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Abstract

A fundamental problem in automating object database storage reclamation is determining
when and how often to perform garbage collection. We show that the choice of collection rate
can have a significant impact on application performance and that the “best” rate depends
on the dynamic behavior of the application, tempered by the particular performance goals of
the user. We describe two semi-automatic, self-adaptive policies for controlling collection rate
that we have developed to address the problem. Using trace-driven simulations, we evaluate
the performance of the policies on a range of test databases. The evaluation demonstrates
that semi-automatic, self-adaptive policies are a practical means for flexibly controlling garbage
collection rate without sacrificing overall application performance.



1 Introduction

Automatic storage reclamation, or garbage collection (GC), is becoming recognized as an important
new feature for object database management systems (ODBMSs). A number of recent research pa-
pers have considered some of the important aspects of the correctness and performance of ODBMS
garbage collection [9, 13, 14, 20]. A recently proposed standard suggests using garbage collection
for at least some of the programmatic interfaces to an ODBMS [5]. Commercial ODBMSs are even
beginning to provide implementations of garbage collection (e.g., [10]).

In a previous paper [9] we presented a framework for investigating the issues surrounding parti-
tioned garbage collection of ODBMSs. Partitioned collection is an incremental technique based on
manipulating disjoint portions of a database [20] and is akin to generational collection in program-
ming language systems [19]. We categorized the issues into a number of policy areas that together
contribute to a complete garbage collection algorithm. We described our results in investigating
one policy area, partition selection, which is the selection of which partition of a database to collect
during a given garbage collection. We introduced a new partition selection policy, called UPDAT-
EDPOINTER, and showed that it performed better than all other existing policies and close to a
near-optimal, but unimplementable, selection policy over a wide range of database sizes and object
connectivities.

In this paper we investigate another critical policy area of partitioned garbage collection algo-
rithms, that of determining when and how often to perform garbage collection. We refer to this
policy area as the collection rate. Intuitively, we can understand how collection rate impacts both
I/0 performance and database size. If garbage collection occurs frequently, then the number of I/0
operations associated with reclamation will dominate the number of I/O operations associated with
the application, but very little garbage will exist in the database. Conversely, if collection occurs
infrequently, then the impact of reclamation on I/O performance will be small, but a significant
amount of garbage may accumulate in the database between collections, reducing storage efficiency
and possibly increasing access time. Thus, finding an appropriate collection rate is an exercise in
determining a time/space tradeoff between I/0O and storage overheads.

Figures 1 and 2 show the effect of varying the collection rate on the I/O performance and on the
total garbage collected in a test database. (Specific details of the test database, an instance of the

007 benchmark [4], are discussed in Section 4.3.) The figures highlight the time/space tradeoff
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of collection rate policies. For example, it is clear that choosing a collection rate of 50, measured in
pointer overwrites (i.e., modifications of pointers between objects) per collection, results in excessive
numbers of I/O operations, while choosing a collection rate of 800 pointer overwrites per collection
results in little garbage being collected. So the question remains, what is a reasonable rate for
collecting garbage?

Unfortunately, this question depends on a number of different parameters and, as a result,
is difficult to answer in general. Foremost, there is the issue of the relative importance of I/0
overhead versus memory overhead. This issue is best decided by the ODBMS user,® which is
tantamount to saying that the choice of a collection rate achieving the desired optimization is
necessarily application dependent. Thus, it is inappropriate for the ODBMS implementor to preset
a collection rate. On the other hand, in order for the ODBMS user to determine a suitable collection
rate, they would need to understand the performance of the application as a function of collection
rate by gathering data similar to those of figures 1 and 2. Of course, for any significant database,
such an exploration of application performance is costly in execution time and in human effort.
Moreover, the data would reflect just that single application, which may be in conflict with other
applications manipulating the same database.

A reasonable conclusion, therefore, is that a mechanism for controlling collection rate should be
both semi-automatic, in that the ODBMS, rather than the ODBMS implementor or the ODBMS
user, should set the rate, and self-adaptive, in that the collection rate can vary in response to
the dynamic behavior of the applications manipulating the database. The role of the ODBMS
implementor and user should be to provide the broad performance goals that implicitly guide the
control of the collection rate by the ODBMS itself.

In this paper we describe and evaluate two new ODBMS policies for determining appropriate
collection rates. The policies are given input from the ODBMS user about the relative importance
of I/0O or storage resources and are responsive to the dynamic behavior of database applications.
In particular, our policies allow the user to specify a target percentage of I/O operations to be
dedicated to garbage collection or a target percentage of garbage to be allowed to exist in the
database. For example, if the specified target I/O percentage is 5%, then the collector automatically

adjusts the collection rate to match the total number of garbage collection I/O operations to that

!By “user” we mean the database administrator, the application developer, or the application user.



percentage. As the mix of I/O operations changes, the collection rate adjusts to maintain the target
percentage.

We present a performance evaluation of our two new collection rate policies based on trace-
driven simulations of two, very different database applications. One is the application developed
by Yong, Naughton, and Yu [20] for the OO7 benchmark [4] and the other is based on the our
own augmented binary tree application [9]. Our results show that our semi-automatic collection
rate policies give excellent performance in all cases and often provide performance close to that of
the best fixed-rate policy. By “best”, we mean the fixed rate that corresponds exactly to the user-
specified constraint. Furthermore, our collection rate policies are simple to compute and require
virtually no additional memory. We also show that our results scale to databases of different sizes.

