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PRACTICAL UPDATE CRITERIA FOR REDUCED HESSIAN SQP,
PART I: GLOBAL ANALYSIS

Y. F. XIE* AND R. H. BYRD?

Abstract. In this paper, a new update criterion is proposed to improve the Nocedal and
Overton update criterion for the reduced Hessian successive quadratic programming. Global and R-
linear convergence is proved for the new criterion and the Nocedal and Overton criterion using non-
orthogonal basis matrices, which allow efficient implementations of the reduced Hessian successive
quadratic programming for solving large scale equality constrained problems.
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1. Introduction. In this paper, we consider some critical issues in efficiently
solving nonlinearly constrained optimization problems by reduced Hessian successive
quadratic programming,.

Successive quadratic programming (SQP) algorithms have proven to be very efli-
cient for solving small and medium size equality constrained optimization problems,

min  f(x)
(1.1) st. c(z)y=0

where f : R® — R! and ¢ : R" — R! for positive integers n and t, with n > ¢
(see Han [8], Powell [14]). The reduced Hessian approach allows us to use SQP for a
significant class of very large problems, especially when implemented with generalized
basis matrices.

Given an approximate solution zj, SQP algorithms compute a search direction
dy. from the quadratic programming problem:

min ngd -+ %—dTMkd
st. c(zp)+Afd=0

where g = Vf(zr), Ar = Ve(zr) = (Ver(zg), -, Ver(zy)) and the matrix My
approximates to the Hessian Gy = V2, L(xg, Ay) of the Lagrangian function of (1.1),
L{xz,A), which has the form:

(1.2) ‘ Lz, ) = f(z) + A e(z),
where A is a Lagrangian multiplier. The Lagrangian multiplier is given by
(1.3) ' M =—(A)L g,
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where (Ak)E1 is a left inverse of Ay, giving an approximate solution to gx + AxA = 0.
Then a new approximation to the solution z* is given by

(1.4) Tp41 = Tk + apdy,

where some line search strategy is used to determine step length a; and ensure con-
vergence. (Alternatively, a trust region can be used instead of a line search, but
this paper will focus on the more widely used line search approach.) Although SQP
methods are of the best approaches for small and medium size problems, the appli-
cability of this approach for very large problems is limited because of the need to
store and manipulate a n x n matrix M}, which cannot be expected to be sparse if a
quasi-Newton update is used.

However, reduced Hessian SQP (RHSQP) algorithms, which use a matrix By
to approximate Z7 GZ; where Zj is a null space basis, can potentially be very
efficient for solving large scale constrained optimization problems (i.e. n is very large),
especially for the problems with small n — .

RHSQP algorithms have two advantages compared with the other SQP algo-
rithms.
e It is reasonable to use the quasi-Newton secant methods to approximate the
reduced Hessian matrix Z,?Gka because this matrix is positive definite if
), is close to the solution of (1.1) and the second-order sufficient optimality
condition holds at the solution.
o It is more efficient to store a (n —t) x (n —t) matrix By than to store an x n
matrix M. Thus for a given n, a larger ¢ requires less space for storing By.
This is an important advantage for solving large scale problems.

To update the matrix By by means of the quasi-Newton methods has been an
interesting issue and many update strategies have been proposed, for examples, [2], [3],
[6], [7], [10] and [11]. Among these update strategies, there are two typical strategies
and others are slight variations of these two. One uses the exact null space information
[3] and one uses a full step information [11]. We call them the null space secant update
strategy and the step secant update strategy, respectively.

To ensure the accuracy of the step secant update strategy, Nocedal and Overton
suggest an update criterion [11], under which By is updated. In order to improve
the numerical performance of the step secant update strategy using the Nocedal and
Overton criterion, a new update criterion is proposed in this paper.

For the methods using these two update strategies, several convergence results
have been established. For the RHSQP algorithms using the null space secant up-
date strategy, Coleman and Conn [3] have proved 2-step Q-superlinear convergence
_assuming z; and B are sufficiently close to z* and ZZ V2 L(z*, \*)Z., respectively,
and Byrd and Nocedal [2] have shown its global convergence, R-linear and 2-step
Q-superlinear convergence with the I; and Fletcher merit functions. For the step se-
cant update strategy with the Nocedal and Overton update criterion (2.12), Nocedal
and Overton [11] established local 2-step Q-superlinear convergence for z; and B
sufficiently close to z* and ZI'VZ_ L(z*, \*)Z,, respectively, however no global and

R:linear convergence is proved. All of these analyses assume Z; is an orthonormal
basis of null(AT). '
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A general basis Z; of null(A;) has been used by Fletcher [5], Gabay [6], and
Gilbert [7]. Fletcher has discussed his Successive Linear Programming algorithm us-
ing any basis of null(Ax). Gabay and Gilbert use general bases to discuss RHSQP.
Gabay’s update strategy is equivalent to the step secant update strategy but he used
Powell’s damped technique to inherit the positive definiteness. It is difficult to prove
superlinear convergence without assuming {By} and {B; '} are bounded for the Pow-
ell damped technique. Although Gilbert [7], however, has discussed general Zj in his
global analysis, his longitudinal path strategy may cost more gradient evaluations.

Because of the complexity of the analysis, superlinear convergence will be dis-
cussed in a second paper subsequent to this one. This paper is devoted to propose a
new update criterion and to prove the global and R-linear convergence for the step
secant update strategy with two commonly used merit functions. All of these results
are proved without requiring orthogonality of the basis matrix Z; and without assum-
ing {Bx} and {B; '} are bounded. In the next section, the new update criterion used
in the step secant update strategy is introduced, and the general RHSQP algorithms,
and the merit functions used to force global convergence are described. The global
convergence analysis will be in section 3. The R-linear convergence will be established
in Section 4. The numerical experiments are presented in Section 5.

In the rest of the paper, the following notations are used for simplicity

S1o= { j | Bixa =BT (B, s5,y5) )}

S = { j I Biw1=B }

SE o= [1,2,---, kNS,

S5 = [1,2,- kNS
where

B:s;sTB; y-yT

1.5 BBFGS B'JS',y' - B. — J°1°F FI 1y ’
(1.5) (Bj,si,4i) = Bj S}rBij STy,
the BFGS update. Furthermore, || - || stands for the I3 norm, || - []; for the /; norm
and || - |les for the infinity norm.

2. A New Update Criterion and General RHSQP with Merit Func-
tions. The reduced Hessian technique can be derived using general basis matrices
and their pseudo-inverses from the SQP methods. Suppose Z; is any basis matrix of
the null space of A] (i.e. ATZ; = 0 and Zj is full rank), (Z));" and (Az)7" are left
inverse matrices of 7 and Ay, respectively and satisfy

(2.1) (Ac(Ze)r” = (2 (AT =0.
Then, we have v
CEIN ( <Z§%51 ) (% (AL =(Z (A7) ( 2 ) 1,

and G can be written as the following,

Gr = ((Z)L" Ak)< (Ai;i;l )Gk(Zk (Ak)ZT>( (Z,Z%’El )

3 _ ARV 2L Gr(AnTT (Zr)p*
- (@ Ak)((Akliz?]&kzk (Aﬁzle(Air’)zT)( AL )
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As is well-known, the reduced Hessian approach is to neglect the cross terms i.e.,

—1
o= 5 3 ) ()
= (21" (ZEGe ) (Z0) = M.

It chooses such matrix My, in the SQP method and uses By, a (n—1t) x (n —t) matrix,
to approximate (ZI G Z). Thus, RHSQP algorithms generate a search direction dy,
at z; by solving:

min  gfd+ 3d7(Z:);" Be(Zy)1td
sit. c(zp)+ATd=0

Note that (2.1) implies that (1.3) is also a Lagrangian multiplier of the above quadratic
programming. The solution d, may be expressed as

(2.3) di = hy, + vk,
where

(2.4) hy = —Z, By 2 i
and

(2.5) | vp = —(Ak); T e().

