corresponding statement comes closer to execution.

CONCLUSIONS AND FUTURE WORK

The VIPR project shows how the design of a visual
language and its programming environment may be
integrated to effectively address problems of visual language
scalability. The use of spatial containment, or nesting, as
the indicator of sequencing allows reduction in the

complexity of representations and allows topological
transformations, particularly compression, that reduce
screen space preserving readability to a large extent,
something that does not occur in graph-based visual
languages based on a node-and-edge model. When readability
is lost through excessive compression, it can be easily
recovered through the zooming support provided by the
VIPR environment.
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Figure 8. (a) A deeply nested procedure. (b) Zoomed view of the interior

In addition to compression, the constraints on where rings
may be added to a procedure and the simple automatic
transformations that are performed when thé rings are edited
address the problem of viscosity in visual languages. This
solution allows VIPR procedures to remain editable whereas
conventional graph-based visual language procedures lose
editability as they become more complex.



The features of VIPR described in this paper are generally
concerned with scalability within single program unit. We
are currently attempting to address scalability problems
involving multiple program units using VIPR’s ability to
preserve readability even when a program is highly
compressed. One promising approach involves ‘fisheye’
views of large programs, where the program unit which is
the focus of attention is enlarged, and other units are
compressed. The programming environment will support
smoothly animated transitions between alternate fisheye
views. Figure 9 shows three fisheye views of the program
in figure 7, each focusing on a different program unit. Such
fisheye transformations also address the problem of
viscosity in programs with multiple procedures.

Q

Figure 9. Use of fisheyeing to navigate multi-unit programs

We are also exploring more sophisticated circle packing
methods. The ring layout algorithm in the current VIPR
environment is rather simple-minded, and, although
relatively simple to implement, leaves a large amount of
unusable and unused space in a VIPR construct. More
efficient circle packing algorithms will yield denser
programs and will allow more complex program constructs
to occupy a given amount of space.

The VIPR programming environment is implemented in
C++ and Tcl and employs the wxwin windowing
environment on a SPARCS workstation. Work is currently
being done to extend the VIPR language to incorporate

visual expressions [4] and object-oriented constructions [3].
In addition, we are attempting to improve the usability of
the zooming and navigation facility, as well as the quality
of the animation.
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