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Do children require drill
in order to acquire skill in using calculators?

Abstract

The question we pose is, can children attain proficiency in using calculators
without drill, but rather in the context of meaningful problem solving? Children
in five second grade classes used calculators in their math lessons at least once a
week for two semesters. There was no drill and practice with calculators. Late in
the second semester the children were tested on five problems in addition of
numbers with decimal points. Nine of the 97 children missed all problems; 38
got 4 or 5 correct; and 50 got 1 to 3 correct. Those who got at least one problem
correct we categorized as either competent in using calculators for complex
addition or on their way to competence -- if they made errors, we could classify
the large majority as errors in correct procedures. We discuss in detail our error
analysis, and also the reasons for differences in performance.






Do children require drill

in order to acquire skill in using calculators?

Introducing calculators in the early elementary grades, which has been
mandated by the National Council of Teachers of Mathematics (1989), and
strongly encouraged by the NCTM 1992 yearbook, brings with it several
questions. One question, which is not the topic of this paper, is how calculator
use will influence children's learning of mathematics. Another is whether using
calculators in early math instruction will lead to children's competence in
performing everyday arithmetic calculations. And a third is whether such
competence, if it can be attained, can be achieved without drill, but rather in the
context of meaningful problem solving.

Tenth grade students who were allowed for the first time to use
calculators on Michigan's state-wide MEAP (Michigan Assessment of
Educational Progress) test did not seem to be helped significantly by using them
(Payne, 1992, reporting pilot-test data). Barely 1/2 of the students, given the
fraction 51/68 and given a calculator, could express the fraction as a percent (on
a four-alternative multiple choice test); and less than half could compute 4.56 x
18/25. Our experience with teaching competent adults how to use four-
operation calculators! indicates that it takes at least 12 hours of training to
became practically familiar with their essential features and several weeks of
actual use before a satisfactory level of performance (error-free to a high degree)
is achieved. Teachers who introduce calculators for the first time into their
classrooms have reported that in the beginning students make many errors in
even very simple calculations, and this often leads to disappointment and
discouragement for both themselves and their students. Some teachers try to
remedy this situation by requiring drill in the use of calculators. This is a very
unattractive solution. Replacing hand calculation drill by calculator drill misses
the main purpose of using calculators, which is to free children from mindless,
boring, constant practice (Baggett & Ehrenfeucht, 1992; Grossnickle, Perry, &
Reckzeh, 1990).



The question which we asked in this study, and which we can now
(tentatively) answer, is the third one posed above: Can children achieve high
competence in using calculators without drill?

Ninety-seven children from five second grade classes in two different
schools in rural south-central Michigan towns participated in the study. There
was no tracking into classes in either school; children of all abilities were present
in each class. These five classes were the entire population of second graders in
the two schools.

Each classroom had a set of four-function calculators, one calculator per
child, supplied by the school district (all were Texas Instruments 108 calculators).
Calculators were used for mathematics instruction in each classroom once or
more per week throughout the year. In three of the classes (in school one),
calculator lessons were mostly led by the teachers, although at least one
demonstration lesson using calculators was given in each class by one of the
authors of this paper. Teachers in school one had a total of at least 12 hours of
workshops in calculator use and were meeting weekly with one of the authors.
In the other two classrooms (in school two) calculator lessons were led
approximately once a week by one of the authors of this paper, who came in as a
guest instructor. The teachers in these classes were less experienced with
calculators; they had had only one workshop and several other shorter sessions.
But they occasionally gave calculator lessons in their classrooms, especially as
follow-ups to the lessons given by the guest instructor.

In all five classrooms calculators were being used on a pilot basis. So,
while they were used at least once a week, most of the children's math lessons
did not involve calculators. Teachers in school one used the Silver-Burdett
second grade math book for most of their lessons (Orfan, Vogeli, Krulik, &
Rudnick, 1987), and teachers in school two used the Heath series second grade
math book, Heath Mathematics Connections (Manfre, Moser, Lobato, & Morrow,
1992).