There are two widely used instantiations of the generalized inverses. One is based on
a QR factorization and widely used in discussions of RHSQP methods, for example,
[11]. In this instantiation, the inverse matrices are given using—Nocedal and Overton’s
notation,

(2. it = (Y ) @r=

where Y, and 7, are orthonormal matrices derived from a QR factorization of Ay,

2.7) A = (Y 'zk)( 1o )

The other instantiation, which is rather interesting for large scale problems, is based
on a LU decomposition of Ay. Suppose AT = (Ap Ay), where Ap is non-singular.
This instantiation chooses

(Ae)' = (45" 0)
—A7PA
= ()
(Z);' = (0 )

where a LU decomposition of Ap is necessary for its inverse, which may take an
advantage of the sparsity of Ay for a large scale problem. For some very large scale
problems where LU is not applicable, iterative methods could be used to invert Ap
and its transpose. The generalized basis matrices give the RHSQP methods a great
flexibility in dealing with large scale problems.
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The matrix By is to be updated using gradient difference information. Two ways
of obtaining this information have been proposed. Consider the gradient difference of
the Lagrangian function V,L(z,Ar) — V,L(2x, A;). Its projection on the null space
using a given basis matrix Z; can be approximated by

(2.8) ZE (Vo Lz, At) — Vo L(zk, A))
~ ZLGH(Zy (Ap)DT) ( (ZQ%L ) (z — 1)
= Z{GvZp(Z); (2 — wa) + 24 Gh(An) LT AT (2 — aa).

To apply a quasi-Newton method such that By ~ ZZG;CZ;C, it is ideal to choose z
such that the second term of the last equation in (2.8) disappears. By using zj1,
one would choose the component of 2541 — 2 along the null space of A3 from zy, i.e.,
T = + arhy and

(2.9) Vi = ZLViL(zk+ arhy, \p) — VaL(zk, \x)
(2.10) si = (Zo)p onhe = (Zo)p (@r41 — 21)

and then the quasi-Newton equation yr = Bpyise =~ ZgGkask is satisfied. We
call this first update strategy the null space secant update strategy because it uses -
the exact reduced Hessian information along the null space of A;. The drawback of
this strategy is that it imposes a significant extra cost to evaluate y; when gradient
evaluations of f and ¢ are expensive.

The step secant update strategy of the second update category, uses
(2.11) vk = Z¢ (VoL(zht1, M) = VoL (zr, i)

to update Bpy1 and saves the extra computation of the gradients of the Lagrangian.
However such y; may not provide accurate information on the derivatives of L(z, A)

along the null space of the constraints because of presence of the second term in (2.8).
Thus, updates of By41 must be skipped at some iterations where the second terms are
large. If we replace @ by 241 in (2.8), the second term becomestgGkvk. Because
By41 is expected to approximate Z7 V2, L(zk, Ak)Zy, the update could in fact result
in great loss in accuracy of By if the vertical component vy is not small when By

is updated. Nocedal and Overton [11] proposed a criterion which is simply referred
as the Nocedal and Overton update criterion and under which By, is updated if and

only if '

(2.12) [lugl]2 < ( hll2,

S/

k+ 1)t+e
where 7 and ¢ are positive constants; otherwise Bjyi1 = By. Actually, they use ||sg]|
instead of ||ht|| in their criterion and under their orthogonality assumption of Zj,
Iskl] = [}Az]]. It can be seen that the larger the k is, the more accurate information
of the reduced Hessian (2.12) can be provided to Bgti when Bpyi is updated. In
Section 4, we show a set of similar criteria with milder conditions on update steps.
To globalize the algorithm, sTy;, > 0 has to be tested in order to inherit the positive
definiteness from By.

In this section, a new update criterion is introduced, which is designed in a such
way to improve the numerical performance of the Nocedal and Overton update crite-
rion, and general RHSQP algorithms are described with two merit functions.



Numerical experiments of the step secant update strategy show the Nocedal and
Overton update criterion often skips the updates in a large proportion of the cases. It
appears to be that the criterion (2.12), which depends on the iteration number, is too
strong, forcing updates to be skipped and sometimes slowing down the convergence.
The criterion (2.12) may be relaxed by allowing updates whenever the horizontal
component ||Ax|| is not small comparing to the vertical component [|vg||. A new update
criterion is thus proposed, which not only allows more updates but also automatically
guarantees the positive definiteness of {By}.

Positive Curvature Criterion: For constants, {1 > (, > 0, the update criterion
requires :

(2.13) sty > Gllagvr])?, Vke S
(2.14) stye < Collaguil?, VEESs.

If {» < (1, these conditions leave an intermediate case where neither equation is
satisfled, giving the algorithm flexibility in deciding whether to update. This new cri-
terion is referred to as the “positive curvature update criterion” for simplicity because
(2.13) implies that the Lagrangian has a significantly positive curvature, which makes
Byy1 automatically inherit the positive definiteness from By. Lemma 4.7 proved
later shows that this criterion satisfies ||vg|| < vs||/hr|| whenever Byy; is updated, and
[|he]] < 7vs||vx|| whenever an update is skipped, where 5 > 0 is a constant. Intu-
itively, it allows more updates than the Nocedal and Overton update criterion and
our numerical experiments in Section b support this. Its numerical performance is
so good that the step secant update strategy with the positive curvature criterion is
very competitive to the null space secant update strategy.

Because the global and R-linear convergence of the null space secant update strat-
egy has been proved by Byrd and Nocedal [2], we consider the step secant update
strategy only in this paper. In the following description of the algorithm, ¢(z) stands
for the merit function and De(z; d) denotes the directional derivative of ¢ along d at
z.

Algorithm 2.1.
The constants 1 € (0, %) and 7, T with 0 < 7 < 7 < 1 are given.
Let ©1 and By be an indtial point and initial positive definite matriz.
1. Compute dy, = hy, + vy by solving (2.4) and (2.5).
2. Adjust the merit function ¢ according to xp if it ts necessary.
3. Set ap, = 1 and check the line search condition, ’

ol + ardy) < () + axnDp(ar; di).

If it is violated, choose a new ap € [ray,T'ai] and check it
again.

4. Set zpy1 =z + apdi.

5. Compute si by (2.10) and yy by (2.11). Update Byyy by

5 B BBFGS(Bk,Sk,yk>, if a criterion holds
FLZ B ~ otherwise

6. If a stopping condition is not satisfied, set k = k+ 1 and go to
step 1; otherwise, stop. O
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In analyzing this algorithm, we do not use a stopping condition, in order to study the
entire sequence. In our numerical tests, we use a stopping condition, || ZF gi || +||ck|| <
€ where € > 0 is a given constant.

There are two widely used merit functions, the /; and Fletchei merit functions.
Han [8] first introduced the /; merit function as

¢u(z) = f(z) + plle(2)lls,

where p is called a penalty parameter. The {; merit function is very successful in global
analysis. However its penalty term is nondifferentiable and this non-differentiability
may affect the speed of the convergence (the Maratos effect). However, a directional
derivative exists and as shown in [2],

(2.15) Déu(wr;di) < gi hy — (s = A& [Dllex ]l

using the fact that gF vy = —ATc;. The Fletcher merit function [4] is a differentiable
merit function:

2,(2) = (&) + X&) (@) + 5ule(@)}

where A(z) is a Lagrange multiplier estimate at 2 and has a form of (1.3) and v the
penalty parameter. Note that at z, the directional derivative is

Vo, (2x) dp = gF hi + gF v + X AT dy + TV @)y + vel AT dy.
From (1.3) and (2.5), AT dy, = —cp and g7 vy = —g7 (Ax); T ex = —AT ¢, Thus

(2.16) Vo, (z:) dy, = g¥ hy + cE VA (2r)dy, — chck.

With these merit functions, we can explicitly define the step 2 of Algorithm 2., 1.e.,
how to choose the penalty parameters, p and v. In our global and R-linear convergence
analysis, it is assumed that the penalty parameters, uj; and vy are monotonically
increased. The following adjusting procedure of these penalty parameters is simply
called step 2’ of Algorithm 2.1: for the {; merit function, the penalty parameter g
is chosen by

_ L el +20 i g < [[Aklleo + 4
(2.17) He41 = { L otherwise,

and for the Fletcher merit function, the penalty parameter vy is chosen by

(2.18) I/k+1:{ Uy + 2p if vy <vp+p

Vi otherwise

where v, is defined by

dfvA LgTh
(2.19) — (xﬁ)cilc‘j- 295 "k
Ck

where p > 0 is a constant. It is shown that in [2] that 7 is bounded above by
"
0 (M—) and thus {7} is bounded if {||By!||} is. Although we cannot bound

T
53 Brsk
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{IIB M|} prior to our global convergence analysis, this fact indicates that boundedness
of {Dx} is at least a reasonable assumption. If (2.18) is imposed, it follows easily from
(2.16) that, as shown in [2],

1
(2.20) Yy, (2x)" die < — 507 i — plle .

