LEARNING STRATEGIES AND
EXPLORATORY BEHAVIOR OF
INTERACTIVE COMPUTER USERS

John Franklin Rieman

CU-CS-723-94

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

LEARNING STRATEGIES AND EXPLORATORY BEHAVIOR OF
INTERACTIVE COMPUTER USERS

by
JOHN FRANKLIN RIEMAN
B.A., Metropolitan State College, 1975
J.D., University of Colorado School of Law, 1978
M.S., University of Colorado, 1990

A dissertation submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science

1994

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Abstract

Users may engage in “exploratory learning” to investigate the capabilities of a
new interface. In this form of behavior, the user’s short-term goals are not clearly
defined, even if there is a general long-term goal to learn the software. Related
exploratory behavior may occur when real tasks are involved that are not well specified,
or within a system that is not entirely understood. It has been suggested that exploratory
learning is effective and attractive to users, but there has been little investigation of its
occurrence outside of laboratory and training situations.

The research described in this dissertation begins by examining the task of
exploration in an abstract sense. The difficulties revealed by this formal approach help
to guide a field study into the behavior and attitudes of computer users in everyday
working situations. To provide further detail on the behavior found in the field studies,
several cognitive models are implemented that describe how the user’s general task
description and the computer display interact to form interface-specific goals. Empirical
work in the laboratory investigates the predictions of the formal theory and the model.

The formal theory shows that truly task-free exploration is exceptionally
difficult. The majority of users studied in the field were found to avoid this kind of
behavior, preferring task-oriented exploration supported by manuals and personal
interactions. The cognitive modeling and laboratory studies revealed that the strategies
effective for task-oriented exploration included label-following supplemented by active
search for appropriate labels, along with a dual-search strategy that delves slowly
deeper into both the actual interface and the users’ associative memory.

Acknowledgments

This research is the result of several years of productive and rewarding
collaboration with Clayton Lewis and Peter Polson. It also reflects a strong belief that
human-computer interaction must be studied as part of a larger situation, a view that
Gerhard Fischer and his research group have helped me to appreciate.

My thoughts on exploration and on how to “do science” have been further
shaped by discussions with Jim Martin, Walter Kintsch, Susanna Cumming and my co-
workers in the computer science and psychology departments. Marita Franzke, David
Redmiles, and Evelyn Ferstl deserve special thanks for their friendship and advice.

Fourteen anonymous informants volunteered their time for a week of diary
logging, followed by an in-depth interview covering their activities and attitudes toward
exploration. This research could not have been done without their cooperation, and it is
greatly appreciated.

This work has been supported by grant number IRI-9116640 from the National
Science Foundation and by grants from U S West Advanced Technologies.

Contents

Chapter
1. Exploration and Its IMpPOrtance.......coveiiiniviiiiniiicnncneenennnenes 1
1.1 Exploration by Computer USers........ccooeruriverririierirnrerivciiinnsennenienis 2
1.2 The Importance of Exploration........ccueevviiiiiiniiniiiiiiicninnn 5
1.3 Results of Previous Researchccoovvivuiiiiniiiiincniininncnnine. 7
1.4 The Value of a Multi-Threaded Research Approach........................ 11
1.5 Studying Exploration: an Overview of the Dissertation.................. 15
2. A Formal Model of Explorationcccccccevuiviiniininnininniiniinincniciiinnn, 17
2.1 The Exploration Space..........ccccovviiniirinriniinininiiniiciiesinens 17
2.2 Discovery-Oriented Exploration.........ccevvviinviiiniinniniinnininccnnnn. 18
2.3 Task- and Problem-Oriented Exploration.........ccoevveveriiiieninennnnes 26
2.4 Information Management During Exploration............ccceceevcirirucnnen. 28
2.5 Limits of the Model and of Exploration.........cccceevuevernierninncrerannee 30
2.6 Practical Difficulties Exposed by the Model.........cccccoueriinnnrerinnnne. 32
3. Diary Studies of Representative USsers.......ccccovuerrmrrervineirernisecienennicienennen. 33
3.1 Method.....coviiiiiiiiiiiiiiii 33
3.2 Results: Logged Timeccooveviriininiiniininninniiicneecnccnenenenes 40
3.3 Results: The Eureka Slips.......cccovviiinirininniiinciiniicns 43
3.4 DISCUSSION ..eeitiitiitiieciitect e s 45
4. Interviews With Diary Study Participants..........cccocvininiiniiiiiniin, 47
4.1 Method.....coiiiiiriiiii s 47
4.2 Question: Learning New Software..........cocovuervnreninnevincinererinninns 48
4.3 Question: Resolving Problems..........ccovviiivvininninniiieiinninnn, 52
4.4 Question: Task-Free Exploration of Computer Systems.................. 53
4.5 Question: Eureka Strategies.........c..ccooviviiniiiniiniiniiniiniinninnicnn, 54
4.6 Question: Task-Free Exploration Outside of Computers................ 60
4.7 Question: Influence of Exploratory Activities.........ccovevinrivinennennne, 60
4.8 DiSCUSSION....utieiiiiiiiiiiiniiiict et 61

5. Cognitive Models of Exploration........cccecccveenevenerenennnennnescceseerennnen 63

5.1 Backgroundccoeviiiiiniiiniiniiieeee vertrneaserenesens 63

5.2 A Construction-Integration Model of Expert Behavior....................66

5.3 The Novice Construction-Integration Model. e e 66

5.4 The ACT-RModels.......coeviiiiininiiiniiiniiiiniiniecienieneiceeene veeenn 67

5.5 The Soar Model.........ccccvuvvivininiiniiininiinecinicnieennenes ST 75

5.6 Soar vs. ACT-R: Problem Solving vs. Situated Cognition................ 76

5.7 DiSCuSSION.....cccevviviinriiiiiiiiiiiiieinne Ceeerrre e e 77

6. Laboratory Observations of Exploration...........cccecceveuinee e 79

6.1 Method......ccoevvviivriinnennn. R s 80

6.2 Label FOloWing........ccccoovviiniiviiviiienniiinnns e 82

6.3 Menu Search Strategiesc.oceveeiiiiivrenieiiiineninececeeneree s 84

6.4 Goal Setting Strategiesccocevevivirvnininiiiniinnnnn, vrrerrenenennenn 87

6.5 DiSCUSSION....coiivrieiiriiriiniiniicie e vt e w89

7. Summary and Final Discussioncccvvveiiviiniieninininnens e 91

7.1 Review of Research Strategy.........c.coceevveererenincruennenn. e, 91

7.2 Summary of ReSUltSccceiviiiviiiniiininiiiiiiiccn e 92

7.3 Discussion....... e e e e .93

7.4 Future Work e e e ceresaeneesne96
References............. R OO e OO 97
Appendix Eureka Reports.......cccocviviviveviicninninninnes e 105

Figure
1.1
2.1
2.2
2.3
2.4
3.1
3.2

Figures

Sources of task and device goals in forms of exploratory behavior 4
A simple exploration SPace..........cccuvviviiiniiininn s 18
An exploration space that can be explored efficientlycccecenneneeee 20
An exploration space that cannot be explored efficiently..................... 20
An exploration guided by the depth-first algorithm..........cccceccveuenneee. 22
The beginning of a diary log sheet for one dayccccevvvviivivicnininnnns 39

“Eureka” report, for noting successful or attempted learning events....39

Tables

Table
2.1 Exploration Efficiency of DFID (from Equation 2.4).........cccccevrvrnnnnene. 25
3.1 Informants’ Background and Experience Ratings..........coouvurerirerriennnnen 34
3.2 Key to Experience Ratingscccocevvviviiniiviniiiiniiniiienecciccic e 37
3.3 Hours Logged During the Diary Study........cccevniniiinnniniinennns e 41
3.4 Hours Logged in Software Categories During the Diary Study 42
3.5 Hours and Eurekas Logged During the Diary Study.......ccccoeeeniinnnnne 44
3.6 Eurekas per 8-hour of Computing, by Informant Categories.................. 44
3.7 Distribution of Eurekas, by Strategy and Informant Category 45
4.1 Questions Asked in the Structured Interview........ccccecrvreecrcvervvenreeervenees 48

4.2 Answers to Question 4, “Can you recall examples of learning things using
each of the categories in the Eureka Report?”........ccevvveerniennrennnnnen, 55

Chapter 1

EXPLORATION AND ITS IMPORTANCE

In this chapter, exploration is defined as an information-gathering activity with ill-defined

goals. Exploration of computer systems by users is described. This is shown to be important for
both learning and using computers. Research directions towards designing explorable software
are introduced.

The research described in this dissertation concerns users’ efforts to “explore”
computer systems. Exploration is a widely used term: the Phoenicians explored the
ancient seas, geologists explore the desert for oil reserves, the Voyager spacecraft
explored the solar system, and a host of books and articles have titles such as “Rilke in
Transition: an Exploration of His Earliest Poetry” (Rolleston, 1970). These various uses
suggest the elements of a prototype definition for exploration:

e Itis an information-gathering activity.
¢ Itinvolves movement through an environment, physical or symbolic.
e Itis similar to search, but with ill-defined goals.

It is the lack of well-defined goals that makes exploration especially intriguing,
both from an algorithmic and a cognitive standpoint. A search algorithm is terminated
when its goal is achieved, and in some applications search can be made more efficient by
homing in on the goal (Korf, 1988; Winston, 1984). But with no clear goals, when should
exploration terminate, and how can it be guided? Similar difficulties apply when we try
to fit exploration into the search-like paradigm of means-ends problem solving, the weak
method likely to be applied by human problem-solvers who lack domain-specific '
knowledge (Newell and Simon, 1972; Newell, 1990). If the end is no clearly specified,
how can the means be chosen to approach it? These issues, in the specific domain of
human-computer interaction, are the central focus of this research.

1.1 Exploration by Computer Users

What kinds of exploration occur as humans interact with computer systems?
What are the external characteristics of these activities, and how do they relate to
cognition and knowledge? There are no established answers to these questions, but we
can propose categories that will help to illuminate the area at which this research is
directed.

1.1.1 Categories of Exploratory Behavior

Three general categories of exploratory behavior can be distinguished. The first is
discovery-oriented exploration, the activity that might takes place when a curious user logs
onto a new system for the first time, or when an employee receives a new software
package but has no immediate need for it. In these situations, some users may explore
the new system with no clear goal in mind. They may look at menus, try out some of the
software’s functions, perhaps set options or defaults for future use. This behavior could
be very open-ended: easily drawn to curious features, easily frustrated by difficult
command sequences, subject to sudden termination by external pressures or the
resistance of the interface.

Task-oriented exploration, on the other hand, is more constrained. This behavior
occurs when a user is trying to accomplish a general task but doesn’t know what
features the software might offer towards a solution. For example, a user who has only
used word processing for correspondence may be assigned the job of producing a
company newsletter. How will this user discover features such as multiple-column text,
special fonts for headlines, automatic pagination, and the like? Some users may look for
examples supplied with the software, but others may poke about in the interface,
discovering potentially useful features and trying them out. Although constrained by the
task, task-oriented exploration is still more open-ended than searching for a specific
command, even one that the user isn’t sure exists. When exploring, there could always
be another hidden feature, another combination of options that would yield an even
better solution to the current task.

A third type of behavior, problem-oriented exploration, is still more focused. This
is the activity that takes place when a user has a well-defined subgoal within a task-
oriented situation, but has no clear idea as to how the subgoal can be accomplished.

The user attempts to solve the problem by searching through the interface, trying
different controls, and observing their effects. This behavior could more accurately be
termed “search,” but it has generally been referred to as “exploratory learning” (Polson
& Lewis, 1990).

The distinctions made between the three kinds of exploration are not sharply
defined. They represent points within a range of behavior, a range that can be extended
further to include the behavior of a skilled user with a clearly defined task. The
dimension on which these behaviors differ is related to the user’s “goals” as the behavior
progresses.