In the calculator lessons, children were involved in solving meaningful
problems; there was no drill and practice. So there were no calculator problems
such as, "Add these five numbers:...," and no calculator worksheets. Each class



had at least one calculator lesson in which children made measurements of
distances in centimeters and millimeters, and answered various questions
involving lengths of paths which required addition of numbers with decimal
points. And all children had at least one calculator lesson involving a menu.
They calculated such things as the cost of 4 hamburgers and 2 cokes, when a
hamburger costs $1.19 and a coke 85 cents. Some teachers reported using
variants of the menu lesson as many as five times during the year, and most
teachers also used calculators for checking one or more grocery receipts. So all
children had been introduced to decimal notation with lessons about money and
about centimeters and millimeters.

The children's knowledge of decimal notation was very limited. Most of
them were rather competent in handling positive integers up to 1000, but their
knowledge of decimal fractions was concrete. In the context of money they
treated the decimal point as a separator between the number of dollars and the
number of dimes and pennies. Most were able to read correctly $3.05 as three
dollars and no dimes and five pennies, and $3.5 as three dollars and five dimes,
namely, three dollars and fifty cents. But they read the calculator display of
0.3333333 (obtained by dividing 1 by 3) as "thirty three cents and a little bit
more." In the context of length, they treated the decimal point as a separator
between centimeters and millimeters, but some children already knew that .5 is
"how the calculator shows 1/2" and were able to read 3.5 as "three and a half
centimeters.” Some could read 3.15 as "three centimeters and one and a half
millimeters.” The children did not know expanded notation, or any underlying
principles of decimal notation. For example, even if they knew that 10
millimeters make one centimeter, they did not know that one millimeter is 1/10
of a centimeter. In general, their concept of fractions was limited to 1/2, 1/4, and
1/3.

Late in the second semester the children were given a test in addition of
numbers with decimal points. The test, consisting of five problems, and its
answers, are given in Appendix 1. The children were given the test without any
meaningful context. They were simply told that they should add the numbers in
each problem and write down the answer. The reader may notice that only the
first problem can be reasonably interpreted as adding a list of prices in dollars
and cents. The purpose of the exercise was not to test their understanding of



numbers in decimal notation, but to test their skill in adding a list of numbers
using a calculator, independent of their meaning.

Findings.

The answer for each problem given by each child was read by at least
two people. If there was doubt about what the child had written (in about 15 of
the 485 answers), the two readers settled on one answer after a discussion or
asked a third reader for an opinion in order to reach a final decision. The
children's answers were entered into a data file for computer analysis. As shown
in Table 1, two hundred fifty-eight answers (53.2%) were correct. Sixteen
answers (3.3%) were left blank. And 211 answers (43.5%) contained errors,
namely, the answers recorded did not match the correct answers. (Figure 1
shows test sheets from two children.)

Table 1
Total percent correct, percent with no answer, and percent
with answers we could and could not classify; and number of
children (out of 97) who got correct 0, 1, 2, 3, 4, or 5
problems.

Of the 485 possible answers from all children (97%5):
percent correct 53.2
percent with no answer 3.3

percent with answers we

couldn't classify 14.4
percent with answers we
could classify 29.1
number of problems correct number of children
0 9
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Figure 1. Test sheets from two children.



Table 2
Percent correct, percent with no answer, and percent with
answers we could and could not classify, in the group of 9
children who missed all problems and in the remaining group
of 88 children.

9 children 88 other children

number of possible answers 9*5=45 88*5=440
percent correct 0 58.6
percent with no answer 7 3.0

percent with answers we

couldn't classify 89 6.8
percent with answers we

could classify 4 31.6

A first finding (see Tables 1 and 2) was that the group of 97 children
divided into two parts. Nine children (9.3%) did not get any of the five problems
right, and they mostly gave nonsensical answers (e.g., one child wrote the
answer to problem 5 as 152; the correct answer is 85156.14). Clearly these
children didn't have any idea how to use a decimal point, or didn't have any idea
how to use a calculator for simple calculations, or both. We were able to classify
errors (see below) in only two of the problems from these nine children (about
4%; see Table 2). Three of their 45 answers were left blank. So we could not
classify errors for 40 (89%) of their answers. In the remaining group of 88
children, there was a rather uniform spread of from one to five problems correct
(see Table 1), and in this group there were only 30 problems out of 440 (less than
7%) whose errors we could not classify (see Table 2).