The paper has the following organization. Section 2 provides background material and describes
related work. Section 3 describes our new collection rate policies in more detail. Section 4 describes
our experimental methods used to evaluate these policies, and the test databases used in the

evaluation. Section 5 presents our results and Section 6 summarizes our findings.

2 Related Work

The related work in this area falls into three distinct categories: collection rate determination in
programming language garbage collection, other research in object database garbage collection,

and research in on-line database reclustering.

2.1 Programming Language GC Algorithms

Primary memory garbage collection algorithms also must determine the most appropriate collection
rate. One approach often taken by these algorithms is to collected “as needed”. For example, many
algorithms will invoke collection whenever the free-list (in non-copying algorithms), or current
semispace (in copying algorithms) is exhausted. This approach has the disadvantage that if little
garbage is reclaimed during a collection, then the next collection may occur very shortly thereafter,
after the little storage that was reclaimed is exhausted. Usually such policies include heuristics for

growing the heap if not enough storage is reclaimed by a collection [7, 19].



Another common approach to determining when to collect is to collect after a fixed amount
of storage has been allocated. For example, in some systems, collections will occur after every
megabyte of storage is allocated. These schemes avoid the potential thrashing behavior associated
with the “collect-as-needed” policies. Furthermore, they are motivated by the empirical observa-
tion that most allocated programming language objects become garbage very soon after they are
allocated [17, 21]. Some collector implementations allow the user to specify the fixed amount of
allocation (i.e., specify collection after every two megabytes of allocation) to tune the collection
rate to the behavior of the program [11].

There are many differences between programming language and object database garbage collec-
tion with respect to collection rate. One important objective of programming language collection
is to collect frequently enough that the program and its data fits well in the primary memory.
Thus, collections are usually triggered after at most a few megabytes of allocation. It is not clear
what the analog to this objective is in object database garbage collection. In addition, program-
ming language collectors are limited in what information they can use in making policy decisions.
In particular, whereas there is relatively low overhead in counting the number of pointer stores
performed in an object database, counting the stores in a programming language algorithm would

incur significant overhead.

2.2 Object Database Garbage Collection

There has been a significant amount of research in object database garbage collection, much of which
is quite recent [1, 2, 3,9, 16, 13, 14, 20]. Here, we discuss the research that most closely relates to our
current work. Both Butler [2] and Yong et al [20] show that existing programming language garbage
collection algorithms have inadequate performance when used in database systems. Yong et al. [20]
propose a technique called “partitioned garbage collection” for object databases that represents a
generalization of the programming language garbage collection technique called generation garbage
collection [15]. With partitioned garbage collection, a subset of the entire database is collected
incrementally and independently of the rest. Collection with their algorithm is triggered either
when free-space becomes unavailable or after a fixed amount of storage is allocated; these techniques

are both taken directly from programming language GC algorithms.



In previous work, we investigated the impact of the partition selection policy on the performance
of partitioned garbage collection in object databases [9]. In that work, we assumed that the
collection rate was set at a fixed value. This paper compliments our previous work by investigating
another, orthogonal garbage collection policy, that of determining the collection rate. In this work,
we build on the results of our previous work by using the most effective partition selection policy
previously discovered. We also extend the domain of our simulations in this work by including
results from the OO7 benchmark [4]. In this paper we again assume that a partitioned garbage
collection algorithm is used. For a detailed discussion of the implementation issues related to
partitioned garbage collection, we refer readers to our previous paper.

None of the previous work on object database garbage collection has investigated the issue of
collection rate specifically. Our work both quantifies the cost of poor collection rate choices and

proposes new policies for effectively controlling the collection rate.

2.3 On-line Reclustering Algorithms

There are a number of similarities between the process of on-line reclustering of objects for per-
formance reasons and that of garbage collection. In particular, they both have the effect that by
relocating objects they have the potential to improve the application performance. Similarly, they
both incur additional execution overhead that must be balanced against the performance benefits
they provide. Thus, controlling the rate of both on-line reclustering and garbage collection is very
important.

In recent work, Mclver and King investigate the performance of on-line reclustering in object
databases[18]. In their work, reclustering is triggered when a measure of reference locality (the
“external tension”), normalized to the number of disk accesses, exceeds a certain threshold and
when an cluster analysis module determines that reclustering should improve performance. Because
on-line reclustering does not attempt to reduce the size of the database, the overall goal of this
work was to reduce total application I/O operations. Our work differs from theirs because with
garbage collection, the added dimension of database growth due to uncollected garbage must be

considered.



3 Collection Rate Policies

Given that the goal of a garbage collection algorithm is to collect when we can reclaim the most
garbage, it is natural to consider what identifiable events occur that will indicate when garbage
has been created. A heuristic used in programming language GC algorithms is that new object
allocation and garbage creation are correlated, thus collecting after allocating a fixed number of
bytes is motivated. However, allocation and garbage creation are not always correlated. On the
other hand, we know that when pointers are overwritten, the objects in the database are “less
connected”. Overwriting the final pointer to an object or group of objects actually does create
garbage. Thus, we choose to use pointer-overwrite events to heuristically provide a signal that
garbage is being created in the database. We have used this metric in our previous work as well.
Having motivated our decision to use pointer overwrites as a basis for determining when to

collect, we now discuss alternative policies for controlling the collection rate.