1.1.2 Goals and Situated Actions in Exploration

The term “goal” is used here to describe the results or effects that the user
attempts to achieve with an interface. In studying human-computer interaction, the
distinction has been made between “task goals” and “device goals” (Payne, Squibb, &
Howes, 1990) Task goals arise independently of the computer system. A word-
processing task goal, for example, might be to make the title of a report stand out from
the rest of the text. Device goals arise from the computer system and it’s interface. A
clear example of a task goal would be: “select Bold from the Format menu.”

But there is no sharp distinction between task and device goals, and most of a
user’s intentions involve elements of both. Changing a report’s title to boldface, for
example, is a task-oriented goal that also includes the device-oriented element of
“boldface.” Because of this indistinction between the task and device goals, it may be
more productive to consider a related but less abstract distinction. This distinction
identifies the information source that leads to a goal’s existence. In interacting with a
computer, that source may be either the user’s background knowledge or the immediate
interactions with the interface. For most goals, the source will be some combination of
these. '

Applying this distinction yields the relationship shown in Figure 1.1. Note in the
figure that the definitions of exploratory behavior and the distinctions between task and
device goals are both represented as ranges. Discovery-oriented exploration falls at one
end of the range, with essentially none of the user’s goals defined by background
knowledge when the exploratory session begins; these goals must arise out of the
interface. In the middle of the range, both the user’s knowledge and the interface help to
define the goals in task-oriented exploration. The user may know,

task goals device goals

- '

skilled behavior A

contribution of
user's prior
knowledge
problem-oriented
exploration

task-oriented
exploration

contribution of

information
supplied by the
interface

discovery-oriented
exploration

\

Figure 1.1 Sources of task and device goals in forms of exploratory behavior.

for example, that a task requires a meaningful display of a set of data, but may have no
idea of what display options a graphing package offers. At the other end of the range,
with problem-oriented exploration, relatively low-level goals are defined by the task
(i.e., “change the text to Symbol to see what that looks like”), leaving only the lowest-
level subgoals to be defined by the interface (i.e, “select Symbol from the Font menu”).
Extending this range to its obvious endpoint in the direction of user knowledge yields a
description of highly skilled behavior, where even very low-level, interface-specific goals
can be defined almost entirely without consulting the current state of the interface. At
the other end of the scale, trivially, would be random behavior.

1.2 The Importance of Exploration

Why is exploration important? Can’t people learn how to use software by
reading the manuals or attending classes, and then simply rely “skilled behavior” to
accomplish their tasks? There is evidence that these traditional approaches have failed
for current systems, and there is reason to believe that they will continue to be
unworkable.

Fischer (1987) has described the overwhelming complexity of modern
workstation-based systems like UNIX, with more than 700 commands, and the
Symbolics, with tens of thousands of functions. Even the IBM PC and the Macintosh
personal computers, designed for use by nonspecialists, offer thousands of different
software applications, many of them rivalling the complexity of applications designed
for dedicated users in the UNIX environment. Fischer shows that users can’t work with
this software effectively because they don’t know how to use many of the applications’
functions. They may not even know that the functions exist.

Rosson (1984), Draper (1985), Nielson, Mack, Bergendorff, and Grischkowsky
(1986) have all shown that knowledgeable, experienced users of complex systems like X-
Edit (Rosson) and UNIX (Draper), and integrated business software packages (Nielson,
. et al.) master only an idiosyncratic subset of the total functionality of a system. The
breadth of an individual’s expertise does not seem to be related to either years of
experience or technical background.

These studies, combined with various popular reports of under-utilization of
information processing technology in all aspects of American life, support the contention
that failure to use the full functionality of complex software is a major barrier to
improved productivity. Experienced users make suboptimal use of tools that they use
every day.

1.2.1 Exploration as an Alternative to Training

Training is not the solution to this problem. With dozens of software packages
installed on a typical workstation, and hundreds of separate functions and options in
each package, formal training can cover no more than core functionality. Many users
consider even this basic instruction to be an intrusion on their daily workflow. Studies
reviewed by Carroll (1990) and Carroll and Rosson (1987) conclude that people prefer,
in fact almost insist on, learning software by exploration. New users are not interested
in learning how to use an application; they want to get their work done. They explore
the interface in an effort to accomplish their normal activities, learning bits and pieces of
the system’s functionality from day to day.

Dramatic evidence of this behavior is evident in the Mac lab in CU’s Norlin
library. The lab has more than 100 Macintoshes, available to students without any
special training requirements. At any given time, the majority of those machines are
running Microsoft Word, yet the lab has only a single copy of the Word manual set.
Clearly, exploratory learning is common practice for most of these users.

1.2.2 Exploration as an Alternative to Knowledge

Underlying the discussion so far is an implicit assumption that users must know
how to use a system before they can be productive. While this may be a workable
approach for persons whose computer needs are well-defined, such as word-processing
pool secretaries or operators of computer-controlled manufacturing systems, it is an
approach that fails for users whose needs are widely varied. These users can’t afford
the time to learn functions that they may only use once before the software becomes
obsolete. Users in rapidly changing software environments, such as a university network
of UNIX workstations or personal computers, are especially affected by this dilemma.

For these users, task-oriented and problem-oriented exploration can have value
even when little or no knowledge is retained. If a problem can easily be solved by
exploration whenever it arises, then there is no need to learn the solution path. In non-
computer explorations this occurs frequently: While attending a conference in another
state, I find myself with a free evening in a university town. I wander around the shops
near the edge of campus, perhaps finding a used book store to browse, or a foreign film
theater, or a club with local musicians. I don’t need to learn the addresses of these
places, any more than I need to know the addresses of similar places in Boulder. I can
always find them, or new shops, by exploration.

Similarly, the experienced Macintosh or PC user may download games and other
applications from an electronic bulletin board or anonymous ftp site, try out the
applications briefly, and discard most of them. The experienced UNIX user on a
networked system will make similar forays into the site’s ever-growing collection of
software tools. Learning is not a major issue here; discovering important features is.

1.2.3 Designing Software for Effective Exploration

The difficulties of training and the preferences of users strongly suggest that the
most effective way to help users access the full functionality of powerful computer
systems is to design the software to facilitate untrained use. With little analysis we can
predict that explorable software must make the existence of relevant functionality
obvious to the user, and it must support the cognitive processes involved in exploratory
problem solving and learning.

But applying these general guidelines to the design of explorable systems is hard.
Even designers with good intentions can produce systems, like the Apple Lisa, that are
essentially unusable without some training (Carroll and Mazur, 1986). Advanced
features in complex software seems especially hard to discover through exploration.
How many novice users of Microsoft Word 4.0 can effectively use Word’s powerful style
sheets? How many even know the feature exists, hidden as it is behind the cryptic menu
item “Full Menus”?

Software designers’ intuition seems to fall short when it comes to producing
explorable systems. The research described in this dissertation was designed to provide
a firmer foundation for those efforts.

1.3 Results of Previous Research

Software can best be designed to facilitate exploration if we have a clear picture
of low-level exploratory behaviors and of the context in which they occur. How do
users structure their explorations of computer systems? In what situations do they
choose to engage in exploration, and when do they abandon that approach as
ineffective? When they do explore, do they follow well-defined algorithms, similar to
those defined in artificial intelligence research for search activities? Do they just thrash
about, noticing items at random and missing major portions of the interface? Do their
methods for computer exploration vary significantly with their knowledge of interface
and system conventions, or is there some general approach to exploration that novice
and advanced users apply alike?

For the class of users specifically targeted by this research, experienced users
who are investigating new or unknown functionality within their “home” systems, the
fundamental answer to these questions is that we simply don’t know. But previous
work hints at the behavior that may be found, while providing theoretical mechanisms to
analyze that behavior.

1.3.1 Research into Exploration in a Broader Context

Interest in exploratory behavior predates the advent of interactive computer
systems by at least a quarter of a century. In the 1950s, Berlyne (1960) and other
researchers (review in Fowler, 1965) pursued a long and varied series of investigations
into exploration and curiosity. The fundamental question driving this research was not
how people explore but why. The issue arose in the context of then-current theories that
required all behavior to be motivated by fundamental “drives,” such as hunger, sex, and
the need for sleep. Drive theories were hard pressed to explain curiosity and its
attendant exploratory behavior, and Berlyn proposed to fill the theoretical breech.

Berlyne’s ultimate solution was to propose additional drives. What he termed
specific exploration reflected a basic need to reconcile conflicting data in the environment,
while diversive exploration reflected a need to maintain the brain’s information-processing
system at an optimal level of activity (Berlyne, 1960). The two terms map roughly onto
the distinction made earlier between task-oriented and discovery-oriented exploration.

The laboratory studies of the drive-oriented research program measured such
things as time spent examining graphics of varying complexity. They didn’t investigate
the exploratory activities of humans in a complex environment. But they did discover
that an explorer’s attention to an item is greatest when the item is neither entirely
familiar nor entirely inscrutable (Berlyne, 1960; Day, 1981), a finding that may describe
a proximal rule for choosing among multiple paths when only some can be explored. It
is important to recognize that this behavior depends on the explorer’s existing
knowledge of the situation.

More recent research has examined goal-free exploration for its own sake, rather
than in reaction to a theoretical paradox. Most of this work is in the context of child
development (see Gibson, 1988, for review) and animal behavior (reviews in Archer and
Birke, 1983; Renner, 1991). It is easy to place children or animals in a novel situation
and observe their behavior in the absence of well-specified goals, and it is clear that such
exploratory behavior has value. As Voss (1987) points out, exploration exposes the
causal relationships that the organism must know for future means-ends problem
solving.

Similar studies of adult exploratory behavior are rare, in large part because it is
difficult to observe spontaneous adult behavior in a well-controlled laboratory situation
(Wohlwill, 1987). Some observational data has been collected in public areas such as
museums (Gorlitz, 1987; Koran, Morrison, Lehman, Koran, and Gandara, 1984), but for
studies of adult exploration of complex systems we must look to the literature in
computer-human interaction itself.

1.3.2 Research into Exploration of Computer Interfaces

Not long after interactive computer systems became widely available, several
researchers recognized the success of computer games and argued that explorable user
interfaces should have many of the same properties (Malone, 1982; Carroll, 1982;
Shneiderman, 1983). Mastering the software should be intrinsically motivating, features
should be revealed incrementally, and the system should be at least minimally useful
with no formal training. Several research efforts reflecting this argument are described in
the following subsections.

1.3.2.1 The minimalist instruction approach

For the purposes of this research, valuable insights can be gained from a series of
studies begun by Carroll in 1981. This work initially analyzed the learnability of office-
system interfaces in situations where novice users were given no coaching or training
(Carroll, Mack, Lewis, Grischkowsky, and Robertson, 1985). The research
demonstrated that most users are willing and able to learn by exploration, although
there are individual differences in exploratory aggressiveness (Carroll, 1990; see also
Neal, 1987). It also showed that novices attempting to explore a totally new system
often make major and irrecoverable errors, even with the aid of basic manuals and
tutorials (Carroll and Mazur, 1986).

Carroll and his associates have continued this line of investigation, focusing on a
“minimalist approach” to training and manuals (Carroll, 1990). The approach shows
dramatic success in bringing new users up to speed in complex environments, and many
users express a preference for this kind of guided exploratory learning.

Even with well-designed manuals, however, the success of discovery-oriented
exploration can vary widely. Working with novice users in the domain of spreadsheets,
Charney, Reder, and Kusbit (1990) compared the effectiveness of three methods for
learning a subset of the program’s commands: unguided exploration, untutored solving
of experimenter-defined problems, and explicit guidance through the solutions to
experimenter-defined problems. A simple manual was available to all the groups.

The subjects who who solved defined problems without tutoring performed best
on later tests. Charney et al. conjecture that the subjects in the exploratory situation
were able to create only a narrow range of goals, which failed to attract their attention to
many of the features of the interface. This provides our first hint at a solution to the
explorer’s dilemma of how to structure exploration. Users who focus their explorations
on appropriate “microtasks” may achieve greater success at discovering useful features
of an interface. '

1.3.2.2 Instructionless learning

But how do users behave when no manuals at all are available? Shrager (1985;
Shrager and Klahr, 1986) investigated this question by giving undergraduates the
unstructured task of learning to operate a “BigTrak” toy. The toy is a six-wheeled truck
with a built-in computer controller, programmed with a simple keypad. Shrager
reported that subjects began their exploration with an orientation phase, then engaged in
a series of problem-solving episodes, in which hypotheses about keypad functions were
generated and tested.