Table 1 shows that 17 children (17.5%) got a perfect score of 5 problems
correct. They clearly achieved proficiency in using a calculator for addition of
decimals. Twenty-one more got 4 correct out of 5. Nine got zero out of 5, and 50
were somewhere in between (they got 1, 2, or 3 out of 5). This performance
occurred without drill.




Special consideration should be given to the group of nine children who
did not get any of the five problems correct. At this stage, clearly the calculator
did not help them get a correct answer. We know that the reason for this is not
that these children were especially learning disabled, because some learning
disabled children performed surprisingly well on the test, with scores that put
them among the top half of their classmates. We noticed that 5 of the 9 children
were in one of the five classrooms (see Table 3). During the year their teacher
had been frequently absent because of illness, and they developed serious
disciplinary problems. So it is possible that the scores of these children simply
reflect a lack of participation and a lack of attention to activities during the year.

Table 3
Test outcomes of 88 children (data from the 9 children who
missed all problems have been removed*)

class- no. total no. of problems problems problems

room of no. probs with no with with
kids probs. correct answer unclass. class.
errors errors

1 17(2) 85 54 2 4 25
2 16(1) 80 55 6 19
3 17(1) 85 55 7 23
4 22(0) 110 52 11 5 42
5 16(5) 80 42 8 30
tot. 88(9) 440 258 13 30 139

*In parentheses are the number of children in each class who
missed all problems.

Method of error analysis: Keystroke and transcription errors.

The question examined in this section is how to classify errors that the
children made. When a child wrote an answer that did not match the correct
answer given on the calculator display, we knew that something went wrong.
Our task was to determine what went wrong. There were two kinds of errors we
looked for: keystroke errors (errors in pressing keys) and transcription errors
(errors in reading the display or in copying from it).
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First we looked for keystroke errors. The diagnosis of these errors for each
problem was based on a comparison of two procedures (two sequences of
keystrokes). The first procedure gives the correct answer to the problem, and the
second gives the actual answer written down by a child. The keystrokes in one
procedure were matched with those in the other in order to indicate the
mismatches. The wrong answer could then be attributed to a specific mismatch.

We were not present when the tests were administered and keystrokes
were not recorded in any way, so we do not have information on what children
actually did while solving the problems. There are many possible procedures
which yield a given answer, but only some classes were considered as
candidates, as follows.

We assumed that a correct procedure was addend + addend + ... + addend
=, where addends could be entered in any order. So a correct procedure for a
problem with addends a, b, ¢, and d is [a] [+] [b] [+] [c¢] [+] [d] [=]. Note that any
procedure (such as [a][+][b][=][+][c][=][+][d][=], or
[a][M+][b]IM+][c][M+][d][M+][MRC]) which gives the correct answer cannot be
distinguished from the procedure we assumed.

We also considered only cases in which the calculator was cleared
between problems, or in which the last operation in the preceding problem was
[=]. If the actual keystroke sequence a child pressed was different, e.g., if the
child used [M+] and did not clear memory between problems, such an error was
not detected at all and would fall into our "unclassifiable" category. Besides
these, we looked for one other entry error: accidentally using [-] instead of [+].
No such error was found.

For example, problem 1 on the test is:
12.30

3.58
78.34

0.90

4.65
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The correct answer is 99.77; the answer given by a child was 454.19. We first give
a correct sequence, with a sequence yielding the recorded answer directly below
it. The discrepancy between the two is marked with a /.
12.30 + 3.58 + 78.34 + 0.90 + 4.65 =

A
12.30 + 358 +78.34 + 0.90 +4.65 =
We hypothesize that the child omitted the decimal point from the second
addend.