3.1 Fixed Rate Policies

The collection rate policy that uses the least information is a policy that fixes the rate of collection
over all applications. For example, the GC algorithm implementor might decide that garbage
collection should be invoked after every 500 pointer overwrites in the database. The most important
question associated with this policy is how does one choose the fixed rate? Clearly any particular
choice will not be optimal for all applications. Furthermore, from figures 1 and 2 we can see
that selecting too high a rate can lead to many GC I/O operations. On the other hand, being too
conservative about the rate is likely to lead to large quantities of garbage in the database. Therefore,
any fixed-rate policy that ignores characteristics of the application or collector implementation is
likely to fail.

On the other hand, a clever fixed-rate policy could attempt to determine the collection rate
based on characteristics of the application, such as connectivity and object size, and characteristics
of the ODBMS, such as partition size. For example, we know that our OO7 application has an
approximate average connectivity of four (i.e., each object has 4 pointers pointing to it), and that
objects are 133 bytes on average. From this, we could infer that every four pointer overwrites
creates 133 bytes of garbage. Since our partitions are 96 kilobytes in size, then an obvious choice

for collection rate would be to collect every 2956 pointer overwrites (i.e., when a partion’s worth



of garbage has been created). Unfortunately, this simple heuristic also fails miserably. The 007
application mentioned actually creates garbage at a rate of 1 kilobyte per 6 pointer overwrites, or
five times more garbage than the simple calculation would predict.

There are two reasons such simple heuristics fail. First, some individual overwrites can detach
large connected structures from the rest of the database and the heuristic does not capture this
possibility. Second, a single overwrite may disconnect very large objects from the database, such
as 007 document nodes.

Another failing of fixed-rate policies is that they fail to adapt to changes in the database
behavior. The OO7 applications, for example, has two distinct reorganizations with very different
properties. As a result, any fixed-rate policy used in this application will fail to work effectively for
both reorganizations. Finally, even if a particular fixed rate is known to give specific performance
for a database of one size, there is no obvious way to scale the rate for larger database sizes (as we
show in Section 5). Thus, a particular fixed rate is not only application specific, but also database

size specific. Clearly fixed-rate policies are unacceptable.

3.2 Semi-Automatic, Self-Adaptive Rate Policies

The obvious alternative to a fixed-rate policy is a policy that adjusts the collection rate automat-
ically in an effort to achieve an optimal result. Unfortunately, because a time/space tradeoff is
involved, there is no global “optimum” to achieve. As a result, we have investigated two semi-
automatic policies that control collection rate based on user input. The first policy attempts to
limit the I/O operations associated with garbage collection and we call it the Semi-Automatic I/0
(SAIO) policy. The second policy attempts to limit the amount of garbage in the database, and we
call it the Semi-Automatic GArbage (SAGA) policy. In this section, we describe how these policies
work and how they should be implemented. Furthermore, both of these policies are self-adaptive,

that is, they adjust the collection rate dynamically as the database application behavior changes.

3.2.1 A Collection Rate Policy Based on I/O Percentage

With the SAIO policy, the database user indicates what fraction of application I/O operations
should be used to perform garbage collection. For example, if the user wanted garbage collection to

use approximately 10% of the total application I/O operations, the user would set the SAIO value



(called SAIO _Fraction below) to 10%. The policy we describe uses information about the current
number of GC and application I/O operations and the number of I/O operations expected during
the next garbage collection to determine when the next garbage collection should occur. Note that
since we are linking the collection rate to the number of pointer overwrites, in all the equations we
present, time is measured in pointer overwrites. This metric makes sense because if no pointers are
being overwritten, then by definition, no more garbage is being created.

First, consider the following definitions:

TotallO(t) = Total application I/O operations by time ¢
GCIO(t) = Total garbage collection I/O operations by time ¢
TargetGCIO(t) = Target GC I/O operations by time ¢
= TotallO(t) x SAIO Fraction
IODiff(t) = GCIO(t) — TargetGCIO(t)

CurrentGCIO = number of I/O operations caused by the current collection

Stated in these terms, the goal of the SAIO policy is to make GCIO(t) = TargetGCIO(t), or
IODiff (t) = 0. With the above definition, if IODiff (t) > 0, we have done too many GC I/O
operations, and if JODiff (t) < 0, we have done too few GC I/O operations.

Now consider that we have just completed a garbage collection at time ¢ that resulted in
CurrentGCIO I/0 operations. The goal of the SAIO policy is the determine at what time ¢ + At
to schedule the next garbage collection. As a simplifying assumption, we further estimate that the
next collection will result in the same number (CurrentGCIO) of I/O operations as the current

collection. Then the following relations hold:

GCIO(t + At)

GCIO(t) + CurrentGCIO

TargetGCIO(t + At) = TargetGCIO(t) + TargetGCIO'(t) x At
where TargetGCIO'(t) is the slope of the TargetGCIO(t) function. Recall that our goal is:
GCIO(t + At) = TargetGCIO(t + At)
Setting the two sides equal we get:

GCIO(t) + CurrentGCIO = TargetGCIO(t) + TargetGCIO'(t) x At



Another way to understand this last equation is the following. At some time in the future
(t + At), another collection will take place. At that time, we expect CurrentGCIO more GC I/0O
operations, and TargetGCIO'(t) * At more “target” GC I/O operations. The goal of the SAIO

policy is to find a At for which this relation holds. Simplifying and solving for Af, we get:

CurrentGCIO = (TargetGCIO(t) — GCIO(t)) + TargetGCIO'(t) x At
CurrentGCIO = TargetGCIO'(t) x At — IODiff (t)
At = (IODiff(t) + CurrentGCIO)/TargetGCIO'(t) (1)

To understand the impact of JODiff () on At, we see that if IODiff (t) > 0, then At increases,
meaning we decrease the rate of collection, and if JODff (t) < 0, then At decreases, meaning we
increase the rate of collection.

