Locating Trace Change Points in Parallel Programs

Zulah K. F. Eckert and Gary J. Nutt
Department of Computer Science
University of Colorado at Boulder

Campus Box 430
Boulder, CO - 80309

CU-CS-730-94 May 1994

&

University of Colorado at Boulder
Technical Report CU-CS-730-94

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

Copyright (© 1996 by
Zulah K. F. Eckert and Gary J. Nutt
Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, CO - 80309

Locating Trace Change Points in Parallel Programs

Zulah K. F. Eckert*and Gary J. Nutt
Department of Computer Science
University of Colorado at Boulder

Campus Box 430
Boulder, CO - 80309

May 1994

Abstract

The problem of exactly locating the set of TCPs for a parallel program is NP-Hard. In this
report, we demonstrate that the problem of locating TCPs in a parallel program is a global
flow analysis problem. We introduce the shared variable dependence relation (SVD relation)
and show that this relation can be used to approximate the set of TCPs for a parallel program.
This relation can be computed in O(N x E x V?). Finally, we present a simplification of this
algorithm, requiring only O(N x E) for SVD relation computation that trades run time for
computational accuracy.

*This work was supported in part by Convex Computer Corporation.

Contents
1 Introduction

2 The Shared Variable Dependence Relation
2.1 SVDwariables e e

3 Computing the SVD Relation

3.1 Assignment Statements L e
3.2 Conditional Statements e e e e,
3.3 Iterative Statements e e e,

4 Preprocessing

5 An Algorithm for locating TCPs

5.1 Simple Constant e e
5.2 The SVD Variable Problem i
5.3 Complexity and Correctness i

6 An Asymptotically Faster Approximation

6.1 The SVD Graph e e
6.2 The Algorithm, e e e e e e
6.3 Complexity and Correctness i

7 Procedures and Functions

1 Introduction

In [1] we have demonstrated that the problem of locating the exact set of TCPs for a program
is NP-hard. In this report, we demonstrate that the problem of locating TCPs is a global flow
analysis problem that can be solved in O(N x E x V?2). The algorithm presented is similar to ones
computing constant propagation. .

In this report, we present two algorithms that approximate the set of TCPs for a parallel
program. Both algorithms provide a conservative approximation to the actual set of TCPs in a
parallel program. That is, it is assumed that any conditional or iterative statement that is dependent
on the value of a shared variable, either directly or indirectly, is a TCP. This reduces the problem
of locating TCPs to that of determining the set of variables that are dependent on the value of a
shared variable either directly or indirectly. We call this set the shared variable dependent variable
set (SVD variable set). Computing the set of SVD variables is similar to the problem of constant
propagation, a global flow analysis problem [6]. As with constants, SVD variables propagate through
a program. There are two fundamental differences between the problems. First, the goal of constant
propagation is to determine the actual values of constants (whenever possible). In contrast, the
SVD variable set problem requires no computation of program values. Instead, the knowledge of
whether or not a variable is an SVD variable is collected. Second, a variable is a constant prior
to the execution of a statement if it was a constant on all paths leading to the statement and the
constant value was the same. A variable is an SVD variable prior to the execution of a statement
if it was an SVD variable on some path leading to the statement.

Iterative statements complicate the process of locating dependencies in a program. For pro-
grams containing no iteration, each statement can only depend on preceding statements. That is,
dependencies can be computed with a single top to bottom traversal of the program. For programs
containing iterative statements, each statement can depend on succeeding statements due to a cycle
in the control flow graph. This implies that collection of the set of SVD variables for an iterative
statement requires iteration over the set of statements in the body of the iterative statement until
the set of SVD variables converges. This method has the advantage of accurately locating the
changing dependencies that may be present in an iterative statement. We present an algorithm
using this method based on Wegman and Zadeck’s solution to constant propagation, see simple
constant [6].

The cost of accuréte computations for iterative constructs is a worst case run time of O(N X E x
V'%). We present a simplification requiring only O(N x E) for SVD variable location that trades time
for computational accuracy. Unlike constant propagation, the order in which statements occur is
not as important for the SVD variable problem because actual program values are not needed. We

introduce the shared variable dependence graph (SVD graph) of a loop and present a simplification

for iterative statements using this representation. The SVD graph of a loop is a representation of
the variable dependencies within the loop. Whenever a loop is encountered, the graph is sorted
based upon the current SVD variables. This sorting results in a set of SVD variables for the loop.
The loop can then be analyzed for TCP statements. This approximation can be less accurate than

the previous algorithm but has a worst case runtime of O(N x V).

2 The Shared Variable Dependence Relation

Given two variables a and b, we say that a is directly dependent on b, denoted a — b, if b appears
on the right hand side of an assignment to a or if b is used to decide a conditional statement (or
as an iterative statement index) in the body of which an assignment to a appears. If b is a shared
variable, then a is directly shared variable dependent on b, denoted a—,,b. A variable a is shared
variable dependentif it is either directly shared variable dependent on some shared variable or there
is a chain of dependencies such that @ —,, v1 —, ... =4, v, Where v, is a shared variable. The
shared variable dependence relation (SVD relation) is the set of all shared variable dependencies for

a program.

