Zulah K.F. Eckert and Gary J. Nutt

—_—

SEQUENCE COMPARISON
FOR
PARALLEL EXECUTIONS

CU-CS-726-94 I

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

Sequence Comparison
For
Parallel Executions

CU-CS-726-94 1994

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Sequence Comparison for Parallel Executions

Zulah K. F. Eckert” and Gary J. Nutt
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO, 80309-0430
email: {eckert,nutt} @cs.colorado.edu

Abstract

Event traces are a fundamental tool for studying the performance of multiprocessors. While there
has been considerable development of tools and techniques, there has been surprisingly little theoretical
work on the feasibility and complexity of tools that manipulate and use traces. In many cases, there is no
sound knowledge about whether or not a technique is scalable or even feasible for large program execu-

tions.

When extracting traces from parallel programs, a single data set may produce a set of possible traces due
to program and/or system nondeterminism. Given an extracted trace, one should ask questions such as "is
the trace representative of all possible traces that could have resulted?". In this paper, we focus on the

fundamental problem of comparing two parallel program executions.

Sequence comparison seeks to compute both optimal correspondences and distances between sequences.
Existing sequence comparison techniques are not sufficient to compare traces. Accurate comparison
methods exist however they have quadratic worst case time complexity. This is unreasonable for parallel
program traces due to their potentially large size. While techniques that have a linear worst case time

complexity exist, they produce inaccurate results.

We present an algorithm for corresponding program executions that has linear worst case complexity and
negligible space usage. In previous work, we characterize parallel program behavior with regard to
instrumentation [3]. Our algorithm is based upon this work and relies on information gathered from static
program analysis to facilitate a fast and accurate correspondence. We prove the algorithm correct and
show that is has a linear worst case time complexity. We demonstrate how the correspondence algorithm
can be used to compute distance measures. We discuss the possibility of a reasonable algorithm to com-

pute optimal correspondences between parallel program execution. We conjecture that such algorithm

* Supported by a grant from Convex Computer Corporation

does not exist and provide motivation for our conjecture.

1. Introduction

Event traces are a common tool for capturing the behavior of a program on a specific computer.
Traces may be analyzed to determine the way that the program behaved, or they may be used to charac-
terize program load and used to drive a simulation system. A multiprocessor trace is a composition of a
set of sequential traces for a parallel program; each schedulable unit of computation produces a sequential
trace, and the multiprocessor trace is the result of interleaving the sequential traces in the realtime order

that their respective events occurred.

A multiprocessor trace from a nondeterministic system and/or program represents one possible glo-
bal order on the occurrence of the events; if the program were to be executed repeatedly on the same sys-
tem with the same data set, then one would expect to obtain a set of different traces (reflecting the dif-
ferent order that events occurred due to nondeterminism). In light of these differences, performance spe-
cialists that use traces need to ask several theoretical questions about a trace, for example: is a particular
trace representative of the set? Are the differences among the set of traces significant with regard to the
analysis? What is the complexity of an algorithm to compare two traces from the same program? The
major result from the paper is an algorithm that can compare two different multiprocessor traces in linear

time (in a single pass over each trace) and with negligible space usage.

In this paper, we focus on the more general notion of a program execution. We base our notion of
execution on Lamport’s model of executions (see [8]) and present a detailed version of our model in [3].
Given a parallel program and a set of instructions for the program, an execution is a set of instruction

instances together with a temporal and shared data dependence order.

The goal of this paper is to provide a reasonable algorithm for comparing parallel program execu-
tions. Because of the potentially large size of executions (and traces) of parallel programs, possibly giga-
bytes [1], we contend that any reasonable algorithm for must execute on-the-fly (i.e., linear time and
negligible space usage). For this reason, current sequence analysis techniques cannot be applied to paral-

lel program execution because they yield either inaccurate results or have quadratic execution time.

Executions cannot be corresponded, in a reasonable amount of time and space, based solely on their

information content. We propose that a reasonable algorithm can only be achieved by using information

gathered from program source to a priori correspond executions!. That is, the program can be a valuable

1 It is in general against the grain of sequence comparison to a priori identify a correspondence between sequences. However in this case as

we have pointed out, there is no other reasonable algorithm.

source of information which, as we show, can direct the correspondence of two executions. In this paper,
we present an algorithm for corresponding executions based upon program source information. It should
be noted that this correspondence is not guaranteed to be optimal however the comparison is computed
on-the-fly. The algorithm computes a correspondence between two executions and can be modified to

produce a distance measure.

Given the assumption that parallel programs are structured (i.e., they contain no goto statements and
no fork statements that have no corresponding join) we make two key observations about executions.
First, two executions will exhibit periods of convergence and divergence. During a period of conver-
gence, two executions are identical while during a period of divergence they are disjoint (e.g., share no
common instruction instances). Second, the instructions causing convergence or divergence can be

identified at program source level and later located in any execution. Divergence points were introduced

in [6]2 by Holliday and Ellis and further characterized in [4] [3] where they are referred to as trace change
points. Trace change points (TCPs) are exactly the instructions in a parallel program whose outcome can
change over subsequent runs of the program (on the same data) due to dependence, either direct or
indirect, on shared variable values. Convergence points are a new concept that we introduce in this paper.
A convergence point (CP) is the first instruction that any execution is guaranteed to execution after a
TCP is encountered. Using TCP and CP information, we can locate the portions of any two executions

that are identical and those that are disjoint resulting in a correspondence of the executions.

In this paper, we prove properties of TCPs and CPs that allow the on-the-fly calculation of a
correspondence between program executions. We give the conditions sufficient for any correspondence to
be considered reasonable or correct. We present an algorithm to compute one possible correspondence
and demonstrate the correctness and complexity of the algorithm. We present one possible measure of
difference for parallel program executions and demonstrate the use of the correspondence algorithm in
computing this difference. Finally, we discuss other possible choices of correspondence and the existence
of an algorithm computing an optimal correspondence given the time and space constraint necessary for
parallel program executions. We conjecture that such an algorithm does not exist and justify our particu-

lar choice of correspondence.

2. Background

During the 1960’s sequence comparison was an active area of research for such practical problems

as string correction and editing. During the 1970 and early 80s, sequence comparison found applications

2 Holliday and Ellis refer to divergence points as address change points.

in molecular biology, human speech recognition, encoding information and error checking, and a large
variety of other scientific applications. Today, there is a large body of work in sequence comparison. Hall
and Dowling [5] provide a good overview of sequence comparison in computer science, while Sankoff

and Kruskal [9] provide a more detailed presentation of sequence comparison.

Sequence comparison seeks to compute distance measures and determine optimal correspondences
between sequences. An optimal correspondence for two sequences is one that minimizes a particular dis-
tance. A sequence is an ordered list of elements taken from an alphabet. If two sequences differ, then it is
a result of either substitutions, insertions or deletions, compressions or expansions, or transpositions (or
swaps). A substitution is a replacement of one element for another. Insertions or deletions is simply the
insertion or deletion of an element to or from a sequence. A compression is a replacement of two or more
elements with a single element while an expansion is a replacement of a single element by two or more

elements. A transposition is an interchange of two adjacent elements.
Distance calculations, such as Hamming distance (the number of positions in which two sequences
n
differ) and Euclidean distance ([Ei(ai —b;)?1172) are intended to be used on sequences of the same length.
l:

For both of these calculations, it is assumed that no further correspondence of the sequences need be com-
puted. Knowing the correspondence between two sequences a priori simplifies the comparison process in
that a correspondence identifies comparable elements in two sequences. Given this information, a dis-
tance calculation, such as the two above, can be computed in time linear in the size of the input

sequences. In addition, the space requirements for such a calculation are constant.

Unfortunately, it is possible that either a correspondence is not known a priori (e.g., the sequences
differ in length) or a more accurate distance measure is needed. In either case, a correspondence must be
computed. Levenshtein distances (and other similar distances), are an example of potentially more accu-
rate distance measures. These are the smallest number of substitutions, inserts and deletes require to
transform one sequence into another and the smallest number of insertions and deletions required to
transform one sequence into another. These distance calculations require selection of a correspondence
that minimizes the distance functions and for this reason require quadratic time in the size of the input

sequences and storage of these sequences.

In mathematics, the term distance refers to any function satisfying the following axioms as

presented in [9] :

1. nonnegative property d(a,b) 0 for all aandb
2. zero property d(a,b)=0ifandonlyifa=b
3. symmetry d(a,b) =d(b,a) forallaandb

4. triangle inequality d(a,b) + d(b,c) d(a,c) fora,bandc

Currently, we know of one example of a comparison algorithm that could be directly applied to two

program executions. This is the UNIX" diff file comparison filter. This filter, among other things, pro-

vides a Levenshtein distance between two files. Therefore, if it were possible to store executions on file,

then diff would provide a measure in O(n?) time.

3. Motivation

Our goal is to be able to reasonably compute distances between parallel program executions. Since
parallel program executions have varying size, the problem fits well into the category of sequence com-
parison problems. Unfortunately, the potentially large size of parallel program executions, possibly giga-
bytes, rules out the use of quadratic algorithms. This implies that Levenshtein and other accurate distance
calculation will be unreasonable for use with large parallel program executions. A simple element by ele-
ment correspondence, such as that used in the Euclidean and Hamming distances, will not suffice. Con-
sider two executions of the same program that differ only in the number of iterations of a single loop. A
simple alignment of the two executions will fail to identify that the executions are identical from the end
of the loop to the end of the program. That is, the extra loop iterations will not be treated as an insertion
of extra elements into a sequence. We contend that any reasonable algorithm corresponding parallel pro-

gram executions must correspond these executions in linear time and negligible space.