Since by (2.15) and (2.20), dj is a descent direction for either merit functions, it follows
that step 3 of Algorithm 2.1 will terminate in a finite number of iterations. There
are also some non-monotonically increasing strategies which are widely used, e.g.,
te+1 = ||Ak]] + 2p. Although non-monotonically increasing procedures numerically
perform better than the monotonically increasing strategies in many numerical tests,
there is no global and R-linear analysis established.

3. Global Convergence. The global convergence of the RHSQP algorithms
using the step secant update strategy is based upon the following assumptions.
AssuMPTION 3.1. [t is assumed that
1. f: R* — R and ¢ : R* — R' and their first- and second-order derivatives
are uniformly bounded in a closed set D C R™, which contains {zy}.
2. The matriz A(x) is full rank for all z € D and there are constants y4 > 0
and vz > 0 such that

A=) <7 [A@)Z ] < 7a
2@l <7 1Z(2)2 ] < 72
Ax)"Z(x) = 0 - (@) A=) =0

3. For a given p or v, éu(z) and ®,(z) are bounded below.

We also assume that there are m > 0 and M > 0 such that

T
St YUk
3.1 k > m
( ) . S{Sk -
T
(3.2) YeBe < m
51 Yk

for the global analysis. For unconstrained problems, a proper line search strategy and

the convexity of the objective function imply (3.1) and (3.2) [13]. However, it requires

strong conditions for constrained problems. The following lemma shows that the uni-

formly positive definiteness of the reduced Hessian along the null space of A(z)T,

- which is true locally around the solution z* where the second order optimality condi-
tion holds, implies (3.1) and (3.2) for constrained problem if the step secant update
strategy is used with an update criterion which satisfies (2.13) at all update steps or
in such a way that Hka/Hhk[l is sufficiently small at all update steps. Obviously, the
positive curvature criterion is one of such criteria and so is the Nocedal and Overton
update criterion.

LEMMA 3.1.. Suppose an RHSQP algorithm uses the step secant update strateqy
in a such way that (2.13) is satisfied or ||vg||/||hx|] is sufficiently small for k € Sy large
enough. Let D be a closed convex set containing {xk},‘f:Ko for some Ky. Assume:

1. the second order sufficient conditions hold on D,

mol|ul|? < uT V2, Lz, A\p)u Vue R*: ATu=0

for all x € D, any wnteger k > Ky, and some constant mg > 0;



2. for some constant My > 0 and any z € D and k > K,,

Then there are constants m > 0 and M > 0 such that (3.1) and (3.2) hold whenever
Bryy is updated with k > K.
Proof. First consider a criterion satisfying (2.13). Consider two cases.

Case 1. 2vz Mo|lagvr|| < mol|sk]]:

By (2.10) and the Taylor expansion of y; and the inequalities || Zgsi|| < vz||sk]|

and ||sk|| = 1(Zk)1 " Zkskll < vzl Zksx||, the hypothesis of this lemma implies
sTy, = sTZIV2 L(xg + Edy, M) (aphy + akvk)
= 8%Z{V2xL($k + &dy, )\k)ZkSk + s Zk Viz (mk + &dy, )\k)(akvk)
> mol|Zgsell* ~ Mol| Zese|ljazvr ] > ——||8k||2

Since aphr = Zpsg, then we have

T . :
Y, Uk
s,%yk = (128 Vi L(zk + Edr, M) (Zisk + cwvr) |/ (shve)
+llawul)? _ g ME mg 1\’
< M 2(7Z||5k|| < 9lz0 .
= (72 0)‘ mg HS ”2 > mo Yz + vz Mo

Case 2. 2yz Mo|logve || > mo|skl:

As the criterion satisfies (2.13),

2
T 2 mo 2
Sp Uk > apvel|” > [ ] skl
Tu 2 Gllwnl? 2 6 || lal

and
ViV ~(7ZMO)2(72”5’““+Ha’”’"“)2
Ty, = Culloeve [|?
2 2
< (vz Mo) (27ZM0+1>
G mo

Therefore, there exist m > 0and M > 0 such that (3.1) and (3.2) hold. For the
criterion that ||vg||/||hx|| is sufficiently small, the analysis is identical to Case 1 above.
0

By imposing (3.1) and (3.2), the global convergence is proved in the following.
Let us define two quantities. for simplicity,

S%Bksk S{Bksk
and G = 2.

cosé;c =t =
sk ll | Be skl sk sk

For these quantities, the following theorem holds if Assumption 3.1 is satisfied.
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THEOREM 3.2.  Let {By}res, be generated by the BFGS method. Suppose (3.1)
and (8.2) hold for any s # 0. Then for any p € (0,1], there exist constants f; > 0,
Ba > 0, and f3 > 0 such that for any k, the relations

cos 0; >06; > 0
0<B:<q < , B3
[| B;sil| B3
< 3
T

hold for at least [p|SE|] values of i € S¥. In other words, the index set Jy, in which
for any i the above three inequalities hold has at least [p|ST|] elements, i.e. |Jy| >

[pISEN.

Theorem 3.2 can be proved by applying the analysis of Theorem 3.1 of Byrd and
Nocedal [1] to S¥ and the proof is omitted. The following two theorems are about
the behaviors of the two merit functions, the Iy and Fletcher merit functions.

THEOREM 3.3. Suppose {1} is generated by an RHSQP algorithm using the [
merit function with its penalty parameter chosen so that

INA

(3.3) te = [ Akllos +
for all k, where p is a positive constant. Then for all k,
1 .
(3.4) Dy (wr;di) < —:Y;HZ;?gklthkllCOS O — pllck ]l
In addition, for given constants, fy > 0, B2 > 0, and B3 > 0, there is a constant
¥ > 0 such that if the conditions

(3.5) cos O > f1 > 0
(3.6) 0<f2 < qr < fs,

hold for some k, the direction derivative at z salisfies,
(3.7) Dy (x5 dir) < =70 127 g5l1* + llex|11]-

Moreover, for any value p, there is a positive constant vy, such that if py = p satisfies

(3.3) and if (3.5) and (3.6) hold, then

(3.8) G (@) = b (@rg1) 2 VulllZF gell” + |leell].

Proof. The proof of this theorem is similar to that for Lemma 3.3 in [2] but it
handles more general basis Z(x) satisfying Assumption 3:1. The main difference is in
(3.4) and we prove it as follows.

By the definition of ¢, ,
Doy (zride) = gi di — pelcills
as shown in [2]. Since v{ g;, == cT At (2.3) and (2.4) implies

Dy (xride) < gihi — (e = Pelloo)lleills < =gk Ze By Zid gi = pllexlls

= —cosOkl| By " Z¢ gell| ZF gxl) = pllcells.
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By (2.4) and Assumption 3.1.2, [|h{| < vz||B; " ZF gx|| and then (3.4) holds. The
remaining of this theorem can be proved using the same analysis as [2] and considering
the factor vz. O

A corresponding result can be proved for the Fletcher merit function.
THEOREM 3.4.  Suppose {z;} are generated by an RHSQP algorithm using the
Fletcher merit function with the penalty parameter chosen so that

(3.9) " > d{V/\(zk)ck + —%—g,{hk
- llex||?

for k> 0 and some positive constant p> 0. Then for all k > 0,

+p=vp+p

(3.10) D&y, (23 ds) < =12 gillball cos b — pllci .
Yz

In addition, for given constants, §1 >0, B2 > 0, and B3 > 0, there is a constant 4 > 0
such that if the conditions (3.5) and (3.6) hold for some k, the direction derivative at
zy, satisfies,

(3.11) D&y, (wr;di) < —vp 127 gil* + llex]|].

Moreover, for any value v, there is a positive constant v, such that if vy = v satisfies

(8.9) and if (3.5) and (3.6) hold, then

(3.12) Dy (21) — o, (Tg1) > (|2 gill? + [l

Proof. The proof is analogous to the previous analysis by considering the general
basis matrices and using the directional derivative

V(I’,,k(itk)Tdk = gghk + d:{v}\;cck -+ Vk”?lc”2~

Based on the above two theorems about the two merit functions, the global con-
vergence of RHSQP algorithms using the step secant update strategy is proved.

