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Abstract
In Optimality Theory, grammaticality is defined in terms of optimization over a large (often infinite)
space of candidates. This raises the question of how grammatical forms might be computed. This paper
presents an analysis of the Basic CV Syllable Theory (Prince & Smolensky 1993) showing that, despite
the nature of the formal definition, computing the optimal form does not require explicitly generating
and evaluating all possible candidates. A specific algorithm is detailed which computes the optimal form
in time that is linear in the length of the input. This algorithm will work for any grammar in Optimality
Theory employing regular position structures and universal constraints which may be evaluated on the

basis of local information.
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1. The Parsing Problem in Optimality Theory

In Optimality Theory (Prince & Smolensky 1993), grammaticality is defined in terms of optimization.
For any given linguistic input, the grammatical parse, or structural description, of that input is selected
from a set of candidate parses for that input. The grammatical parse is optimal in that it does the best job
of satisfying a ranked set of universal constraints. The formal definition of the theory includes a
function, called GEN, which maps an input to a set (possibly infinite) of candidate parses. Each
candidate parse by definition contains the input. Each of these candidates may be evaluated in terms of
the number of times it violates each universal constraint. The ranking of the universal constraints is
strict: one violation of a given constraint is strictly worse than any number of violations of a lower-
ranked constraint.

A grammar specifies a function: the grammar itself does not specify an algorithm, it simply assigns a
grammatical structural description to each input. However, one can ask the computational question of
whether efficient algorithms exist to compute the description assigned to a linguistic input. This is the

parsing problem that I consider here. Although the term 'parsing' is more commonly associated with



models of language comprehension, I am treating it as the more general issue of assigning structure to
input, an issue relevant to both comprehension and production. In fact, the treatment of the Basic CV
Syllable Theory discussed in this paper is more easily thought of as relating to production: the input is
an underlying form, and the structural description includes the surface form. In Optimality Theory, the
parsing problem is easily understood as an optimization problem: search the space of candidate structural
descriptions for the one that optimally satisfies the ranked constraints.

The general spirit of Optimality Theory is to generate a large and general space of candidate structural
descriptions for an input, leaving much of the work to the constraints to determine grammaticality. This
makes the parsing problem non-trivial; GEN is often envisioned as generating an infinite number of
candidate structural descriptions for an input, in which case simple exhaustive search is not even tenable.
Even if GEN were finite, the number of candidates would still grow exponentially in the length of the
input.

Although Optimality Theory is easily understood mathematically in terms of the generation and
evaluation of all candidates in parallel, it is unnecessary, and in fact counterproductive, to consider the
computation of optimal forms in those terms. The algorithm presented in this paper uses a technique
known as dynamic programming. Intuitively, the algorithm operates by gradually constructing a few
candidate parses as it works through the input. When the end of the input is reached, only a few
complete parses have been constructed, one of which is guaranteed to be optimal. As an illustration, the
Basic CV Syllable Theory is discussed and a complete parser is described for that theory.

1.1 Preliminary: An Intuitive Illustration of Dynamic Programming

Due to the nature of the problem under consideration, the analysis presented in this paper will at times

involve considerable formal complexity. With that in mind, the fundamental idea underlying the



analysis, dynamic programming, is here introduced via an intuitive analogy. Suppose that there are two
towns, X and Y. In between these towns is a river, which must be crossed in order to travel from X to
Y. There are three bridges across the river: A, B, and C. Suppose that we wish to find the shortest - the
optimal - route from X to Y.

We know that any path between X and Y must cross one of the three bridges. There are many different
ways to get from Town X to each of the three bridges, and many different ways to get from each of the
bridges to Town Y. However, we can simplify our problem by first only considering the best way to get
from X to A, the best way from X to B, and the best way from X to C. Having found each of these
"sub-routes", we could make a small table for future reference: it would have three entries, each giving
the route and the distance of the route to one of the bridges. Next, we could consider the best way to get
to Y from each of the three bridges. Once we determine the shortest route from bridge A to town Y, we
can easily calculate the shortest route from X to Y which crosses bridge A, by adding the distance of the
shortest route from A to Y with the table entry giving the distance from X to A. In the same fashion, we
can calculate the shortest route from X to Y crossing B, by combining the shortest route from B to Y and
using the already calculated shortest route from X to B. The same can be done for bridge C. At this
point, we need only choose the shortest of three routes: the shortest route of those for each of the three
bridges.