Shrager’s computer model of the behavior demonstrated that much of the
knowledge afforded by exploratory activities was ignored, with subjects noticing
primarily the information that would confirm (not deny) their hypotheses. A cursory
analysis suggests that the information-management difficulties of problem solving are
great even within a simple interface. Even greater difficulties should arise for users of
the complex interfaces available to most interactive users today.

Close examination of the two protocols reproduced in full in Shrager’s (1985)
dissertation reveals behavior that recalls the findings of Charney et al. The more
successful of the two subjects frequently expresses his experiments as tasks to be
achieved with the truck. After establishing that the “>” button plus a numerical
argument causes BigTrak to turn, the subject says, “Let’s see if I can get it to turn ninety
degrees or whatever.” He then tries numerical arguments (with hypotheses as to their
meaning: degrees or minutes) until a 90-degree turn is achieved. The protocol from
Shrager’s less successful subject, who has less computer experience, shows fewer of
these goal-oriented tasks and more examples of essentially random key presses followed
by observation. In addition to the single-goal tasks, Shrager also observed subjects
creating multistep tasks that exercised their growing understanding.

Do experienced interface explorers regularly create “microtasks” of varying
complexity to provide structure for their exploration? How do they decide what to
include in these tasks? How do the microtask goals interact with exploration and
learning? These are some of the questions addressed in this research.

1.3.2.3 Label-following with simple interfaces

Ongoing work by Lewis and Polson has also investigated uninstructed behavior
where no manuals are available. This work has examined the actions of users faced
with well-defined tasks and novel interfaces. Engelbeck (1986) and Muncher (1989)
have shown that the behavior of subjects faced with novel menus can be described by a
label-following strategy, predicted by the identity heuristic in Lewis’s (1988) EXPL
theory. This research has also investigated the behavior of users with novel telephone
answering-machine interfaces (Lewis, et al., 1990), and with a library database (Rieman
et al., 1991).

But as a basis for understanding the exploratory behavior of users in their daily
routine, all of these studies have a fundamental shortcoming: they focus almost
exclusively on novice users of entirely novel systems. For most users, most of the time,
the problem is to understand a new program or previously unused parts of an existing
program in a well-understood environment, such as the Macintosh or Windows on a PC.
The empirical and theoretical investigations described in this dissertation go beyond
current work in exactly that direction.

10

1.4 The Value of a Multi-Threaded Research Approach

In the field of human-computer interaction (HCI), methods for studying user
behavior can be informally divided into two approaches: experimental psychology in the
laboratory and observations of users in the workplace. Both of these approaches are
supported by theoretical foundations, including both traditional theory and theory
embodied in cognitive modelling work.

The laboratory-based approach of experimental psychology grows out of a long
history of work in the human factors field. In this style of research, investigators bring
users into a laboratory situation and make quantitative observations of their behavior.
The users are chosen from a single population, and the laboratory situation is carefully
designed to vary only a few independent variables. The situation may have little in
common with real computer usage. In the conservative version of this approach, a large
number of subjects are tested, yielding data that can be interpreted with statistical
methods and projected to a larger population (Landauer, 1988). A related method uses
protocols taken from a few subjects and analyzed in depth, as in thinking-aloud studies
or individual user modelling efforts (Lewis, 1982; Shrager & Klahr, 1986).

The second dominant approach is to collect data in the workplace, with the
researcher often interacting closely with users in an informal way. The most radical
version of this approach is participatory design, often identified with the European and
particularly the Scandinavian HCI community (Floyd, Wolf-Michael, Reisen, Schmidt, &
Wolf, 1989). In participatory design, users and designers work together to identify
system goals and to iteratively produce systems that meet the users’ evolving needs.
Some other workplace-oriented methodologies include user surveys, monitoring the use
of prototypes, and contextual design (Wixon, Holtzblatt, & Knox, 1990). Although it is
not always the case, investigations in the workplace are generally less controlled than
laboratory efforts, involving fewer subjects and relying more heavily on subjective
judgments and personal interactions. These efforts are most often described as design
methodologies, not research tools, and the data they yield tend to be less predictive,
more anecdotal, more limited to the individual situation under investigation.

Most HCI researchers are aware of this distinction, and many design projects use
a mixture of the two approaches (Gould, Boies, & Lewis, 1991). Nonetheless, the
polarity is informative. On the one hand, the laboratory approach typically yields
objective data that can be interpreted statistically to predict the behavior of a
population, but the data concern the behavior of subjects in a contrived situation. Critics
of this work, including proponents of the situated cognition view, argue that it has little
impact on the usability of real systems (Suchman, 1987; Wixon, Holtzblatt, & Knox,
1990). By contrast, information gathered in the workplace as part of a design project

11

reflects the real, day-to-day work of the participants, but extracting objective, general
data from these reports may be difficult.

Insights into the interaction between these two general approaches can be gained
by examining the interaction of similar approaches in another research field, animal
behavior.

1.4.1 Two Approaches to the Study of Animal Behavior

The study of animal behavior is much older than HCI, with the roots of its
modern theories going back at least as far as Pavlov and Darwin in the nineteenth
century. But as with HCI, there are fundamentally two research approaches. The first of
these is to study animals in the laboratory, an approach usually associated with
experimental psychology. The second is to study animals in natural field situations, an
approach taken by ethologists.

Like experimental psychology in HCI, experimental psychology with animals
often involves contrived situations that are far from natural: rats are encouraged to visit
the arms of radial mazes where cheese appears and disappears as if by magic; pigeons
learn to dance from microswitch to microswitch in response to colored lights or
photographs; cats are forced to escape from boxes with trick latching devices. Subject
animals are carefully chosen from an artificially bred population, and groups for a given
experimental condition may be surgically disabled, drugged, or raised in exceptional
environments. But the data produced are clearly objective.

By contrast, ethological investigations are typically performed in the field, with
randomly selected members of the naturally occurring population. Much of the work is
simple visual observation of natural behavior. Other research relies on artificial devices,
such as radio collars to track animal movement patterns, and some projects involve
experimental manipulations, such as substitution of differently colored eggs in field
sites. Ethologists strive to be objective, but the research is unavoidably influenced by
behavioral coding decisions, and reported data are often based on small samples of a
population. As with workplace HCI, some of this research may involve participation
and highly subjective judgments: Konrad Lorenz with geese, Diane Fossey with gorillas.
Interestingly, this approach, like workplace HCI, also has a history that is more closely
associated with the European than the American research community.

1.4.2 Reconciling the Two Approaches

As with the two polar approaches to HCI research, there is clearly a tension
between the two approaches to the study of animal behavior. However, several
researchers have recently suggested that the two approaches can be complementary, in

12

both a theoretical and a practical sense (Brain, 1988; Fantino & Abarca, 1985); Miller,
1985].

In a theoretical sense, the approaches can be seen to ask different, but
complementary, questions. Ethological research in the field asks functional questions:
how is the survivability of a species enhanced by a given behavioral characteristic, and
why did that characteristic evolve? (Houston, Kacelnik, & McNamara,1982). To provide
convincing answers to these questions necessarily requires that as much as possible of
the organism’s natural environment be considered in the analysis. On the other hand,
experimental psychology in the laboratory asks causal (proximate) questions: what
combination of cues does an organism perceive that causes it to behave in a certain way,
and what cognitive algorithms does it use to define its behavior? The theoretical
interplay is made especially interesting by the requirement that behavior which might be
functionally optimal must be approximated by algorithms that an organism can process
with its available memory and cognitive power (Fantino & Abarca, 1985).

It is this interaction between theoretical questions that also sets up the practical
interaction between the two research approaches. The data and theories of ethologists
suggest functionally optimal behavior; experimental psychologists can then design
experiments to uncover mechanisms that implement or approximate this behavior.

1.4.3 Clark’s Nutcracker: A Suite of Studies

As an example of the interaction between field and laboratory research in animal
behavior, consider a series of studies investigating the behavior of Clark’s Nutcracker, a
bird found in the conifer forests in the western part of North America. Observations of
naturalists have revealed that the seeds of pine trees form a major part of this species’
diet. During the seed harvesting season, which lasts about one month, nutcrackers
remove the seeds from pine cones and bury them in shallow holes, called caches, for
retrieval during the rest of the year (Tombeck, 1978).

The relationship between the nutcracker and the pine trees is a close one. The
beak of the nutcracker is specialized for removing seeds from cones and carrying them to
cache sites or the nest, and the nutcracker’s range closely parallels the range of the pine
trees that provide its food. The range of the forest, in turn, is influenced by the
nutcracker’s activities: not all cached seeds are recovered, and unrecovered seeds may
germinate and grow into new trees.

Field studies in the ethological style investigated this relationship between bird
and forest, with particular attention to the nutcracker’s effectiveness in caching and
recovery (Tombeck, 1978; Vander Wall & Balda, 1977). Using a combination of energy
calculations, field examinations of recovered caches, and direct observation, these
researchers concluded that an individual bird must store on the order of 32,000 seeds

13

each year, in roughly 8,000 caches. Although some of these caches are stolen by rodents,
and others are unrecovered and left to germinate, an estimated 60 to 86 percent of the
caches are located and recovered by nutcrackers.

These results of this investigation into functional issues raised causal questions
that field research alone could not easily answer. Specifically, what were the
mechanisms that nutcrackers used to achieve this high recovery rate? Was there some
common pattern of storage and search to which all nutcrackers were privy, making the
caches a communal resource? Or, did the birds actually possess the spatial memory
needed to recall and recover their own caches? If so, did they rely on local, visual cues,
such as the shape of a rocks and trees near the cache, or did they navigate using some
more sophisticated system?

To answer these questions, researchers transferred the investigation from the
field to the laboratory (Vander Wall, 1982; Kamil & Balda, 1985). A large outdoor flight
cage was constructed, with a dirt floor and various objects, such as logs and rocks, to
simulate a forest setting. In this setting, a series of controlled experiments eliminated
olfactory and other possible cues that could not be controlled in the field. The results
confirmed that a nutcracker’s primary means of cache relocation was, indeed, spatial
memory of the locations in which it had stored its own seeds, cued by large objects near
to each cache.

1.4.4 Applying Similar Principles to HCI Research

The time-course of the nutcracker investigations illustrates an effective research
paradigm. First, informal observations of naturalists identified the basic relationship
between the nutcracker and the pine forest. Second, formal fieldwork investigated the
functional relationships, raising questions as to the causal mechanisms involved. Third,
laboratory experiments, designed to mimic important features of the natural
environment, probed those mechanisms.

A similar complementary research approach can be effective in HCI research.
Anecdotal evidence and insights acquired during participatory activities with users can
suggest questions for more objective field studies in the workplace. These studies, in
turn, can point to questions for investigation in the laboratory. They can also be used to
suggest laboratory situations that reflect the critical constraints of the user’s real
environment. At each stage, these investigations can be tied together by formal theory
and cognitive modelling.

14

1.5 Studying Exploration: an Overview of the Dissertation

The study of exploratory behavior described in this dissertation follows the
general pattern just described. It begins with anecdotal observations, supported by
some existing research, as described in this chapter. The questions raised by this
discussion are further refined in theoretical work described in Chapters 2, which
describes a formal model of the task of exploration. This formal work raises a number
of questions concerning the extent and form of exploratory behavior, questions that can
only be answered by objective fieldwork. That fieldwork, in the form of diary studies
and associated interviews, is reported in Chapters 3 and 4.

The results of the fieldwork require a rethinking of the expectations raised in this
chapter, and they define the direction for further, lower-level investigations of
exploratory behavior. That investigation is performed in two arenas: a series of
cognitive models of exploratory behavior are developed, as described in Chapter 5, and
the predictions of those models and of the formal theory (Chapter 2) are tested by
examining the behavior of users in a constrained laboratory situation, as described in
Chapter 6. Finally, Chapter 7 summarizes the theoretical and empirical work and
discusses what the results mean to interface designers and evaluators.