2.1 SVD variables

Determining the set of TCP statements for a program can be accomplished by determining the set
of program variables dependent on the value of a shared variable. A local variable’s dependence
on a shared variable can change over the execution of program statements. For example, a local
variable may be assigned the value of a shared variable in one statement and assigned to a constant
value in a subsequent statement. Immediately following the first statement, the local variable is
SVD dependent, however immediately following the second, it is no longer SVD dependent. The
SVD relation can be used to estimate the set of program variables dependent (either directly or
indirectly) on a shared variable (the set of SVD variables for the program). The set of variables
present in the SVD relation at any program statement is the set of SVD variables for that statement.
For each variable, membership in the SVD variable set is either preserved, killed, or generated during
execution of a statement. The SVD variable set of maintained after the execution of each statement
by removing all killed variables from the set and by adding any generated variables to the set.
There are two ways in which a variable can become an SVD variable. First, a dependency on
a shared variable may arise as a result of a chain of dependencies due to assignment statements, a
definition dependency. Second, a dependency may result due to a chain of dependencies in which

at least one dependency is due to a conditional or iterative statement, an indirect dependency.

2.2 A Motivating Example

A0:begin
shared int x = 0, y = 0;
intn =2,z =0

Aliread(z);
A2:task_create(n)
task 0 task 1
int i,j.k,1; int p,q,r,s;
BO: read(j,k); CO:read(p,q);
Bl: fori=1tojdo Clx =x+ 1;
B2: ifk > j then C2:forr = 1 to x do
B3: l=1y; C3: P=7p+x
B4: k=i+x C4: q=q+ p;
B5: end; C5: s =1;
Cé6:end;

A3:task terminate(n);
A4:if z > n then

A5 Z = 1n;
A6:print(n);

ATend;

Figure 1: A parallel program illustrating SVD set calculation

In this section, we use an example to motivate the calculation of the SVD variable set and
location of possible TCP statements. Figure 1, is used to demonstrate the calculation of the set -
of SVD variables and the location of TCP statements in a parallel program. We use S to denote
the set of SVD variables and N to denote the set of variables that are not SVD variables. The
contents of these sets will vary at different points in the program. Before any calculation begins,
statements can be classified depending on whether or not they have to possibility of being TCP
statements. For example, an assignment statement containing no array references cannot be a
TCP statement and task_create statements are all TCP statements. We call statements that
have the possibility of being TCP statements candidate TCP statements. Figure 1 contains five
candidate TCP statements: statements A2, B1, B2, C2, and A4. Three of these statements are
are TCP statements: statements A2, B2, and C2. Statement A2 is a TCP statement because it
is a task_create statement. The set of SVD variables is used only to determine whether or not a
candidate statement is a TCP statement.

Initialty § = {z,y} and N = {z,n}. For task 0, the sets are initially § = {z,y} and N =
{%,3,k,1} and for task 1 they are initially S = {z,y} and N = {p,q,7,5}. The candidate TCP

statements for task 0 are statements Bl and B2. Statement B0 generates no generated or killed
definitions, resulting in no change to the S and N sets. Statement B1 is not a TCP statement
because j € N immediately prior to this statement. Statement B2 is a TCP statement since on
some iteration of the loop, it is possible that £ € S. For task 1 the candidate TCP statement
is statement C2. Prior to statement C2, § = {z,y}. The iterative statement C2 depends on
the value of the shared variable and the sets have the following values at the end of the loop
S = {z,y,p,q,7,s} and N = {}. The dependencies that include variables p, ¢, and s in § are
indirect (note that there are dependencies due to a definition in C3 and C4). Statement C2 is a
TCP statement because 2 € S. For the main thread, statements A2 and A4 are candidate TCP
statements. At the termination of tasks 0 and 1, the SVD variable sets are merged for global
variable (in this case there are none) and S = {z,y} and N = {n, z}. Statement A3 has no effect
on these sets. Statement A4 is not a TCP statement because neither z € S nor n € §. Therefore,
statements A2, B2, and C2 are the only TCP statements.

3 Computing the SVD Relation

Shared variables are by definition always SVD variables (i.e., members of the SVD variable set).
Local variables become SVD dependent variables either as a result of a direct dependency, due to
an assignment statement, or as a result of indirect dependencies that arise as a result of control

flow?.

3.1 Assignment Statements

Any assignment statement has the possibility of generating new definitions or killing old definitions.
An SVD variable is generated by an assignment statement, if the variable of the left hand side of
the statement is not already an SVD variable, and if some variable of the right hand side is an SVD
variable. If the left hand side of an assignment statement is currently an SVD variable and is not
a shared variable, and the right hand side of the assignment statement contains no SVD variables,
then the variable is removed, killed, from the current set of SVD variables. Consider the example
of Figure 2. Statement Al generates a single SVD variable, . If the set of variables dependent on
shared variables is § = {2z} and N = {4, j, k, m} before the execution of statement A1, then after
its execution we have § = {z,:} and N = {j, k,m}. Statement A2 does not generate or kill any
SVD variables. Statement A3 generates SVD variable j yielding S = {z,i,j} and N = {k,m}.
Statement A4 kills the SVD variable i resulting in S = {z,j} and N = {4, k, m}.