THEOREM 3.5.  Suppose {z1} is generated by an RHSQP algorithm using the
step secant update strategy with any update criteria and using the 1y and Fletcher
meril functions with step 2 in Algorithm 2.1 replaced by step 2'. Suppose Assumption
3.1 and (3.1) and (8.2) are satisfied for all k sufficiently large. For the Fletcher merit
function, vy is assumed to be bounded above. Then

Jim inf {1127 g4+ [lll} = .

Praof. If the {; merit function is used, it follows that uj = p for some constant
p > 0 and for sufficiently large k because py, is chosen by (2.17) and ||A(z)]| is bounded
above. Similarly, if the Fletcher merit function is used, vy = v for some constant v
and for k sufficiently large because 7y is assumed bounded above. Without loss of
generality, we assume for any k, y; = p and v, = v.

Suppose [S1| = co. Since (3.1) and (3.2) hold for large k, by Theorem 3.2, there
are constants 51, B2, fs, and an index set J; with |Ji| > p Sfl for a given constant
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p > 0 and any k such that for any j € Ji, (3.5) and (3.6) hold. Theorem 3.3 and 3.4
imply,

$ulwo) — duler) > v D127 g5l +lles )
JeJk

O, (z0) = uar) > v Y27 gl +lleil)?]
jEJx

as both {¢,(zx)} and {®,(zx)} are decreasing sequences. Then

SOUIZF gl +lleslh] < o) — mingu(z) < oo
JEJk
S Gl +llesl] < @u(eo) — min®, () < 00
j€dx

since the merit functions are bounded below for fixed penalty parameters by Assump-
tion 3.1. Because [Ji| > p|SF| — oo as k — oo,

. T 2 —
je}fgoo 12; g;11° + llejlli =0
. T _ 12 12 —

S I =

In general,

je}injoo[HngjH + el =0

by the equivalence of the [; and I3 norms.

If |S1] is finite, there is a K; large enough so that for any k¥ > Ky, By = Bk,
and thus for all £ > K1, (3.5) and (3.6) hold for some constants 8; > 0, 82 > 0, and
Ps > 0. Similarly by Theorem 3.3 and 3.4, we know that there are constants v, > 0
and 7, > 0 such that for any k > K, '

-k

bu(er) = du(er) > v > 1127 017 + lleslh]
i=K .
k
O (er,) = @ular) = v 1127 0il” + llesll”).
. j=K;y

These two inequalities imply that
Jim (128 g5 + [lee ) = 0
£—+00 .

in the case S; is finite. O

Note that the convergence result for the Fletcher merit function is somewhat
weaker than for the {1 merit function because of the plausible but optimistic assump-
tion on {7 }. ‘

With global convergence now established, in the next section we discuss the R-
linear convergence of the step secant update strategy.
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4. Local and R-linear Convergence. In this section R-linear convergence is
proved for the RHSQP algorithms using the step secant update strategy with the
Nocedal and Overton update strategy and the positive curvature criterion and using
either the [; merit function or the Fletcher merit function. Although the positive cur-
vature criterion allows more updates than the Nocedal and Overton update criterion
and we prove that they are both R-linear convergent, we cannot establish a unified
analysis for them. In this section, we present the analysis of R-linear convergence of
the two criteria separately because of their different update characters.

4.1. Properties of the local minimizer. Before the analysis of the R-linear
convergence, some characteristics of the solution of (1.1) are shown under the following
assumption.

AssUMPTION 4.1.  Let ™ be a local minimizer of (1.1).

1. Assumption 8.1 holds on a set D containing z* in its interior,
2. The Matriz A(z*) is full rank. This implies ©* ts a Kuhn-Tucker point. That
is, there is ¢ \* € R!, the Lagrangian multiplier, such that

(4.1) VoL(z*, \*) = g(z*) + A(z™)A* = 0.

3. The matriz Z(2*)T V2, L(z*, \*)Z(2*) is positive definite.
4. In a neighborhood of x* the functions, AM(z) and Z(x), are Lipschitz continu-

(4.2) 1A(2) =A< mllz -zl
(4.3) - 1Z@) =2 < vlle -2

where vy and vy, are constants.

Assumption 4.1.1 and 4.1.3 imply that for any (2, A) sufficiently close to (z*, \*)
and ¢ > 0 sufficiently small,

(4.4) mollul]* < uT Z(2)T V2, Lz + Az, \) Z(x)u < Mo||ul|?

for some constants mo > 0 and My > 0 with ||Az|| < 6. That is, the assumptions of
Lemima 3.1 are satisfied, and thus (3.1) and (3.2) hold near (z*, A*).

Under Assumption 4.1, the following lemma similar to Lemma 4.1 and 4.2 given
by Byrd and Nocedal [2] can be proved with a mild condition, twice differentiability
of f and ¢ and the general basis matrix and inverse matrices.

" Lemma 4.1, If Assumption 4.1 holds, then for x sufficiently close to z*,

(4.5) ille = 2| < lle(@)l| + 12 (=) g )| < r2lle — 2]

for some constants y1 > 0 and o > 0. In addition, for any p > ||A*||e and for any
v sufficiently large, there are constants vz >0, v4 > 0, and v5 > 0, v¢ > 0 such that

(46)  mallz—2'lP < gule) = du(z®) < ulllZ@) g (@) + le(2)ll:]
(47 wlle =P < @ue) = (@) < lllZ(2) g (@) + lle()]?).

Proof. By using (2.10) and (3.1) for the general matrix functions, Z(z), (Z(x));",
and A(z); ", the inequality (4.5) follows the analysis of Lemma 4.1 in [2] because there



14

is no higher than second order derivatives involved. If (4.7) holds, (4.6) follows by
using the same technique of Lemma 4.2 in [2]. The analysis in [2] involves the third
order derivatives only in the proof of (4.7) itself.

Let us consider (4.7). Since (2.2) also holds on z*, we can express z —z* = h+v,
where b = Z*(Z*); ' (z—z*) and v = A*; T A*T (2 — 2*). Because ®,(2*) = Liz*, A*)
and Vi L(z*,A*) = 0, it follows from Taylor’s theorem applied to L and from (4.4),
(4.2) and (4.3) that

@u(2) = @u(2") = L(z,M2)) - L(z", A7) + %IIC(JK)H2

IV

5= 2 V2L, X)(a - %) + (M(z) — X e(z) +
M v
+ol|le — z”|]*) + 5”6(%’)”2
= %(thng(:c*, AVh 4+ 20T V2 L™, XY 4+ 0T V2 L(z*, \*)v) +

+(A (@) = ) e(z) + oz — 2*||?) + %IIC(@“)H2

v

1 ) 1 )
gmollRll” = Mollf[|v]] — 5 Mol[ol|” -
—lle = a7{|[le(z)]] + gIIC(a«’)II2 + o[z — z*|]*).

Since ¢(z) — c(z*) = A*T (z — 2*)+ O(|jz — z*||?) and A*7" is bounded, it follows that
loll < valle()l + Ol ~ z*[|?). Thus,

B, (x) - Dy (a")

v

=Pl + valle(@)IDlle()I + é—moiihllé = Moyal|hllle(=)]]

1 v *
—§M07AHC($)1[2 + 5[!0(50)”2 + o(lle — 2*[|?)
1 1 v
§m0[|h||2 + <"’)’,\’YA - -2~M07A + 5) llel® +

+(=7x = Mova) [[Bllllell + o(llz — z*||*).

Consider the above equation as a quadratic polynomial in ||h|| and [¢[|. There are
positive constants 7, ¥ and s such that if v > v,

@y (@) = u(a”) 2 7 (Il + o]") + offla = 2*[1%) > 5]l - 27|
Similarly, using the Lipschitz continuity of A(z), VzL(z*,A*) = 0 and (4.5),
By (r) = Bu(x7) = Llz,M@)) = L(a*, N + 5 [le(@)]?
< plle =2 llle@)l + 2o — 2 +

+o(lle = 2*|1%) + Slle()]?