15

16

Chapter 2

A Formal Model of Exploration

A formal model of an exploration space and algorithms is described, with a mapping between
the model and the interface to a computer system. Optimally explorable models and
algorithms are developed. Information-management requirements are discussed. The model is
shown to expose fundamental difficulties in exploration.

Some of the constraints and difficulties associated with exploration can be
exposed by analyzing an abstract model of the exploration process. The two
components of the model are a simplified description of the environment to be explored
and a description of the activities of the explorer within that space. These components
will be referred to as the exploration space and the exploration algorithm. The approach is
similar to the formal analysis of search, in which the effectiveness of various search
algorithms can be analyzed within search spaces of different sizes and configurations
(Korf, 1988; Winston, 1984).

2.1 The Exploration Space

For the purposes of this research, the only situations analyzed are those offering
a finite number of discrete actions that move the explorer among a finite set of discrete
states. Thus, the analysis lays no claim to coverage of situations such as the
geographical exploration of a featureless lake or plain. It is also assumed that all
locations can be reached from the explorer’s starting location.

For this discretized exploration, the space to be explored can be represented as
directed graph. Each available exploratory move is represented by a directed arc, with
the locations before and after the move represented by nodes, referred to as the source
and target of the arc. Nodes and arcs are labelled. A node’s label is accessible to the
explorer only when the explorer is in that node. An arc’s label is accessible only within

17

Figure 2.1 A simple exploration space.

the node that is the source of the arc. Figure 2.1 shows a simple space to be explored.
A marker (“E”) indicates the explorer’s current position within the space.

The mapping between the model and an interactive computer system is this:
Nodes represent states that the system can assume, and arcs represent commands that
the user can invoke. The label on a node represents the perceptible characteristics of the
state, while the label of the arc represents the command label. Further details of the
mapping are discussed in Section 2.6.

2.2 Discovery-Oriented Exploration

We first consider what is necessary for discovery-oriented exploration. As
defined in Chapter 1, this is the behavior that occurs when a user has no clear task goal,
but endeavors to discover the functionality of the interface for its own sake. With no
clear goal, either immediate or future, discovery exploration can be defined as most
successful when it reveals all the features of the interface.

2.2.1 Defining Exploration Efficiency

Discovery-oriented exploration involves moving through the space and gathering
information. We consider these two processes separately, beginning with algorithms for
movement. The best algorithms for discover-oriented exploration would that provide

18

maximum coverage of the space at minimum cost. How should “coverage” and “cost”
be defined? We begin by defining some basic terms:

A = number of arcs in the exploration space

a = total number of arc traversals during an exploration

a’ = number of arcs traversed once or more during an exploration
N = number of nodes in the exploration space

n = total number of node visitations during an exploration

n’ = number of nodes visited once or more during an exploration

The values for N, 1, and n’ are defined to exclude the node where the exploration begins.

To build a complete map of the exploration space, the explorer needs to visit
every node at least once and traverse every arc at least once. (The explorer can only
discover an arc’s target by traversing the arc.) We define coverage to be the number of
arcs and nodes visited once or more.

coverage: K=a"+n’

The cost of exploration is defined to be the total number of actions, i.e., the total number
of arc traversals.

cost: c=a
Using these definitions we can express a simple measure of the effectiveness of an
explorer’s efforts.

exploration efficiency: E =K/c

Under this definition, the efficiency rating increases as the cost of the exploration
decreases or the coverage improves.

2.2.2 Explorability of Different Spaces

What can be said about the range of possible values for E? Clearly, they depend
on the structure of the space and the path by which it is explored. The maximum E
attainable for a given space will be referred to as the space’s explorability.

explorability: Ep = maximum attainable E for a given space

The definition of exploration efficiency can be used in defining an absolute upper
bound on explorability. The highest exploration efficiency would result if each arc were
traversed exactly once (2 = a’ = A, for minimum cost and complete arc coverage), and
each node visited at least once (n’ = N, for complete node coverage). Substituting into
the definition of exploration efficiency yields:

19

upper bound on
explorability: Ep <= (A+N)/ A

<= 1+N/A Eq 2.1

The value of this expression depends on the ratio of nodes to arcs. A space with
a high ratio will offer the potential for a higher exploration efficiency. But the
requirements of exploration put an upper bound on this ratio. If a node is to be reached
during exploration, it must be connected to the rest of the graph by at least one arc. This
forces A >= N, so that N/A <= 1. Substituting into Equation 2.1:

upper bound on ;

exploration efficiency Ep <= 2 Eq 2.2

Figure 2.2 shows a graph offering explorability of 2. The graph maps to a user
interface for a trivial system. Each command in the system yields a new state, but only
a single sequence of commands is available.

How low can the value for E, fall? In the space shown in Figure 2.3, exploration
of each of the many arcs leading out of node C must be preceded by traversal of the arcs

O—0O—0—0

Figure 2.2. An exploration space that can be explored efficiently (Eg = 2).

——
-— T~
......

~a

\~"‘—s._ -
e e e e

~——

Figure 2.3. An exploration space that cannot be explored efficiently (Eo= approx 0.5).

20

from A to B and B to C. The E, value for this graph is less than one, about 0.5. By
increasing the number of nodes and arcs intervening between A and C, we could force Ey
arbitrarily close to zero." This establishes a lower bound for explorability.

range of possible

explorabilities: 0 <Ep <=2 Eq 2.3

The zero-to-two range of possible values for Eg indicates that changing a
system’s underlying structure can have a significant effect on a user’s efforts to explore
the system. A space with Ey = 2 can potentially be explored with 1/10 as many actions
as a space with Eg = 0.2. The next section considers whether this potential can
realistically be achieved: Are there general algorithms that can yield optimal exploration
efficiency of spaces having a high Ey ?

2.2.3 Algorithms for Discovery-Oriented Exploration

For any exploration space there trivially exists one algorithm that achieves
optimal exploration efficiency of the space. That algorithm, which may be difficult to
discover, is simply a list of the arcs in the order that they must be traversed. However,
the more interesting question is whether there are general algorithms that apply to many
spaces. General algorithms for searching or traversing graphs and trees have been
investigated at length in the contexts of data structures (e.g., Aho, Hopcroft, and
Ullman, 1983) and artificial intelligence (review in Korf, 1988). These investigations
suggest general forms for exploration algorithms.

Because previous investigations have considered search and tree-spanning
procedures for computer implementation, the algorithms often make implicit
assumptions that would give the explorer more power than is appropriate for our
model. For example, the algorithms may assume that movement within a space is
constrained only by information availability, not by the arcs themselves. That is, after
traversing an arc from node A to B in Figure 2.3, an algorithm might return to node A to
investigate other arcs leading out of it, even though there is no arc returning from B to A.
Many of these algorithms also involve “marking” nodes as visited, something that may
not be possible during interface exploration. We take several algorithms, describe their
implicit and explicit requirements, and analyze their effectiveness for exploration.

* This describes the exploration space of a typical adventure game, where a series of
choices must be made to reach a given depth, and all but one or two moves at that depth will
throw the player back to the start of the game.

21

2.2.3.1 Depth-first exploration

Depth-first search is a well known technique that can be modified to produce an
efficient exploration algorithm. The depth-first procedure can be easily understood for
the special case in which the graph is a tree. The algorithm begins at the root and
immediately moves outward to a leaf-bearing twig. Each leaf on the twig is visited
exactly once, after which the traversal backs up a single level and moves on to the next
twig, visits it in depth, and continues to move on. For the more general case of a graph,
the algorithm simply avoids arcs leading to nodes that have already been visited; the
resulting pattern of visitations describes a depth-first spanning tree, which includes all
nodes of the original graph.

The standard depth-first algorithm assumes that the graph traverser can
recognize an arc that leads to a previously visited node and avoid that arc. Since we
want to try all the arcs (all the actions in the interface), and since predicting the target
node of an arc is assumed to be impossible, we modify the algorithm so the explorer
actually traverses each arc, returning immediately if the node entered has already been
visited. An exploration using this algorithm is shown in Figure 2.4. The algorithm
ensures that the explorer enters every state at least once and examines each arc exactly
once. Itis, therefore, optimally efficient as defined in the previous section.

' Start Node
/

-

Exploration Path
\‘

)

Figure 2.4. An exploration guided by the depth-first algorithm.

22

The algorithm has several implicit requirements: (1) the explorer must be able to
recognize states as having been previously visited; (2) the explorer must be able to
recognize arcs as previously traversed; (3) every arc from some node A to B must be
paired with a return arc from B to A, and the explorer must always be able to recognize
the return arc (for the user interface, the return arcs may be “undo’s” or they may be
other actions that cancel the effect of the previous action, such as setting the font back
to plain text after setting it to italic). Because each node must be connected to the rest
of the graph by a pair of arcs, A = 2N, and the exploration space required by the
algorithm offers a maximum exploration efficiency of 1+ N/2N = 1.5. The depth-first
algorithm achieves this efficiency.

Although it is optimally efficient for exploration spaces that satisfy its
requirements, depth-first exploration requires considerable activity for the interfaces
commonly found on modern systems. Consider a very simple Macintosh interface with
five items on the top-level menu bar, five commands on each pull-down menu, and a
five-item dialog box called up by each of those commands. Complete depth-first
exploration of this interface would require 250 actions, 125 of which are not undo’s.
(Actually, exploration of a standard Macintosh interface with the depth-first algorithm
would not be strictly possible, since undo doesn’t bring back the dialog box, and
cancelling the dialog box doesn’t bring back the menu that led to it.)

2.2.3.2 Breadth-first exploration

In breadth-first traversal of a graph, all nodes connected by a single arc to the
start node are investigated on the first pass of the algorithm. On each subsequent pass,
the algorithm probes one layer deeper, investigating all nodes that are one arc away from
nodes visited during the previous pass. This procedure assumes that the traversal can
always jump back to any node that has been previously visited and probe one level
deeper from that point. In Al search applications, this requires that the state
represented by every visited node be maintained in the search program’s memory, which
makes breadth-first search a memory-intensive procedure.

For exploration as it has been defined here, standard breadth-first search is
simply impossible. The explorer cannot jump back to an arbitrary node that was
previously visited. Only nodes connected by arcs to the node in which the explorer is
currently found can be directly accessed, and even in these cases the destination of the
connecting arc is not known until it has been explored.

23

2.2.3.3 Depth-first exploration with iterative deepening

Depth-first search proceeds all the way to the outermost leaf of a tree before
turning back to investigate another leaf, twig, or branch. For many Al problems this is
problematic. The depth of search on some or all of the branches may be too deep for
computation in the time available, as in search of the game tree for chess. Another
potential problem is that the node sought may lie lie at a very shallow depth on a branch
that is not searched early on. Again using chess as an example, the algorithm could
waste a great deal of time investigating the long end game that follows a pawn move,
before going to investigate a queen move that would give an immediate win.

An alternative to depth-first search is depth-first search with iterative deepening
(Korf, 1985). This algorithm combines some of the features of depth-first and breadth-
first search. In DFID, the first pass of the search is identical to depth-first search, but
only to the depth of one arc away from the start node. The second pass performs a
depth-first search from the start node to depth two, the third pass to depth three, and
so on. Unlike breadth-first search, each pass starts fresh, using none of the state
information collected during the previous passes.