For every correct procedure, a specific possible set of procedures
containing keystroke errors was considered first. If an answer written by a child
could be explained by a keystroke error or errors, it (or they) was (were)
classified as the probable cause of the error. If, as mentioned above, an answer
could not be explained by an entry error, we looked for a second kind of error,
one in reading from the display or writing the answer. These we called
transcription errors, and we looked for them because in many cases all digits in
an answer were correct, but the decimal point was missing from the answer. So
the decimal could not have been omitted from the addends (except in problem 1).
Here is an example (problem 4): 9.87,7.654,3.213,4.852 sum=____ . The
correct answer is 25.589, and one answer recorded was 25589, with no decimal
point. This answer occurred seven times in our data.

If an error could not be explained by a keystroke error and could be
explained by a transcription error, then it was classified as a transcription error.
Table 4 describes the four kinds of keystroke errors and the two kinds of
transcription errors we looked for.
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Table 4
Description of keystroke and transcription errors. We looked
for the following deviations from a correct keystroke
sequence, as defined in the text:

abbreviation: description of keystroke error

DA Error in which a decimal point is missing
from one addend

KA Error in which a key is mispunched (or a
digit is misread) in an addend (excluding
decimal point errors)

JORA Structural error in which two addends are
joined (because of omission of [+]); or one
or more addends are omitted or repeated.

OA Other: shift of decimal point in addend
(e.g., 9804.8 (problem 3) typed as 980.48)
or block change in addend (e.g., 75300.23
typed as 75730.23 (problem 3))

We looked for the following transcription errors:

abbreviation: description of transcription error

digit reading or writing error involving a digit
(and not a decimal)

dec reading or writing error in which decimal is
missing

Examples of procedures used in error diagnosis.

Diagnosing keystroke errors was done with the help of an interactive
program. Here are some procedures that were used: (1) We looked for an error
of omission of the decimal point in an addend as follows. When there were five
addends, there were five different cases to consider, namely, answers obtained
when the decimal point was omitted from each addend in turn. We looked at the
results one would get from these five cases, and if a result matched an answer
recorded by a child, we said it was likely that the child omitted the decimal point
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from that particular one of the five addends. (2) We looked for an error
consisting of mispunching one digit as follows. For each digit in each addend,
there were nine possible mispunches. We tried them, and looked at the results.
If one matched a child's answer, we said it was probably the case that the child
mispunched the specific digit which yielded the result. (3) We looked for errors
consisting of permuting two consecutive digits in an addend by trying all the
instances, and if one matched a child's answer, we said that the child probably
made this particular permutation. (We did not look for permutations of 3 or
more consecutive digits.)

The method used in searching for errors of the types listed in Table 4 was
always successful if a wrong answer could be accounted for by just one error.
But when we increased the number of errors that we looked for in one problem,
the chance of being able to classify them decreased very fast, so that only in a
very few cases were three or more errors in one problem detected. Most
unclassified problems (except for those made by the nine children discussed
above) are probably due to an accumulation of simple errors. When multiple
explanations were found that would account for an answer, the answer was left
unclassified.

The procedures used for error diagnosis (for both keystroke and
transcription errors) allow us to say only that a particular (wrong) answer
recorded by a child could have been caused by the mechanism we found that
yields the answer. We cannot guarantee that the child actually made the error
that we hypothesized. But the hypotheses about the errors children made were
based on what we knew, from our own classroom observations and from
teachers' reports, about how children generally perform calculations. And it was
not often that two different errors would lead to the same result. For example,
one error that was found was omission of a decimal point from an otherwise
correct answer. It was classified as omission of a decimal point in transcription
(copying from the calculator display to the paper.) We do not know any
systematic error in entering numbers, i.e., any keystroke error, that would yield
this result, except in problem 1, where omission of decimal points from all
addends would match the trascription error.
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Specific errors that were found.

We restrict our findings to errors made by the 88 children who correctly
answered one or more problems. Table 5 gives examples of each type. There
were 196 such errors, as shown in Table 6. Most of these errors (152, or 78%)
were made in entering symbols (see Table 6). The remaining 44 (22%) were made
in reading and writing multidigit numbers. Sixty-four percent of the
transcription errors (28 of 44) consisted of not writing down the decimal point
(see Table 6). This is an important finding: those children who had the answer
correct (except for writing the decimal point) correctly entered the decimal point
in their keypunching, but they didn't pay attention to it in writing their answer.
We think these were conceptual errors: the concept of decimal point in the
abstract really had no meaning for these children. They ignored it because they
didn't see a need for it. (Omission of the decimal point in an otherwise correct
answer was classified not as a keypunch error but as a transcription error.) It
was mentioned earlier that at the time of the study, the children had had little
experience with decimal notation; they knew it in the concrete (with money and
centimeters and millimeters), but not in the abstract.