Notice that there are many possible routes between X and Y: just considering bridge A, every possible
route from X to A may be combined with every possible route from A to Y. In fact, the problem is best
understood in that fashion, as the problem of searching the space of all possible routes between X and
Y to find the shortest one. But while the problem is most easily stated and understood in those terms,

it is not most easily solved in those terms. The above illustration gives the essence of dynamic



programming: break a large problem, like traveling from X to Y, into smaller sub-problems, like
traveling from X to A, and traveling from A to Y.

The value of this way of thinking is perhaps even more apparent if we change the problem so that there
are two rivers between X and Y: the second river having three bridges, D, E, and F. In this case, we
would first put into our table the shortest route from X to the bridges A, B, and C. Next, for bridge D,
we would consider the shortest route from each of the bridges A, B, and C. We would then make another
table entry giving the shortest route from town X to bridge D: this will be the shortest of three routes,
the shortest route from X to D via bridge A, via bridge B and via bridge C. Next, similar table entries
would be written down for bridges E and F. Finally, we could calculate the shortest route from town X
to town Y by considering the shortest route via bridge D, via E and via F. Again, at the end, we need
only compare three complete routes between X and Y.

The algorithm presented in this paper will use dynamic programming to compute optimal forms. Each
segment of the input is something like a river in the above illustration. There are a limited number of
ways to deal with an input segment, and the best way to do each can be recorded in a table. Once all of
the input segments have been considered in order, only a very few entire parses of the input need be
compared in order to determine the optimal one.

2. The Basic CV Syllable Theory

The Basic CV Syllable Theory is described in §6 of Prince & Smolensky 1993.  An input to the
grammar is a sequence of segments categorized as consonants and vowels, that is, a member of {C,V}™.
The structural descriptions generated by GEN are strings of syllables with the following restrictions:
nuclei are mandatory, onsets and codas are optional, and positions are assumed to contain at most one

input segment. The order of the input segments must be preserved, and each input segment must either



be placed in a syllabic position or marked as unparsed in the structure. Further, a C may only be parsed
as an onset or a coda, while V may only be parsed as a nucleus. Notice that this is a statement of the
universal set of structural descriptions to be considered, and not the inventory for any particular
language. For a given input, GEN generates all possible syllable structures that contain the input, and
meet the restrictions just given'.
Officially, the universal constraints of the Basic CV Syllable Theory are:
(D ONS - syllables must have onsets

NoCoDA - syllables must not have codas

PARSE - input segments must be parsed (into syllabic positions)

Nuc

FiL™ - a nucleus position must be filled (with a V)

FrrLOns

- an onset position must be filled (with a C)

These constraints are violable and may be ranked differently by different languages.

The problem of computing the optimal structural description is non-trivial because GEN is allowed to
underparse and overparse. Underparsing refers to any segment of the input which is not assigned
(parsed) to a specific syllabic position within a structural description. Overparsing refers to any syllabic
position contained in the structural description which does not have an input segment parsed into it.
Because overparsing may in principle occur an unbounded number of times, the space of candidate
structural descriptions for any given input is infinite.

Prince and Smolensky implicitly describe the space of possible structural descriptions. Immediately
below, I give a formal description of this space. This description is used when constructing the parser.

By showing how to construct a parser for this particular description, it should be fairly clear how similar

parsers would be constructed for other theories with similar formal descriptions.



For computational purposes, we will regard a structural description of an input as a string of syllabic
positions, referred to as a position structure, which are matched with the input segments. The positions
are represented by the symbols {o,n,d}, for onset, nucleus, and coda, respectively ('C' is reserved for
consonant). In a given structural description, each position may be filled with at most one input segment,
and each input segment may be parsed into at most one position. Any input segment not parsed into a
syllabic position is so marked in the structural description. For a given position structure, each allowable
way of matching the input with the structure counts as a candidate structural description. An allowable
matching is one in which the order of the input segments is preserved, and in which V segments are only
parsed into n positions, while C segments are only parsed into o and d positions.

Figure 1 shows some examples of candidate parses for the input /VC/:

Figure 1
n-d n-d—<')-n 0-1’1 - n
|
V C VvV C V C

The lower case letters are syllable positions. Syllable positions with vertical bars under them are filled
by the input segments immediately under the vertical bars. Any syllable position without a vertical bar
underneath is unfilled in that parse (to be filled by epenthesis at the phonetic stage). An input segment
(V or C) which is not underneath a vertical bar is not parsed into any position, and will not be apparent
in the surface form.