In this paper, we present a reasonable algorithm for computing a correspondence. An algorithm
choosing an optimal correspondence requires quadratic time as well as enough space to store the execu-
tions. For this reason, we compute a good correspondence. We discuss our choice of correspondence in
Section 8. The algorithm relies on the assumption that every statement has a single entry and exit point.
That is, programs are assumed to be structured. Using this assumptions, statements are pinned together at
their entry and exit points. This pinning results in a correspondence. For example given two executions
in which the outcome of two conditional statements is the same, then the distance between these execu-
tions is zero (for this portion of the executions). If however the outcome of the conditionals differs then
we can pin the entry and exit of the conditional statements together, since in any structured program, they
will be the same statement, and the instruction instances between these statements are measured for
difference. This difference may be in the form of inserts and deletions or a substitution. Similarly if the

outcome of an iterative statement is different in each execution, we choose to correspond iterations in the

*UNIX is a trademark of Bell Laboratories.

order that they occur. This leaves any extra iterations with no correspondence and represents an insertion

or deletion between the two executions.

To illustrate these ideas, consider the example in Figures l1a-d. The parallel program in Figure la
contains two processes that first compete for access to a shared variable and then execute a conditional
statement B4 and an iterative statement C4 that are dependent on this shared value. Figure 1b demon-
strates that this dependency can lead to different possible executions depending on the interleaving of the
shared variable access operations. Notice that in the first execution, the value of j is 2 after statement B3
completes and the conditional statement is true, while the iterative statement C4 iterates a single time. In
the second execution, the value of j is 1 and the condition fails, while the iterative statement C4 iterations
twice. Notice that this results in an increase in the length of the second execution in Figure 1b and
represents an insertion of additional elements. Figure 1c is a demonstration of how we correspond these
executions. First, statements AO-A1l correspond in both executions (1), as with statements A2-A3 (8).
Statements C0-B3 and BO-C3 correspond in both executions (2) because the same statements are being
executed. We correspond the first iteration of the iterative statement C4 (3) and the second check on the

index value (6). However the second iteration of the loop in execution 2 (7) has no correspondence to the

AQ: begin
shared int x = 0;
shared int Ik = 0;

intn=2;
Al: task_create(n)

task 0 task 1

intj=0; int sum = 0;

intk=0; int index = 0;

inti=0;

BO: lock(lk); CO: lock(Ik);
Bl:x=x+1; Cl:x=x+1;
B2:j=x; C2: index = X;
B3: unlock(Ik); ' C3: unlock(lk);
B4:if j == 2 then C4: fori=1to index do
B5: j=j-1; C5: sum =sum +1i;
B6: else
B7: k=k+1;

A2: task_terminate(n);
A3: end;

Figure la. A parallel program.

first execution (and represents an insertion of an additional loop iteration). The instances of the condi-
tional statement B4 correspond in each execution (4) however B5 and B6-B7 do not correspond but must

be compared when calculating a measure (5). We will return to Figure 1d shortly.

There exist other possible choices for correspondence between executions. We contend that our
choice is a good choice in that it is the best correspondence that can be made given the time and space

constraints. We justify our choice of correspondence in Section 8.

Execution 1

A0
Al
Co
BO
C1
C2
C3
Bl
B2
B3
C4
C5
B4
B5
C4
A2
A3

Execution 2

A0
Al
BO
Co
B1
B2
B3
Cl
Cc2
C3
C4
C5
B4
B6
B7
C4
Cs
C4
A2
A3

Figure 1b. Two possible executions.

2

©)

)

5
©
Q)]

®

Execution 1

A0

Execution 2

A0

Figure 1c. Correpondence of executions.

2

- Execution 1

3

Execution 2

A0
Al

\

Cco
C1
Cc2
C3
C4
Cs

Figure 1d. The graph of the execution given in Figure 1b.

4. Preliminaries

Assumptions

It is necessary to make a few assumptions about programs in order to guarantee the correctness of
our algorithm. Assumptions Al and A2 ensure that programs are correct and that they are structured. The
former ensures that programs halt and that we do not have to worry about syntactic difficulties. The latter
ensures that programs do not contain goto statements (i.e., statements have a single entry and exit point).
Assumption A3 allows us to identify parts of an execution as disjoint without having to determine if they
have instructions in common (even though they represent executions of different program statements).
This implies, for example, that two load instructions on the same variable are not equivalent unless they
are instances resulting from the same program statement. While A3 may not be a reasonable assumption
in general, for the purpose of identifying sections of code that are effectively disjoint and need further

comparison, the assumption is reasonable.
AL: All programs are syntactically correct and halt on any possible input data.
A2: Programs are properly structured.

A3: Two instruction instances are equivalent only if they come from the same program statement.

We assume that the execution architecture hardware is a shared memory multiprocessor with

sequential memory consistency3 [7] (e.g., the Convex SPP and the KSR-2). This restriction rules out

nondeterminism due to memory references that are not caused by program nondeterminism.

Our analysis depends on program source. We assume a canonical form of the program in a simple
procedural language modified to include task_create and task_terminate constructs, and lock and unlock
statements for concurrency. This language uses arrays, local and shared variables. All standard arithmetic
operations are available as model, we make no assumptions about function behavior. Any program must
have at most one shared variable or array reference per statement, and hence at most one point in a state-

ment that can effect the execution order. For a detailed discussion of this language see [3].

A program is any sequence of statements with an initial begin statement and a final end statement.
For every task_create statement, there is a corresponding task_terminate statement. For every lock state-

ment, there is a corresponding unlock statement. A program event is an execution instance of one or

3 In a sequentially consistent multiprocessor each processor issues memory requests in the order specified by the executing program and re-

quests from the set of processors are serviced in the order in which they are received (first-in-first-out).

more consecutively executed intermediate code statements (or instructions). Given a fixed data set, each

program has a set of possible executions.

We use Lamport’s theory of concurrent systems [8]. Each event conceptually has a start and finish
time. The relation a —p b implies that event a executes and finishes before event b begins. Therefore,
a can causally affect b, but b cannot affect a. Whenever two events execute concurrently, we have
—(a —7b)A—(b—ra). That is, neither a nor b necessarily completes before the other begins — their
executions overlap. A program execution, P, is a triple P=<E ,—y,—;>where E is a finite set of
events, —7 is the temporal ordering relation over E, and —y is the shared data dependence relation
also defined over E such that —¢ and —;,; are irreflexive partial ordering relations both of which satisfy

the semantics of the language. For a detailed discussion of the program execution axioms see [3].

Given the intermediate code language, it is possible that more than one thread of execution exists at
a given time. We call these threads of execution processes and denote the set of events for a particular
process p with E,. We use the notation task_create(E) to denote the set of task_create instruction

instances in E (we use similar notion for task_terminate instruction instances).

Graph of an Execution

For the purposes of comparing executions, we propose simplifying a program execution by remov-
ing parallel thread interaction. Consider the example in Figures 1a-d. For the two executions in Figure 1b
we can remove parallel thread interaction resulting the comparison in Figure 1d. Here, The processes
associated with tasks 1 and 2 in each execution are corresponded (2) and the main thread of execution (1
and 3) are corresponded. In this example, statements BO-B4 correspond in each execution because each
execution executes these statements with the same outcome. The first difference appears after the condi-
tion at B4 branches true or false. The highlighted box signifies that statements B5 in execution 1 and B6
and B7 in execution 2 are different and must be measured for difference. Similarly, the dark highlighted
box in execution 2 with corresponding empty highlighted box in execution 1, signifies that there are no

corresponding statements for this extra iteration. Notice that information about interleaving is irrelevant.

Intuitively removing parallel thread interaction from an execution accentuates the structure of the
execution. Thread interaction serves only as a record of the cause (an interleaving of instruction
instances) of a change in the execution path. Since we are interested only in the actual changes that occur

from one execution to another, this record of the causes of change is not important. Removing all parallel

10

thread interaction, from an execution, results in the graph4 of an execution.

Definition 1: Given a program execution P=<E ,—p,—>,;> the graph of P,

Py=<E,—T,,—>54,> is the result of the following transformation on P :
For each relation —7 and —;4 perform the following resulting in —7, and —,4, respectively,

for each a,b € E -(task_terminate(E)Utask_create(E)) such that a —7b, if aeP;(E)
and be P;(E) and i # j, remove (a,b) from —7 and if a4 b then remove (a,b)

from —g.

Definition 1 simply removes all members of the temporal and shared data dependence relations that relate
events from different threads of execution. For the remainder of this chapter, we use the term execution

to refer to the graph of an execution.

Paths in an Execution

We define the notion of a path in a program execution. Paths will play an important role in formal
discussions of executions. Intuitively, a path represents as subset of an execution that is contiguous in
time (i.e., a subsequence of an execution). For example, execution 1 in Figure 1d contains the a path

from CO to C2.

4 We call this transformed execution the graph of an execution because it accentuates the structure of an execution, which is a graphical

structure.