'We put off a discussion of the problem of determining SVD variables for procedure or function bodies until the
end of this section.

int i,j,k,m;
shared int x;

Al:i=2%x + k;

A2: k =k + 1
A3:j=k *i;
Ad:i=k + 1;

A5: if j > 0 then
As: k=k + 2;
AT: else :
A8: m =m + k;
A9: ..

Figure 2: A program fragment containing assignment statements

The presence of array references complicates this simple calculation. Array elements are treated
as individual variables except when an actual location (i.e., array element) cannot be determined.
Because the actual element of the array that is SVD is unknown, the entire array must be considered
to be SVD variables?. An array reference can become SVD dependent in two ways. First, if a
reference appears on the left hand side of an assignment statement and an SVD variable appears
on the right hand side of the same assignment statement then the reference is an SVD variable.
Second, if the variable appears anywhere in an assignment statement and the index of the array
reference is itself an SVD variable. In either case, the array element in question is added to the set
of SVD variables. If an érray reference appeérs on the left hand side of an assignment statement,
the index for the reference is not an SVD variable, and there is no SVD variable appearing on
the right hand side of the assignment statement, then if the array location was an SVD variable,
the reference represents a kill. Consider the example of Figure 3. S = {z} initially and N =
{1, 3, kym, a[1],a[2], a[3], a[4], a[5]} immediately preceding the execution of statement B1. Statement
B1is a TCP statement since the array reference a[z] depends on the value of z € §. This statement
does not generate any shared variable dependencies. Statement B2 generates i as an SVD variable.
Statement B3 is again a TCP statement since the reference af:] depends on the value of i € §.
This statement generates j as an SVD variable, j € S. Statement B4 is not a TCP statement since
the array reference a[k] is not dependent on a shared variable. However, a[k] is generated (because

its value depends on SVD variables j and z) If we can determine the location of the array that

*Methods for array sectioning exist but are out of the scope of this work. See [5] for more details

is shared variable dependent, then it is added to S. If we cannot determine the exact location,
then in order to guarantee that all TCP statements are located, the entire array is placed in S.
Statement B5 may or may not be a TCP statement depending on which of the above decisions we
make at statement B4 (i.e., statement B5 depends upon the contents of). In the algorithm that
follows, we omit the details of determining dependencies for array references, see [5] for details of

array analysis in data flow problems.

int i,j,k,m;
int array a[l..5];
shared int x;

Bl: a[x] =i + j;
B2:i=1+ x
B3: j = ali];

B4: alk] = x + j;
B5: if a[m] then

Figure 3: A program fragment containing array reference assignment statements

3.2 Conditional Statements

A conditional statement can result in indirect dependencies. In the event of an indirect dependency,
any definition that occurs within the body of the conditional statement, regardless of the outcome,
is generated by the execution of the conditional statement. Consider statement A5 in Figure 2.
Before execution of this statement § = {z,;j} and N = {i,k,m} hence A5 is a TCP statement.
After execution of this statement (immediately preceding the execution of statement A9), we have
§ ={z,j,k,m} and N = {¢}. The variables k and m are generated by the conditional statement.
If a conditional statement is not a TCP statement, then the SVD variable set is calculated
along each branch of the conditional and TCP statements are located. Each branch is evaluated
with the SVD variable set that is present on entry to the conditional statement. Because each
branch may possibly execute and execution will occur independent of one another, the resulting
SVD variable sets are merged at the end of the conditional statement. That is, the SVD set at the
end of a conditional statement is the union of the SVD sets from each branch of the conditional
statement. Consider the example of Figure 4. Initially, § = {2} and N = {4, j, k, m}. Statement
C1 is not a TCP because j € N. The SVD variable set S after the execution of the conditional

int i,j,k,m;
shared int x;

C1l: if j > 0 then
C2: i=1+ x;
C3: =i+
C4: else

C5: j=ali] + 1;
Cé6: k=x+1;
CT: m =1+ k;
C8:

Figure 4: A program fragment containing a non TCP conditional statement

statement (i.e., at the beginning of C8)is § = S; U S, where S; is the SVD variable set generated
by statements C2 and C3 and 53 is the SVD variable sets generated by statements C5, C6, and C7.
Given the initial set § = {2}, statements C2 and C3 generate S; = {z,7} and given the initial set
S = {z}, statements C5, C6, and C7 generate S, = {z,k,m}. The set § = §; U Sy = {z,4,k, m}
and N = {j}.