Here are a couple of parses that are not generated by GEN:



The first is not generated because GEN forbids parsing a V in an onset position, and forbids parsing a
C in a nucleus position. The second is not generated because the position grammar of GEN will not
generate an onset position without a following nucleus position.
I will use the following position grammar to describe the set of allowable position structures:
2) S = e|o0|nN

O = nN

N = ¢|dD|oO|nN

D = e|o0|nN
The terminals in the position grammar are the syllabic positions and the empty string (e). The non-
terminals {S, O, N, D} may be thought of as corresponding to states in the derivation of a position
structure. S is the starting state. O signifies that the last position generated was an onset (0), N that a
nucleus (n) was just generated, and D a coda (d).
3) S = nN = ndD = ndoO = ndonN = ndon
Those non-terminals which may evaluate to e correspond to possible finishing states. O is not a finishing
state, because a syllable with an onset must also have a nucleus. This position grammar guarantees that
each syllable has a nucleus, that onsets precede nuclei, that codas follow nuclei, and that there is at most
one of each type of position per syllable.

It should here be emphasized that the position grammar just discussed is a descriptive formalism useful



in understanding GEN; it is NOT a computational mechanism. The actual computational mechanism
understandable in terms of the position grammar is the set of operations contained in the Operations Set,
described below.

3. Parsing the CV Theory

The challenge is to efficiently choose the optimal structural description from an infinite set of candidates.
The solution is to avoid dealing with whole structural descriptions, and instead build up the optimal one
piece by piece. The basic technique used to do this is dynamic programming (see, e.g., Corman,
Leiserson, & Rivest 1990). The algorithm presented here is related to chart parsing (see, e.g., Kay 1980),
an algorithm used in natural language parsing that employs dynamic programming. Dynamic
programming has also been used for optimization in sequence comparison (see, e.g., Sankoff & Kruskal
1983) and Hidden Markov models (see, e.g., Rabiner 1989). The algorithm presented here combines
the use of dynamic programming for language structure processing with dynamic programming for
optimization, resulting in optimization-based language processing.

The algorithm proceeds by creating a table, called the Dynamic Programming Table, and filling in the
cells of the table. Once all of the cells have been filled, the optimal form is quite easily determined.
Section 3.1 describes the table and explains how it contributes to computing the optimal form. Section
3.2 describes the operations used to fill the cells of the table, both how they relate to the table and how
they relate to the Basic CV Syllable Theory.

3.1 The Dynamic Programming Table

Table 1 shows the DP Table for the input /VC/, with the constraint ranking ONs >> NoCopa 3> FiLLN"

>> PARSE > FrLr O,



Table 1

Dynamic Programming Table for /VC/

BOI i, =V i,=C
S V) (VC)
o | O V.o [V.C
N || 0O LV V.(C)
D | .o jm\V/m) VC.

Optimal Parse: .[JV.(C) This parse is represented in cell [N,i,].

Each cell in this table contains a structure. Each colunn of this table stands for a segment of the input
except the first column, BOI, which corresponds to the "beginning of the input”. Notice that each cell
in the column headed i, contains a V; further, every structure in the column headed i, contains both a
V and a C, in the correct order. The label on each row is a non-terminal of the position grammar, and
corresponds to a type of syllable position. Notice that for each structure in the N row, the last-generated
position in the structure is a nucleus. The O row contains structures ending in an onset, while the D row
contains structures ending in a coda. The S row only contains structures in which no positions at all have
been generated (i.e., all of the input segments seen are unparsed). Thus, each cell contains a structure
which contains all of the input segments up through the one heading the column of the cell, and with a
last generated syllable position corresponding to the row of the cell. The cell in row D and in column
i5, [D,i,], contains a structure which includes the input segments i; and i, and the last syllable position
in the structure is a coda.

The value of the table is that each cell does not contain just any structure meeting the requirements just

described; each cell contains the best structure meeting those requirements. Each cell contains a



structure representing the best way of parsing the input up through the segment for that column ending
in the row-appropriate position. The last column (the column for the last input segment) includes the
complete parses to be considered. The optimal parse is easily chosen from among this set of
possibilities.