11

Definition 2: Given a program execution P=<E,—7p,—,> a path of P is a triple
p(h.t)=<E(h I Ty sd g such that

1. E} ;) is a non empty subset of E,

2. —Ton is a subset of —7,

3.and —yq4,, , is a subset of —4.

such that the following are true for any a,be E ¢,),

4.a—7b ifand only if a —>7, b and a =44 b if and only if a =4, b,

5.anda—r, ¢ and c —>7, b ifand only if ce E 1),
with the following conditions on 4 and ¢,

6. he E 3) and there does not exist a € Ey, ;y such thata —7, h,

7.and t€ E;, ;) and there does not exist a € E (, ;) such that f -7, a.

h and ¢t are the head and tail respectively of the path. A prefix of an execution is any valid path such that &
is the initial instruction for the program. Likewise, a suffix of a program execution is any valid path such
that ¢ is the final instruction for the program. In Figure 1d, execution 1 has the path p(A0,B1) which is a
prefix and the path p(C2,A3) which is a suffix.

We define two paths to be equivalent whenever they are the same path and are disjoint whenever
they have no equivalent instruction instances in common (where equivalence for instruction instances is
defined by assumption A3). In Figure 1d, the paths p(B0,B4) are equivalent in both executions. The
paths p(B0,A2) in execution 1 and p(B0,A2) in execution 2 are not equivalent and the paths p(B1,B5) in

executions 1 and p(B6,B7) in execution 2 are disjoint.

12

Definition 3. Two paths p(ht)=<E W T sd) and
P (2t 2)=<E (h,,4) Ty, p>sd)™
1) are equivalent, denoted p (h ,t1) = p (hp,t,) whenever
E (hy1) = E (o)
Ty = Ty
and —y by = _>sd<h,,:z>'
2) are disjoint, whenever E ;) N E (4, 1,y = D.
n

The successor of an instruction instance e in an execution is the instruction instance that immediately fol-
lows e in time (in the execution). Likewise, the predecessor is an instruction instance e is the instruction
instance that immediately preceded the instruction instance in time (in the execution). In Figure 1d, the
successor of instruction instance B5 in execution 1 is instruction instance A2 and the predecessor of

instruction instance B3 is instruction instance B4.

Definition 4: Given an execution P =<FE ,—p,—; > for any instruction instance e,

1) the successor of e is an instruction instance s such that there exists a path

ple,s)=<E(e SY Ty sdes” such that E(e $) = {e,s}.

2) the predecessor of e is an instruction instance p such that there exists a path
PP .e)=<E(p ¢)s=T (. sdpe> Such that E e oy = {p,e}.
|

5. Corresponding Executions

Convergence and Divergence in Executions

Our goal is to correspond executions. That is, we want to pin two executions in such a way as to
identify their differences. Executions have periods of convergence, at which they are equivalent (i.e.,
they execute the same code), and of divergence, at which they are disjoint (i.e., they execute completely
different sections of code). Returning to the example of Figure 1d, the highlighted areas represent periods
of divergence between the two example executions. Execution 1 executes statement BS while execution 2
executes statements B6 and B7, and execution 2 executes a second iteration of the loop while execution 1

executes no additional statements. We formally define divergence and convergence for executions in

13

Definition 5.

Definition 5: Given two program executions P 1=<E {,—>7,—>sq,> and P =<E,—1,,—>:4,>

with two fixed but arbitrary paths p (A1t)=<E @) =T14 ,psdp.,> and

p(hotr)=<E (2t)Ty sd 1) (respectively),

1) there is a divergence point instance d if p (h1,t1) # p (hy,t2), the predecessor of 1 is
1, the predecessor of ¢, is ¢, the paths p (hi,c1) and p (h,,c) are equivalent, and
ci1=cy=d.

2) there is a convergence point instance d if p (h1,t1) # p (ho,t;) and they are not dis-
joint, the predecessor of 1 is c1, the predecessor of ¢, is ¢, the paths p (h,c1) and

p (hg,c) are disjoint, and ¢ (=t y=d .

Intuitively a divergence point occurs whenever two paths are equivalent up to some instruction instance
and then execute a different instruction instances or have a different outcome on the same instruction
instance. A convergence point occurs whenever two paths are disjoint, or completely different, up to

some instruction instance and then execute an instance of the same instruction with the same outcome.

The notions of divergence and convergence in executions are critical to our ability to correspond
executions with reasonable time and space usage. Divergence points for executions of parallel programs
were first characterized in [6] and further studied in [3] [4] and are called trace change points. A TCP is
any program statement or instruction whose outcome is dependent on the value of a shared variable,
either directly or indirectly. Notice that statement B4 in Figure la is dependent on the value of j which is
dependent on the value of shared variable x making statement B4 a TCP. Similarly, statements BO, CO,
and C4 are TCPs. TCPs consist of program conditional, iterative, lock, array reference, and pointer index-
ing statements whose outcome depends on the value of a shared variable. In addition, the program begin

statement and any task_create statements are TCPs.

The problem of detecting a TCP instance in an execution is actually that of locating the TCP
instance and determining if divergence has occurred. We use the notation outcome (P ,s) to denote the
outcome of instruction instance s in execution P. Notice that array and pointer reference TCPs behave
differently than the conditional (and iterative) TCPs. This is because an instruction instance can cause

divergence by having a different outcome and for the same instruction instance. While conditional (and

14

iterative) TCPs will diverge due to executing a different instruction instance after a comparison is made.
Not surprisingly, conditional TCPs can be easily located and their outcome easily determined. Array and
pointer references pose a problem and our solution is to conceptually view such a TCP as a pair of
instructions: a no-op instruction marking the TCP, and the actual reference instruction. Even though this
marker does not exist in any real executions, we assume that it does. This assumption guarantees that a
period of divergence is caused by a single TCP and that convergence will occur before the next period of

divergence can begin. In Section 3, we show how this marker manifests itself in our algorithm.

We use the notation TCP (E) to denote the set of TCP instances for an event set E. It will be
necessary to refer to the sequence of TCPs executed by a program during a particular execution. We use
the notion of the TCP successor of a TCP instance and TCP predecessor of a TCP instance in referring to
this sequence. The TCP successor (and predecessor) of a TCP instance is the next (previous) TCP

instance that occurs in the graph of a program execution. More formally,

Definition 6: Given a program execution P=<FE,—r,—,;> for each instruction instance
a€TCP (E) there exist s,de TCP (E), the TCP successor and TCP predecessor of a respec-

tively, such that

Either a is the initial statement or there exists a path

p(d.a)=<E(d AP T gay ?sdgn” such (E(d,a)—{d ,a)NTCP(E)= and

Either a is the final statement or there exists a path p (a,5)=<E (4 5, =T, sd sy
such (E , y—{a,s DNTCP (E)= and

We extend the work of [6] and [3] by defining the set of convergence points (CPs) for a parallel pro-
gram execution. A CP is defined to be the first instruction or statement that any program execution must
execute after a period of divergence. Lemma 7 below demonstrates the convergence points exist and
shows that convergence points are continuations of either conditional statements, iterative statements,
lock statements, or array and pointer reference statements. We use the notation CP (E) to denote the set
of CP instances in an event set E. We use the notation TCP (P) and CP (P) to denote the set of TCPs

and CPs (respectively) for program P .

15

Lemma 7: Any program P with reduced TCP set T = TCP (P) - {task_create, begin} has a set
of convergence points (as defined in Definition 6), denoted CP (P) each of which is either the
continuation of an iterative, conditional, Iock, or array reference statement.

Proof: With the task_terminate and end statements removed from the set of TCPs of a program, the
set of TCPs are either array reference, iterative, lock, or conditional statements. Hence, it suffices to

show that there is a CP for each. There are four cases:

1. Without loss of generality, consider the TCP containing statement afi] = ¢c. Any execution instance
of this statement will end with an instance of the instruction ld @a+i which represents a possible
point of divergence for any two executions. Any execution in which the statement is executed must
execute the continuation of the array reference statement (the statement immediately following it)
immediately following the lId instruction. If this statement is not itself an array reference TCP, then is
a CP. A special case occurs in the event that the continuation of an array reference TCP is itself an
array reference TCP. Since the program cannot have an infinite string of array references that are
TCPs, the CP for each TCP in this sequence is the first statement in the sequence that is not and array

reference TCP.
2. Without loss of generality, consider an TCP containing statement

if (¢) then
a
else

b

Any two executions in which this statement was executed must have the branch on ¢ in common
and therefore be subject to a possible divergence. Any two execution where the outcome of ¢ is
different diverge (since a and b are disjoint by Assumption 3) must execute d immediately fol-
lowing the execution of either a or b since by Assumption 1, the program is structured. Therefore
the continuation of a conditional statement, 4, is a CP. Once again, there is a special case when-
ever the continuation for a conditional statement is an array reference TCP. In this case, the con-

tinuation for the conditional statement is the continuation of the array reference TCP (see Case

1).

16

3. Because a lock statement does not change the program flow of control, it follows from Case 1

that each lock statement has a CP.

4. Because an iterative statement a repetitive branching construct, Case 3 follows from Case 2.

The intuition for this proof is that given the assumption that programs are structured, any statement (con-
ditional, iterative, lock, or referencing) has single entry and exit point. Therefore each statement has a sin-

gle continuation and this point is a CP if the statement was itself a TCP.

For structuring purposes, we add the program end statement and all task_terminate statements to the

set of CPs for a program.

Definition 8: The end statement and any task_terminate are members of the set of convergence
points for a program. These convergence points correspond to the begin statement TCP and to
the appropriate task_create statement (respectively).

Given Lemma 7 and Definition 8, it follows that there exists a correspondence between program TCPs

and CPs such that for every program TCP, there exists a corresponding program CP.

Corollary 9: For any program P, there exists a correspondence between the sets TCP (P) and
CP (P) and this correspondence is an onto mapping.