3.3 Iterative Statements

An iterative statement can induce indirect dependencies. In this case, as with conditional state-
ments, any definition occurring within the body of the iterative statement represents a generation
by this statement (of SVD variables). Iterative statements that do not fall into this category require
a more complicated calculation to determine dependencies. Consider the following example:

On entry to statement D1 we have S = {z,y} and N = {g,r, s,t,n}. For the first iteration of
the loop, this is true until statement D7 is executed and generates q. On the second iteration of the
loop, after the execution of statement D4 (and immediately preceding the execution of statement
D7) we have § = {2,y,q,s,t} and N = {r,n}. At this point, we have identified statement D4 as
a TCP statement but have failed to identify statement D2 because ¢t was generated by statement
D6 in the second iteration of the loop. Statement D4 will be identified as a TCP statement in
the third iteration of the loop. In order to identify all TCP statements, the ioop will have to be

scanned until the set of SVD variables remains constant over successive iterations.

shared int x, y;
int g, 1, s, t, n;

Dl:forr=1ton do

D2: if t > n then

D3: t =t - n;

D4: if @ > s then

Ds5: ‘s =38 + t;

De: t=1t+ 13

D7: q=(x*y) + (t-1);
D8:end

Figure 5: A program fragment containing a TCP iterative statement

4 Preprocessing

We use a control flow graph [2] of the program decorated with a single pointer to the convergence
point for a TCP (if there is one in a block), and a flag denoting whether or not a block contains
a TCP. To ensure that each block contains only a single TCP candidate, we include in the set
of block delimiters, for the control flow graph, assignment statements containing array references.
This suffices to ensure a single TCP candidate per block since all TCP candidates are conditional
statements or other parallel program structuring statements (e.g., task_create). We call this control
flow graph the TCP control flow graph for a parallel program.

We use an array, one element for each program variable, to maintain the set of SVD variables.

In the following sections, we use N, E, and V to describe the size of an input problem. Let
N be the number of assignment, conditional, and iterative statements in the program, E be the
number of edges in the modified program flow graph, and V be the number of variables in the
program.

The program flow graph and SVD variable array requires O(N x V) space, and O(N) time to

construct.

5 An Algorithm for locating TCPs

The problem of computing the set of SVD variables for a program is similar to that of constant
propagation [6]. Both problems can be solved using data flow analysis techniques. Wegman and

Zadeck’s version of Kildall’s simple constant algorithm [4], determines the lifetime and extent of

10

constant definitions in a program when simple constant propagation is considered. The algorithm
can be modified to determine the SVD variable sets for a program. Wegman and Zadeck’s algorithm
is a worklist algorithm [3]. We will use this algorithm to illustrate the worklist algorithm technique.

5.1 Simple Constant

Both simple constant and the SVD variable set computation for programs represents the compu-
tation of a property of variables that vary over the program (e.g., a variable is constant or not
constant, a variable is an SVD variable or not an SVD variable, etc.). The desired property of
the variable is either killed, preserved, or generated by a statement. For example, in Figure 6, if
the variable y is constant and variable z is not constant prior to executing statement B, then after
execution, the variable y is no longer constant (i.e., killed by the statement) and the variable z re-
mains not constant (i.e., preserved by the statement). Clearly, the property of individual variables
reaching a statement can effect the resulting property of variables at termination of a statement.
In the previous example, if z had been constant, then y would be constant at the termination
of statement B. Iteration and branching complicates the calculation of a property by introducing
the potential for conflicts between multiple possible paths reaching a statement. Notice that in
Figure 6, statement A has two predecessors due to the control flow of the program. If y is a con-
stant and z is not a constant, then for the first iteration of the loop, z is a constant (using simple
constant propagatioril)Aat the termination of statement A. However for suBsequent iterations, y is
not a constant (due to statement B), and z is not a constant at the termination of statement A.
In simple constant, and for the SVD variable computation, a lattice of possible states for a
variable is used to resolve conflicts in property. Conflicts may arise when a statement has multiple
predecessors for which the property of a variable (or state) is different on termination. Recall that a
lattice is a partially ordered set containing a greatest element T and a least element 1. The elements
of a lattice correspond to states. For simple constant, the elements of the lattice correspond to
the three possible states of interest for a variable, those of no information (T), constant, and not
constant (L). In reality, each possible constant value (of which there are many) must represent a
different state, because if for a particular variéble, two paths leading to a statement are constant
but have different values, then the variable is not constant prior to the execution of the statement.
Figure 7 has been simplified to include only the integer constants. The state lattice is equipped
with an operation U that serves to resolve conflicts between states in the lattice. The rules for L
are given in Figure 7. Rule 1 indicates that if on two paths leading to a statement, the state of a
variable is unknown and any state, then the conflict is resolved by assigning the state of the variable
on entry to the statement to any (e.g., any information about the state of a variable overrides no
information). Returning to Figure 6, for the first iteration of the loop, ¥ is an unknown state for

the first path leading to statement A and is a constant for the second, therefore, it is a constant

11

W

Al x=x+y

Cl ifx<10)

(then) l, (else)

Figure 6: An example control flow graph

(no information)

M ay UT = any

/ / \\ 2) Const L] Const = Const

2 -1 0 1 2

\\/ @ ay U L=_1

— (not constant)

Figure 7: The lattice and associated rules for simple constant

12

on entry to statement A. Rule 2 indicates that if two paths have the same constant state for a
variable, then the variable remains a constant. Finally, rule 3 indicates that if on any path leading
to a statement, a variable has been determined to be not constant (L), the the variable is not
constant on entry to the statement.