The DFID algorithm can also be used for exploration. It requires an exploration
space with the same characteristics as for depth-first exploration, so the optimal
explorability of the space is 1.5. But DFID is clearly not an optimal exploration
algorithm, since each pass repeats all the arc traversals and node visitations from the
previous pass, covering ground that has already been explored. The exact exploration
efficiency of DFID will depend on the structure of the space. Assume a space in which
every non-leaf node has b arcs branching out of it (and b return nodes leading back in).
Let the space have a depth of d from the start node. Then DFID will traverse 2b arcs on
the first pass, 2b + 2b 2 on the second pass, 2b + 262 + ... + 2b4 on the final pass. The
sum of all traversals will be 2 (db + (d-1)b 2 + (d-2)b 3... + bd). The total coverage will
be the number of arcs, which the same as the number of traversals on the final pass, plus
the number of nodes, which is half the number of arcs. The exploration efficiency of
DFID, then, will be

efficiency of DFID: E K/c

B 3(b+b2+..+b4)
T 2 (db + (d-1)b 2 + (d-2)b 3... + b)

Eq 24

24

Table 2.1
Exploration Efficiency of DFID (from Equation 2.4)

Branching Factor
Depth 1 2 3 4 5
1 15 1.5 1.5 1.5 1.5
2 1.00 1.13 1.20 1.25 1.29
3 0.75 0.95 1.08 1.17 1.22
4 0.60 0.87 1.03 1.14 1.21

For d = 1, Equation 2.4 gives a value of 1.5, the same efficiency rating as depth-
first exploration. Table 2.1 shows values for a reasonable range of depths and
branching factors. The table demonstrates that, for branching factors that are
reasonable in user interfaces (five or more menu items is not unusual), DFID never falls
far below the optimal efficiency offered by depth-first exploration. This suggests that
DFID might be a reasonable approach for task-oriented exploration of an interface,
where an acceptable solution, like the winning pawn move, might be discovered at some
shallow depth.

2.2.3.4 Random exploration

The random algorithm for exploration selects an arc at random, traverses it, and
repeats the process until stopped by external interruption or some defined criterion,
such as number of traversals. The random approach is interesting because it approaches
a lower bound for control sophistication. It is appropriate to say “approaches,” not
“describes,” since truly random selection of an alternative may itself be difficult. The
algorithm is also interesting because its effectiveness decreases as exploration proceeds.
In the space shown in Figure 2.4, random selection is guaranteed to choose an
unexplored arc for the first and second traversals, and it has at least a 50 percent
chance of choosing unexplored arcs for the third and fourth traversals. Eventually,
however, the space will be mostly explored, and random selection will have a poor
chance of selecting the few unexplored arcs. Repeated traversals of previously traversed

‘arcs might be an appropriate stopping criterion for the algorithm.

The practical effectiveness of random exploration will vary with the degree of
coverage desired. For example, the random algorithm might have an average efficiency
of 1.0 in exploring 75 percent of a certain exploration space. For spaces requiring
complete coverage, random exploration would be a poor choice, but for partial coverage,

25

it might be a reasonable approach to other constraints, such as information management
(discussed below).

The same approach suggests an analysis of explorers who implement an
exploration algorithm with random error. Consider a depth-first explorer who has a 10
percent chance of missing any arc. In a space with a depth of three, for example, we can
expect the explorer to miss 10 percent of the arcs (leading to 10 percent of the space) at
the top level, plus an additional 10 percent at each of the subsequent levels, for a total
miss rate of 0.1 + 0.1*0.9 + 0.1*0.81 = 0.271. This is approximately the base error rate
times the depth. But with DFID, the imperfect explorer of the same space investigates
the top level three times and the second level twice, yielding a total error that is not
much greater than the base rate.

The structure of the space can also affect the total error rate. Multiple arcs
leading to a single node reduce the chances that the node will be missed, while hiding a
major portion of the space behind a single arc increases the chance of missing that entire
subspace.

2.3 Task- and Problem-Oriented Exploration

Recall from Chapter 1 that “task-oriented” exploration is similar to discovery-
oriented exploration, but with the user’s knowledge contributing more to the high-level
task goals. The example given for task-oriented exploration was the design of a
newsletter using a new page layout system. “Problem-oriented” exploration is the
situation in which a detailed task goal has been set but the interface actions needed to
achieve it are unknown. An example of this would be specifying bold font for a line of
type in a new word processor. As discussed in Chapter 1, these categories are not
sharply delineated.

2.3.1 Using Opportunistic Goals to Guide Exploration

Problem and task-oriented exploration are important topics in their own right.
However, they gain additional importance as potential solutions to the difficulties of
exhaustive exploration uncovered in the analysis up to this point. Those difficulties can
be summarized by observing that an discovery-oriented exploration of an entire interface
is likely to exhaust the user long before it exhausts the possible combinations of states
and actions afforded by the system. A clear way to reduce those difficulties is to
explore only those combinations of states and actions that seem somehow “productive,”
or to put it another way, to limit the exploration to those actions that might satisfy some
reasonable goals.

26

Shrager’s protocols of students learning the Big Track toy suggest that learners
may structure their explorations in exactly that way. In the absence of clear pre-existing
goals, Shrager’s subjects combined background knowledge with options offered by the
interface to suggest microtasks that the interface and system might support. They then
sought for solution paths that achieved those microtasks.

In general, then, a user faced with the need to explore a new system may find it
effective to create “weak,” opportunistic (Hayes-Roth and Hayes-Roth, 1979) goals.
These weak goals can then drive a limited exploration. These goals should appear
suddenly, triggered by the interface, and they should be dropped if continued
exploration fails to satisfy them, or if more attractive goals appear as the interface and
system are revealed. Beyond simply limiting the search to a manageable size, the goal-
oriented approach should direct the users’ efforts to parts of the interface which,
because they match his or her background knowledge and understanding, are most likely
to be useful in the future.

2.3.2 Goal-Oriented Exploration Compared to Search

Goal-oriented exploration is very similar to search. As with search, the
exploration can be terminated when the stated goal matches the state of the world.
However, it can also be terminated when extended efforts begin to suggest that the goal
cannot be achieved. Certain features of the interface can make the exploration more or
less difficult, depending on the algorithm. One critical feature of the interface, if the
algorithm recognizes it, is the semantic information content of the control labels.

In the optimal case, the control labels would guide the user unerringly through the
task. This can only occur if (1) the user’s overview of the task structure is similar to the
structure actually offered by the interface (i.e., the user can’t be trying to load the
spelling dictionary when the system wants the user to select the section of the document
to be spell-checked) and if (2) the user’s representation of the steps of the task,
expressed cognitively as a sequence or collection of subgoals, is sufficiently similar to the
control labels that the user can recognize a uniquely correct control at each step.

It seems likely that most goal-oriented exploratory situations will be less than
optimal. The user will have some misunderstandings as to the task structure, and some
of the control labels will fail to unambigously match the user’s immediate goals. In these
situations, the user must still explore the interface, but the exploration need not be
exhaustive. It can be limited, at least initially, to those controls whose labels appear to
match the current goals.

27

2.3.3 An Algorithm for Goal-Oriented Exploration

The best approach for goal-oriented exploration depends strongly on the
semantic value of the control labels. As noted above, the best possible situation is one
in which the labels completely guide the user’s selections, so searching to the end of a
single path achieves the current goal. The worst possible situation is one in which the
labels (and the changes in state that occur as paths are followed) contain no useful
semantic information. In this case, exhaustive exploration must occur until the goal is
achieved, For exhaustive exploration, as discussed earlier, the DFID algorithm is an
effective algorithm that approaches optimal efficiency for many interfaces. It has the
additional benefit of achieving shallow coverage of the interface quickly, which may be
appropriate in an interface where the solution (or clues to the path toward a solution)
may be discovered at or near the top level.

The DFID algorithm can be modified for slightly greater usefulness by choosing to
first deepen those paths that the interface allows to be deepened quickly (as opposed,
for example, to a path that requires the system to pause for several seconds to perform
a search). This modification would have no impact in fully exhaustive search, but it is
sensible where a goal has been set, since search can terminate as soon as the goal is
achieved.

For task-oriented situations, where less-than-exhaustive search is expected to
suffice, the DFID algorithm can be further modified to take into account the semantic
content of the labels and the semantic content of the feedback to actions as they are
attempted. The modified algorithm, “guided DFID” (gDFID) is similar to the beam-
search version of breadth-first search (Winston, 1984) and to the IDA* algorithm that
describes a form of depth-first search (Korf, 1988). In gDFID, paths that appear to be
relevant to the current goal are expanded first. If the search continues to fail, it is
extended to items that appear irrelevant to the stated goal. This extended search first
investigates those controls whose effects cannot be predicted by their labels and
feedback; then, if this fails, moves on to investigate controls with labels and feedback
whose semantic content actually contradicts the current goal.

2.4 Information Management During Exploration

As exploration proceeds, the explorer is faced with two related information
management tasks. The information revealed by the exploration must be recognized and
possibly retained, and the information needed to control the exploration algorithm must
be maintained.

It is useful to describe the kinds of information that exploration may reveal and
consider what an explorer might remember. (1) In task-oriented exploration, the

28

explorer may consider features of the system only long enough to determine whether they
are applicable to the current task, but retain nothing of value after the exploration is
done. (2) In either discovery- or task-oriented exploration, the explorer may learn that
certain functions are available in the software, but not remember the command sequence
to invoke those commands. In the model, this maps to learning the contents of the nodes
but nothing about the arcs. (3) Finally, in any exploration the explorer may learn that
functions are available and also learn how to access those functions. That is, knowledge
of the arcs (source, label, and target) and the nodes (content) may both be retained.

The information needed to control the exploration depends on the algorithm.

The random algorithm requires no retention of control information from one action to the
next. Depth-first exploration, on the other hand, requires that extensive control
information be maintained. The explorer must remember which nodes have been visited,
which arcs have been traversed, and which arc should be used to back out of every node
that has not been completely explored. The DFID and gDFID algorithms require the
same information as for depth-first exploration, along with a record of the depth to
which exploration has currently progressed.

The two information-management tasks interact. An explorer who learns the
label and target of each arc as it is traversed (i.e., the name and effect of each command)
can use this information to control depth-first exploration. Arcs whose target is known
have been visited need not be accessed again.

It is evident that the requirements of information management in sophisticated
algorithms exceed the capacity human memory, at least for exploratory activities that
are to be performed at a reasonable rate. Rapid storage of information into short-term
memory will handle fewer than 10 items of information: names of nodes visited, return
paths, etc. Augmenting this storage with long-term memory is possible, but the time to
store items in LTM is typically on the order of 10 to 30 seconds (Card, Moran, &
Newell, 1983), which would unacceptably slow exploratory activities with most modern
interactive interfaces.

In information-management terms, the gDFID algorithm for task-oriented
exploration is a relatively low-cost approach, since it requires only that the explorer
remember which of the “attractive” options have been examined at each level.
Unattractive options need not be remembered, since exploration down those paths will
be blocked on the next pass by the attractiveness criteria. Indeed, reevaluating the
attractiveness of all options at each iteration may improve search efficiency, since
options that seem inappropriate at first glance may become more attractive as
additional information about the interface is accumulated.

29

2.5 Limits of the Model and of Exploration

The model presents a radical simplification of the exploration space defined by a
complex computer system. Simplification is the essence of modelling, but it is important
to recognize where the model fails to reflect critical factors involved in real exploration.
Not only does this suggest weaknesses of the formal model, it may also suggest
problems with users’ real algorithms, which may reflect similar difficulties in building a
mental model of the real world. '

2.5.1 Mapping Difficulties

Attempting to map an actual user interface onto the model reveals several
difficulties. First, and probably most difficult, is the question of how to define a “state”
and a “command.” In a menu-based system, menu items are clearly commands. But is
each keystroke also a command? Does a new state result each time another number is
entered into a spreadsheet or another character into a word processor? If it did,
combinatorial expansion of states and commands would make exploratory learning a
hopeless task. But there are some instances, such as adding the string “asdfghj” to a
text file before running the spelling checker, where changes to data do effectively
produce a new state.

This difficulty recalls our early efforts with the cognitive walkthrough procedure,
in which we attempted to analyze interfaces at a keystroke level (Lewis, Polson,
Wharton, and Rieman, 1990). The value of such a detailed analysis is limited to walk-
up-and-use interfaces. When considering users with background experience in an
established computer environment, we now analyze well-practiced action sequences,
such as “select PRINT from the FILE menu” (Polson, Lewis, Rieman, and Wharton,
1992). ‘

A similar approach allows a meaningful mapping between the formal model of
exploration and a real system, given that the user is not a complete novice. But the
difficulty in mapping points to potential problems for the user. In order for the user to
perceive a discrete space of commands and states, the interface must adhere closely to
established conventions. Commands that involve actions that usually have no special
effect, such as clicking at a blank area of the screen, can’t be discovered unless the user
engages in virtually unbounded exploration. Similarly, state changes that affect the

30

behavior of commands will be difficult for the user to recognize without cues. Such cues
might include menu items that are disabled when inappropriate or messages that appear
when commands are attempted from an inappropriate state.