Table 5
Examples of errors and possible explanations for them. The
caret symbol "~ indicates a mismatch in a correct procedure
(given first) and a hypothesized incorrect procedure (given
second) .
Keystroke errors:
DA (decimal point missing in an addend)
problem 1. answer given: 454.19; correct answer: 99.77
12.30 + 3.58 + 78.34 + 0.90 + 4.65 =

12.30 + 358 + 78.34 + 0.90 + 4.65 =
Explanation: The addend 3.58 was typed as 358.

problem 4. answer given: 4872.737; correct answer:
25.589
9.87 + 7.654 + 3.213 + 4.852 =

9.87 + 7.654 + 3.213 + 4852 =
Explanation: The addend 4.852 was typed as 4852,

KA (single entry error)




problem 2. answer given: 74.49; correct answer 174.49.
23.9 + 1.23 + 20.56 + 128.7 + 0.1 =

23.9 + 1.23 + 20.56 + 28.7 + 0.1 =
Explanation: The addend 128.7 was typed as 28.7.

problem 2. answer given: 173.59; correct answer 174.49
23.9 + 1.23 + 20.56 + 128.7 + 0.1 =

23 + 1.23 + 20.56 + 128.7 + 0.1 =
Explanation: The addend 23.9 was typed 23.

JORA (join, omit, repeat addend)
problem 3. answer given: 85203.888; correct answer
86438.648
1234.76 + 9804.8 + 0.7835 + 75300.23 + 98.0750

AAAAAAAAA

9804.8 + 0.7835 + 75300.23 + 98.0750
Explanation: The first addend, 1234.76, was omitted.

problem 1. answer given: 98.8709; correct answer 99.77
12.30 + 3.58 + 78.34 + 0.90 + 4.65 =

12.30 + 3.58 + 78.34 0.90 + 4.65 =
(this is registered as
12.30 + 3.58 + 78.34090 + 4.65 =.)

Explanation: The plus sign between the addends 78.34 and

0.90 was omitted, so that the two numbers were joined
to make 78.34090

problem 3. answer given: 13607.938; correct answer

86438.648.

1234.76 + 9804.8 + 0.7835 + 75300.23 + 98.0750 =
9804.8 + 0.7835 + 98.0750 + 1234.76 = = =

Explanation: first addend was repeated 3 times; 4th

addend was omitted (change of order is also

hypothesized).

OA (other)
problem 3. answer given: 77614.328; correct answer:
86438.648
1234.76 + 9804.8 + 0.7835 + 75300.23 + 98.0750
1234.76 + 980.48 + 0.7835 + 75300.23 + 98.0750
Explanation: decimal point in 9804.8 shifted to
980.48:

problem 3. answer given: 76633.888; correct answer
86438.648
1234.76 + 9804.8 + 0.7835 + 75730.23 + 98.0750

AAAAANAAA A A

804.8 + 0.7835 + 75730.23 + 98.0750
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Explanation: 1234.76 omitted; 9804.8 typed as 804.8
Transcription error:

digit (reading/writing error involving digit; different
from omitting decimal)
problem 5. answer written: 85,156.14;

answer from display: 85156.14.

Child added comma to answer.