A statement level control flow graph of the program suffices to identify statements and the
possible paths leading to them. Each node in the control flow graph has two arrays representing
the state of each variable in the program on entry to the node and on exit. A worklist algorithm
iterates over the nodes of the control flow graph in order to determine the desired property for
variables at each node in the graph. The algorithm begins by adding the root node for the control
flow graph to the worklist and proceeds by removing nodes from the worklist and processing the
nodes until the worklist is empty. Initially, the state of all variables at the entry and exit of each
node are T (no information). When node is removed from the worklist the killed, generated, and
preserved definitions are computed for the node based on the state of incoming variables to the
node. If at any time, the state of a variable is changed by the killed or generated definitions of a
node, all nodes that are immediate successors of the current node, in the control flow graph, are

added to the worklist. These nodes need to (re)processed to reflect changing variable states.

5.2 The SVD Variable Problem

Notice that simple constant requires an intersection over the predecessors of a statement®. This
is illustrated in Figure 7 rules 2 and 3, where all of the predecessor states of a variable must be
the same constant value in order for a variable to be a constant on entry to a statement and if in
any predecessor state a variable is L (i.e., not constant), then the variable state is L (rule 3) on
entry to a statement. In contrast, the SVD variable set computation requires the union over the
predecessors of a statement?. Here, a variable is an SVD variable if it was an SVD variable for
some predecessor. The algorithm described below is identical to Wegman and Zadeck’s except that
the lattice under consideration has been redefined for the SVD variable computation.

For SVD variable set computations, each statement can affect the set of SVD variables, however
only those changes to the set of SVD variables immediately preceding and immediately following
a TCP candidate are of interest. We use the modified program flow graph of the previous section
to represent a program as opposed to a statement level control flow graph. Once a statement has
been determined to be a TCP statement, it is added to the set of TCP statements for the program
and can never be removed. Two arrays of size V are associated with each block — one for the block

entry state of the SVD variable set and one for the block exit state.

3Simple constant is a top down intersection data flow problem.
“The SVD variable problem is a top down union data flow problem

13

(no information)

M ay LT = any

(2) 7 svp L) 7 svb = —svDp

@) ay UL =1

—1 SVD

i (SVD variabie)

Figure 8: The lattice for the SVD variable problem and associated rules

The algorithm uses a lattice containing three states and propagates values in a program flow
graph. The lattice for SVD variables is shown in Figure 8. Notice that we are only interested
in whether or not a variable is an SVD variable (i.e., the value of the variable is not of interest).
This simplifies the lattice. Figure 8 includes the L rules for the lattice. The highest element, T
represents an undetermined state for a variable. That is, if a variable has a value of T, then it is
not known whether or not the variable is in the SVD variable set. The lowest element, 1, represent
the set of SVD variables. The middle element —SV D represents variables that are currently known
not to be in the SVD variable set. Our intuition about the state of variables is the following: If we
have no information about the state of a variable on some path leading to a node, then information
on other paths overrides this lack of information (Figure 8, rule 1). If a variable is not SVD on all
paths leading to a node, then it is not SVD for the node (Figure 8, rule 2). If a variable is found
to be SVD on some path leading to a node, then it is SVD for that node (Figure 8, rule 3).

The algorithm begins by adding the start node of the graph to the worklist of nodes to be
processed. Initially, the value of every variable is T with the exception of the shared variables
which have a value of L. Nodes are removed from the worklist and processed until the list is
empty. The entry state values for each node are the Ll of the exit state values from all predecessor
nodes. The variable flag is used to denote when a TCP conditional (or iterative) statement has
been encountered. The algorithm processes statements as outlined in Section 3. The assignment
statements in the node are evaluated by taking the LI of the state values for all variables on the
right hand side to be the state value for the variable on the left hand side. As each statement
in a node is processed, candidate statements are checked against the current state to determine
whether or not they are TCP statements. Once a statement has been determined to be a TCP

statement, it cannot be removed from the set of TCP statements. When a TCP conditional or

14

iterative statement is encountered, a flag is set signifying that each node encountered between the
node and its continuation must be processed such that any variable appearing on the left hand side
of an assignment statement is an SVD variable. If during processing of a node, the exit state does
not match the entry state (for some variable(s)), then each successor to the node must be added to
~ the worklist for processing. If the value of the entry state does not change for a node, then it need
not be processed. Similarly, if the exit state for a node does not change, then no successor nodes
are added to the worklist.

5.3 Complexity and Correctness

In simple constant, the state of any variable can only change twice (i.e., the lattice value for the
variable can only be lowered twice per block). The same is true for an SVD calculation. Given that
the number of predecessors for a node is I, each node can only appear on the work list a maximum
of 2 XV x I which is O(E x V') for each node. At each node, C x V meet operations are performed,
where C' is a constant describing the number of statements in a block®. The worst case time for
the algorithm is O(N X E x V%) and the space requirement is O(N x V). The lower bound for
runtime for the algorithm is O(N X E x V) in the case that each node appear on the work list a
single time.