Notice that we cannot claim that this mapping is one-to-one since some TCPs will share the same CPs.
For example, nested conditional statements will share the same TCP. Notice that it is also possible that a

CP is itself a TCP.

While Lemma 7 and Definition 8 identify the correspondence between program TCP and CP pairs,

o Tem tha

it will be necessary to locate these instance pairs in an execution. In particular, we want to find the correc

=%

CP instance for every TCP instance. Consider the example of a conditional statement containing a TCP.
If the TCP is the conditional instruction itself, then we do not want to match, or correspond, an instance

of this instruction with an instance of its CP that is a result of a later execution of the conditional

17

statement. Simply put, we want to match the correct TCP and CP instances. Lemma 10 demonstrates that
there exists a path between a TCP instance and its corresponding CP instance and that there are no further

instances of either the CP or TCP on the path. This is a direct result of assumption 2.

Lemma 19: Given a program execution P =<E ,—7,—,;> and given an s € TCP (E) there ex-
ists a ceCP(E) if s and ¢ comrespond, then there exists a path
P (8,¢)=<E (5 0T .p~sdy > and there does not exist s’ € TCP (E (s)) such that s and s
are instances of the same program TCP nor does there exist ¢’ € TCP (E (s ,¢)) such that ¢’ and ¢
are instances of the same program CP.

Proof: The lemma is trivially true for the program begin and end TCP and CP pair (since there is only
a single instance of each). We demonstrate that such a path exists for the remaining TCP and CP pairs
and that the path is the shortest path between a TCP instance, call this instance s, and an instance of
its corresponding CP, call this instance ¢. Let p (5,¢)=<E (5 ¢}y =T . ~>sd.,> be this path. Sup-
pose that the lemma is not true. Then there must be either an instance of the TCP that s is an instance
of, call this instance s, or an instance of the CP that ¢ is an instance of, call this instance ¢’, or both
on the path from s to ¢. Clearly if ¢” exists and ¢’ € E 5 .y then p (s ,¢) is not the shortest path from
s to an instance of its CP (p (s,¢”) is the shortest path). Consider that s’ € E (s c)- If this is the case
then the program in question violates Assumption 2 since there is no way to reach s” before ¢ except
through the use of a goto statement. Hence if p (s ,c) is the shortest path from s to an instance of its
corresponding CP, s” cannot be on the path. Finally, that ¢ is the corresponding CP instance for TCP
instance s follows from Assumption 2.

a

Notice that the Lemma implies not only that we can determine the correct TCP and CP instance
correspondence in an execution, but also that once a TCP instance is located, it is a simple matter to
locate its matching CP instance. In fact, it is simply a matter of scanning the execution for the next

instance of the CP for this TCP. Corollary 11 follows directly from Lemma 10 and Corollary 9.

18

Corollary 11: For any execution of a program there is a correspondence between the TCP in-
stances and CP instances and this correspondence is an onto mapping.

Corollary 11 follows from Lemma 10.

The Behavior of Executions

Thus far, we defined TCP and CPs in parallel programs. Instances of these points represent diver-
gent and convergent points in actual executions. We have demonstrated that a logical correspondence
between TCP and CP exists and that corresponding instance pairs can be easily located. Next we turn our
attention to the behavior of convergence and divergence in executions. First, in Lemma 12, we demon-
strate that whenever two executions have a TCP instance in common and the outcome of those instances
are the same, then the paths (in each execution) from the TCP instance to its TCP successor are

equivalent.

Lemma 12: Given two program executions P =<E {,—71,,—¢,> and P =<E},—71,,~,>
for any TCP instance a€ TCP (E{)NTCP (E,) with TCP successor s1€ TCP(E) and
s,€ TCP (E ;) respectively. If outcome (P 1,a)=outcome (P y,a) then p (a ,s1)=p(a,s))

|

Proof: There are no TCPs other than a and s in either path since if there is an embedded TCP, s is
not the successor TCP for a. Given this, there can be no change in execution path from @ to s in
either execution. Hence outcome (P 1,a)=outcome (P ,a) implies that p (a ,s {)=p (a,s7).

O

To see how Lemma 12 works, consider the example of Figure 1d. The paths P(B0,B4) in each execution
are an example of equivalent paths where the head of the path, B0, is a TCP which has the same outcome
in each execution, and the tail of the path is the TCP successor of BO, B4.

A similar result for divergence shows that if two executions have a TCP instance in common and
the outcome of the instances are different in each execution, then the path from the TCP instance to the
corresponding CP instance (in each execution) will be disjoint with the exception of the CP and TCP

instances themselves.

19

Lemma 13: Given two program executions P 1=<Ej,—7,—¢,> and Py=<E),—=1,,—>:4,>
for any TCP instance a€ TCP (E{)NTCP (E,) and corresponding CP c¢{€E{ and c,eE,
respectively, if outcome (P 1,a)#outcome (Py,a) then for p(a,cy) and p(a,cy),
E (4 c)NE (4 ¢,=a ¢ Where ¢ 1=Co=C.

Proof: Assume that the lemma is false. First it follows from Lemma 10 that ¢ {=c (they are instances
of the same instruction). It must be the case that there is another CP on paths p (a,c 1) and p (a ,c7)
that both paths have in common. Then by Lemma 10, ¢ is not the corresponding CP for TCP a .

a

To see how Lemma 13 works, the path p(B4,A2) in each execution (in the example of Figure 1d) is an
example of a path that begins with a TCP, for which the outcome is different in each execution, and ends
with a convergence point (A2). Notice that if we remove the head and tail of this path in each execution

we have the paths p(B5,B5) in execution 1 and p(B6,B7) in execution 2 which are disjoint.

Finally it follows that whenever two executions have a CP instance in common, then the paths from

that CP to the next TCP in each execution are equivalent.

Corollary 14: Given two executions P |=<E |,—7,,—>4,> and P y=<E,—7,,—>s4,> if there
exists a path in Py, pi(h,0)=<E@})—>T4,Psde,> and a path in Py,
P2l t)=<E (} 1),=Tg s sdw, > @nd there does not exist an i1€ E (j 1),NE (4 1), such that if
h —>T(h,,)[i and ih STyt Or h —>T(h,t)2i and ih DTt then p ((h ,t)=po(h t).

We now have the two critical pieces for corresponding executions. First, we know that TCP and CP
instance pairs exist and that they can be located. This implies among other things that we can traverse an
execution and know "where we are" at all times. Second, we know that the behavior of executions is such
that they will exhibit periods of convergence (during which they are equivalent) and divergence (during
which they are disjoint) and nothing more. Given this, it remains to be shown that we can traverse two
executions making the correct correspondence of TCP instances and CP instances between the executions

(i.e., that we can pin the executions together).

20

Correspondence

Before any results about corresponding executions can be proved, we need a formal notion of
correspondence. Our goal is to use correspondence to efficiently and correctly compare executions.
Therefore, any reasonable correspondence must adhere to the following three rules. First, Corollary 11
implies that any reasonable correspondence will be an onto mapping between TCP and CP instances.
Second, whenever two event instances are corresponded, they should be instances of the same instruction.

Finally, a correspondence must obey the temporal and shared data dependence relations for the execution.

Definition 15: Given two executions P1=<E|,—71,—>¢,> and Py=<E,—1,,~>,> (from
the same program) with common TCP and CP sets spcp=TCP (E{)NTCP(E;) and
scp=CP (E)NCP (E,). A correspondence of those executions M(P {,P »), is a mapping from

Stcp\IScp to Stcp\Uscp such that:
1) M is onto.

2) whenever M maps one instruction instance to another, these instructions are an in-

stance of the same instruction.

3)if MmapsaeE tobeEyand ce Eqto de E, then a—7,c implies that b —r,d

and a —s4,c implies that b —g4,d.

The Theorem of Correspondence

Given Definition 15, the Theorem of Correspondence (below) demonstrates that a correspondence
between executions adhering to Definition 15 does exist. Lemma 16 is the base case for the Theorem of
Correspondence. The base case consists of proving that two arbitrary executions can be corresponded at
the first level of nesting of task_create/task_terminate statements. Simply put, we can correspond itera-
tive statements, array and pointer references, and conditional statements, but we can only pin the outside

of task_create/task_terminate statements (i.e., we cannot pin the contents of these statements).

21

Lemma 16: Given any two executions of the same program there exists a correspondence M of
the executions up to but not including the body of task_create/task_terminate statement in-
stances.

n

Proof: We prove Lemma 16 by induction on the number of TCP instances that two executions have

in common.

Base Case: Every execution has the begin statement in common. If the program contains no other
TCPs, then by Lemmas 10 and 12 it is guaranteed that the end statement will be located and that the
correspondence includes only the begin and end statements from each execution. Clearly this

correspondence fulfills conditions 1-3 of Definition 15.

Induction ~ Hypothesis: Given fixed but arbitrary executions P (=<E,—r,—>y,> and
Py=<E),—T,,—>4,>, assume that there exists a correspondence My corresponding prefixes
pi(begin sy)=<E,1,-7,,~5d,,> and po(begin s;)=<E, 27T, sd,,> and given
Sk =(TCP (E,)NTCP (E,))I(CP (E,)NCP (Ep»3)), s € Sk and § (bv=k.

Induction Step: There are three possible cases,

1. sp.€ (CP (E,1)NCP (Ep3)). There are two cases. First, if s is the instance of the program end
statement, the Mg corresponds the two executions P and P 5. Otherwise, given the TCP successor
of sy, call these TCPs §1 441 and s, respectively, Lemma 14 demonstrates that there exist
equivalent paths p1(Sx,S1x+1) and po(sg.S2k+1) and that 51 ;41=s2%4+1. This implies that there

exists correspondence My =My \Us| k11,5241 corresponding prefixes p(begin,sq+;) and

pa(begin s 11).