2.5.2 Differential Information Values

As defined, the expression for coverage assigns an equal value to every node and
every arc. This seems overly simplistic when compared to the values an interface
explorer might assign to the results of the exploration. Should traversal of paths be
valued the same as visitations of states? Should all paths have the same value? Should
multiple paths to a single state (multiple commands with the same effect) be given the
same weight as discovery of a new state? |

Consider the DFID exploration algorithm, in which as many as half of the arc
traversals may represent undo commands. All the arcs are counted in the value for
coverage, but after concluding that the undo command returns to the previous state, the
user gains essentially no new knowledge from the repeated undos required by the
algorithm. ,

Or imagine a user exploring a graphics program to produce a black-and-white
graphic. The user can safely avoid the top-level menu for color and all the items under
it. It is clear that some items of information can be more valuable than others simply
because of the underlying structure of the exploration space.

2.5.3 Resources Not Recognized

The model suggests that exploration may be unachievably difficult. But this view
may result from failing to consider all the informational resources at hand. Remembering
all the “arcs” that have been traversed (or even all the attractive arcs, in the case of
gDFID) does indeed seem to exceed the capacity of human memory, but in many cases
the user may only need to remember a pointer: all menubar items to the left of
“Document” were investigated, or simply all menubar items to the left of the current
cursor position. Cues such as these are inherent in display-based interfaces, potentially
lending them an explorability that command-line interfaces lack. Display-based
interfaces also support the use of recognition memory, and an algorithm utilizing this
approach has been described by Howes (1994). Finally, expert users may make use of
“long-term working memory” (Kintsch & Ericsson, 1991), to rapidly encode and recall
much more information about the interface than a novice user can handle.

31

2.6 Practical Difficulties Exposed by the Model

Several conclusions can be drawn from the model of exploration presented in this
chapter.

¢ Recognizing states and commands is a fundamental problem.
¢ Combinatorial expansion makes exhaustive exploration almost overwhelmingly
difficult, even with clearly delimited states and commands.
¢ The both the structure and the perceptual form of an interface can have a
significant effect on the attainable exploration efficiency.
. Information-management needs may make sophisticated exploration algorithms
unusable by human explorers.

The next chapters will investigate whether users can overcome these difficulties,
and if so, how.

32

Chapter 3

DIARY STUDIES OF REPRESENTATIVE USERS

This chapter analyzes the one-week logs kept by the fourteen field informants. The logs show
a wide variety of tasks and work habits, but they present a common picture of how task-
oriented problems are solved when they arise: by trying things out in the interface, looking at
paper manuals, and asking other people for help.

The previous chapter described some of the difficulties theoretically associated
with the exploration of cofnputer systems. Have users of current interactive systems
found ways to overcome these difficulties? Or have they decided that exploration is
hopelessly difficult? If users do engage in exploration, under what circumstances is this
behavior most likely to occur?

To answer these questions, and to build a foundation for laboratory
investigations and further theoretical work, a field study was performed of users’
exploratory and learning behavior in the course of their ordinary workday. The
technique used was the diary study (Ericsson, Tesch-Romer, and Krampe, 1990; Rieman,
1993). The “grain size” of the data exposed by the diary study is relatively large.
Events that take several minutes are reported, but the low-level detail of those events is
not clearly exposed. Thus, the field study will give evidence of the existence and context
of exploration, but not its structure. User behavior at a finer grain size will be the subject
of Chapters 5 and 6.

3.1 Method

3.1.1 Informants

Fourteen informants participated in the study, seven male and seven female. The
participants are identified as Informants 2 through 16. Informant 1 was a pilot subject

33

whose data is not reported, and there was no Informant 13. Individual participants are
always referred to with male pronouns, to help preserve anonymity. The Informants all
volunteered their time. The informants were selected to provide a broad range of
experience and work demands, as shown in Table 3.1.

Table 3.1
Informants' Background and Experience Ratings

ID* Expt Op. Computer Position; Duties Background

Sys.** Use
2 1 Unix/ clerical secretary; general On-the-job and classroom training on
Work- Unix-based and dedicated word
station processing, spreadsheets.
3 2 Mac/ clerical secretary; general On-the-job training, some classes, on
VMS dedicated word processors, PC and
Macintosh-based word-processors and
spreadsheets. :

4 5 Work- work/ Ph.D. student in Industry experience in program
station research computer science; AI development and support. Extensive
/Unix research, writing use of minicomputers, personal
computers, AI workstations.
5 5 Mac/ work/ PhD.studentin Industry experience in program
Unix research computer science; AI develpment and support. Experience
research, writing with Unix, PC's; learning Macintosh.
Has taught computer science courses.
6 1 Mac/ clerical undergraduatein =~ Home experience with PC's. Work

PC engineering, clerical experience with word processing and
assistant duties; spreadsheets on Macintosh. Some
home-work programming training.

7 5 Unix/ work/ faculty memberin Extensive academic experience with
Work- research computer science; AI Unix systems and Al workstations.
station research, teaching Limited PC/Macintosh background.

No industry experience
8 4 Mac/ primary research faculty in Master's degree in computer science;
Unix tool cognitive science; has taught computer science courses.
cognitive modelling, Macintosh user and Lisp programmer.
empirical research Research focus on programmers, not
software applications.

34

Table 3.1 (Cont.)

9 Mac/ clerical undergraduatein =~ Work and home experience with
PC pharmacy, clerical several programs on PC and Macintosh.
assist.; homework, High-school programming courses.
assigned duties Aggressive learner of new programs
10 Unix/ work/ Ph.D.computer Industry experience in program
Mac research science researcher in development and support. Extensive
industry; program use of minicomputers, personal
development computers, Al workstations. Has
taught computer science courses.
11 PC/ science faculty memberin Extensive experience with personal
VMS support social sciences; computers, both command line and
research, teaching graphical interfaces. Relies heavily
on databases, word processors, and
presentation software for teaching and
research. Programs in database,
system command language.
12 Mac/ science Ph.D. student in On-the-job experience with
VMS support psychology; minicomputer statistics packages,
empirical & Macintosh spreadsheets, word
bibliographic processing, and graphics. Some
research programming training, occasional
programming for research in statistics
programs, HyperCard.
14 PC/ primary financial analyst in Master's level training in information
Mac tool industry; data systems. Programming courses in
analysis, FORTRAN, Pascal. Extensive
predictions experience with PC's and Macintosh,
both as a user and support person.
Frequent programmer in database and
spreadsheet packages.
15 Mac/ science faculty memberin On-the-job experience with Macintosh
VMS support psychology; word processing, graphics, and
empirical research, statistics. Some experience with
teaching similar programs on window-based
PC's. E-mail on minicomputer. Has
avoided learning to program.
16 PC/ primary financial analyst in Courses in programming (FORTRAN,
Mac tool publishing; data COBOL, Pascal) and finance.

analysis, workflow
investigations,
training for job
sharing

Extensive experience evaluating
Macintosh application software in a
development environment. Heavy user
of spreadsheets and databases.
Involved in user support.

*ID 1 was a pilot subject whose data is not reported; there was no ID 13.
t Primary/secondary operating system; PC includes both MS-DOS and MS Windows.
** See Table 3.2 for explanation of experience ratings.

35

3.1.1.1 Computer use distribution of informants

Four informants, identified by the keyword “clerical,” in the computer-use
column of the table, were selected as representative of the large population who uses
word processors and spreadsheets in an office environment. Two of these users were
professional secretaries in university academic departments, one using a Unix-based
system, the other working with Macintosh equipment. Two were undergraduate student
clerical assistants, doing secretarial and general office work as well as their classwork.
None of these users had extensive computer science training or skill, although the
secretaries had professional level skills with the software they used in their work.

Three informants were selected to yield insights into the work of scientists who
rely on computers for text processing, graphics, and some data analysis, activities that
are in support of their main research interests. Two of these informants were faculty
members in departments outside computer science (a social science and psychology),
neither of whom was involved in computer modelling of cognition or other research that
demanded extensive computer work. A third informant was a doctoral student in
psychology, again in an area that did not demand a high level of computer skill.

Another three informants, whose computer use is described as “primary tool,”
represented the growing force of workers for whom the work environment is not simply
improved but is entirely defined by the presence of computers. Two of the informants
worked in business, where they did financial modelling and analyis that would have
been impractical or even impossible before the advent of PC-based spreadsheets and
databases, often in communication with mainframe accounting packages. These
informants were both highly skilled users and programmers within the applications they
used, but neither was a trained software developer. The third informant in this group
was a cognitive science researcher, with a strong background in computer science, but
with research activities in which computers were a tool for empirical analysis and
cognitive modelling, not a topic of investigation in themselves.

Finally, four of the informants were highly experienced computer scientists,
including a faculty member, two graduate students nearing completion of their Ph.D.s,
and an industry researcher with a Ph.D. and several years software development
experience. These users perform work and research in the field of computers themselves.
It was expected that the most extensive exploratory activities would be seen in this

group.

36

3.1.1.2 Experience distribution of informants

The informants’ experience with computers ranged from novice users who had
worked with only one or two word processors to professional Ph.D. computer scientists
with experience on systems as simple as a Macintosh and as complex as a Symbolics
workstation. The years of experience for each user were difficult to determine, and the
experience ratings defined more in terms of breadth of experience than depth. Table 3.1
lists the ratings for each user, and Table 3.2 provides a key to the meaning of the
numerical ratings. The novice (narrow) category described the background of two of the
users, who had only worked extensively with a few word processors, with some
additional exposure to other programs such as spreadsheets and graphics. Two more
users fell into the novice (broad) category, having more training and more extended
experience with software in addition to word processing. The intermediate category,
which also included two informants, was defined to be the lowest level that used

Table 3.2

Key to Experience Ratings

Rating Number Description Defining Experience

of Inf’s
1 2 Novice Work experience limited to one or two word processors,
(narrow) e-mail, possibly a spreadsheet; no use of programming.
2 2 Novice Work experience with several types of software
(general) application, some formal training, no use of
programming in job.
3 2 Intermediate Work experience with many software applications and

more than one system, programming training or
experience, programs infrequently.

4 4 Advanced Work experience with many software applications and
systems, frequent use of programming in work (including
traditional languages or application languages such as
spreadsheet macros, complex database queries, system
command files), has supported other users
professionally.

5 4 Expert Professional programmer, familiar with many systems,
extensive formal training in computer science, has
taught or supported other users.

37

programming (including operating system command files, data base queries, and other
application-specific languages). Four informants fell into the advanced category, which
required experience with a variety of systems and frequent work-related use of
programming. Finally, the expert category included four professional computer
scientists, all with Ph.D.-level training (two Ph.D.’s in progress) and all with industry
experience in program development.

3.1.1.3 Operating system distribution of informants

In addition to having a wide range experience, the informants also used a variety
of computer operating systems as their primary system. Systems represented included
Macintosh (7 users), PC’s (with or without MS Windows; 3 users), Unix or VMS (3
users), and high-end scientific workstations (i.e., Sun, Symbolics; 1 user). Systems on
which users had secondary access or significant past experience, typically for e-mail
purposes or on a home system, included Macintosh (3 users), PC’s (2 users), Unix or
VMS (7 users), and high-end scientific workstations (2 users). For some users it was
difficult to say which was the “primary” system; in these cases the system listed is the
one in which the user reported the most computing during the log week.

3.1.2 Materials

Informants maintained their daily log of activities on a log sheet of the form
shown in Figure 3.1. The sheet was on 11-inch by 14-inch paper, and the hours on the
left side corresponded to the informant’s typical working hours, with a few hours extra.
Usually this was from 7 a.m. to 7 p.m., but some subjects worked a later schedule and
used a sheet that ran from 10 a.m. to 10 p.m. In addition to the log sheet, informants
were supplied with a stack of blank “Eureka Slips,” as shown in Figure 3.2. These were
printed on various bright colors of paper and held together with a colorful spring clip.
The colors were intended to make the slips more visible and increase the likelihood that
informants would remember to fill them in when appropriate.