In [6], Wegman and Zadeck present formulations of the constant propagation problem with
asymptotically better worst case run times. It is unknown if these methods can be applied to the

SVD variable problem.

6 An Asymptotically Faster Approximation

The problem of constant propagation require more than a simple determination of whether or not
a variable is a constant at a particular point in the program. In addition, the value of the constant
is of interest. The SVD variable set calculation does not require detailed information about values
being computed. Rather, the only information of interest is whether or not a variable is a member
of the SVD variable set. This difference makes it possible to simplify the SVD calculation for a
program by reordering program statements. This reordering can produce a program that computes
incorrect values, with the same statements contained in each block. For example, it is possible to
reorder statements within an iterative statement but it is not possible to move statements into or
out of an iterative construct. Returning to the example of Figure 5, notice that if it were possible
to reorder the statements of the iterative statement body, then a single pass would suffice to collect

SVD variables. This implies that a variable has a single state within the entire loop — that is, it is

®The number of statements in a block must either be a constant when compared to IV, or the program flow graph
can consisi of a single statement per block. ;

15

either an SVD variable or it is not. We know that this is not guaranteed to be the case and this
assumption may result in a potentially larger set of TCP statements than the previous method.
However, we are guaranteed that the set of TCP statements located contains the set of actual TCP
statements. If a variable is generated by any statement within the body of the iterative statement,
then it is generated by the iterative statement. If a variable is killed by a statement within the
body of the iterative statement and is not generated by any other statement within the body of
the iterative statement, then it is killed by the iterative statement.

6.1 The SVD Graph

Figure 9: SVD graph of program fragment in Figure 8.5

Rather than reorder the statements in an iterative construct, the generated and killed dependencies
for the body of the construct can be represented using a shared variable dependency graph (SVD
graph). Figure 9 is the SVD graph for the iterative statement in Figure 5. Notice that ¢ is
dependent on z and y (statement D7), and that ¢ and s are dependent on ¢ (statements D5 and
D6). In the SVD graph, a directed edge from node a to node b exists if variable b depends on
variable a at some time in the body of the iterative statement. In Figure 9, variable ¢ depends on
variables z, y, t, and r. The SVD graph represents the dependencies for the entire loop as opposed
to individual statements of the loop. Dependencies can be placed in the graph during a single
traversal of a section of code. Once an SVD graph has been constructed for a section of code, the
graph is topologically sorted from each node known to represent an SVD variable. The topological

sorting produces the set of SVD variables generated by the code. Similarly, a topological sort can

16

be used to determine the set of SVD variables killed by the section of code. For nested iterative

statements, a single shared variable dependency graph is constructed®.

given: A section of a parallel program p and a input dependence set V.
compute: The shared variable dependence graph for p.

algorithm:

Compute_svd._graph(p, V}):

graph G = EMPTY;

for each statement s of p do

case s of
assignment : given [= lhs(s),
add.node(l, G);
for each v € rhs(s) do
add.directed_edge((v,l), G);

-] O T N

8 for each v € V do
add.directed_edge((v,l), G);
9 conditional : given V, € condition(s), Psrryp 204 Dspapsms
10 G = union_graphs(G, Compute_svd_graph(p, rrvE, V U V,));
11 G = union_graphs(G, Compute_svd_graph(p,,,,s5, V U V));
12 iterative : given v = index(s) and p,,
13 G = union_graphs(G, Compute_svd_graph(p,, VU V,));
14 end case
15 end for
16 return(G);
17 end.

Figure 10: An algorithm for computing the SVD graph for a parallel program

Figure 10 computes the SVD graph for a section of code given a set of variables on which
the entire section is dependent. This set includes the index variables from any enclosing iterative
statements. Function Compute_SVD_graph is initially applied to the body of an iterative statement.
Initially, V' contains only the loop indexing variable. For each assignment statement, an edge is
added to the graph from each variable appearing on the right hand side of the assignment to the
variable appearing on the left hand side (line 7). In addition, the variable on the left hand side is
dependent on each variable in V' and an edge from each variable in V to this variable is added to the
graph (line 8). For a conditional statement, Compute_SVD_graph is called recursively on the body
of each branch of the conditional statement with the variables appearing in the condition added
to the dependent variable set. The results of each of these are added to the existing graph (see
lines 9-11). For an iterative statement, Compute_SVD_graph is called recursively on the body of

®For some programs, this method can approximate the set of program TCPs poorly. An example of the type of
program for which this might happen is a program that consists almost entirely of a single iterative statement.

17

the iterative statement with the index variable added to the dependent variable set. The resulting
graph is added to the existing graph (lines 12-13).