2. 5;,€(TCP (E,)NTCP (E),»)) and is an instance of a task_create statement. Recall that M is a
correspondence that corresponds E; and FE, but does not correspond the body of
task_create/task_terminate statements. It is reasonable then to assume that the paths from sy, to its
corresponding CP, call these events ¢ ;41 and ¢ 441 respectively, in each executions are disjoint
(excluding s and ¢4 from the paths). Lemma 10 ensures that ¢ 1 ;41 and ¢ ;41 can be located and

that ¢ g4+1=C2x+1. Therefore we have correspondence My =My UC|x11,C2x+1 corresponding

prefixes p {(begin ,c | x+1) and p o(begin sy +1).

22

3. 5,€(TCP(E, 1)NTCP (E},2)) (but is not an instance of a task_create statement). There are two
possible cases depending upon the outcome of s; in each execution. First, consider the case where
Outcome(P 1,5) = Outcome(P 5,5;). Then given the TCP successor of sy, call these TCPs 51 ;41
and §2k+1 respectively, Lemma 12 demonstrates that there exist equivalent paths p 1(sg,514+1) and
Po(Sk.Sok+1) and that s;;41=s2441. This implies that there exists correspondence
My +1=My US| x 11,82k +1 corresponding prefixes p 1(begin ,s1x4+1) and po(begin ,59541). Next,
consider the case where Outcome(P 1,5;) # Outcome(P,,5;). Then by Lemma 13 there exists
cr+1€(CP (E l)mCP (E7) and that given the predecessor of ¢x41 in Eq, call this event ¢y, the
predecessor of ¢y 41 in E», call this event ¢ 1, the successor of s; in E'y, call this event 1, , and the
successor of s in E, call this event s, then there exist paths p (s 1,,¢1,) and p (s, ,¢2p) that
are disjoint. Since there can be no correspondence between disjoint paths we have correspondence

My +1=Mg US| x +1,82x+1 corresponding prefixes p {(begin ,s 1 x41) and p 2(begin s +1).

Given Assumption 1, there exists a correspondence M between any two program executions (of the
same program on the same data set) that corresponds the executions up to the body of
task_create/task_terminate statement instances.

d

The Theorem of Correspondence is proved using induction on the nesting level of

task_create/task_terminate statements using Lemma 16 as the base case.

Theorem of Correspondence: Given any two executions of the same program there exists a
correspondence M of the executions.

Proof: We prove the theorem by induction on the task_create/task_terminate nesting level of the

executions.
Base Case: The basis for the induction is Lemma 16.

Induction Hypothesis: Given fixed but arbitrary executions P=<FE1{,—71,—y,> and
Po=<E2,~T,,~54,> with common TCP and CP instances
S=(TCP (E)NTCP (E»))}(CP (E{NCP (E,)). For the induction hypothesis assume that there

23

exists Mg corresponding P | and P ; up to but not including the body of task_create/task_terminate

instances at nesting level k.

Induction Step: Without loss of generality, choose a task_create/task_terminate instance pair
S1x€SNE and c¢1 x€SNE] such that 51 is a task_create instance at nesting level k and ¢ 1
the correspoinding task_terminate instance at nesting level k. Then by the induction hypothesis
there exiét So k€ SNE, and Cok€ S NE; such that (s kS 2k)e My and (¢ 1,ksC2k)e My . There
exist paths p1(s1x,c14) and po(s2x,c2x) Which contain n threads between which there exists a

one-to-one mapping. Lemma 16 implies that for each thread there is a correspondence up to nesting
n n

level one, or ‘Ulmi. This implies that the correspondence defined by My U(Ulmi) corresponds E
1= =

and E, up to task_create/task_terminate instances at nesting level k+1. Therefore, there exists a
correspondence M between any two executions of the same program (on the same data sets).

d

6. An Algorithm for Correspondencing Executions

In this section we present an algorithm for corresponding two program executions based upon the
Theorem of Correspondence. The algorithm takes as input a parallel program with its TCP and CP sets
already computed and two executions from that program. The algorithm uses a preprocessing phase and a
correspondence phase. In the preprocessing phase, the program is transformed into an intermediate form
that will, during the comparison phase, serve to direct the traversal of the executions. In this section, we
present the correspondence algorithm in the form of a function that returns a correspondence. Naturally,
the correspondence itself can require a large amount of space for storage. In reality, the correspondence
algorithm should be coupled with an algorithm computing some measure of difference for the executions

and the correspondence should not be stored. We discuss this coupling in the next section.

6.1. The Preprocessing Phase

Computing the set of program TCP and CPs

The problem of computing TCPs is one that requires static program analysis to determine possible
program behavior during runtime. Like may such problems, it is undecidable. In [2] we outline a global
analysis algorithm for approximating TCPs based on a constant propagation algorithm in [10]. In addi-

tion, we present a simple graphical representation of iterative statements that yields an asymptotically

24

faster algorithm. Both algorithms provide a conservative estimate of the set of program TCPs (i.e., a set
is computed that is guaranteed to contain all possible program TCPs but which might also contain some

non-TCP statements).

The size of input to the two algorithms is given by N, E, and V. Given a program flow graph, N is
the number of nodes and E the number of edges. V is the number of program variables. The global
analysis algorithm has runtime O (NXE XV?2) and O (NXV) space usage. The faster algorithm has an
O (NXV) runtime and O (N+V') space usage.

Given the set of TCPs for a program, computing the set of CPs can be accomplished with a simple
linear time stack based algorithm at compile time. Either of the algorithms for computing TCPs can be
modified to collect CPs while locating TCPs with no change to their time bounds. Both of these sets are

fixed for any program and need only be calculated once.

Computation of both of these sets is out of the scope of this paper. The reader is referred to [2] for

algorithms to compute these sets.

The TCP Basic Block Flow Graph

Holliday and Ellis first introduced a variant of the basic block flow graph intermediate form for a
program, the address basic block flow graph (ABB flow graph), based upon TCPs [6]. In the preprocess-
ing phase of the algorithm the program, together with its TCP and CP sets, is transformed into the TCP
basic block flow graph (TBB flow graph) of the program. The TBB flow graph is itself a variation of the
ABB flow graph.

Recall that a basic block is a section of code that has a single entry and exit point. Basic blocks are
groupings of logically indivisible statements. Basic blocks can be used to form a basic block flow graph
of a program. A TCP basic block (TBB) represents a section of code that produces a logically indivisible
execution outcome. For example, a basic block would have embedded array references and a TBB would

have a single array reference (that is a TCP) per block. The TBB flow graph is a flow graph in which the

nodes of the graph are the TBBs of the program. The conditions for delimiting a TBB? are:

1) Each block contains at most a single TCP.

2) Each block begins either with a CP or the target of a branch statement. The exception is the

5 There are several differences between our TBB flow graph and the ABB flow graph of introduced by Holliday and Ellis [6]. Most not-

able is the addition of CP information and CPs as delimiters for ABBs as well as the requirement that a single TCP occupy each block.

25

first block containing the begin statement.

3) Each block ends with an TCP, a branching instruction whose target is a CP, or an instruction

immediately preceding a CP. The exception is the last block containing the end statement.

In addition, we add a no-op instruction to each block containing an array reference or pointer reference

TCP immediately preceding the reference instruction.

The TBB flow graph will serve to direct the rapid traversal of the executions being compared. In
order to facilitate this process, each TBB is decorated with additional information. Associated with each
block is an instruction count for the block (not including any no-op instructions), a flag denoting whether
or not the block contains a TCP, a flag denoting whether or not the block contains a CP, and a pointer to

the block containing the CP corresponding to the TCP in this block (if there is a TCP in this block).

This information is designed to facilitate rapid traversal of groups instruction instances that are
instances of a particular TBB. That is, consider a TBB b with instruction count n, and consider an
instance of block b in an execution. If it has been determined that the information in the block instance is
uninteresting, then it can be rapidly traversed by moving forward n instruction instances in the execution
or if the block needs to be traversed to the end, then n-1 instruction instances are traversed. Given
Lemma 12, whenever two equivalent TCP instances with the same outcome are located in the executions
being compared, the executions are equivalent up to the next TCP. That is, the instruction instances up to
the next TCP are uninteresting and can be rapidly traversed using the TBB flow graph by traversing
blocks until a block with a TCP is located, using the TCP flag, and moving to the end of that block.
Corollary 14 implies that a similar traversal will work for traversing from a CP instance to a TCP
instance. Finally, disjoint sections of executions can be rapidly traversed independently by traversing an
execution until the block containing the CP, for the TCP instance at the head of the disjoint section, is
located. The CP pointer stored in each block is used to locate the correct block. In fact, the only associa-

tion of TCP and CP pairs is through this pointer.

We forgo an algorithm to compute the TBB flow graph of a program and point out that it is a simple
matter to construct this data structure given a program and the set of TCP and corresponding CPs for the

program. The time to construct this data structure is O(/) where [is the length of the input program.