The materials were designed to focus on learning, without specifically narrowing
the issue to exploratory learning. There was no specific category on the log sheet in
which to record time spent exploring computer systems. The sheet included an “other”
category as well as categories for common systems (word processing, spreadsheets,
etc.), and these were intended to cover all computer activity. The Eureka slips narrowed
the focus somewhat, being clearly concerned with learning, but they were broad enough
to cover many kinds of learning activity, including both task-oriented and task-free
exploration.

38

Day: Tues -- 9/15

Categories: Fill in at End of Day

g -
<
o ny =
L.D.: 7 3 8 o 43 £ 8
se EE - 8%25
o s,85 & g2Ea
cEg 2 s ng,_n_nU”u.
'-a s’"‘c.c'_h.svg‘-x's
x99 o - 282522383
- - - e T Q r— -
Activity Log: Fillin EveryHalfHowr © * s T £ S L2 S 5o &
Got coffee *
Phoned garage about car *
8:30-9 | More -mail *
Met with student
9-9:30
Al Class
9:30-10] ~

Figure 3.1. The beginning of a diary log sheet for one day. The participant records
activities, and the researcher assigns categories during the end-of-day debriefing.

“Eureka” Report

For Computers, Phones, Copiers, Fax Machines, Staplers,

Clocks, Thermostats, Window Locks, Cameras,

Recorders, Adjustable Chairs, and other Strange Devices

I.D. 7 . Date & Time: _9/15 at 11 a.m.

Describe the problem you solved, or the new feature you
discovered, or what you figured out how to do:

Got copier to put staple in right corner!!!

How did you figure it out? (Check one or more, explain)
—_Read the paper manual
___Used on-line “hjelp” or “Man”
X Tried different things until it worked
___Stumbled onto it by accident
___ Asked someone (in person or by phone)
___Sent e-mail or posted news request for help
___Noticed someone else doing it
__ Other

Explain:

Can’t figure out “internationl” copier symbols.

Figure 3.2. A “Eureka” slip, for noting successful or attempted learning events.

39

3.1.3 Procedure

The investigator gave a brief description of the log materials to the informants at
the time they were recruited. A log period was scheduled at that time. As much as
possible, the log period was scheduled to be a week of “ordinary” activity for the user.
A week when an informant would be out of town for a conference, for example, would
not be logged (unless travelling to conferences was a common activity for that user); but
there was no effort made to prefer or avoid times when the user had just started work
with a new piece of software.

Immediately before the log period began, the investigator met with the informant
and explained how the logs were to be used. Informants were to fill in the left-hand
side of the log sheet as each day progressed, using their own terminology for the work
they were doing. To protect their privacy, they were allowed to mark any period as
“breaks/personal” and provide no further information. Informants were instructed to
fill in a Eureka slip whenever they learned something new about their computer system
or some other equipment in their work. They filled in the slips completely, including the
description of the problem, the strategy used to solve it, and any additional comments.
Informants were also asked to use Eureka slips to record failed attempts to solve
problems.

At the end of each log day, the investigator met with the informant (in person for
all but two informants, and over the phone for those two (10, 14)). The investigator
spent 10 to 20 minutes talking over the day’s activities and assigning them to the
categories on the right-hand side of the log sheet. The day’s Eureka slips, if any, were
also discussed briefly during this meeting, and the investigator often made additional
notes on the back of the slips, or occasionally corrected a strategy assignment. If logged
activities revealed a learning episode that had not been recorded on a Eureka slip, the
investigator and the informant would fill one in for that episode.

3.2 Results: Logged Time

This chapter presents summaries and analysis of the log data. The data
presented in this chapter include only log time not marked as breaks/personal.

All but two of fourteen informants kept their logs over a consecutive 5-day
period. One informant (3) kept a log over 4 1/2 work days plus 1/2 work day; for
another (10), one day of the five was eliminated from the data because the log was only
partially and inaccurately completed. For most informants, the log skipped weekends
and holidays, although some informants worked over the weekend and logged that
period.

40

3.2.1 Overview

An overview of the logged time is given in Table 3.3. The mean number of hours
logged, after personal time was subtracted, was 34, ranging from 27 to 39.5 hours per
informant. Within those 34 hours, informants spent an average of 17.3 hours, or 50.9
percent of their time, working with computers. For the purposes of this analysis,
computers were defined narrowly to include PC's, minicomputers, and mainframes.
They did not include phone systems, VCR's, fax machines, copiers, and similar
hardware that typically has a dedicated internal microprocessor and a multi-function
interface. The format of the log sheet made it difficult to accurately determine time
spent in these activities, since individual sessions with these machines typically took
much less than the log’s 30-minute basic interval. Computing time for individual
informants ranged from 1 hour (informant 6) to 34.4 hours (informant 5). As a
percentage of their total log time, computing time for individual informants ranged from
3.5 (informant 6, 1 hour out of 28.5) to 91.7 percent (informant 8, 27.75 hours out of
30.25).

Table 3.3
Hours Logged During the Diary Study

Total Mean SﬁiDev Min Max

Hours Logged, Less Personal Time 476.5 34.0 4.27 27.0 39.5
Hours of Computing 2426 173 8.41 1.0 34.4
% of Log Hrs Spent Computing 50.9 50.9 24.3 3.5 91.7

3.2.2 Time in Application Categories

As part of the log, informants recorded the category of computer application
they were working with. That data is summarized in Table 3.4. The categories should
be self-evident except for “special applications,” which included mostly minicomputer-
based software that was custom programmed for some business function. Operating
system activities included disk formatting, directory management, and backups; working
with batch or command files was categorized as programming. The news and on-line
information category reflected mostly internet news reading, but one subject also spent
time looking at the University of Colorado’s on-line general information.

41

Table 3.4
Hours Logged in Software Categories During the Diary Study

Total Percent of Informants'
Software Category Logged Computing Times
Hours % Ttl Inf's* Mean StdDev Min Max

Word Processing 87.5 36.1 12 37.7 30.6 0 88.5
Programming 28.5 11.7 4 7.6 25.9 0 97.3
E-Mail 26.0 10.7 9 15.3 221 0 60.2
Database 25.8 10.6 4 7.6 14.2 0 40.6
Special Applications 24.0 9.9 4 13.6 26.3 0 85.9
Spreadsheets 17.3 7.1 5 5.9 14.7 0 55.2
Graphics 11.5 4.7 4 4.0 9.4 0 33.9

- Telecom (up/dnload) 9.0 3.7 4 2.4 5.0 0 16.7
Operating System 6.8 2.8 7 3.0 5.7 0 21.0
Games 3.5 1.4 1 1.4 5.4 0 20.3
News/On-Line Info. 2.5 1.0 3 1.2 2.5 0 8.7
Unknown 0.3 0.1 1 0.1 0.4 0 1.7
total 242.6 14

*Number of informants who logged time in the category.

The left side of the table is a simple total of all times recorded, with a count of
informants who reported spending time with each category. This is an indication of the
study's application sample characteristics: if there was more time spent in one
application category than another, then, all other things being equal, we could expect to
see proportionately more learning events in that category. The category accounting for
the most hours is word processing, which makes up 36.1 percent of the total computing
hours logged. No other single category is a standout, although there is a range of 10 to 1
between the group of four categories that each make up about 10 percent of the
remaining time (programming, e-mail, databases, and special applications) to the least
popular application (network news and on-line information at 1 percent).

The right side of the table was developed by determining the percentage of each
informant's total computing time that was spent in each category, then calculating the
averages of those percentages. This is a rough indication of the sample population's
work habits, and its most notable characteristic is its variance. The mean percentage for
word processing, where informants on the average spent the largest proportion of their
computing time, is 37.7 percent, but with a very great range. Two of the fourteen
informants did no word processing at all. Of the remaining categories in Table 3.3, only
electronic mail shows a mean percentage (15.3) and a number of informants (9) that
even approaches a consensus.

42

3.2.3 Time Spent Exploring Computer Systems

As described above, the log sheets did not include a category for exploratory
learning. Therefore, the record of this behavior is based on the investigator’s daily
debriefings and on the Eureka slips, described in greater detail in the next section. These
data sources show no evidence of time spent by any subject in task-free exploratory
learning of an interface. Informant 12 spent 15 minutes browsing the university’s on-line
information system with no set goal, but this was an exploration of the information, not
of the interface. Informant 11, who had recently acquired new software, spent more
than 5 hours doing task-oriented exploration of the software’s capabilities, out of 15.5
hours total computing time. The tasks were small and artificial, and the informant
admitted during the daily debriefings that his work-related need for the software really
wasn’t great enough to justify the time he was spending with it. Three other informants
(5,10,16) were working with new software during the log week, but all of them
structured their activities entirely around real, current tasks.

3.3 Results: the Eureka Slips

A total of 78 learning events were recorded on Eureka slips. Of these, 18
involved copiers, phone systems, or other equipment whose operation was not included
in the calculation of each informant’s “computing time.” Because no background
information was collected concerning these systems and users’ related experience, those
18 Eurekas are not included in the detailed analysis that follows. Eurekas of all types
are described in the Appendix.

The distribution of the 60 computer-related Eurekas across informants is
summmarized in Table 3.5. One informant (5) reported 15 Eurekas; the counts for the
other informants ranged from 0 (Informants 6 and 15, who both reported non-computer
Eurekas) to 8 (Informant 11). As the table shows, the time spent in computing ranged
from 1 hour to 34.4 hours. This information can be used to normalize the Eureka count
for each informant, providing an indicator of learning events per computing time. The
measure “Eurekas per 8 hours of computing” (E/8hr) was chosen as an easily
comprehensible unit. For this measure, the range is 0 to 4.13, and the variance is
proportionately somewhat less than for the raw Eureka count.

The E/8hr scores for three users stand out: Informants 5 (with a raw Eureka
count of 15), 11, and 16 have scores of 3.48, 4.13, and 3.43, respectively. The E/8hr
scores for all other informants are less than or equal to 2.30, with a mean of 1.19
(0=0.8). This suggests that there may be two distinct types of users, or perhaps two
distinct situations in which users find themselves. In either case, by far the most

43

Table 3.5
Hours and Eurekas Logged During the Diary Study

Total Mean StdDev Min Max

Hours of Computing 242.6 17.3 8.41 1.0 34.4
Number of Eurekas 60 4.29 3.95 0 15
Eurekas per 8-Hr Computing (E/8hr) 1.73 1.73 1.28 0.00 4.13

Table 3.6
Eurekas per 8-hour of Computing, by Informant Categories
Mean Mean* Values R

Overall 1.73 1.19
by Gender

female 1.98 1.26

male 1.48 1.14
by Experience

1 (novice) .905 .905 (1.81, 0)

2 1.15 1.15 (2.3, 0)

3 2.31 1.41 (.62, 4.13, 2.19)

4 2.08 1.42 (1.73, 1.1, 3.43)

5 (expert) 1.72 1.14 (1.59, 3.48, .89, .93)
by Computer Use

clerical 1.18 1.18 (1.81, 2.30, 0, .62)

science support: 2.10 1.11 (4.13, 2.19, 0)

primary tool 2.08 1.42 (1.73, 1.1, 3.43)

work/research 1.72 1.14 (1.59, 3.48, .89, .93)
by Primary Operating Systemt

Macintosh 1.47 1.14 (2.3, 3.48,1.73, .62, 2.19, 0, 0)

MS-DOS/MS Windows 2.89 1.10 (4.13, 1.10, 3.43)

Unix/VMS 1.21 1.21 (1.81, .89, .93)

Workstation 1.59 1.59 (1.59)

* mean of all values except the three scores exceeding 3.0 E/8hr.
T not necessarily the system in which all Eurekas occurred.

prevalent case is that of the user who learns new things about a system infrequently,
perhaps only two or three times a week for a user who spends as much as 50 percent of
his or her time working with a computer.

In Table 3.6, the E/8hr scores of informants are broken down by gender,
experience, type of work, and principal operating system. There are no notably large
differences between the scores within any category, especially after the values for the
three unusually high E/8hr scores are removed from the means.