To implement this policy, the collector must be able to determine the total number of application
and collection I/ O operations that have been performed at each garbage collection (T'otallO(t) and
GCIO(t)) and the number of I/ O operations performed during the current collection (CurrentGCIO).
Fortunately, this information is already typically available. The implementation must also estimate
TargetGCIO'(t), which is equivalent to TotallIO'(t) x SAIO Fraction. Thus, the collector must
maintain some history information about the total application I/O operations performed to esti-
mate how many will be performed in the future. In the simulated implementation of this policy,
we estimate TotallO'(t) using a simple formula. Given a previous slope estimate, T'otallO'(t,e.),
a previous pair of data points ({pey, T'0tallO(ty,ey)), and a current set of points (¢, TotallO(t)),

we estimate:

TotalIO'(t) = Weight x TotallIO'(tpres)
+(1 — Weight)(TotalIO(t) — TotallO(tpres))/(t — tores)

where Weight is a controlling factor that buffers the policy from rapid changes in slope. We cur-
rently set Weight = 0.70. Also note that in practice, At can become very large, if TargetGCIO'(t)
approaches zero, or even negative, if JODiff (t) becomes too small. As a result, we place a minimum

and maximum on the value of At¢. For the minimum, we use At,,;, = 2 and for the maximum, we

10



use At,,qz = 1000. In Section 1, we have shown that a fixed collection rate of 50 results in many
collection I/O operations, while a collection rate of 800 results in large quantities of garbage. Using
a value of At,;;, = 2 guarantees an almost immediate collection, while a value of Af,,,, = 1000
guarantees that collection occurs often enough that the policy continues to be provided with data.
We find that our policy works well in practice and that At,,;, and At,,,, are rarely utilized by the

policies.

3.2.2 A Collection Rate Policy Based on Percentage of Garbage

With the SAGA policy, the database user indicates what fraction of the database should contain
garbage. For example, if the user wanted garbage to account for approximately 20% of the total
database size, the user would set the SAGA value (called SAGA_Fraction below) to 20%. Not
surprisingly, the policy is very similar to the SAIO policy and we present the most important

equations in this section. First, we give the definitions:

DatabaseSize(t

(t) = total database size by time ¢
TotalGarbage(t

(

(

total garbage generated by time ¢
TotalCollected(t
ActualGarbage(t

total garbage collected by time ¢

)
)
)
) actual database garbage by time ¢
TotalGarbage(t) — TotalCollected(t)
TargetGarbage(t) = target database garbage by time ¢
DatabaseSize(t) x SAGA_Fraction
GarbageDiff (t) = ActualGarbage(t) — TargetGarbage(t)

CurrentCollected = amount of garbage collected by the current collection

At time ¢, assume we have collected CurrentCollected garbage. Further, assume we will col-
lect the same amount of garbage at the next collection. Another assumption we make is that
the database size will not grow significantly between ¢ and ¢ + At. Thus, TargetGarbage(t) ~
TargetGarbage(t + At).

ActualGarbage(t + At) = TotalGarbage(t + At) — TotalCollected(t + At)
= TotalGarbage(t + At) — (TotalCollected(t) + CurrentCollected)

TotalGarbage(t + At) TotalGarbage(t) + TotalGarbage'(t) x At

11



ActualGarbage(t + At) TotalGarbage(t) + TotalGarbage'(t) x At

—(TotalCollected(t) + CurrentCollected)

= ActualGarbage(t) + (TotalGarbage'(t) * At) — CurrentCollected
With the assumption of insignificant database growth, our goal is:
ActualGarbage(t + At) = TargetGarbage(t + At) =~ TargetGarbage(t)
Simplifying and solving for At, we get:

TargetGarbage(t) = ActualGarbage(t)+ (TotalGarbage'(t) * At) — CurrentCollected
CurrentCollected = (ActualGarbage(t) — TargetGarbage(t))+ (TotalGarbage'(t) x At)

CurrentCollected = GarbageDiff (t) + (TotalGarbage'(t) x At)

At = (CurrentCollected — GarbageDiff (t))/TotalGarbage'(t) (2)

As with the SAIO policy, we place lower and upper bounds on At. We also approximate
TotalGarbage'(t) using the same formula used to approximate TotalIO'(t). The major difference
between the SAIO policy and the SAGA policy is that the information needed to compute formula
(2) is not available exactly. In particular, ActualGarabage(t) cannot be determined without scan-
ning the entire database. As a result, to implement the SAGA policy, heuristics must be employed
that estimate the current amount of garbage in the database. We have investigated three such
heuristics and also implemented in our simulator an garbage estimation heuristic that actually
does know how much garbage exists in the database. Our goal is to determine how effective our
heuristics are relative to the garbage estimation oracle. Below, we describe how the heuristics are
computed.

The SIMPLE heuristic is the easiest to compute and the most conservative. After a garbage
collection has been performed, it estimates the current amount of garbage in the database by
multiplying the garbage reclaimed from the current partition (the value CurrGarbage from the
equations above) by the number of partitions. CurrGarbage can be easily determined by noting
how much free space is available in the partition before and after it is collected.