In general, a given input string [ is parsed by constructing a DP Table. The table has one column for
each segment of the input, plus a first column, BOI. The BOI column is present because positions may
be generated at the beginning, before any of the input has been examined (this would correspond to
epenthesis at the beginning of the utterance). Each cell corresponds to a partial description, which is a
structural description of part of the input. The table cell [N,i,] corresponds to the optimal way of
parsing up through the second segment of the input, with a nucleus being the last structural position in
the partial description. Each cell also contains the constraint violation marks assessed the partial
description, and representing the Harmony of that description (these marks are not depicted in Table 1).
The parsing algorithm proceeds by filling in the columns of the table one at a time, left to right. After
the best way of parsing the input through segment ij-l ending in each non-terminal has been calculated
(the entries of column ij_l), those values are then used to determine the best way (for each possible final
position) of parsing the input through segment i; (the entries of column 5 ). Once all the values for the
last column are determined, the Harmony values in the table cells of the last column in rows
corresponding to possible finishing states are compared (this is explained in greater detail below). The
cell (among those being compared) containing the highest Harmony value thus also contains the optimal
parse of the input.

3.2 The Operations Set

Operations are used to fill cells in the DP Table. An operation works by taking the partial description
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in a previously filled cell, adding an element of structure to it, and putting the new description in the new
cell. A cell entry is determined by considering all of the operations that might fill the cell, and selecting
the one with the highest resulting Harmony to actually fill the cell. This is the essence of dynamic
programming: because the partial descriptions in later cells contain the partial descriptions listed in
carlier cells, the earlier cell entries may be used directly, rather than explicitly recalculating all of the
possibilities for later cells.
Each operation is based upon one of three primitive actions. The three primitive actions are:
@ (a) parsing a segment of input into a new syllabic position;

(b) underparsing an input segment;

(c) overparsing a new syllabic position.
Primitive actions (a) and (c) involve generating positions, so they must be coordinated with productions
in the position grammar of GEN; (b) does not involve position generation. On the other hand, actions
(a) and (b) consume input, while (c) does not. Operations are versions of the primitive actions
coordinated with the specifics of the model (GEN and the universal constraints). An operation may be
specified by four things: the new cell (being filled), the previous cell containing the description being
added to, the structure added to the partial description, and the constraint violation marks incurred by
the operation. A candidate structural description of an input may thus be viewed as resulting from a
sequence of operations. It should be emphasized that an operation does not transform one entire
structural description into another, but merely adds to a partial description.
As an example, consider the actions that might fill cell [O,1,] of the DP Table. Recall that the structure
in this cell must contain input segments i, and iy, and the last syllabic position in the structure must be

an onset. One possibility is the underparsing action: take the structure from the cell immediately to the
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left in the same row, [O,i;], and add to it the input segment i, marked as underparsed. We don't need
to consider any other ways of filling this cell with i, underparsed, because we have already guaranteed
that [O,i;] contains the best way of parsing through i; ending in an onset. The resulting Harmony of the
operation will be the Harmony listed in [O,i;], with the mark {*PARSE} added to it (indicating the
constraint violated by underparsing). If i, is a consonant, then another possibility is to parse  into a
newly generated onset position. This requires having a structure from the previous column to which an
onset position may be legally appeﬁded. The position grammar (2) shows that an onset position may
be generated directly from the non-terminals S, N, and D; this corresponds to the intuitive notions that
an onset must be at the beginning of a syllable, and may be the first position of a description (generated
from S), may immediately follow a nucleus position (generated from N), or may immediately follow
a coda position (generated from D). An onset position may not immediately follow another onset
position, because then the first onset belongs to a syllable with no nucleus. Fortunately, we have already
determined that the cells [S,i;], [N,i;], and [D,i;] contain the optimal partial descriptions for the allowed
three cases. Finally, the cell [O,i,] may be filled by an overparsing operation that would take a structure
which already contains i, and append an unfilled onset position.

The set of possible operations is called the Operations Set, and is organized to indicate what operations
may fill each type of cell (the cells are here typed by row). Table 2 shows the operations for filling cells
in row O (the rest of the Operations Set for the CV Syllable Theory appear in the appendix). Each row
in the table corresponds to an operation. The new cell column shows the type of cell to be filled by the
operation. The condition column contains any additional conditions that must be met in order for the
operation to apply (in this case, the restriction of V to nuclei, etc.). The previous cell column indicates

the relative position of the cell containing the partial description being added to by the operation. The
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structure column indicates the additional structure added by the operation. The violations column shows

the constraint violation marks incurred by the added structure. The final two columns are informational:

the production column lists the position grammar production used by the operation if one is used, and

the operation type column indicates the type of operation. The term i. in each operation is a variable,

]

meant to match whatever segment heads the column of the cell currently being filled; there is not a

separate operation in the Operations Set for each column (input segment).