< O(lle =" |") + Zlle(@)|1
< O(12)" 9@+ lle(@)I)? + Flle()]*
< (2@ g@IP + lle@)[).
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In order to guarantee that {z3}3> converges to z*, another assumption is made
for the constrained problem,

ASSUMPTION 4.2. The line search procedure has the property that if zy is
sufficiently close to ¢*, then V0 € [0,1],

(1 = )z + 0zp41) < p(z1),

where @ is the merit function used in RHSQP algorithms.  Actually, there is no
practical line search strategy that can absolutely guarantee Assumption 4.2 to be
satisfied, but it seems unlikely that it is violated when zj is close to z*. It is clearly
satisfied when ¢ is quasi-convex. The following theorem shows that Assumption 4.2
implies {z} — z*.

THEOREM 4.2. Let {z} be generated by an RHSQP algorithm using the Iy meril
function with py chosen by (2.17) and using either the Nocedal and Overton criterion
or the positive curvature criterion. Suppose Assumptions 4.1 and 4.2 hold and {)\}
is bounded above. Then for sufficiently large K, uyp is fized for k > K and there is a
neighborhood of x* such that if an iterate vy, with ko > K falls in the neighborhood,
then xy — z* and (3.1) and (3.2) hold for all k sufficiently large. If the Fletcher
merit function with vy chosen by (2.18) is used, the same conclusion holds under the
additional assumption that vy, is bounded and vy is large enough.

Proof. By Assumptions 4.1, there exists §; > 0 such that, for all z in the nelgh—
borhood Ny = {2 : ||z — 2*|| < 61} of z*,

(4.8) 1A(#@) o + £ > [|A"]]co,
and the conditions of Assumption 3.1 hold for D = N;.

Now, since {|[|A(zk)||o} and {Z}} are bounded, the procedure (2.17) or (2.18)
implies that for all k£ greater than some value 1: pr or vy are fixed at some values p
and v. Suppose v sufficiently large so that (4. 7) holds. By (2.17), (2.18) and (4. 8)
if an iterate zy, with k¥ > k, occurs in N; then it must be that w13 oo
other words, Lemma 4.1 holds on Ny and ¢, and &, have a strict local minimizer x*.
Suppose K is an integer such that g = g or v, = v for any & > K. For such p and
v, it follows from Lemma 4.1 that there exists 8, € (0, 61] such that if ||z, — 2*|| < 82
for kg > K, the connected component of the level set {z : ¢,(z) < ¢.(zk,)} or
{z:®,(z) < ®,(zk,)} containing z* is a subset Ny of N;. Since N is connected, by -
Assumption 4.2, all iterates z; for k > ko remain in Ny. If §; is chosen sufficiently
small, then by Assumption 4.1 the hypotheses of Lemma 3.1 hold for D = N, and
therefore (3.1) and (3.2) hold at all update steps for k > ko. Then the assumptions of
Theorem 3.5 are satlsﬁed for k > k and thus there is a subsequence {wr} of {z}324,
such that

1im (12 g, | + e[} =
By (4.5), (4.6) and (4.7), we have

z]_]fgo bu(r,) —gu(z™) = 0
lim @, (z,) — ®,(z") = 0,
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and the decreasing property of {¢,} or {®,},

ilir&é#(:ck)—qﬁ#(x*) =0
Em O, (z) — D, (z%)

Il
@

Lemma 4.1 implies 3 — z*. The neighborhood satisfying this theorem is Ny. O

Based on this theorem, we can show the R-linear convergence under the hypoth-
esis {zx} — z* for the Nocedal and Overton criterion and the positive curvature
- criterion, respectively. First, we show that both criteria have an R-linear conver-
gent subsequence and the remaining subsequence is discussed separately for these two
criteria.

4.2. A subsequential R-linear convergence. Let us define a subsequential
R-linear convergence. It means that there is a subsequence S C [1,---,00) such that
for any k and S* = SN[1,---, k], |lzx — 2| < rI5". We call {zx}72, S R-linear
convergent. We show that both criteria generate a S; R-linear convergent sequence.

Lemma 4.3, Suppose {zi} is generated by an RHSQP algorithm using the step
secant update strategy with either the Nocedal and Querton criterion or the positive
curvature criterion and using the li merit function or the Fletcher merit function.
Then {x} converges S1 R-linearly if the hypotheses of Theorem 4.2 are satisfied.

Proof. Since x; — «* by Theorem 4.2, (3.1) and (3.2) hold and Lemma 4.1 also
holds for « = =z, if k£ is large enough. Without loss of generality, assume that these
lemmas hold for any k. Choose p = —% and apply Theorems 3.2, 3.3, and 3.4 to the
RHSQP algorithm. Then for the index set J;; defined in Theorem 3.2

¢u(ei) = du(iz1) > vullZgill> + lleil1],  Vie T
By (zi)— Oy (zip1) > w2 gl + el

By (4.6) or (4.7), the above inequalities imply
Gul(xi) = Pul®it1)

,(z;) — @y(2igr)

v

%(«zsu(m — pu(z")) Vie Jy
4

%((D,,(xi) ~3,(z%)) Vi€ Jp.

v

Then
ulzirr) — dul(z®) < <—1ﬁ><¢u<m~¢ﬂ<x*>>
®, (ziy1) — Bu(2”) < (1——)(@ (2:) = B, (2")).

Let 7/ = (1— )4 < 1for the h orr = (1- )4 < 1 for the Fletcher merit functions
and chooser = 713 (¢ulzo)— ¢u($*))2 > Ofor the l; and v = %(@,,( 0)— P, (z* ))

0 for the Fletcher merit function. Then for any 7 € Jy,
" (Gu(er) = uz")),  and
(@, (z5) - D, ().

Gu(@iv1) — du(z”)
Py (zip1) — Dy(z7)

ANNRVAN
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and then by the decreasing properties of {¢,(2;)} and by (4.6),
* 1 *\) &
llz — ™[] < 7—3(%(%)'* $u(@"))?

= 91‘<r’4"k‘<¢u<xo> — gulz*)))*
3

L2ty oy
< 73( (¢u(@0) — du(z7)))

— IS
because p = £ and |Ji| > p|SF|. For the Fletcher merit function, it holds similarly.
This implies that there is a constant r € (0, 1) such that

[l = &7|| < rlfE]
for both merit functions. O

Note that this analysis can be applied to any update criterion with (3.1) and (3.2)

satisfied. By the S1 R-linear convergence, the sequence is R-linearly convergent if:

o there is a constant p > 0 such that [SF|> pk for any k; or

e |S1] is finite because By will be a fixed matrix for large £ and the proof of

Lemma 4.3 can be applied to Ss.

The extreme case is that neither of these holds and the S2 R-linear convergence has
to be proved. Because the differences of Sy between theé Nocedal and Overton update
criterion and the positive curvature criterion, we prove their R-linear convergence
separately.

4.3. The Nocedal and Overton criterion. For the Nocedal and Overton up-
date criterion, one can prove the matrices {B;} and {B; '} are bounded and then it
is not difficult to prove its R-linear convergence. We need to show only the boundness
of {By} and {B;'} for the Nocedal and Overton update criterion.

Consider the scaled version of the matrix function #(-) developed by Byrd and
Nocedal [1] for the quasi-Newton methods. The ¢ function is defined as

(4.9) $(B) = Te(H*~*BH*"%) — Indet(H" ™5 BH" %)

where H* = Z2*7V2_L(z*,X*)Z* > 0. In order to discuss the boundness of By and
Bk—l using v, we define the quantities cos @y and ¢i, which are scaled versions of the
quantities cos § and §x, used for the global convergence analysis.