The GLOBAL heuristic estimates garbage by relating the amount of garbage reclaimed to the

number of overwritten pointers into a partition. Recall that in previous work [9], we showed that
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using the number of overwritten pointers into a partition was an excellent heuristic for identifying
the partition with the most garbage. We extend that notion with this heuristic in the following
way. Each time the collection of a partition occurs, we record how many overwritten pointers into
that partition existed and we also record how much garbage was reclaimed when the partition was
collected. This relation gives us an estimate of the amount of garbage that exists per overwritten
pointer in the database. The GLOBAL heuristic computes the average garbage per overwritten
pointer as a single value that is recomputed each time a partition is collected. To estimate the
current amount of garbage in the database, we just multiply the current number of overwritten
pointers (maintained as a result of using the UPDATEDPOINTER partition selection policy) by the
global garbage per overwritten pointer value.

The LocCAL heuristic is a refinement of the global heuristic. With the LocAL heuristic, we
maintain the average garbage per overwritten pointer on a per-partition basis. The intuition is
that the relation between garbage and overwritten pointers may be dependent on the partition.
To compute the total garbage in the database, we sum over all the partitions the product of the
number of overwritten pointers into that partition times the average garbage per overwritten pointer
computed for that partition. In the cases where partitions have not yet been collected, and thus
do not have an individual collection history, we use the average as computed by GLOBAL instead.

The GARBAGEORACLE heuristic is an impractical-to-implement policy that actually knows how
much garbage currently exists in the database. We implement the GARBAGEORACLE heuristic in

our simulator and compare the performance of the other heuristics to it.

4 Evaluation Method

In this section, we describe the method we use to evaluate the collection rate policies presented
in the previous section. In particular, we describe the complete garbage collection algorithm into
which the collection rate policies are fit, discuss the simulation techniques used in comparing the

policies, and detail the test databases and applications used to drive the experiments.
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4.1 Complete Garbage Collection Algorithm

The collection rate policies form just a part of a complete garbage collection algorithm. The
partitioned collection algorithm used in our experiments is the same as the one described in our
previous paper [9], so we refer the reader to that paper for details. Here we give just a brief review
of the important aspects of that algorithm.

We use a copying garbage collector [6] in which objects are relocated as a result of collection.
This allows garbage collection to not only reclaim the space occupied by garbage but also to compact
the collected partition’s live objects for improved reference locality. Copying is done in a breadth-
first traversal from the partition’s roots. Copying is performed transitively from the roots until all
objects are reached. Pointers leaving the collected partition are not traversed.

In our work, we decouple the issue of when to grow the database from the issue of when to
collect. In particular, if an allocation is requested and there is insufficient free space anywhere in
the current set of partitions, a new partition is simply added. Lack of free space never causes a
garbage collection to occur, as is often done in programming language garbage collection.

We chose the I/0 buffer size to be the same as the size of the partitions, which varied depending
on the size of the simulation run. We did this because a buffer significantly smaller than a partition
may cause a garbage collector to perform an excessive number of I/O operations, while a much
larger buffer could overwhelm any improved reference locality that resulted from the collections. In
our experiments, the buffer sizes range from 12 8-kilobyte pages for the smaller database simulations
to 96 8-kilobyte pages for the largest database simulations.

In terms of selecting a partition from which to reclaim garbage, all the test databases use the

UPDATEDPOINTER policy, which we previously showed to be superior to other existing policies [9].

4.2 Simulation Environment

Our simulation system mimics the physical and logical structure of the database implementation
being measured. Traces of database application events (e.g., object creations, accesses, modifica-
tions) are used to drive the simulations; details appear in [8]. For the work described here, we use
traces derived from two sources: our own synthetic database, ABT, which we have used in previous

work, and the OO7 benchmark database [4]. Details of the test databases are provided below.
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One advantage of using trace-driven simulation is that we are able to evaluate and compare the
performance of impractical-to-implement heuristics like the SAGA GARBAGEORACLE policy. As a
result, we are able to determine how effective our heuristics are when compared to having perfect
knowledge. Another advantage of using trace-driven simulation based on a synthetic database is
that we are able to investigate the performance of the policies over a broad range of simulation
parameters, including the database connectivity, database size, object size, partition size, large-
object frequency, and the like. With this flexibility, we can establish a clear understanding of the
sensitivity of our policies to the values of these parameters. On the other hand, gathering and using
traces from a benchmark database, like 007, gives us confidence that our results extend beyond
this synthetic database alone.

The cost model used to evaluate the performance of the simulated algorithms is based on
tracking the number of page I/O operations over the life of the simulation. We model a single-
process application sharing a buffer with the ODBMS, which executes on the same processor. We
simulate the database’s I/O buffer and determine the number of disk I/O operations needed for
each read and write. To determine when disk I/O operations take place, we simulate a database
I/O buffer of a particular size (a parameter to the simulation), using an LRU policy for page
replacement and a write-back scheme for updating pages. More detailed cost models can be built
that would derive actual disk costs in terms of head seek, rotational delay, and transfer times, or
that might model network costs for a distributed or client/server database.

Whenever possible, we evaluate the performance of the policies based on multiple simulation
runs that differ only in the initial random number seed. In our results, we present the mean and
standard deviation of the values obtained. This includes a measure of the “average” amount of
garbage in the database. An important question with respect to this measure is how to compute
the average. If we sample the average at every event and compute starting from the first event,
then cold-start behavior will incorrectly be included. In particular, many samples where no garbage
exists at all will be recorded as the database is constructed. As a result, we compute average as
follows. We first compute an incorrect average including cold-start behavior, starting the averaging
at the time that garbage is first created (call it Ginyaiia). We then use Ginpaig to tell us when

to really start computing the average by identifying at what time the fraction of garbage in the
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database is 75% of Ginpeiig- We then compute the average amount of garbage in the database by

sampling from that time forward.