We use this representation to approximate the TCP statements within an iterative statement.
Each iterative statement in a program is preprocessed to yield its associated shared variable depen-
dence graph. During the process of approximating the TCP statements of a program, the shared
variable dependence graph coupled with the current set of shared variable dependent variables is
used to produce the set of shared variable dependent variables for the iterative statement. This
is accomplished by computing a topological sort of the graph starting at each vertex that repre-
sents a known shared dependent variable. Consider again the shared variable dependence graph
in Figure 9. If the set of SVD variables at the beginning of the loop (line D1) is § = {z,y} then
a tdpological sort of the graph starting at the variable @ yields the tree highlighted in Figure 11.
Each of the variables in this tree is added to the shared dependent variable set and deleted from the
graph’. Figure 11 also shows the graph resulting from this deletion. A topological sort of the graph
beginning with y, yields no new shared dependent variables. Finally, n and ¢ are not determined to
be shared dependent by any topological sort on known shared dependent variables. Once the set
of shared dependent variables for a loop has been determined, the set can be used to approximate
the set of TCP statements in the body of a loop.

6.2 The Algorithm

Notice that the SVD graph simplification alleviates the need for a per node copy of the entry and
exit states for variables. This is because each node will now be traversed a single time allowing a
single array to record the current SVD variable set.

Figure 12 approximates the set of TCP statements of a program. Starting at the top of the
program flow graph p (the program begin statement) function Approzimate-TCPs traverses the
entire graph calculating the current state of the program variable (i.e., whether or not they are
shared variable dependent). Each statement in the current block (line 4) is used to update the
state of the program variables. If the statement is an assignment statement (line 6) then if flag
is set (signifying that this statement is enclosed by a conditional or iterative TCP statement) the
left hand side of the assignment is automatically added to the current state as a shared variable
dependent variable. Otherwise function Do_Definition determines whether or not the left hand
side of the assignment represents a generated shared variable dependency (line 24) or a kill of one
(line 25). If the statement is an array assignment statement then it may or may not be a TCP
statement. Hence the statement needs to be checked as to whether or not it is a TCP statement

(line 7) as well as determining whether or not the left hand side of the assignment is a shared

"Fach variable need -only be added to the shared dependent variable set a single time.

18

Topological sort starting at node x. , Reduction of the graph.

Figure 11: Reduction of the graph in Figure 8.9

variable dependent variable (line 8). If the statement is a conditional statement, it is first checked
to determine whether or not it is a TCP statement (line 9). If this is the case, then flag is set
" signifying that all variables appearing on the left hand side of assignments within the body of the
conditional statement are automatically placed in the shared variable dependent set. Whether or
not the statement is a TCP statement, Approzimate.TCPs is called recursively on each branch of
the conditional (lines 10-11), given the state before the conditional, and the two resulting states
are merged (line 12) a TCP statement. If the statement is an iterative statement, whether or
not the statement is a TCP statement must be checked (line 13) and if it is, then flag is set.
Function do_SVD_graph, see Figure 13, is used to determine the change in state due to the loop
being executed and to determine the TCP statements present in the loop given the input state
state (line 14). The current state and the state calculated during the loop are merged at tvhe end
of the loop (line 15). Finally, if the statement is a task_create statement then each thread must be
evaluated using Approzimate_TCPs.

The algorithm of Figure 13 uses the shared variable dependence graph for an iterative state-
ment to determine the correct set of shared variable dependent variables for the loop. This set is
subsequently used to approximate the TCP statements within the loop body. At line 3, if flag has
been set, then a simple topological sort (line 4) of the graph beginning at the index variable for

the loop, then all variables that appear on the left hand side of an assignment in the body of the

19

given: a parallel program flow graph p, a state state, and a conditional flag flag.

compute: approximate the set TCP of TCPs of p.

TCP is a set containing known TCP statements, is global and initially empty. state is an array of flags, one
element for each program variable.

algorithm:

Approximate. TCPs(p, state, flag): returning state;
current_block = p;
while current_block != NULL do
for each s in current_block do
case s of
assignment : if flag then state = add.to_state(lhs(s))
else state = do_definition(s,state, flag);

S G N

7 array-assn : if isTCP(s,state) then TCP = TCP U s;
8 if flag then state = add_to_state(lhs(s))
else state = do_definition(s,state, flag);
9 conditional : if isTCP(s,state) then
TCP =TCPUs;
flag = TRUE;
10 Istate = Approximate TCPs(copy(left_branch), state, flag);
11 rstate = Approximate TCPs(copy(right_branch), state, flag);
12 state = state U rstate U lstate;
13 iterative : if isTCP(s,state) then
TCP =TCPuUs;
flag = TRUE;
14 loop_state = do.svd_graph(copy(loop-body), state, flag);
15 state = state U loop_state;
16 task_create : for each thread in s do ‘
17 Approximate TCPs(copy(thread), shared(state)), flag);
18 otherwise : do.nothing;
end
end
19 - current.block = current_block — continuation;
end
20 return state;
end.

21 do.definition(s,state, flag): returning state;

22 if flag then return(add-to_state(lhs(s)));

23 for each v € rhs(s);

24 if v € state then return(add-to_state(lhs(s));
25 return(remove_from state(lhs(s)));

26 end.