Keystroke and transcription error:

problem 3. answer given: 85327.6; correct answer 86438.648
1234.76 + 9804.8 + 0.7835 + 75300.23 + 98.0750 =

123.76 + 9804.8 + 0.7835 + 75300.23 + 98.0750 =
Explanation: 1234.76 typed as 123.76; did not
write last 2 digits of answer

Table 6
Number of instances of each type of error from the 196
classifiable errors from 139 problems given by 88 children.

error type number of %
instances

(1) keystroke errors: 152 78%
DA (decimal pt. missing in addend) 24

KA (mispunched key in addend; not dec pt) 85

JORA (addends joined, omitted, repeated) 39

OA (other; see Table 5) 4

(2) transcription errors: 44 22%
dec (dec pt omitted from answer) 28

digit 16

tot. no. of keystroke&transcription errors 196

Among keystroke errors categorized in Table 5 as joined, omitted, or
repeated addends, two types that were found which would never occur during
hand calculation should be mentioned. One is joining two consecutive numbers,
due to the omission of [+]. (Note that in column addition with at least 3 addends



17

given in textbooks, at most one plus sign is typically shown, so this error could
be a carryover from hand addition.) The other is duplication of an addend due
to the repetition of [=]. (Note that, while pressing [+] twice in a row has the same
effect as pressing it once, duplicating [=] has the effect of adding the most
recently entered addend. So pressing a function key twice sometimes has side
effects and sometimes doesn't.)

Misuse of function keys (other than [=] and [+]) was not detected. It was
mentioned that we looked for accidental use of [-], so it would have been
detected if it had occurred. But accidental use of other function keys ([V], [*], [+])
was not looked for and therefore would not have been detected if it had
occurred; it would lead to unclassified errors. But if such errors occurred, they
did not occur often, because the total number of unclassified errors (30) among
the 88 children was not very large.

Tables 7, 8, and 9 show the data by problem. Table 7 shows that problem
3 was the most difficult in terms of number of keystrokes to press and number of
symbols to write. Tables 8 and 9 show that it was also the most difficult in terms
of percentage correct (42%) and total number of errors (59 of 196 errors, or over
30%). Table 8 shows that the number of problems with no answer is 0, 0, 1, 4,
and 8, for problems 1,2,3,4, and 5 respectively. This could indicate children ran
out of time for problems nearer the end of the test.

Table 7
Characteristics of the problems: number of keystrokes to
press and number of symbols to write (assuming constraints on
keystroke entry as discussed in text)

problem number number number number number of
number of digits of dec. of plus of equals symbols to

points signs signs write in
answer
1 17 5 4 1 5
2 16 5 4 1 6
3 29 5 4 1 9
4 15 4 3 1 6
5 16 2 3 1 8




18

Table 8

Number and percentage correct, number with no answer, and

number with unclassified errors, by problem, for 88 children.

problem  number % correct number number
number correct with no unclass-
answer ified
1 63 72% 0
2 51 58% 0 3
3 37 42% 1 11
4 59 67% 4
5 48 55% 8
total 258 13 30
Table 9
Number of errors of each type made by the 88 children, by
problem.
problem keystroke errors: transcript. errors: tot
number DA KA JORA OA tot dec digit total errors
1 6 9 0 21 2 2 25
2 7 23 6 1 37 2 6 45
3 5 24 15 3 47 4 8 12 59
4 2 4 1 0 7 3 9 12 19
5 4 25 11 0 40 5 3 8 48
total 24 85 39 4 152 16 28 44 196
Discussion

There appear to be three different phenomena going on with the 97
children: (1) Most children (81 of 97) try to answer all the problems; they
basically know what they are doing, and they are rather successful at doing it.
(2) Some children (9 of 97) write answers that are nonsensical. They do the task
(provide answers to the problems), but they don't seem to know what they are
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doing. They punch some keys and write something. (3) Some children don't do
some of the tasks--they omit answers. This phenomenon is somewhat special.
One would expect that the children who aren't able to do the task at all (those
described in (2)) would be the ones who would leave answers blank. But only
one child is in this category: this child gave two answers which we could not
classify and left the other three blank. There were seven other children who left
one or more answers blank, and they made a total of only 2 unclassifiable errors.

We really do not know what causes children to write nonsensical answers
or to omit answers. We have given possible reasons for the writing of
nonsensical answers by one group of children: there was a lack of discipline in
their classroom. For children in category (3), it could be that some wanted to
avoid errors, or it could be that there was lack of time to do the test. We note that
children in each of the categories (2) and (3) were found primarily in one
particular classroom (see Table 3). And both were found primarily in school 2,
where calculator activities were taught mostly by a guest lecturer. The teacher in
class four, containing the largest number of children who left answers blank,
mentioned that her children "did not want to make errors" because the guest
instructor would know about them.