4.3 Test Databases

To gain an understanding of the performance characteristics of the collection rate policies under a
variety of conditions, we test them using two, quite different kinds of databases. They differ mainly
in their degrees of object connectivity and in the sorts of applications that are run against them.

The first test database, which we refer to as ABT (Augmented Binary Trees), consists of objects
structured as a forest of binary trees, where each binary tree is augmented with some number of
non-tree edges. The non-tree edges connect random nodes in the same tree and are created by a
random process, but we always keep the connectivity rather low (less than 1.2). The size of objects
in the database is randomly distributed around an average of 100 bytes. We do, however, include
a few large leaf objects that average 64 kilobytes each and comprise about 20% of the space of all
objects. We use synthetic, probabilistic models of application behavior to generate specific traces of
object creations, accesses, and modifications for use in experiments. The ratio of edge reads to edge
writes is not explicitly specified but rather arise from the probabilities. In our experiments, the
edge read/write ratio varies from about 15 to 20. Garbage is generated by randomly overwriting
tree edges from the binary trees. All, part, or none of the subtree that the overwritten tree edge
pointed to may become garbage, however, because of the presence of the non-tree edges. Further
details of ABT, its applications, and justifications for its usefulness are given elsewhere [9].

Figure 3 is a depiction of the structure of an ABT database as it appears at some point during
the execution of an example trace. The figure was generated automatically from that trace and
drawn using DOT [12].

The second test database is the OO7 benchmark, which was also used by Yong, Naughton, and
Yu in their work on garbage collection [20]. OO7 has been extensively described elsewhere [4]. For
our purposes, it is important to note that OO7 has a much higher connectivity than ABT and that
OOT applications, unlike ABT applications, operate in distinct phases of long object traversals
intersperses with significant database reorganizations. Figure 4 is a depiction of the structure of
an 007 database, also generated from an example trace and drawn using DOT. The figure shows

the thread of the top level tree hierarchy which leads to one composite part object (top-right part),
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Figure 4: Example of the OO7 Database Structure.
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with the rest of the figure showing the atomic parts and their connections, which are subordinate
to this composite part. These atomic parts are highly interconnected, with a average connectivity
of three in this case. The highlighted connections and their associated atomic part and connection
objects form an object cluster that can be detached from the rest of the graph by overwriting only

six pointers.

5 Results

In this section, we present results of measuring the collection rate policies we have described and
also the garbage estimation heuristics needed by the SAGA policy. We have several goals in this
section. First, we investigate the effectiveness of the semi-automatic policies in achieving the
parameter settings the user specified. Next, we investigate the overall performance of our collection
rate policies and compare them against fixed-rate policies in which the user was able to correctly
guess what fixed-rate value to use to achieve the desired performance. Finally, we show that our

collection rate policies work in databases of varying sizes.

5.1 Accuracy of the Semi-Automatic Collection Rate Policies

In Section 3, we describe two semi-automatic collectioned rate polices: SAIO, which attempts
to control the I/O operations required during garbage collection, and SAGA, which attempts to
control the amount of garbage in the database. In this section, we show how accurate these policies
were at achieving the parameter setting specified by the user. In particular, we investigate the
impact of the simplifying assumptions made and also the use of heuristics to estimate the garbage
in the database.

Figure 5 shows the accuracy of the SAIO heuristic in both the ABT and OO7 database ap-
plications. The figure shows the relation of the requested value of SAIO_Fraction to the actual
fraction of garbage collection I/O operations that resulted from using the heuristic. We see that
in the ABT application, the SAIO heuristic comes very close to the performance specified by the
database user. On the other hand, in the OOT application, the SAIO heuristic clearly undershoots
the user-specified value of SAIO _Fraction. To understand why the SAIO policy undershoots the

requested value, consider Figure 6. This figure shows the fraction of garbage collection I/O opera-
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tions performed as a function of time in the OO7 application with S ATO_Fraction set to 15%. The
data in the figure were recorded every time garbage collection was performed. The figure shows that
as time increases, the GC I/O percentage increases to the requested value, however it does so at
a relatively slow rate. Also, the OO7 application has two distinct reorganization phases separated
by traversals in which no pointer overwrites occur. As a result, the GC I/O percentage drops pre-
cipitously after approximately 60 collections, which occurs because there is a long period in which
only application I/O operations are generated. From the figure, we see that while the average GC
I/O percentage is well below the requested 15%, the policy achieves a GC I/O percentage very
close to the requested value and the low average is primarily caused by cold-start effects. Thus,
we conclude that the SAIO policy is very effective at achieving the requested GC I/O percentage
in both databases, assuming the application executes long enough and performs pointer overwrites
on a regular basis as it executes.

Figures 7 and 8 show the performance of the SAGA collection rate policy using the garbage
estimation heuristics described in Section 3. In these experiments, the requested garbage percent-
age was varied from 10% to 30%. First, we see that in both databases, the GARBAGEORACLE
heuristic (which knows exactly how much garbage is in the database) performs very well. Thus, the
simplifying assumptions we made are supported. Next, we see that the SIMPLE heuristic performs
well in the ABT database but poorly in the OO7 database. This result is explained by the pattern
of garbage creation in the two databases. In the ABT database, garbage is generated at ran-
dom throughout the database, while in the 007 database, during the first reorganization, garbage
is generated very locally. Thus, the SIMPLE heuristic significantly overestimates the amount of
garbage in the database (based on its assumption that all partitions contain as much garbage as
the partition currently being collected). In this case it collects too frequently, which results in the
actual garbage percentage being much less than the requested percentage. SIMPLE is the most
appropriate heuristic if a conservative garbage estimate is desired (thus allowing too little garbage
in the database is more acceptable than allowing too much), or if the database structure is known
to be relatively homogeneous (i.e., garbage is likely to be spread evenly throughout the database).