Table 2

The Operations Set Operations for Filling an O Row Cell

Information
New Condition Previous  Struc  Violations Production ~ Operation
Cell Cell Type
[O,ij] [O,ij_l] <ij> {*PARSE} Underparsing
[0.1] IF ij=C [S,ij_l] o/ij {} S =00 Parsing
[O,ij] IF ij=C N,i; ] o/ij {} N =00 Parsing
[O,ij] IF ij=C D] o/ij {} D =00 Parsing
[0,i] [S,i] o/0 | {*FILLO™} S =00 Overparsing
[0,i] [Nij] o/d | {*FILLY™} N = 00 Overparsing
[0,i] [D,i] o/ | {*FiLLO™)} D = 00 Overparsing

The Operations Set relates to the DP Table as follows. The Operations Set gives all of the possible

operations that may fill a given cell in the Dynamic Programming Table. Each of the possible operations

"competes" to fill in the cell. The product of each operation is a partial structure consisting of (a) the

partial structure contained in the operation's previous cell with the operation's additional structure
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appended to it, and (b) the Harmony of the new partial structure, which consists of the list of marks in
the operation's previous cell with the marks incurred by the operation added to it. The operation
producing the most harmonic partial description (that is, the one whose resulting list of marks is least
offensive with respect to the constraint ranking of the grammar) actually gets to fill the cell. Told from
the point of view of the algorithm, examine each of the operations which can fill the current cell, select
the one which produces the most harmonic partial structure, and place that operation's partial structure
and list of marks into the current cell.

The cell [S,BOI] is the starting cell: no input has yet been examined, and no positions have been
generated. So, [S,BOI] has a Harmony value of no constraint violations in it. The other cells in the BOI
column may be filled from there by overparsing operations. The cells in the BOI column may only be
filled by overparsing operations, as there are no input segments for other operations to work with.

One crucial aspect has not yet been explained about the application of these operations. The parsing and
underparsing operations have a previous state cell from the previous column in the DP Table, ij~1'
However, the overparsing operations refer to other cells in the same column of the DP Table as the cell
being filled. How, in general, can these cells be filled, if the value for each cell in the column depends
upon the values in the other cells of the column? The answer involves some intricate details of the
algorithm, and is given in the next section.

Notice that, in the Operations Table, the Parsing operations contain IF conditions. These are used to
enforce constraints of the CV theory that consonants (C) may only fill onsets and codas, and vowels
(V) only nuclei. These restrictions are assumed to be part of GEN, and so are included here as IF

conditions.
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3.3 Limiting Structure: Position Grammar Cycles

The overparsing operations consume no input, and so they map between cells within a single column.
In principle, an unbounded number of such operations could apply, and in fact structures with arbitrary
numbers of unfilled positions are output by GEN (as formally defined). However, the algorithm need
only explicitly consider a finite number of overparsing operations within a column. The position
grammar has four non-terminals. Therefore, at most three overparsing operations can take place
consecutively without the repeating of a non-terminal. A set of consecutive overparsings that both begins
and ends with the same non-terminal can be considered a cycle. An example of a cycle of overparsings
is an entire epenthesized syllable. The FILL constraints serve to penalize overparsings by penalizing any
structural positions unfilled by input segments. One effect of these constraints is that cycles of
overparsing operations are effectively banned (that is, no optimal structure will contain a cycle).

This fact is not specific to the Basic Syllable Theory. For any theory within Optimality Theory, the
constraints must ban cycles of overparsings in order for the optimal value to be well-defined. If the
constraints make a description containing such a cycle more harmonic than a description differing only
by the removal of that cycle, then there is no optimal value, because one could always increase the
Harmony by adding more such cycles of overparsings. If such cycles have no Harmony consequences,
then there will be an infinite number of optimal descriptions, as any optimal description can have more
cycles of overparsings added to create a description with equal Harmony. Thus, for optimization with
respect to the constraints to be well-defined and reasonable, the constraints must strictly penalize
overparsing cycles. The number of non-terminals in the position grammar bounds the number of
consecutive overparsings that may occur without having a cycle.