A question is whether the group of 88 children were (a) executing an
incorrect procedure, or (b) making errors in a correct procedure. The errors we
diagnosed are clearly in the second category, e.g., a decimal point is missing in
just one addend. But it is possible that the errors we did not diagnose are due to
an incorrect procedure, for example: (1) omitting a decimal point (always) from
all addends; or (2) pressing [=] several times instead of once; or (3) systematically
omitting 0 from each number. Any such incorrect procedure would appear as an

unclassified error.

It is possible that the nine children who missed all problems were using
incorrect procedures. But we think it is more likely that their errors were due
simply to random typing rather than anything systematic, because, as mentioned
before, 5 of the 9 were from a classroom in which the teacher had missed many
classes and there were serious discipline problems.
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Brown and vanLehn (Brown & VanLehn, 1980; VanLehn, 1982) suggested
reasons for children's errors in performing multidigit subtraction by hand. For
the most part, they claimed that the children they studied were correctly
executing an incorrect procedure. Children in this study, however, are doing
something different. Using VanLehn et al.s' terminology (e.g. vanLehn, 1980, p.
12) our students’ errors are "slips" (small errors in an otherwise correct
procedure), and not "bugs," (perturbations indicating that the procedure itself is
incorrect). Further, our children were not drilled in addition with a calculator, so
we think they are making soft (unstable) errors. On the other hand, children in
the VanLehn studies, we think, had harder (more stable) errors, since they had
been drilled.

We see three differences between the results for calculations done by hand

and those done with a calculator:

1. The calculator procedure is easier.

2. The calculator procedure is more transparent -- the reason for each step is
more obvious.

3. Because of lack of drill, we think that our children were confused and did not
know what to do, rather than displaying an established bad (incorrect)
habit.

Reviewing again the results, seventeen of 97 children reached competence
(got 5 out of 5). Twenty-one almost reached it (got 4 out of 5). Fifty still need to
improve considerably (got 1, 2, or 3 out of 5); and nine didn't get any answers
correct. Eighty-eight of the 97 children were either competent in using
calculators for complex addition, or on their way to becoming competent in their
use -- if they made errors at all, the large majority were errors we could classify,
namely, errors in correct procedures. We think that these findings answer the
question posed at the beginning. Skills in arithmetic (with a calculator) CAN be
achieved by solving meaningful problems, and not spending time on pages of
worksheets.

A question is, what kinds of lessons should be given to the children who
are incorrectly carrying out correct procedures, in order to help them improve
their skill in using a calculator? What type of material should be used? We think
that, based on the actual training that the children had, it is more a question of
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attention and care focused on the task than a question of skill: children need to
learn to look at the calculator display after they press keys. This is different from
simply practicing when a skill is nearly automatic, in order to make it automatic.
Children need to learn to pay careful attention to details in pressing, and to look
at the results of a press. At this point, we suggest for these children more of the
same kinds of lessons with calculators that they have been getting already in
their classrooms: not drill and practice, but involving meaningful problem
solving.

Over the years many researchers (e.g., Brueckner, 1930; Ashlock, 1976;
Brown et al, 1980; VanLehn, 1982; vandeWalle, 1990, p. 164) have analyzed errors
people make in hand calculation . But analysis of errors made in calculator
computation is new. We were able to account for a large percentage of the errors
children actually made, using fairly straightforward methods involving only six
classes of simple errors.
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Appendix 1.
Test given to children

(Note: l4-point font was used. See also Figure 1l.)

Name:
12.30 23.9 1234.76
3.58 1.23 9804.8
78.34 20.56 0.7835
0.90 128.7 75300.23
4.65 0.1 98.0750
9.87, 7.654, 3.213, 4.852 sum =
84765.38, 154, 236, 0.76 sum =

Answers to problems as given on calculator display:
174.49; 86438.648; 25.589; 85156.14.

99.77;




Footnote

In the last three years one of the authors has given hundreds of hours of
workshops on calculator use to several hundred teachers in grades K-9.
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