The GLOBAL and LOCAL garbage estimation heuristics appear to be the best estimators when
considering their performance in both databases. In the ABT database, these two heuristics tend

to underestimate the amount of garbage (leading to more garbage in the database then requested),
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whereas in the OO7 database these heuristics are close to optimal. While the two heuristics are
quite close to each other in accuracy, the GLOBAL heuristic performs slightly better than the
LocCAL heuristic overall, and is easier to implement as well. Our results show how difficult it is to
correctly estimate how much garbage there is in the database across diverse database structures
and application behaviors. The problem of very accurate garbage estimation heuristics that work
across different database types requires further investigation. In the remainder of our results, we
show the performance of the SAGA policy using the GLOBAL heuristic because it was the most

effective garbage estimation heuristic across both databases.

5.2 Effliciency of the SAIO and SAGA Policies

The results in this section attempt to show that the SAIO and SAGA collection rate polices result
in efficient application performance, as measured by total I/O operations performed and amount
of garbage reclaimed. To do this, we compare the performance of the policies against fixed-rate
policies, where the rate chosen exactly corresponds to the desired performance. All the results
in this section are based on averaging three simulation runs for each data point presented. In
figures 9 and 10 we show how the GC I/O percentage and garbage percentage vary as a function
of fixed collection rate in the two test databases. If these figures were available to the database
user, and the user desired a particular GC I/O percentage or garbage percentage, then that user
could choose the correct collection rate for that particular database. For example, if a user desired
a garbage percentage of 30% in the ABT database, then they would choose a collection rate of
approximately 130 pointer overwrites per collection.

In this section we compare the performance of our semi-automaticrate policies SAIO and SAGA,
against an oracle that estimates the exact fixed rate required to produce the desired behavior. We
call this policy the fized-rate oracle (FRO). Our goal is to show that the SAIO and SAGA policies
have performance that is very similar to FRO but require no such oracle knowledge.

Table 1 provides such a performance comparison. The table is broken into two parts, showing
results from the ABT and OOT databases. For each database, we show results for the SAIO policy
and the SAGA policy using the GLOBAL garbage estimation heuristic. For each of these policies,
we present results for a range of parameter settings (e.g., SAIO 2% corresponds to the SAIO policy

with a setting of 2% GC I/O operations). For each parameter setting, we also show the performance
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Rate Total GC Amount Amount of

Collection (Pointer I/O Ops I/O Ops as Collected Garbage
Rate Overwrites/Coll.) | (App+GC) | % of App I/O Ops | (KBytes) as % of DB

Policy Mean Mean Mean | Std Dev Mean Mean | Std Dev
ABT
FRO(IO 2%) 290 35500 2 - 3800 42 -
FRO(IO 5%) 170 34760 5 - 4800 37 -
FRO(IO 10%) 110 34770 10 - 5800 24 -
FRO(IO 15%) 75 36000 15 - 6700 22 -
SAIO 2% 407 36263 1.9 0.15 2643 48 1.0
SAIO 5% 187 34920 5.0 0.31 5000 39 3.0
SAIO 10% 111 35268 9.9 0.14 5664 31 4.4
SAIO 15% 80 35700 14.5 0.33 6374 23 3.0
FRO(GA 10%) 35 42000 40 - 6800 10 -
FRO(GA 20%) 70 36500 17 - 6100 20 -
FRO(GA 30%) 130 34550 7 - 5300 30 -
SAGA 10% 51 37040 22.5 2.13 6627 15 1.0
SAGA 20% 138 34625 8.2 1.91 5364 31 2.3
SAGA 30% 433 35951 1.9 0.38 2832 48 0.6
0oo7
FRO(IO 2%) 600 31100 2 - 1600 28 -
FRO(IO 5%) 275 31900 5 - 2300 18 -
FRO(IO 10%) 130 33000 10 - 2700 11 -
FRO(IO 15%) 90 34900 15 - 2900 8 -
SAIO 2% 685 31723 1.6 0.07 1015 31 0.0
SAIO 5% 414 31406 2.7 0.07 1471 28 0.0
SAIO 10% 212 31934 5.5 0.05 2054 22 0.0
SAIO 15% 134 33030 8.3 0.09 2275 20 0.0
FRO(GA 10%) 110 33800 12 - 2800 10 -
FRO(GA 20%) 300 31800 4 - 2200 20 -
FRO(GA 30%) 690 31300 2.5 - 1400 30 -
SAGA 10% 150 33202 9.2 0.13 2799 9 0.6
SAGA 20% 251 31307 5.2 0.13 2438 19 0.0
SAGA 30% 330 31342 3.7 0.07 2333 24 0.0
Table 1: Comparison of Semi-Automatic Collection Rate Policies and the Corresponding (estimated)

Fixed-Rate Values.
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of the FRO policy, where the rate was obtained by reading the rate corresponding to the parameter
from the previous figures. Thus, the FRO(IO 2%) row corresponds to and should be compared
with the SATIO 2% row.