Figure 12: An algorithm for approximating the set of TCP statements for a program

20

given: a parallel program flow graph p, a state state, and a flag flag.

compute: approximate the set TCP of TCPs of p.

TCP is a set containing known TCP statements and is global. state is an array of flags, one element
for each program variable

algorithm:

do_svdgraph(p, state, flag): returning (state);
new_state = create_state();
if flag then
ttree = topological sort_with_delete(G, index_variable(p);
new_state = add_to_state(nodes(ttree));
else
for each dependent variable v in state U new_state do
if v € G then ttree = topological sort_with_delete(G,v);
new_state = add_to_state(nodes(ttree));
for each non-dependent variable v in state U new_state do
10 if v € G then ttree = topological sort_with_delete(G,v);
11 state = remove from. state(nodes(ttree));
12 TCP = do_code(p, state U new_state);
13 return state U new_state;
end.

U W N -~

© 00 N>

14 do_code(p, state): returning T'CP;
TCP = EMPTY;

15 current_block = p;

16 while current_block != NULL do

17 for each s in current_block do
18 case s of
19 array.assn : if isTCP(s,state) then TCP = TCP U s;
20 conditional : if isTCP(s,state) then TCP = TCP U s;
21 iterative : if isTCP(s,state) then TCP = TCP U s;
22 : otherwise : do.nothing;
end
end

23 current_block = current_block — continuation;

end
24 return TCP;

end.

Figure 13: An algorithm for approximating the set of TCP statements given an SVD graph

21

loop will add to the current set of SVD variables (line 5). If flag is true, then this loop is either
enclosed in an outer conditional statement which is a TCP statement or is itself a TCP statement.
If this is not the case then flag is false and the set of SVD variables generated by the loop body
is calculated in lines 6-8. For each variable in the current SVD variable set, the SVD graph is
topologically sorted and the resulting tree of nodes are removed from the SVD graph (lines 6-7).
This continues until no nodes in the SVD variable set remain in the SVD graph. The set of SVD
variables killed by the loop body is determined in lines 9-11. For each variable that is not an SVD
variable the remaining graph is topologically sorted and the resulting tree of nodes removed from
the graph. These nodes are killed by the loop body and are removed from the SVD variable set at
line 11. Line 12 uses function do-code to locate the TCP statements with the loop body given the
set of SVD variables that has just been calculated.

6.3 Complexity and Correctness

The algorithm of Figure 10 requires a single pass over each program loop with the possibility of
V operations at each statement. The worst case runtime for the algorithm is O(N X V') and the
space required is O(N + V). The algorithm of Figure 13 requires a topological sort of the SVD
graph costing O(V') since a variable is only located a single time before it is removed from the
SVD graph. The total time for the algorithm of Figure 13 is (V + n), where n is the size of a loop
body. The algorithm of Figure 12 traverses each node in the flow graph a single time with the
possibility of V' operations at each node. The worst case runtime for this algorithm is O(N x V)
since N XV > N +V, the runtime for the algorithm of Figure 12 . The algorithm requires O(N +V')

space.

7 Procedures and Functions

Procedures and functions complicate the TCP location problem. If a procedure or function can
side effect the state of a program, then it has the possibility of affecting the SVD variable set
immediately after execution of the procedure or function. For example, a function invocation on
the right hand side of an assignment can change the SVD state of variables creating a situation
where the left hand side of the assignment is either generated or killed by the assignment based
on side effects to the SVD variable state as a result of executing the function. If procedures and
functions are not side effect free then they must be treated as inline sections of code at each potential
invocation. For the worklist version of SVD variable approximation, the increase in complexity due
to inline analysis of procedures and functions is O(N x E x V x P) where P is the total number

of procedure and function invocations in the source program.

22

If procedures and functions are side effect free, the SVD graph representation of a function
of procedure can be used to approximate the set of SVD variables introduced by the function or
procedure body. This approximation requires a single pass over the body of each function and
procedure. During the collection of SVD variables for the main program body, the set of SVD
variables at each possible invocation of a procedure or function can be collected. That is, the set
of SVD variables at the entry to a procedure or function is the union of the sets of SVD variables
at each possible invocation of the function or procedure. A single application of the topological
sorting algorithm at the end processing the main program, will suffice to approximate the set of
TCPs in a procedure or function body. This simplification does not increase the complexity of

either SVD variable approximation algorithm.

23

References

[1] Zulah K. F. Eckert. Trace extrapolation for parallel programs on shared memory multiproces-
" sors. In Doctoral Thesis. University of Colorado, 1995.

[2] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems, 9(3):319-349, July
1987.

[3] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland, Inc., New York,
NY, 1977.

[4] G. A. Kildall. A unified approach to global program optimization. In Proceedings of the First
ACM Symposium on Principles of Programming Languages, pages 194-206, October 1993.

[5] D. A. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers Communi-
cations ACM, 29(12):1184-1201, December 1986.

[6] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, 13(3):319-349, July 1991.

24