SgBkSk S{Bksk

(4.10) cos Oy = - - qr = —.
L2 su [ Bsa| Sk s

Now we estimate ¢/(Bjg41) by the following lemma.
LEMMA 4.4, When zy, and x4y are close to 2* and k € Sy,

(4.11) Y(Big1) < Y(Bi)— —24— 4Ingi+1+7 and
cos? by,
(4.12) Y(Brt1) < ¥(Br) - L Ingy + 1+ Loog + Jwi,

cos? 0y,
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where Lo and 7 are constants, wy = ||agck||/||sk|] and op = max{|lex41]], |lex]|} with
ep = xp — z*.
Proof. By a result of Pearson [12] for the BFGS update

1 T
(4.13) det(H" ™% By H™ %) = det(H™ ¥ By ™™ %) E
% PkSk

By the definition of 9, (4.13) and (4.10),

_1 BkSkSTBk ykyT —1
4.14 B = Tr(B)—Tr|H* 2 k kVHTE ) —
(419) 6B = To(m— e (a7 (Bpik e,
. T
—lndet(H*“JBkH*.“%)—i-lnSkTBkSk
. Skyk
1
[H*~2 Bysi||>  yEH* 'y sT By sy,
= P(By) - + +1n
(Br)  s{ Bysy 5% Yk sTyx
T rrx—1 T :
Tk v H* "y 5% Yk
= By) — —1 1 .
¥(Br) cos? 0, sgyk nng*sk g

Then by Assumption 4.1, the conditions (3.1) and (3.2) hold on S;. Thus
gk

Y(Bewr) S V(B — g gt 1
+E " YM =1 =2 )
Qa I N

That is, (4.11) holds. To prove (4.12), we need to estimate the third and fourth terms
in the last equation of (4.14). Let

Hy, =2 Grzy  Hy = ZFGr(Ar)LT,.
and then by Taylor’s theorem and (2.2), |

(4.15) v = ZIVeL(zpi1, M) — Vol(zg, Ap)]
' = Z; [Grardi] + O(||awdy|*)
= 7 [Gu(Zu(Z0)7" + (AL T AD Jardy] + O(llandi)
= Hysp —ﬁkakck+0(||akdk||2)
= H*s; — He(ager) + O(llexlllsill + llard]*).

To estimate the third term of (4.12), we multiply both sides of (4.15) by y¥ #*~" and
yield

v gy = sy =yl B Hi(aner) + O(llerlllsell + llardil ) llye ]
si vk + O(lJawer Dl yell + OUlexlllsell + [l dil|) vl

IN

By (3.1) and (3.2), we have s7 y, > mM||sg||||vx|| and then

Y[ H* 1y, e e londe?
T 551+0(n%n>+0m”“+0<u%u>'
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Since apdy < O{oy) and

llords)? ardy| llawhy || + [Je v |

(o) loxdell

sl R o
= O(ox)+0 ( ”ﬁ"“j’;“)
therefore
, yl H* 'y, [larer]| ”
(4.16) R Ton <140 <MHSkH ) +O(o%).

Similarly, to estimate the fourth term, we multiply both sides of (4.15) by s¥ |

skye = s H sg — sp Hi(ower) + O|Jex|llsell + llondil|®)]se]],
T .
S Uk 1 T 7 2
THos = 1+WsZH*Sk (=53, Hr(aker) + O(llerllllse ] + llexde|])]|sk]l]

1+0 ( Iﬁkcﬁ“) +O(ay).

T * *
Since f&-?——si < HH_IL’ we have
S Yk m
(T TH*
(4.17) T 1 L P S L
sy, H* s, 5% Uk
< S{}[*Sk 1
=~ T -
Sk Yk
_ sTH* sy (1_ sty >
s%’yk S%H*Sk
ool st
= T T T el
m | s H*sy,
< O(HakckH)JrO(ak)
llsll

Using (4.16) and (4.17) and the definition of wy, we know there exist constants Lg
and ¥ satisfying this lemma. O

From Lemmas 4.3 and 4.4, it follows that for any update criterion satisfying

(4.18)

]651

the quasi-Newton matrices and their inverses are bounded below and above. This is
because [|aker|/[|skll < (va/vz)([vell/l|7e]]) and

$(By) < $(Bo)+lo Y. o+ Y (3;1}_}%)

jesE? jesyTt

< PBo)+ Lo S ASley Y (;—*Z‘”zi"'l)@o

jeskt jeskt
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since qu/cosz 0p +1n g +1 < 0. That is, there is a ¢ > 0 such that Y(Br) <9 < o
which implies that || By|| and || B !|| are bounded and we have the following theorem.

THEOREM 4.5.  Suppose {zi} is generated by an RHSQP algorithm with an
update criterion satisfying (4.18) using the Iy or the Fletcher merit functzon with Dy

bounded. If Assumptions 4.1 and 4.2 hold, then {HBkH} and {||B; ||} are bounded
above and {xy} converges to * R-linearly. O

The Nocedal and Overton update criterion satisfies (4.18). Actually, there are
other criteria satisfying (4.18), for example, (4.18) will hold if

(4.19) el < rggirell

whenever By is updated, where ¢ and ¢ are positive constants.

COROLLARY 4.6. The sequence {zy} 1s generated by an RHSQP algorithm using
the ly or the Fletcher merit function and the Nocedal and Overton update criterion or
the criterion given by (4.19). If Assumptions 4.1 and 4.2 hold, then {3 }32, converges
to * R-linearly. O

4.4. R-linear convergence using the positive curvature criterion. Unlike
the Nocedal and Overton update criterion, the positive curvature criterion allows
updates even ||vg||/||Ar|| is not small. The analysis of Theorem 4.4 cannot be applied.
Without assuming that { By} and {B; '} are bounded, the sufficient reductions of the
merit functions by (3.4) and (3.10) cannot rely on the terms involving cos 6 because
based on the current analysis, cos 6 cannot be proved to be bounded away from
zero even though numerically it rarely happens that cos @, tends to be unbounded.
Fortunately, the positive curvature criterion guarantees that ||cg|| is relatively large
corresponding to [|hg]] for any k € Ss.

LeMmMma 4.7, If Algorithm 2.1 is used with the positive curvature criterion and
the conditions of Theorem 4.2 are satisfied, then there are constants vg > 0 and yo > 0
such that for sufficiently large k,

loell < vs|lhsl| ke S,
el < yolloll kesS,.

Proof. By (2.2) and (4.15), |
sy < Osell” + llsk lllaxvill) + lse[|O(fsi | + ek vi])*.
Thus, based on (2.13), for k € Sy,
Cilloawvel® < llawhilOskll + llegvel]) + llerhrllO( skl + [Joxve]).
Either [|hx] < [[ok[l, which implies,
loell < 1Rl Ovll) < [lAllOCra sup lle()[l) = OCIAx D),

or |lug|] < ||hg|] shows the existence of the constant yg > 0.

For the second part of this lemma, the existence of 79 > 0 can be proved as
follows. Because for any k& € Sy, Lemma 3.1 and (2.14) imply

mllsil[” < sk ye < Collovrvg ||
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if Assumption 4.1 holds,
skyr > st Hese + s Hy(awvr) — O(l|zkgr — zi[)?)
> mollskll” — Movzya sup A lekvellllsell = O(llawdi ).
Then for k € Sa,

Gallekvg||* > s > mollsell” — Moyzya sup 4@ lexvellllsell — Ol dx ().

Since {z} — @* and vy — 0, [|s|| is small for large k. Either

v |
[Isx]]

m
Moyzva sup [[A(z)] < ?0»
. zeD

which shows

Callogor]|* > THSkHZ—O(IlSk!Ig)Z%QHSHIQ

Verllewnell 2 \/@Hsknz o llachel

Yz

vV

or MoYzY4 SUP,ep HA(an)HJM > %4 which implies

[fsxl
' ) m _ m
(Moyzva sup [|A@)Dllvell > =218y 2L gl > —— Ikl
z€D 3 3vz

Then 7g exists. O

To prove the R-linear convergence for the positive curvature criterion, we mainly
concentrate the reductions in the vertical direction. We show that o =1 for k € 55
sufficiently large if an RHSQP algorithm uses the positive curvature criterion and
either the l; or Fletcher merit function in the following lemmas. (

LeEMMA 4.8.  If the conditions of Theorem 4.2 are satisfied and the |y merit
function is used in Algorithm 2.1 with the positive curvature criterion to generaie a
sequence of {xr}, then for any k € S large enough, oy = 1.

Proof. For ap < 1 for & € Sy in the backtracking line search, we show the
reduction of the l; merit function is greater than a positive constant and then this
implies there are a finite number k € S} such that o < 1 based on the boundness
assumption of the Iy merit function.

Suppose oy < 1 for k£ € So. That means the line search fails for step length &
and «y > 7&. This means

ulen +ady) — du(zs) > na@Dgu(zy;dy).
On the other hand by the Taylor expansion,
(e +Gdi) — $u(er) < GDG, (ks di) + O |dy||?).
Thus

(4.20) —(L=n)Du(ar;di) < GO(lde]l?) < Gyiolldell®,
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and furthermore, we have an estimation of «;,

ap > 1a>—=7(1=0)D¢,(zk;dr)/(v10]|dr]|?).