6.2. The Comparison Phase

Algorithm 2 below, computes a correspondence M for two program executions. This correspon-

dence is the one discussed in the previous section. The algorithm relies on the assumption that an

26

execution is in graph form rather than interleaved.

given: Executions E 1 and E, and the TBB flow graph for a program prpp

compute: M — the correspondence of E | and E

algorithm:
Compute_M(E |, Eo, prB):
1 record State = {
boolean advance = TRUE;
instruction * §1,59;
tbb * b1,by;
b

correspondence M ;

2 while not end(E ;) or end(E») do
3 if State .advance then
State = get_TCP(E 1, E, prp, State),

4 M=M v {s,s2};
5 if (s 1=5, == task_create) then
6 for each process pair p do
7 M =M Compute M(E1(p),E2(p).pre (P));
8 State = get_CP(Eq, E,,State),
9 M=MU{S1982};
10 if outcome(E 1,5 1) != outcome(E 5,5 7) then
11 State = get_CP(Eq, E,, State);
12 M=MU{81,S2};

end while
13 return M ;

end.

Algorithm 1. Compute a correspondence M given two executions and a program
in TBB form.

The correspondence algorithm is a recursive algorithm. Three data structures are used in making the
correspondence. First the TBB flow graph of the program prpp is used to direct the traversal of each exe-
cution. Second (line 1) a data structure sufficient to represent the correspondence function M is used. In
general, the correspondence and a measurement should be computed on-the-fly and the correspondence
itself need not be stored. Here we demonstrate that the correspondence can be calculated. Finally, the
state of the executions and the current position in the TBB flow graph if each execution is retained in the
record State . This record maintains a pointer to the current location in each execution, a pointer to the
corresponding locations in the TBB flow graph for each execution, and a flag with which to determine

whether or not the executions need to be advanced to locate the next TCP instruction.

27

The key to this algorithm is using the TBB flow graph of the program to direct the traversal of the
executions. Because we have instruction count for each block we know exactly how many instructions to
pass over in each execution in order to arrive at the next TCP instances. This is also the case when locat-
ing CP instances. In this manner, the TBB flow graph serves as a road map for traversing the traces. We
use two functions to accomplish this traversal: ger TCP and get CP. These functions return the current
state of the correspondence in the record State . Recall that the TBB has a single TCP per block. The
comparison begins at the first block in the program, containing the begin statement, and uses the informa-
tion in this block to traverse to the next TCP instances in both executions. Here, the executions are ident-
ical at least until the second TCP instance is reached. In the event that end statement instances are
reached, ger_TCP returns the state at the end of each execution. The case of locating a CP, in which the
executions are guaranteed to be disjoint, illustrates the need for two separate pointers into the TBB flow
graph. This function determines whether or not the CP instances located are also TCP instances. If this is
the case,t hen State.advance is false and get_TCP does not advance the state at line 3. Finally, the func-
tion end is used to detect the end of each trace, and in the case of recursion , then end of each process exe-

cution.

The algorithm works as follows. At the beginning of each iteration of the main loop (line 2) both
executions are in an equivalent section of instruction instances. Initially, this section is that of the begin-
ning of the program to the second TCP (the begin statement being the first). A TCP instance is located
(line 3) and added to M (line 4). There are three cases for the TCP instances. First, if the TCP are
task_create instances (line 5) then each pair of process executions are compared. The result of each of
these comparisons are added to M. This is accomplished by recursively calling Compute_M with pointers
to each pair of process executions and a pointer to the beginning block (in the TBB flow graph) for these
executions. Notice that since the executions begin with the same block of the TBB flow graph, a single

pointer suffices. Finally, the CP corresponding to the task_create statement is located in each execution

and added to M (lines 8-9).

The next case is one in which the TCPs have a different outcome (line 10). Here, the executions are
traversed and the CP for this TCP instance is located in each execution. At this point (line 11) State con-
tains the updated state of the traversal (i.e., the updated pointers into each execution and the pointers to

the CP in the TBB flow graph). The CP instances are added to M (line 12).

In the final case, the outcome of the TCP instances are the same. In this case, the loop drops

through and continues. Here, the executions are again equivalent at least until the next TCP instance.

28

6.3. Correctness and Complexity

Correctness

To prove: the correctness of Algorithm 1, we first show that the loop at line correctly maintains the

following invariant:

(I1) Ateach iteration of the loop, a prefix of the executions is correctly corresponded.

We then demonstrate that the loop terminates. Lemma 17 below shows that given the assumption that
lines 6-7 of the algorithm do nothing more than move the executions past the p process threads created

by a task_create statement then the following invariant is maintained:

(I2) At each iteration of the loop, a prefix of the executions is correctly corresponded excluding

the contents of task_create and task_terminate statement instances.

Lemma 17: Given any two executions of the same program Algorithm 1 maintains invariant 12.

Proof: We prove Lemma 17 by induction on the number iterations of the loop at line 2.

Base Case: Clearly it is not possible for the loop to fail to iterate since a program must at least have a
begin and end statement. Therefore, the first iteration of the loop locates the begin statement instances
in each execution. Line 4 adds these statements to the correspondence M ;. The conditions at lines 5
and 9 fail and the next iteration begins. Since M | does not violate conditions 1-3 of Definition 15, the

invariant 12 is maintained.

Induction Hypothesis: Given fixed but arbitrary executions P|=<E,—r,—>y,> and
P y=<E9,—>1,,—>sq,> assume that there exists a correspondence M; that does not violate invariant
12 and assume that the executions are corresponded up to the kth common TCP or CP in each execu-
tion. That is, there exist corresponding prefixes p(begin,sy)=<Ep,—T,,—>sq,> and
pa(begin, s)=<Ep,2,—T,,,—s4,,> and Sx=(TCP (E,)NTCP (E,2))J(CP (E,)NCP (E}2)),
speSkand | §|=k.

Induction Step: For the induction step, if s; is not an instance of the program end statement, then it is

either a CP or a TCP. If s;, is a CP, then Corollary 14 guarantees that the executions are the same up

29

to (and including) the next TCP instance in each execution. Therefore, these equivalent instances will
be located at line 3. The same holds true is s; is a TCP by Lemma 12. Line 4 creates the correspon-
dence My =M;U(Sy+1,5¢+1) which does not violate conditions 1-3 of Definition 15 since by the
induction hypothesis M does not and since there exist paths p 1(sk ,Sx+1) = P 2(Sk ,Sk+1). Given this,

there are three cases for the TCP located, s 41:

1. outcome (p 1,5 +1)=outcome (p 2,5;+1). In this case, the conditions at lines 5 and 9 both fail and

the loop falls through. Since M, =My is a correct correspondence, condition 12 is maintained.

2. outcome (p 1,5 +1)7outcome (p2,8¢+1). Then the condition at line 5 fails and the condition at line
10 is true. Then by Lemma 13 there exists cg4+1€ (CP (E1)NCP (E,) and Lemma 10 ensures that
Ck+1 can be located. Given the predecessor of ¢;4q in £y, call this event ¢, , the predecessor of
Ck+1 in E, call this event ¢ 1, the successor of s in £, call this event s 1, , and the successor of s
in E, call this event 5, , then there exist paths p 1(81,,¢ 1) and po(s 2, ,¢ 2,) that are disjoint. Con-
dition 2 of Definition 15 implies that there can be no correspondence between disjoint paths. Hence,

line 12 yields the correct correspondence M =My \U(cy 11,Cr+1) and invariant 12 is maintained.

3. Sp41 18 an instance of a task_create statement. In this case, by assumption, lines 6 and 7 move over
the process executions in each execution. The task_terminate CP, ¢y 1, is located by Lemma 10 and
line 8 creates the correspondence Mj =My U(cy+1,Ck+1). Since corresponding (C+1,Cx+1) does

not violate Definition 153, the invariant I2 is maintained.

a

Next, given Lemma 17, we prove Theorem 18.

Theorem 18: Given any two executions of the same program Algorithm 1 maintains invariant
I1.
|

Proof: The proof proceeds by induction on the task_create/task_terminate nesting level of an execu-

tion.

Base Case: The proof of Lemma 17 is sufficient to demonstrate that invariant I1 is maintained by

function compute_M for executions with no common task_create/task_terminate statement instances.

Induction Hypothesis: Given fixed but arbitrary executions P=<E|,—71,~>:,> and

Po=<Ey,—7,,—>5d,> with common TCP and Cp instances

30

S=(TCP (E{)NTCP (E»))J(CP (E{NCP (E;)), assume that there exists M; not violating invari-
ant I2 corresponding P and P, up to but not including the body of task_create/task_terminate

instances at nesting level i.

Induction Step: For the induction step, without loss of generality, choose a task_create/task_terminate
instance pair 51;€SNE | and c{;€S NE such that 51 ; is a task_create instance at nesting level i
and c1; the corresponding task_terminate instance at nesting level i.Then by the induction
hypothesis there exist s7;€SMNEj and ¢ ;€ SNE, such that (s1;,52;)€ M; and (c1,;,¢2,)eM;.
There exist paths p 1(s1,,c1,) and pa(s2;,c2,;) which contain n process executions between which

there exists a one-to-one mapping, line 6. Lemma 17 implies that for each process execution there is

n
a correspondence up to nesting level one, or 'U1m3 computed in line 7. This implies that the
J=

n
correspondence M; 1 1=M; L J(':Jlmj) upholds invariant I2.

a

Finally, we are guaranteed by Assumption Al that programs terminate and hence there is an instance of
an end statement in each execution. If the statement is a CP of some statement other than just the begin
statement, then it is located at line 10 and the loop terminates on the next iteration. Otherwise, it is

located at line 3, lines 5 and 9 fail and the loop terminates on the next iteration.