Operations are properly applied to the Dynamic Programming Table by first filling in all cells of a
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column considering only underparsing and parsing operations (which only use values from the previous
column). Next, a pass is then made through the column cells, considering the overparsing operations:
if the resulting Harmony of an overparsing operation into a cell from another cell in the same column
is higher than the Harmony already listed in the cell, replace the Harmony in the cell with that resulting
from the considered overparsing operation. If at least one cell's entry was replaced by an overparsing
operation, then another pass is made through the column. This is repeated until a pass is made in which
no overparsing operations replace any cell values. Because the constraints guarantee that cycles are not
optimal, and there are four non-terminals, the maximum number of productive passes through the
column is three.

The ban on overparsing cycles is the crucial observation that allows the algorithm to complete the search
in a finite amount of time; although the space of structural descriptions to be searched is infinite, there
is a provably correct (input-dependent) bound on the space of descriptions that actually need to be
considered.

3.4 Selecting the Optimal Parse

Once the entire table has been completed, the optimal parse may be selected. In the position grammar,
certain non-terminals may evaluate to the empty string, This means that they can be the last non-terminal
in a derivation, and therefore that the syllable position to which each corresponds is a valid end of
syllable position. Therefore, the cells in the final column, in rows corresponding to these non-terminals,
contain valid complete parses of the input. For the Basic Syllable Theory, the non-terminals are N and
D, signifying that a syllable may end in a nucleus or a coda, and S, for the null parse. These three entries

are compared, and the entry with the highest Harmony is selected as the optimal parse of the input.
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3.5 Outline of the Parsing Algorithm

NOTE: OP(ij) stands for the result (structure and marks) of applying operation OP for column ij.

Set [S,BOI] to no structure and no violation marks

Fill each other cell in column BOI with the best overparsing operation that currently applies
Repeat until no cell entries change
For each row X in BOI
For each overparsing operation OP for X
If Harmony(OP(BOI)) > Harmony([X,BOI]), set [X,BOI] to OP(BOI)

For each column ij, proceeding from left to right
For each row X
Fill [X,i] with the result of the underparsing operation for X
For each parsing operation OP for X
If Harmony (OP(ij)) > Harmony([X,i.]), set [X,ij] to OP(ij)
Repeat until no cell entries change
For each row X
For each overparsing operation OP for X
If Harmony (OP(ij)) > Harmony([X,ij]), set [X,ij] to OP(ij)

Select from the final column the most Harmonic of the entries in rows S, N, and D
4. A Sample Parse
Table 3 shows the completed Dynamic Programming Table for the input /VC/, with the constraint

ranking ONS > NoCoDA >> FILLNY >> PARSE > FiLLO™,
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Table 3

The Completed Dynamic Programming Table for /\VC/.

BOI 1] — nVu 12 = HCH
S START under from:[S,BOI] | under from:[S,i;]
*PARSE *PARSE *PARSE
(V) (VC)
0 from:[S,BOI] || over from:[N,;;] | parse from:[N,i]
*FILLO"S *FrrOns *FILLO"s
VO v.e

N over from:[O,BOI] || parse from:[O,BOI] || under from:[N,i,]
*FILLOm #FpL N i Ons *FILLO™S *PARSE
0 LV OV.(C)

D over from:[N,BOI] | over from:[N,i;] | parse from:[N, 1]
*FILLO™ *FiLLN™ #*NoCoba | *FILLO™ *NoCopa *FILLO™ *NoCopA
IO Lva LVC.

Optimal PARSE: .[IV.(C) This parse is represented in cell [N,i,].

The top line of each cell contains on the left an indication of the type of operation that filled the cell, and
on the right (after the 'from:' label) the row and column designation of the previous cell (the already-
filled cell whose structure was added onto by the operation to fill the current cell). The abbreviations
indicate the kind of operation that filled the cell: 'over' for overparsing, 'under' for underparsing, and
'parse’ for parsing. The constraint violation marks assessed the partial description are given on the middle
line of each cell, and the bottom of each cell shows the partial description represented by that cell. The
cell containing the optimal parse is indicated manually, and the cells which constitute the steps in the
construction of the optimal parse are double-lined.