Using (3.4),
o > T(l*U)(%HZgngHhkllwsék+P||Cé?l1')/(710|ldk||2)
> (1 =npllexlls/(violldi]]?)
> (1 =mn)pllerlls/(v10(1 + 7)*[|vel?
> el
ck

Since ¢ — 0, this contradicts the assumption that oy < 1. Thus, for large k, oy = 1.
0

For the Fletcher merit function, a stronger condition on the penalty parameter
must be added to force o = 1.

LEMMA 4.9. Suppose the conditions of Theorem 4.2 are satisfied and the Fletcher
merit function is used in Algorithm 2.1 with ihe posttive curvature criterion, then there
is a constant v > 0 such that if the penalty parameter vy is greater than U, ap = 1 for
any k € Sy large enough. '

Proof. Since the Fletcher merit function is differentiable,

Vo, () = glz)+ VA(z)e(z)+ A(z)A(z) + vA(z)c(z)
and by using the relation Mzp)Te(zr) = gF v,
V<I>,,(a:k)Tdk = gghk -+ dZV)\(.’Ek)Ck - I/C{Ck‘

By Lemma 4.7, dy — 0 for k € Sy as 2 — 0. Thus, by noticing Ag41 — Ax — 0 and
k41 = O(||dx||?), the Taylor expansion of the Lagrangian function gives ’

@y (x41) = Py (2r) = VL, (21) " dy
1% 14
= f(@r41) + Mot + 0hgcesr — (Fl) + A er + = cler) +
2 2

H(Ab1 = M) erar = nlgl b + di VA(zp)er —vefex)
1 1
gbdy + —Q-d}fvszdk + 2T AT 4, + §d}’; > ()i V2ei(zr)dy + of||dy||?) —

IN

v .
—§c{ck - U(QZ hy + d'fv/\(xk)ck — chck)
= (1 —n)gi hx = nd{ VA(zr)cr +
1
+di Voo L(zy, Mzy))dy — (5- mveg e + o(||del[*)
1
< —nugllerl® + Molldi||* - (5~ mveg e + of||di ).

Because Lemma 4.7 implies ||2x]] < voval|ck|| for any & € S3,

@y (zr41) — Dulzr) — chbv(xk)Tdk
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_ 1 '
< =nllesl® + Mo(1+76) Villexll” = (5 = mveiex +ofljee)”)
1 N , 1 1

= =g = m) = 1 = Mo(1+79)" 74 = 3)llexl” = sllexll” + o(llex(1*)

<0
for k large enough and v > & > 0 where 7 is a constant satisfying for any &,
Pk — Mo(1+70)*7% — §

1
77

since [vg| < sup||VA(@)||[|di(|llex]]/llexll® < supl|[VA(2)||(1+ yov4) for k € So. That
is, for k € Sy large enough, a; = 1 is accepted by the line search for the Fletcher
merit function. O

(4.21) 7>

Given these results, we can show the R-linear convergence of the RHSQP algo-
rithms using the positive curvature critérion. First of all, we have an estimate of the
llex|] as follows.

LEMMA 4.10. If the conditions of Theorem 4.2 hold and Algorithm 2.1 is used
with the positive curvature criterion and either the ly merit function with (2.17) or
the Fletcher merit function with (2.18) and vy eventually sufficiently large, then for
any indez set S C 1,2,k — 1],

el < 431 T Beiall
L

Proof. Without loss of generality, assume ||e;|| = 1. Because Lemma 4.1, then for
k' the largest index-in S

ths%@mw—%wms%@me—aww

as the sequence of {(Dy(afj)} is decreasing. By (4.5) and (4.7),

nw2s7$wmw
7276\ ? Jlerraa
leatl < (2222) Beetley

Therefore applying the same procedure to the second largest index k" in § and so on,
we have

35|
Y276 \ * llej+1]]
i< (52) 7 Tl

Rk jes

(S0

Yig = (72’6) 18 a constant satisfying this lemma. 0

To show R-linear convergence, we need only considering the situation with [S§| >
Sk. If [S¥] < 2k, the S; R-linear convergence implies that the sequence {wj} is
R-linear convergent. As [S§| > 3k, the index set

SP={ j|4i+tless)
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contains at least f;/c elements; otherwise |S5| < 2 x 3k + |S¥[ < 1k + Lk = 3k
Moreover for any j € S* the following estimation is true
LEMMA 4.11.  Under the conditions of Lemma 4.10, for any positive constant

€ >0 and any sufficiently large k and j € S* such that ap = 1,

llej 41l <e.
lle; !
Proof. Using the fact that
W
1 <
T os 29 +lngy +1<0

in the inequality (4.11), we can obtain a growth bound of || B;|| and ||B; |, which is
1Bl < ISt 1183 I < 71SE]
for some constant . For any constant 7 with 1 > 7 > 0, Theorem 4.3 implies
lexl["[1B; 17 < o71Ey|SE T < 1

for k sufficiently large. Since aj = 1 and j € S, large, ¢j41 = O(||d;[*) and by
Lemma 4.1,

lej a1l < %( T gl + gl
< (HZ 051l 1Z5 105 17 o+ s ]
< (HZ g T IBEAI T Ay 1l + g l)
< :Y;(HhmHHﬂLlICmH)
< %w;*’ncmul*+ucj+1n>
< O(llej41l™7) < O(lldy||**=)
< O IP07) + [l PA=7)
< O(lejIPA=7) < O(lles |27,

Since the assumptions of Theorem 4.2 are satisfied, ||es|| — 0. Therefore as long as
T < % is chosen, for any given constant ¢ > 0,

legl
el =

for k large enough. O

Using Lemma 4.10 and 4.11,

llex]] < ﬂikl H llej 1l

s Tl




< L«
jESE
< ol S
< (nze)S]
< (nze)k
< (g

ie. [lex|| < r* for some r € (0,1). Then {zx}$2, converges R-lincarly.

THEOREM 4.12. If Assumption 4.1 and 4.2 hold and an RHSQP algorithm uses
the step secant update strategy wilh the positive curvature criterion and either the Iy
or the Fletcher merit function with the penally parameter with vy, sufficiently large
and Uy bounded, then the sequence {xy}52, produced by the algorithm converges to
solution z* R-linearly. O ‘

Now the global and R-linear convergence for the step secant is established by using
the [; and Fletcher merit functions. In the next section, we present some results of
the numerical experiments to compare the step secant update strategy using positive
curvature criterion and the Nocedal and Overton criterion with the null space secant
update strategy.

5. Numerical Experiments. Although the null space secant strategy and the
step secant update strategies with the Nocedal and Overton update criterion and
the positive curvature criterion are proved R-linearly convergent, they have different
numerical performances. We present here numerical experiments with the step secant
update strategy using these two update criteria and compare them with the null space
secant update strategy, although it is known the null space secant update strategy is
expensive because of the extra gradient evaluations. We used a single Fortran code
that allowed us to vary update strategies. In these numerical experiments, the simpler
{1 merit function is used. We used the QR factorization (2.7) to compute the null
space basis matrix Z; as well as the inverse matrices as we described in {2.6). For the
null space secant update, we used the BFGS update with y; and s given by (2.9)
and (2.10). We skipped the updates if s7 y;, < 0.

The algorithm parameters used are
e the general parameters, p=1, By =1, n=10"%*and 7 =1 = 0.5; ,
e parameters for the Nocedal and Overton criterion: ¢ = 1.0 and € = 0.01 (the
same values used in [11]);
e parameters for the positive curvature criterion: {; = {3 = 0.01.