Complexity

Function Compute_M has linear time complexity because each instruction instance in each execu-
tion is visited only once and immediately discarded. The function need not be recursive and is written this
way solely for ease of understanding. In addition, the cdmparison algorithm is intended to be a vehicle
for making accurate distance measure calculations. For this reason, the correspondence itself need not be
stored. Given this, a correspondence can be made using O(/) space where [is the size of the program
input. For parallel programs, the size of the program is likely to be negligible in relation to the size of the

executions it produces.

We demonstrate that function Compute_M has linear time complexity. Function get TCP traverses
each execution either from a TCP instance to its TCP successor instance or from a CP instance to the next
TCP instance in the execution. Lemma 12 and Corollary 14 (respectively) ensure that a simple linear
search of the executions is sufficient for function ger_TCP used at line 3. Similarly, Lemma 13 and
Lemma 10 ensure that using a simple linear search will suffice for function get_CP used at lines 8 and 11.

Finally, the recursive call at line 7 will traverse each pair of process executions a single time. These

31

executions have not been visited before the recursive call and will not be visited after. Since lines 3, 7, 8,
and 11 all represent linear traversals of the execution and since no other lines consume execution
instances, the function has linear time complexity in the length of the input traces. Coupled with the
preprocessing phase, if the executions are of length n and m and the program is of length /, then the com-

plexity of function Compute_M is O(l + m + n).

Given that the correspondence is not stored and that correspondence algorithm need not be recur-
sive, we demonstrate that the space complexity for function Compute_M is O(l). First, storing the pro-
gram in intermediate form accounts for the majority of storage consumption. Lines 3, 8, and 11 get a
TCP or CP instance from each execution, which can be immediately discarded at lines 4, 9, and 12. Given
that the information collected at line 3 can be discarded at line 5, the only information used after a recur-
sive call is the CP pointer for the CP associated with the task_create TCP that caused the recursive call.
Notice that this CP is the current instruction instance in each execution and is the current instruction of
the intermediate form. Since it can be easily located, there is no reason to store a pointer to the CP in the
intermediate form. Hence the function stores only the program intermediate form and the a single copy

of the record State .

Two assumptions were made in order to achieve the above time and space bounds. The first,
assumption A2, guarantees that a statement has a single entry and exit point. There may be no lemmas
that correspond to Lemmas 10, 12, and 13 in the absence of this assumption. It seems almost a certainty

that executions will require more than a linear search if the requirement is lifted.

The second assumption is that process executions are not stored in interleaved form. If the
correspondence algorithm is required to undo the interleaving of process executions, then at worst case,
for a task_create statement one half of all of the process executions in both executions must be stored

before process executions to correspond with the process executions already stored are encountered. This

implies not only that the space requirement for the correspondence is at worst case O(n + m)® but that a
second traversal of each process execution may be needed. This does not however change the worst case

linear time for the correspondence.

7. Measurement and Correspondence

Our immediate goal has been to correspond two parallel program executions in a reasonable amount

of time and space. With this algorithm, we can now calculate distance measures between parallel program

6 In reality, the actual storage usage will be much less except in the rare case that the program consists of a single task_create/task_terminate

statement,

32

executions. We hope to provide distance measures that can be used in trace driven simulations and other
performance analysis areas. Ultimately, we hope that these measures will shed light on a quantification of
a parallel program with respect to its possible execution traces. For example, one might wish to quantify
the difficulty of collecting a trace from a particular parallel program, the difficulty of extrapolating that

trace, the variance one might expect to see in simulation results using a particular program, etc.

In this section, we discuss possible difference measures for parallel program executions. We
present three measures that are simplistic and can be easily calculated. These measures serve two pur-
poses. First, to illustrate how a distance between two executions might be calculated. Second, even
though these measures are simplistic, they represent the measurement of fundamental structural differ-

ences between executions.

Difference Measures for Parallel Programs

We have identified five types of distances in complexity between parallel program executions that
we believe are useful (this list is by no means an exhaustive list of the types of differences in parallel pro-
gram executions that one might measure). They are: nondeterministic complexity, trace complexity, trac-
ing complexity, transformation complexity, and time distances. A nondeterministic distance should meas-
ure the distance between two executions with respect to the effect that nondeterminism had on each exe-
cution (i.e., how far the execution paths diverge). A trace complexity distance should measure the differ-
ence in complexity of basic operations (e.g., storage and retrieval) for the executions. A tracing complex-
ity distance should provide a measure of the increase in difficulty of actually collecting one particular
trace versus another using either instruction sampling at runtime or program instrumentation. These two
measures are closely related. The transformation complexity distance for an execution provides a
quantification of the difficulty of transforming one execution into another. Preliminary work in trace
migration [6] [3] suggests that such a measure is closely related to the nondeterministic distance between
two programs. Finally, a time distance should quantify the differences between the time trajectories for

two executions due to differences in the executions (i.e., a time warp).

The nondeterministic complexity of a parallel program and its trace complexity are all dependent on
program TCPs [3]. The fanout distance, a measure of the nondeterminism induced branching distance
between two executions, is a nondeterministic complexity distance. This distance is based on the —¢
family of parallel execution equivalences (see [3]). The fanout distance determines the largest possible
branching distance that occurs between two executions during a period of divergence. That is, given two
weights w, 1 and w;», the fanout distance between two divergent sections of a parallel program execution

1s:

33

(1) f=liiwitlipwes

Where [;1 and [;, are the maximum nesting level due to nondeterminism reached in each divergent sec-

tion.

Given two executions a and b, The TCP distance is a trace complexity difference for parallel pro-
gram executions. This distance calculates the difference in actual TCPs executed during a period of diver-
gence. Given a count of the number of TCPs executed during a period of divergence, ¢, and c;,, the TCP

distance between the sections fcp is:
2) tcp=cq—cp|

This distance measure is also closely related to the —; family of parallel execution equivalences.

One possible tracing complexity distance is the TCP frequency distance. Given the minimum fre-
quency of TCP occurrence during a single period of divergence in each execution, f;; and f, respec-

tively, the TCP frequency distance for this period is:
3 tepy=ifii=rid

Notice that the TCP frequency distance fits nicely into our framework, see [3], when considered as a weak

structural equivalence.

We can combine these simple distance measures to create more accurate distance measures. For
example, consider a distance measure that takes into consideration the difference in nondeterministic
complexity, trace complexity, and actual trace contents (i.e., the number of divergent periods). We com-
bine these three differences into a single measure using a weighted sum calculation. Given a nondeter-
ministic complexity weight Wy, a trace complexity weight wy,, and a divergence weight wy, and given
the fanout and TCP differences between each divergent section, f and fcp respectively, we compute the

following difference between two executions:

€] _%
d —El (Wa+f -Wpgttcp -wy,.)

This measure represents a more accurate measure of nondeterministic distance and corresponds our intui-
tion regarding nondeterministic distance. To see this, notice that multiple instances of divergence due to
nondeterminism, need to be accounted for in any accurate distance measure. The addition of the w, cal-
culation takes these divergent periods into account. The fanout measure alone gives little information as

to how different two divergent periods really are. This is because it considered only the largest branching

34

distance that occurs during a divergent period. The TCP distance provides a more accurate account of the
extent of the nondeterminism encountered during divergent periods. These two calculations coupled with
the fanout distance represent a reasonably accurate account of the nondeterministic difference between
two executions. For example, consider two executions that execute exactly the same set of TCPs (i.e., that

are weakly structural equivalent [3]). For these executions, the distances f and fcp will always be zero
14

leaving the distance calculation d =.21(Wd). This is an accurate distance in that the only nondeterministic
l:

difference between the two executions is d divergent sections. Next consider two different pairs of execu-
tions and for clarity, let w,; and w;, both be one. The first pair are the same except that they each exe-
cute a single TCP during each divergent section. The fanout distance at each section will be two and the
TCP distance will be zero. We will refer to the distance between these two executions as d ;. Now con-
sider either of these executions paired with an execution that has the same divergent sections but that exe-
cutes more TCPs and that has a fanout value that is at least one during each divergent period. Let this dis-
tance be d,. We have d<d, corresponding to our intuition that the second pair of executions have a
greater nondeterministic distance than the first pair. The measure corresponds our intuition about non-
deterministic distance. Finally, this distance measures is calculable in linear time and reasonable space

using the correspondence algorithm.

Calculating Distance Measures

It is a simple matter to combine the correspondence algorithm with the distance calculation given in
(3). In Algorithm 1, two functions actually traverse the input executions. These are getr_TCP and get_CP.
The former traverses executions only when they are equivalent and hence have a zero distance. The latter
is the only place in Algorithm 1 that traverses disjoint sections of executions and traverses only disjoint

sections. Any distance calculation will have to be done while this function traverses the executions.

Algorithm 2 below is a version of get_CP that in addition, calculates the distance calculation given

in (3).

35

given: two executions E 1 and E; and a state state_in.

compute: Advance each execution to the CP for this block. Return this
new state. Calculate the distances dy and drcp.

algorithm:
global:
int pair df ,dreps
) intwf,wl,WQ, Wy
get_CP(E |, E,, state_in):
instruction *destination_cp;

while (state_in.b ; <> destination_CP) do
compute_d (state_in.b 1,1);
compute_drcp (state_in.b 1,1);

1

2

3

4

5 destination_cp = state_in.(b 1)—CP ;
6

7

8

9 §1 =51 + state_in.b 1.instr_count;

10 state_in.b 1 = next_block(state_in);

11 while (state_in.b 5 <> destination_CP) do
12 compute_dy (state_in.b ,2);

13 compute_dpcp (state_in.b5,2);

14 5o = 89 + state_in.b ;.instr_count;

15 state_in.b = next_block(state_in);

16 if (state_in.b 1.instr_count == 1 and state_in.b {. TCP == TRUE) then
state_in.advance = TRUE;
else
state_in.advance = FALSE;
17 d =d +resolve_d();
18 dy =drcp =(0,0);
19 return(in_state);
end;

Algorithm 2. Function get_CP.