The table shows several things. First, if we compare the fixed-rate policies in the ABT and
007 databases, we see that the correct fixed rate (from the second column) is highly application
dependent. For example, to achieve a 2% GC I/O rate in ABT, we must collect every 290 pointer
overwrites whereas in 007, we must collect every 600 pointer overwrites. Likewise, to achieve 10%
garbage in the ABT database, we need to collect every 35 pointer overwrites, whereas in the 007
database, we would only collect every 110 pointer overwrites.

Next, we see that the results from the figures in Section 5.1 are reproduced when multiple runs
are performed. Thus, in the ABT database, the SAIO heuristic is very accurate at estimating the
GC I/0 percentage requested (shown in the fourth column), and the SAIO average collection rates
(show in the second column) correspond very closely to the FRO collection rates a user would have
chosen. The total I/O performance of the SAIO policy is also very close to that of the FRO policy.
In the OOT case, the SAIO policy is not as accurate, as mentioned above, but the I/O performance
of the policy is always comparable or better than that of the FRO policy.

For the SAGA policy, we see that the policy overshoots the requested value in the ABT database
(from the second to last column) but is quite accurate or slightly undershoots the requested value
in the OOT database. Again, for the SAGA policy, the total I/O rates of the policy are typically
comparable or better than the corresponding FRO policy. Our conclusion from this table is that
chosing the best fixed-rate policy is database dependent, and our semi-automatic collection rate
policies are effective at determining a proper collection rate and result in overall performance that
is comparable to the best fixed-rate policy possible.

Finally, the small standard deviations in the table indicate that our results are consistent and

reproducible.

5.3 Scalability

In this section, we investigate how effective our collection rate policies are in databases of different
sizes. A major advantage of our semi-automatic policies becomes clear when the database size

grows. Even if figures 9 and 10 were available to a database user for a database of one size, what
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fixed rate should be chosen if the size of the database grows by a factor of ten? In this section,
we present results from the SAIO and SAGA policies in ABT? databases of different sizes and also
show one attempt at scaling the FRO values we discussed in the previous section. Except for the
smallest database, whose values are means of three runs, results in this section are computed from
one simulation run for each point shown.

Figures 11 and 12 show how the SAIO and SAGA policies scale to databases of larger sizes.
For these results, we scaled the partition size as the database grew, resulting in roughly the same
number of partitions in databases of all sizes. Figure 11 shows the SAIO policy with target GC
I/O percentage set at 10% across a range of database sizes up to 22 megabytes. We also show
the performance of an attempt to scale the “best” 10% I/O fixed-rate policy determined in the
previous section. In particular, we determined the collection rate to be 110 pointer overwrites per
collection. Our method for scaling the fixed rate with database size was to scale the fixed-rate by
the same factor that we scale the partition size. If the fixed rate is not scaled in this way, then the
results are uniformly worse. From the figure, we see that the SAIO policy always remains closest
to the requested percentage of garbage for all database sizes, while the scaled fixed rate wanders
both below and above the requested rate.

Figure 12 shows the SAGA policy with target GC I/O percentage set at 20% across a range of
database sizes up to 22 megabytes. We also show the performance of an attempt to scale the “best”
20% garbage fixed-rate policy determined in the previous section. The fixed-rate policy is again
scaled by the partition size for these results. In this case, we see that while the SAGA heuristic
deviates from the requested value at the smallest database size, its accuracy actually improves as
the database size is increased. At the same time, the scaled fixed-rate policy, which is the the FRO
estimate for the smallest database, worsens in performance as the database size increases. From
these figures, we conclude that our SAIO and SAGA policies are robust to changes in database

size, while attempts to scale fixed-rate policies do not work well.

2Scalability results for OOT are currently being collected and will appear in the final version of the paper.
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6 Summary

One very important aspect of garbage collection in object databases is determining how often to
collect. Collecting too often results in excessive garbage collection I/O overhead and collecting
too infrequently results in large amounts of garbage in the database. Furthermore, the proper
collection rate is a function of user preferences, database structure, application behavior, and
database size. As a result, ad hoc techniques to determine a fixed collection rate fail. Furthermore,
because application behavior can vary over time, no particular fixed collection rate may result in
the desired performance. Finally, no previous work has concentrated on the difficult problem of
setting the collection rate in object database garbage collection.

In this paper, we have proposed and evaluated two semi-automatic, self-adaptive collection rate
policies. These policies are guided by input from the database user about what level of performance
the user desires. In particular, the semi-automaticI/O (SAIO) policy attempts to achieve a specified
level of garbage collection I/O operations as a percentage of application I/O operations, and the
semi-automatic garbage (SAGA) policy attempts to achieve a specified percentage of garbage in
the database. These policies are self-adaptive in that they dynamically respond to changes in the
application behavior over time.

We evaluated our proposed policies in the context of two very different object databases: ABT,
an augmented binary tree database [9], and OO7, a more highly-connected benchmark object
database [4]. Both of these databases have been used in previous object database garbage collection
studies [9, 20]. Our results show that our SAIO policy is very effective at achieving the user-specified
GC I/0O percentage. Furthermore, the SAIO policy shows overall performance comparable to a
fixed-rate policy, where the rate is chosen by an oracle.

The SAGA policy is more difficult to implement accurately because it depends on correctly
estimating the current amount of garbage in the database. We investigated three heuristics for
garbage estimation and concluded that a heuristic based on a global estimation of garbage per
overwritten edge performs most accurately. We showed that the resulting SAGA policy is also quite
accurate in controlling the amount of garbage in the database with excellent overall performance.

Finally, we showed that both the SAIO and SAGA policies scale to larger databases, whereas

fixed collection rates obtained in smaller databases cannot easily be scaled to larger databases.
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