Parsing begins by filling the cells of the first column. The first cell, [S,BOI], is automatically filled with

no structure, which incurs no constraint violations. Next, the cell [O,BOI] is filled. For this, the
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Operations Set is consulted. The Operations Set lists seven operations that can fill a cell in the O row
(see Table 2). However, the underparsing and parsing operations do not apply here because they make
reference to entries in an earlier column, which does not exist here. Of the three overparsing operations,
two require entries in cells not yet filled: [N,BOI] and [D,BOI]. The remaining operation uses the entry
in [S,BOI] as the previous cell and adds an unfilled onset position. This structure is placed in the cell,
along with the incurred mark listed in the operation. Next, the cell [N,BOI] is filled. Of the nine
operations listed for a cell in the nucleus row, two may be considered here. The first is for previous cell

[S,BOI], and results in violations of ONS and FILLN", The second is for previous cell [O,BOI], and

Ons Ons

results in violations of FILLO™ and FILLN", Because ONs >> FILLO™, the result of the first operation has
lower Harmony than the result of the second; thus, the second operation gets to fill the cell. The cell
[D,BOI] is filled similarly. That completes the first pass through the column for the overparsing
operations. Next, a second pass is performed; now, for each cell, all of the overparsing operations may
be considered, because each cell in the column contains an entry. However, no further overparsing
operations change any of the cell entries, because none improve the Harmony of the entry, so the filling
of the first column is complete.

Now, column i; must be filled. The cells are first filled via the underparsing and parsing operations. We
will focus in detail on how cell [O,i;] gets filled. First, the one underparsing operation fills the cell; this
results in a structure which has an unfilled onset position, and in which the first input segment, i, =V,
is left unparsed. Next, the three parsing operations are considered. But none apply, because the input
segment is a V, and an onset position may only have a C parsed into it. The underparsing and parsing

operations for the rest of the column are now performed. The results of the steps up to this point are

shown in Table 4.
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Table 4

The DP Table with the Underparsing and Parsing Operations Completed for Column i;

BOI i =V i,=C
S || START under [S,BOI]
*PARSE
V)
O || over [S,BOI] | under [0,BOI]
*Frr O *FILLOM *PARSE
0 V)
N | over [O,BOI] | parse [0,BOI]
Py 008+ Nue *Fypp Ons
00 v
D | over [N,BOI] | under [N,BOI]
*FI;LO“S *FiL N *NoCopa *FI;LO“S *FrL.L.N" *NoCODA *PARSE
0. 0004V

Finally, we consider the overparsing operations. For [O,i;], there are three overparsing operations, each
of which appends an unfilled onset, and incurs the mark *FILL®™, The first adds an unfilled onset to the
structure in its previous cell, [S,i,], resulting in a partial structure with marks *PARSE and *FIr1.OM, The

015 and *FILLO™, The third has previous cell

second has previous cell [N,i], and results in marks *FILL
[D,i,], and results in the marks *FILLO%, *FILLNY, *NoCoDA, ¥PARSE, and *FILLO™, Of the three, the
second overparsing operation has the highest resulting Harmony: the highest-ranked constraint violated

O“S, while each of the other two violates a higher-ranked constraint.

by the second operation is FILL
Importantly, it also has higher Harmony than the entry already in cell [O,i, ], because FILLN" 3> Fir O™,
Therefore, the result of this overparsing operation replaces the earlier entry in the cell. Overparsing also

replaces the entry in [D,i;]. On the next pass through the column, no cell entries are replaced by further

overparsing operations, so the column is complete.
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Once all of the columns have been completed, the optimal parse may be selected. The final candidates
are the structures in the cells in the final column, and in rows S, N, and D. Only these rows are
considered because they correspond to the non-terminals that may evaluate to the empty string e in the
position grammar (the possible final non-terminals). The optimal parse is in cell [N,i,], as shown in
Table 3.

5. Discussion

5.1 Computational Complexity

Each column in the DP Table is processed in constant time for any fixed grammar: the number of cells
in each column is the number of non-terminals in the position grammar, and the number of passes
through the column is bounded from above by the number of non-terminals. There is one column for
each input segment (plus the BOI column). Therefore, the algorithm is linear in the size of the input.
5.2 Ties

One possibility not shown in the above example is for two different operations to tie for optimality when
attempting to fill a cell. To illustrate, there are two ways to derive an essentially identical partial
description: first insert and then delete, or first delete and then insert. In this case, the tie might be seen
as a kind of anomaly, having no significance to the ultimate phonetic realization. However, if more than
one truly different partial description for the same cell incurred identical marks, including all of them
in the cell permits all of the optimal descriptions to be recovered from the table, if that cell should
happen to figure in the set of descriptions ultimately found to be optimal.