Recall that ger_CP is invoked a single time for each period of divergence. Lines 8 and 9 and lines 13 and
14 calculate the distances given in (1) and (2) (respectively) for each execution. For the TCP distance, the
calculation is a running sum of the TCPs encountered in each execution. For the fanout distance, the cal-
culation keeps track of the largest nesting level reached due to nondeterminism. The function resolve_d
calculates d for each period of divergence. Notice that ger_CP uses the information present in the TBB

to rapidly traverse each execution up until the CP is reached for the current TCP (see Section 6.1).

The actual distance calculation is given in Algorithm 3. The function resolve_d provides a running

calculation of the distance given in (3).

36

given: a TBB pointer b and a flag which determining which execution is being measured.
compute: Calculate the distances dy , dycp, and d.

algorithms:

global:

1 dp,drcp, Wr. Wi, W, Wy

2 TBB *stack[2,N] = (empty,empty);
static:

3 int pair ndy;

4 compute_dy (b ,which):

5 if (b.CP)then

6 pop(stack[which]);

7 if (ndy .[which] > d) then
dy = ndy [which];

8 ndy [which] = ndy .[which] - 1;
9 if (b.TCP) then

10 push(stack[which],b.CP);

11 ndf .[which] = ndf .[which] + 1;
12 return(); ‘
13 end;

14 resolve_d; ():
15 if (b.CP) then

16 pop(stack[1]);
17 if (ndy .[1] > dy) then
df = ndy [1];
18 pop(stack[2]);
19 if (ndy .[2] > dy) then
df = ndf .[2];
20 ndf = (0,0);
21 return(dy [17¥w + df 21w o),
22 end;

23 compute_drcp (b ,which):
24 if (b >TCP == TRUE) then
dTCP .[which] = dTCP .[which] + 1;
25 return();
26 end

27 resolve_d ():
28 return(1 +resolve_dr O*wy +|drcp .[1] - drcp [2] I* Wy);
29 end;

Algorithm 3. Compute and resolve distances dr, drcp, and drg .

Function compute_dy at line 4 uses a stack to compute the current TCP nesting level maintained in the

pair ndy. The variable dy maintains the largest depth that has currently been reached. Function

37

resolve_dy at line 14 finishes the calculation by popping the last nesting level off of the stack. It returns
the distance given in (1). Function compute_drcp at line 23 simply calculates the number of TCPs
encountered in each execution keeping the running calculation in dycp. The distance given in (2) is cal-

culated in function resolve_d at line 27 where the distance given in (1) is also calculated.

8. Computing Optimal Correspondences

As previously mentioned, our choice of correspondence was not the only possible choice. In this
section, we justify the choice we have made. Ideally, one would like an algorithm that computes an
optimal correspondence for any pair of executions w1 and w, and measure m. We conjecture that there

is no such algorithm that satisfies the time and space requirements imposed by executions.

We begin with the observation that any correspondence computation that requires searching the
input executions, will fail to meet out time and space requirements. Given this, we have the following

conjecture:

Conjecture 1: The constraints of reasonable space usage and linear time imply a fixed correspondence

calculation.

Consider another choice of correspondence. In particular, the correspondence that corresponds loop itera-
tion starting with the final iterations. That is, the final iteration in each execution is corresponded, then the
second to final, and so on. This leaves any unmatched iterations as the first iterations of the loop. Even
this simple correspondence requires some searching — that of locating the final iterations of each loop.

This correspondence will fail our space requirements.

Next, we conjecture that there is no algorithm satisfying the linear time and reasonable space
requirements that computes an optimal correspondence for any pair of executions and any measure. Let
m (w 1,w) represent the optimal measure of distance for m on w1 and wy. Let m (C (w 1,w)) represent

the optimal measure of distance for m given correspondence C . Then we have the following conjecture:

Conjecture 2: Given any two executions w | and W, there is no linear time and reasonable space algo-

rithm computing C such that
4) ACVm.m(w,wo)2m (C(w,wy))

is true for all choices of w1, wo, and m .

38

To support our conjecture, consider the simple example program given in Figure 2 below. This program
loops from O to i-1 and executes different sections of code based upon whether or not i-j is even or odd.
Notice that there are 4 different possible executions in which the loop iterates either once, twice, three
times or four times. Consider the comparison of two executions where i is even for one and odd for the
other. Our method of correspondence will make a bad choice of correspondence. Here, the method out-
lined above would be more suitable. On the other hand, our method will give a better correspondence for
executions in which i is either both odd or both even (e.g.,,i=1and i =3 ori =2 and i = 4). Unfor-
tunately, any correspondence algorithm making a good correspondence in both cases will have to store

the loop iterations and search for an optimal correspondence.

Conjecture 2 seems a reasonable one and given this and the time and space constraints, we have
chosen the correspondence computed in Algorithm 1 for two reasons. First, this correspondence can be
made more efficiently (time and space) than all other possible correspondences. Second, it is a reasonable
correspondence for most loops (e.g., it seems reasonable to assume that most loops will perform the same

calculation given the same index value).

AO: begin
shared int x = 0;
shared int 1k = 0;

intn=3;
Al: task_create(n)
task 0 task 1 task 2
inti=0;
BO: lock(lk); CO: lock(ik); DO: lock(1k);
Bl:x=x+1; Cl:x=x+1; Dl:x=x+2;
B2:i=x; C2: unlock(lk); D2: unlock(lk);

B3: unlock(lk);
B4:forj=0toido
B5: if (even(i-j)) then
B6: do_something;

B6: else
B6: do_something_different;
B7: k=k+1;

A2: task_terminate(n);
A3:end;

Figure 2. Another parallel program.

39

9. Conclusion and Future Directions

Our intent with this research is to relate sequence analysis work to the fundamental problem of com-

paring parallel program executions.

We have argued that existing sequence analysis‘techniques are not reasonable for parallel program
executions due to their potentially large size. We have shown that through the use of information col-
lected in the program source, executions can be corresponded in linear time with negligible space usage.
While this correspondence is not guaranteed to produce an optimal correspondence it is guaranteed to be
linear. This correspondence is an improvement over existing linear correspondence methods that produce
inaccurate measures and facilitates the calculation of new distance measures for parallel program execu-
tions. In addition this algorithm is an improvemen’t over methods of correspondence from sequence com-

parison which have a quadratic worst case time and require the storage of the sequences being compared.

We have presented one possible measure of parallel program execution difference and demonstrated

how this measure can be calculated using the correspondence algorithm.

We have justified our particular choice of correspondence by arguing that there is no single algo-
rithm meeting our time and space constraints and supplying an optimal correspondence for any choice of
executions and measure. Our choice of correspondence can be calculated more efficiently than any other
choice (as it requires no storage of executions), and is a reasonable choice given the behavior of most

loops.

10. Acknowledgements

The first author has been supported by a grant from the Convex Computer Corporation, who are also
providing general support for all of our work on the parallel program tuning environment. We would also

like to acknowledge Harini Srinivasan for discussions on the problem of computing TCPs.

References

1. A.Borg, R.E. Kassler and D. W. Wall, “‘Generation and Analysis of Very Long Address Traces’’,
in Proc. 17th Int’l Symp. Computer Architecture, IEEE CS Press, Los Alamitos, CA, May 1990,
pp- 270-279.

40

10.

Z. K. F. Eckert and G. J. Nutt, ‘‘Locating Trace Change Points in Parallel Programs’’, Tech. Rep.
CU-CS-730-94 , Dept. of Computer Science, University of Colorado, June 1994.

Z. K. F. Eckert and G. J. Nutt, ‘“‘A Framework for Execution Order Distortion in Shared Memory
Multiprocessor Event Traces’’, Tech. Rep. CU-CS-708-94, Dept. of Computer Science, University
of Colorado, March 1994,

Z. K. F. Eckert and G. J. Nutt, ‘‘Parallel Program Trace Extrapolation’’, in To Appear Proceedings

of the 1994 International Conference on Parallel Programming, St. Charles, Illinois, August 16-20,
1994,

P. A. V. Hall and R. Dowling, ‘‘Approximate String Matching’’, ACM Computing Surveys 12, 4
(1980), pp. 381-402.

M. A. Holliday and C. S. Ellis, ‘‘Accuracy of Memory Reference Traces of Parallel Computations
in Trace-Driven Simulation’’, IEEE Transactions on Parallel and Distributed Systems 3, 1 (Jan.

1992), pp. 97-109.

L. Lamport, ‘“‘How to Make a Multiprocessor Computer That Correctly Executes Multiprocess

Programs’’, IEEE Transactions on Computers c-28, 9 (SEPT 1979), pp. 690-691.

L. Lamport, ‘‘On Interprocess Communication Part I: Basic formalism’’, Distributed Computing 1

(1986), pp. 77-85.

D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and Macromoles: The Theory and Practice
of Sequence Comparison, Addison-Wesley Publishing Comapny Inc., Reading, MA, 1983.

M. N. Wegman and F. K. Zadeck, ‘‘Constant Propagation with Conditional Branches”, ACM
Trans. on Programming Languages and Systems 13, 3 (Jul 1991), pp. 319-349.

41