The problems tested are chosen from Hock and Schittkowski’s test problems [9].
For example, “hs10” stands for the problem 10 from {9]. The following notation is
used in the tables showing the our numerical results.

e “upd” is the number of updates;

e “ite” is the number of iterations;

e “rsd” is the residual, || Z] gi|| + ||ck]; and

e “F” indicates the algorithm’s failure on that problem. :
From the tables, we can see that there are two kinds of failure cases whose iteration
numbers equal to or less than the maximum iteration allowance which was set to 100,
respectively. The cases with a number of iterations less than the maximum iteration
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allowance is caused by the failure of line search. That is, at current approximation,
the line search cannot find a positive step length greater than amin (which was chosen
as amin = 1073%) such that (2.15) holds. At the ends of the two tables, there are rows
to show the total numbers of updates/iterations and the update ratios. Note that the
these numbers are obtained by counting the cases where all of the positive curvature
criterion and the Nocedal and Overton criterion for the step secant update and the null
space secant update have successively reached the solutions. The stopping criterion
was rsd < ¢ = 1078 and the starting points were the standard points given in [9] and
these problems were tested on a Sun Sparc-2 workstation.

First of all we present the results by using the monotonically increasing strategy
given in step 2/, for which the global and R-linear convergence is established. The
results is presented in Table 1. It shows that the positive curvature criterion improves
the Nocedal and Overton criterion as it not only has fewer failed cases but also uses
fewer function evaluations and iterations. We believe that this improvement is due to
the higher update rate of the positive criterion.

Even though there is no convergence analysis established for the nonmonotonically

" increasing strategy, numerical experiments in Table 2 show it works much better than

the monotonically increasing strategy. For this numerical experiments in this paper,
the following nonmonotonically increasing strategy is used,

I EY:

for some constant p > 0. For this nonmonotonically increasing strategy, the step
secant update strategy with the positive curvature criterion works as well as the null
space update strategy and in addition it saves the extra gradient evaluations.

6. Conclusions. The purpose of this paper was to present a more realistic anal-
ysis of the reduced Hessian SQP and to present a new practical update criterion. It
presents the first analysis of the step secant update for reduced Hessian SQP in the
context of a line search, and without assumptions on the accuracy of the initial Hes-
sian approximation. We have done this for both the well-known Nocedal and Overton
criterion and for the positive curvature criterion proposed here.

The positive curvature update criterion was proposed to allow more updates than
the Nocedal and Overton update criterion, and based on numerical experiments, this
seems to occur. It seems plausible that the superior performance using the positive
curvature criterion is due to this greater update frequency.

From the numerical experiments made in this paper and the result of the global
and R-linear convergence of the step secant update strategies, the positive curvature
criterion may be a competitive candidate for solving very large scale constrained
optimization problems, especially when it is combined with the nonmonotonically
increasing strategy because it save the extra gradient evaluation required by.the null
space secant update strategy. i
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TABLE 1

Numerical Tests with monotonically increasing parameter

Positive Curvature

Nocedal-Overton

null space secant

Pro # upd/ite rsd upd/ite rsd upd/ite rsd
hs6 8/11 0.84-08 28/36 0.7d-08 8/10 0.2d-08
hs7 3/8 0.2d-11 3/10 0.5d-09 5/7 0.1d-11
hs10 12/18 0.2d-10 3/15 0.9d-08 13/14 0.3d-10
hs11 5/9 0.6d-10 5/9 0.6d-10 7/8 0.9d-11
hs12 10/11 0.3d-08 6/13 0.4d-08 7/8 0.2d-08
hs26 12/100  0.2d-02F | 23/26 0.3d-02F | 33/35 0.7d-08
hs27 15/100  0.2d-01F | 25/32 0.1d-01F | 47/49 0.1d-08
hs29 10/12 0.1d-08 13/17 0.1d-08 7/9 0.5d-08
hs39 13/15 0.2d-09 9/28 0.8d-09 21/22 0.1d-09
hs40 4/6 0.7d-08 3/6 0.1d-09 4/5 0.1d-09
hs43 12/13 0.1d-08 34/41 0.5d-01F 9/10 0.8d-08
hs46 17/100  0.84-02F | 21/22 0.2d-01F | 99/100 0.2d-05F
hs47 20/100 0.1d+01F | 22/32 0.1d-01F | 31/32 0.1d-08
hsb6 16/17 0.6d-12 14/18 0.1d-09 10/11 0.6d-09
hs60 11/12 0.1d-09 9/12 0.6d-10 10/11 0.4d-08
hs61 36/80 0.3d-10 42/45  0.1d402F 7/9 0.2d-08
hs63 5/7 0.5d-09 4/8 0.4d-10 5/6 0.6d-08
hs65 6/100  0.7d+01F | 19/36  0.8d+01F | 10/13 0.5d-09
hs66 10/11 0.6d-13 34/36 0.1d-02F 11/12 0.1d-13
hsT1 10/11 0.4d-08 6/9 0.1d-09 6/7 0.3d-08
hs72 13/23 0.2d-08 13/27 0.6d-08 19/20 0.1d-09
hs77 14/15 0.2d-08 9/14 0.5d-09 18/19 0.2d-08
hs78 5/7 0.5d-08 4/7 0.9d-08 6/7 0.1d-08
hs79 26/28 0.1d-08 11/14 0.9d-09 11/12 0.1d-08
hs80 6/9 0.1d-10 6/10 0.2d-09 4/5 0.1d-09
hs81 14/22 0.5d-05F 8/19 0.2d+02F 4/5 0.1d-09
hs93 39/41 0.2d-09 26/32  0.1d4+03F | 22/26 0.1d-08
hs100 27/28 0.1d-08 36/43 0.1d-08 99/100  0.2d-06F
Total? 171/219 6F 146/253 10F 161/181 2F
upd. ratio 0.781 0.577 0.890




TABLE 2

Numerical Tests with non-monotonically increasing parameter

New Criterion N-O Criterion null space secant

Pro # upd/ite rsd upd/ite rsd upd/ite rsd
hs6 11/13  0.7d-09 | 12/20  0.7d-09 8/10 . 0.2d-08
hs7 4/8 0.4d-15 3/10 0.3d-09 5/7 0.1d-11
hs10 26/34  0.5d-11 6/30 0.34-08 | 21/22  0.4d-09
hs11 10/17  0.3d-09 3/16 0.4d-08 | 13/14  0.1d-12
hs12 9/10 0.1d-08 6/14 0.1d-10 7/8 0.2d-08
hs26 28/29  0.7d-08 | 27/31  0.7d-08 | 33/35  0.7d-08
hs27 34/36  0.3d-08 | 30/56  0.4d-08 | 27/28  0.1d-10
hs29 13/15  0.6d-09 8/30 0.6d-09 | 13/15  0.9d-08
hs39 16/18  0.1d-08 6/21 0.2d-15 | 16/17  0.5d-08
hs40 4/6 0.7d-08 3/6 0.1d-09 4/5 0.1d-09
hs43 14/15  0.1d-09 9/18 0.14-10 | 10/11  0.1d-08
hs46 33/34  0.2d-08 | 33/34  0.2d-08 | 40/41  0.6d-08
hsd7 19/23  0.2d-08 | 17/26  0.5d-08 } 29/30  0.2d-08
hsb6 - 15/16  0.1d-09 | 0/100 F 16/17  0.2d-11
hs60 11/12  0.5d-10 | 10/13  0.3d-08 | 11/12  0.3d-08
hs61 10/13  0.6d-12 | 16/26 F 7/9 0.1d-11
hs63 8/9 0.9d-10 5/11 0.1d-11 7/8 0.1d-09
hs65 20/22  0.4d-10 8/15 0.4d-09 9/11 0.2d-09
-hs66 8/9 0.1d-08 7/9 0.2d-08 8/9 0.2d-12
hs71 10/11  0.4d-08 6/9 0.1d-09 6/7 0.3d-08
hs72 13/23  0.2d-08 | 13/27  0.6d-08 | 19/20  0.1d-09
hs77 13/14  0.8d-10 9/14 0.3d-09 | 18/19  0.2d-08
hs78 5/7 0.5d-08 4/7 0.9d-08 6/7 0.1d-08
hs79 21722  0.1d-09 8/12 0.7d-09 | 11/12  0.1d-08
hs80 4/21 0.3d-10 | 2/20 0.6d-08 | 17/18  0.1d-11
hs81 25/39  0.4d-08 | - 8/100 F 4/5 0.1d-09
hs93 72/75  0.84-08 | 2/100 F 21/24  0.1d-09
hs100 28/29  0.4d-08 | 32/39  0.1d-09 | 35/36  0.5d-13
Total? 362/437 OF 267/488  4F 373/402 0F

upd. ratio 0.830 0.550 0.928

L2 Note that the totals are for the problem solved by all three strategies.
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