5.3 Creating Parsers

For any given grammar with a regular position structure grammar, the Operations Set may be

constructed as follows. First, for any cell [X,ij] where X is a non-terminal (x is the corresponding
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syllabic position unless X is S), one allowable operation is to underparse the input segment. So, include
the underparsing operation that takes the structure in [X,ij_l] and adds an underparsed ij to it. For each
position grammar production with the non-terminal X on the right-hand side, two operations are
possible: the generated position x has the next input segment parsed into it, or it is left unfilled. So, for
each production Y=xX generating X, create two operations: a parsing operation which takes the
structure in [Y,ij_l] and appends a position x with iJ- parsed into it, and an overparsing operation which
takes the structure in [Y,ij] and appends an unfilled position x. Add to each operation any conditions
which restrict its application (such as the restriction of vowels to nucleus positions in the Basic Syllable
Theory). Finally, each operation must be supplied with marks indicating the constraint violations
incurred by its application.

5.4 Regular and Context-Free Position Grammars

The fact that the position grammar used in the formal description of the Basic CV Syllable Theory is
aregular grammar is very significant to guaranteeing the linear time efficiency of the parsing algorithm.
However, the approach underlying the algorithm presented here may be extended to Optimality
Theoretic grammars with context-free position grammars. The complexity will more likely be cubic in
the general case. This and other issues concerning parsing in Optimality Theory with both regular and
context-free position grammars, which cannot be discussed here for reasons of space, are discussed in
(Tesar 1994)2, and more extensively in (Tesar 1995).

5.5 Locality

A property of the Basic CV Syllable Theory important to the success of the algorithm is the "locality”
of the constraints. Each constraint may be evaluated on the basis of at most one input segment and two

consecutive syllable positions. What really matters here is that the constraint violations incurred by an
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operation can be determined solely on the basis of the operation itself. The information used by the
constraints in the Basic Syllable Theory include the piece of structure added and the very end of the
partial description being added on to (the last syllabic position generated). These restrictions on
constraints are sufficient conditions for the kind of algorithm given in this paper. Ongoing work which
cannot be discussed here investigates what actual restrictions on constraints are necessary.

An example of a constraint that would not be local in the context of the Basic Syllable Theory is a
constraint which requires that the number of syllables be at least two, as when a word must contain a
foot, and a foot must be binary at the level of syllables. That constraints referring to feet are not easily
computed using the formal description given in this paper should not be surprising, as there is no explicit
representation of feet in the structures. To properly handle such theories, a more complex set of position
structures will probably be required, perhaps a context-free space of structures in which foot nodes may
dominate one or more syllable nodes, and so forth. In that case, the binary foot constraint would be local
in the sense relevant to context-free position structures in Optimality Theory: the constraint could be
evaluated solely on the basis of a foot node and the syllable nodes immediately dominated by it.
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Notes

IStrictly speaking, Prince and Smolensky describe these restrictions by fixing the constraints Nuc,
*CoMPLEX, *M/V, and *P/C at the top of the hierarchy. This insures that they are unviolated in
optimal forms, so [ here treat them as part of GEN.

Many of the ideas presented here were carlier circulated as Tesar 1994. T. Mark Ellison has
independently developed some work (Ellison 1994) on computing optimal forms in Optimality
Theory that is similar in principle to part of this paper, although expressed in a different set of
formalisms. Among the additional ideas provided in this paper are independent characterizations of
the formal description of the grammar, the input, and the parser, as well as a method for creating a

parser from a description of the grammar which can parse any linguistic input.
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Appendix: The Rest of the Operations Set

Table 5
Information

New Condition Previous  Struc  Violations Production  Operation
Cell Cell Type
[S, 1] [S,is.,] () {*PARSE} Underparsing
[N, i, [N,i; ;] <ij> {*PARSE} Underparsing
[N,i] | IFi=V [S,i; 4] n/i; {*ONs} S =nN Parsing
[N,i.] |IF iJ-=V [O,ij_l] n/ij {} O =nN Parsing
[N, ij] IF ij=V [N,ij_]] n/ij {*ONs} N=nN Parsing
[N,i.] |IF ij=V [D,ij_l] n/ij {*ONs} D =nN Parsing
[N, i] [S,ii] /1| {*Ons *FiLtN: S = nN Overparsing
[N, i] [0,i] /| (RN 0O = nN Overparsing
[N, ij] [N.jj] /) | {*Ons *FILLN"} N = nN Overparsing
[N, i] [D)i;] | {*Ons *FiLLN*} D = nN Overparsing
[D,i] [Dii; 4] (ij} {*PARSE} Underparsing
[D, ij] IF ij=C [N,ij_ N d/ij {*NoCobpa} N=dD Parsing
[D, ié [N,ig 4/ {*NoCopa} N =dD Overparsing
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