44

The weak trend toward a greater number of learning events per 8-hours of
computing by more experienced subjects is made more obvious if the Eurekas are
categorized as simple or complex. An example of a simple Eurekas is learning how to
select several files at one time on a Macintosh. And example of a complex Eureka is
getting a simple “hello-world” program to run in a new data-base language. Clearly the
complex Eureka involved learning many more individual facts than the simple one,
although both were reported on single Eureka slips.

Table 3.7

Distribution of Eurekas, by Strategy and Informant Category
(See Figure 3.2 for full text of strategies)

%
Total* Try Read Ask Help Stmbl Notice E-mail Othert

Totals
all informants 60 37 26 16 9 4 3 2 7
all but E/8hr > 3.0 30 15 11 8 3 2 3 0 2
by Gender
female 28 17 8 11 6 0 2 2 4
male 32 20 18 5 3 4 1 0 3

~* total number of single Eureka slips in the category.
t+ several user-defined strategies, no more than 2 Eurekas using any one strategy.

Table 3.7 presents another breakdown of the Eureka data, this time by strategy
used to solve the problem. The breakdown by gender suggests that female users are
more likely to ask for help while males are more likely to read the manual. This data is
skewed, however, by the fact that one of the high-E/8hr informants was a female who
asked for help 6 times while working with a minicomputer system that had no manual,
while another high-E/8hr user was a male who used the manual for 9 Eurekas, many of
them while learning a system that no one else in his office was using.

3.4 Discussion

The regularities (and irregularities) in the data need to be regarded with some
caution. Although the informants were generally cooperative, they clearly had
somewhat different ideas of what constituted a “Eureka.” The daily debriefings helped
to regularize this view (this effect was weakest with the two informants who were
debriefed over the phone), but there were also other factors that could have affected the
number of Eurekas recorded. The informant who figured out how to get a new database
program to run probably wouldn’t have had time to fill in a separate slip for each fact

45

learned. Similarly, an informant under pressure of an impending deadline might learn
something and forget to record it at the time or mention it in the daily debriefing.

Nonetheless, even with these cautions in mind there remains a strong indication
that most users discover things about their system only infrequently, perhaps averaging
only one learning event for every eight hours of computing time. There may be
exceptional users or circumstances in which this rate is somewhat higher, but even the
most liberal reading of the data (using Eureka counts adjusted to reflect the multiple-
fact learning by more experienced users) shows maximum average rates that are unlikely
to exceed two or three facts per hour.

The data are stronger when viewed as a sampling of a large number of learning
events that did occur, without regard to whether all such events were recorded. In this
light they are noteworthy for the similarity of learning strategies recorded across a very
wide range of situations and users. There is significant evidence that the three preferred
strategies are trying things out, reading the manual, and asking for help. On the other
hand, users are quite unlikely to learn things by noticing other users’ activities, or
stumbling onto things in the interface, or communicating via e-mail or network news.
On-line help falls into a middle ground.

Going beyond the cautionary remarks at the beginning of this section, the data
need to be recognized as limited in that they represent only one week’s worth of
observation for each of the informants. As described earlier in the chapter, an effort
was made to choose an “average” week. However, to supplement this data it will be
useful to consider the informants’ learning strategies over a longer term. This is the topic
of the next chapter.

46

Chapter 4

INTERVIEWS WITH DIARY STUDY PARTICIPANTS

This chapter presents data collected in structured interviews with informants after they
completed their one-week diary logs. The interviews confirm the strategies for task-oriented
behavior that were seen in during the log period. They also indicate that task-free
exploratory behavior of computers is rare, for all types of user studied, although task-free
exploration outside the domain of computers is a common recreational activity.

The diary logs reported a thin time slice of the informants’ working life, covering
only five days. To extend the investigation of each informant’s behavior beyond that
short period, another research technique was chosen: the structured interview. The
questions of the interview covered essentially the same topics that had been the focus of
the log period, but with some extensions to exploratory behavior outside the workplace.

4.1 Method

The fourteen informants described in the preceding chapter were interviewed at a
time convenient to them, after they had completed their log. Typically, the interview
took place within two or three days after the log period. During the interview, the
investigator asked a series of prepared questions (Table 4.1). The interviewer would
follow up the informants’ initial answers on each topic by encouraging them to give
examples or reasons. When necessary, the interviewer would clarify a question by giving
examples of the kinds of answer that might be appropriate.

All interviews were taped and transcribed by the investigator. They ranged in
length from 20 minutes to 90 minutes, and the transcriptions ranged from 1500 to 7500
words, for a total of 66,000 words. The transcriptions were examined to produce the
summaries in this chapter. (The answers to the first question, on background, were
described in Chapter 4.)

47

Table 4.1

Questions Asked in the Structured Interview
(The wording of each question varied slightly from one informant to another.)

1. Can you give me some background information about your experience with computers?
2. When you get a new piece of software, how do you learn to use it?

3. When you're using a program that you already know, and you run across something that you
need to do but don’t know how, how do you figure out how to do it?

4. Do you ever play around with computers, just try things out to see what they will do?

5. On the Eureka slips there is a checklist of ways you might use to learn something new. Can
you give me specific examples of times you’ve learned things using each of those strategies?

6. Do you ever “explore” things that aren’t related to computers? For example, do you go
shopping when you have nothing to buy, or wander around with no fixed itinerary when
travelling, or take apart things just to see how they work?

7. I'm especially interested in whether people “explore” computer systems, that is, do they
try to find out what programs do even if they don’t have any need for the knowledge. Do you
have any further thoughts on that?

4.2 Question: Learning New Software.

After the informants described their background, the interviewer asked them,
“When you get a new piece of software, how do you learn to use it?”

4.2.1 Four approaches to learning

The informants identified four main ways to initially familiarize themselves with
a new piece of software:

¢ reading the manual, usually explicitly identified as being done in conjunction
with one of the other methods (8 users:3,4,5,8,9,10,11,12)

* exploring its functionality, usually in the context of actual tasks (7 users:
4,5,6,7,10,11,14),

e working through the supplied tutorial materials (6 users: 5,6,11,12,14,16),

¢ having an experienced user demonstrate the package (5 users: 2,3,8,9,15),

* learning the basics initially, then learning more as the task demands (5 users:
9,10,11,12,16).

48

In addition to the five main strategies, a few users (2,3,9,14) had taken classes
on some occasion, but this was always an exception to the way they expected to learn a
program. One user (12) said that watching other users was a way to learn when no
training materials or docucumentation were available.

As informants recalled examples of past learning activities, it became clear that
the lines between the approaches were not clearly drawn. Availability of training
materials or experienced personnel partly defined the strategies selected. Where
tutorials were available, users had sometimes worked through examples as designed,
other times they had used the tutorials and examples as a foundation for task-free
exploration, while in still other situations they had used them as guide to a package’s
functionality, then moved on to real-world tasks. ~

4.2.2 Novice versus expert approaches

Several of the less experienced users (6,9,12) described their approach to learning
a new piece of software in terms of a few past instances, which had offered different
learning options. Informant 6, for example, stated that he would usually “fool around
with a new program until it works,” and he recalled a recent example where he didn’t
have a manual. But he also remembered doing a tutorial on another occasion. Informant
12 remembered learning one package by watching other users in a common computing
environment, where no manual was available. The same informant noted that learning
was much faster for another package, where he had been able to use a tutorial and the
manuals. In general, these users did not seem to have developed a consistent approach
to learning a new package, or at least none they were aware of.

The more experienced users, on the other hand, had clearly defined learning
strategies, which they stated without hesitation. The informants who had worked
primarily with PC or Macintosh-based software typically had a single approach to using
the mixture of documentation that has become fairly standard in that arena. Informant
11 always starts with the video, if there is one, then follows the installation instructions
and does the tutorial, then tries small sample tasks, then turns to larger, real tasks.
Informant 16 follows the installation instructions (the “getting started” guide) and looks
through the on-line tutorial, if there is one. He then begins to use the program, with the
manual and detailed tutorials as fallbacks for tasks he has problems with.

Informants who had worked with a wider variety of systems, including Unix and
other time-shared computing environments, selected between two distinct strategies
depending on the characteristics of the package they were learning. Informant 5
specifically identified two kinds of software: totally novel packages (“out of the blue”),
for which the tutorial and examples were required to reveal the software’s function, and
packages that were similar to known systems, such as editors, for which task-oriented

49

exploration was the preferred learning approach. He further identified two “modes” of
learning behavior: project mode, where getting the current project completed was
paramount, and tool mode, where efforts were directed at learning the new tool, typically
by redoing a task that had already been completed with another tool. “Before I sit |
down at the terminal I know which mode I'm in,” he said.

For informant 10, only simple software was worth a quick exploratory foray,
while large, complex packages demanded an in-depth understanding of the manual and
the program’s philosophy. He felt large systems were not worth investigating without a
real-world task to guide and justify the learning effort. For these packages, he identified
a sequence of investigatory activities, beginning with the manual, proceeding to breadth-
first, task-free investigation of menus and controls, and finally moving into depth-first,
task-oriented work. Informant 4 made a similar distinction between simple and
complex packages, stating that reading and understanding, including an understanding
of the source code, was preferred to exploration for major software applications where
the code was available.

4.2.3 Task-oriented versus task-free learning

Of the seven users who identified exploration as one method of learning a
package, six explained (some in response to the interviewer’s follow-up question) that
they performed this exploration in the context of tasks. The seventh (14) did not clearly
respond to the follow-up question. One user (10) performed both task-oriented and
task-free exploration, as described above.

For most users, the most effective approach was to use their own tasks.
Informant 5 used his own tasks because in that “demand-driven” mode he would not
waste time learning what wasn’t needed. Informant 11 would sometimes begin
exploration with simple, trial tasks, but would soon progress to larger, real tasks.
Informant 16 would look at example tasks provided in the tutorials because they
demonstrated the software’s functionality, but he postponed learning until a real need
arose. “I just keep them in mind if I want to do something like that,” he explained,
“because I know the tutorial would walk you through those examples,” Only Informant
4 claimed a preference for the sample tasks provided with the system, since the data for
the examples were already entered.

4.2.4 Making use of manuals

Although eight informants mentioned using manuals to learn new software, only
three (4,5,10) described situations in which they would start by reading the manual in
depth. These users were all highly experienced computer scientists, and the occasions

50

when they would read the manual typically involved learning a complex new
programming environment (although Informant 10 would prefer to read the manual for
in-depth understanding before tackling any large-scale application).

For the other informants, the manual was a supplement or a support to other
strategies. Informant 11 would scan through the manual, but only after exploring the
program for a while: “I take the manual someplace away from the computer... just to
browse through it and look for features that might be interesting or useful later on.”
Informant 8 liked to get an overview of the program through the manual, then have an
experienced user demonstrate how to get the package running.

For the majority of users, the manual was most valuable as a fallback when they
ran into problems, the situated investigated in Questions 2 and 4. Informant 16
expressed the consensus opinion of the value of manuals for initially learning about a
program: “Reading the User’s Guide is, to me, useless. I only use the User’s Guide when
I want to do something specific.”

4.2.5 Time constraints

Many of the users explicitly identified time as a constraint on their learning
activities. Informant 2 didn’t like “reading through all that stuff [the manuals] and
trying to find the answer to my problems.” He preferred a personal demonstration. As
noted above, Informant 16 never read the manual until he had a specific problem to
resolve, and he initially looked at the examples only to see what could be done.
However, he liked the on-line tutorials, “because they’re short, and they show you a lot
of things right up front.”

Informant 3 volunteered his opinion of unstructured exploration: “It’s not that
don’t like to do that, but I feel like if I'm working, it’s not a good use of time.” Informant
7 described an extended exploratory session driven in part by curiosity but also guided
by a “cost/benefit analysis.” His initial impression of the software was negative
because of obvious problems, but he decided to explore further to see if it contained
features that might make the earlier problems worth overcoming.

Informant 5, who had mentioned the efficiency of the “demand-driven”
approach to exploration, also described how he learned systems “incrementally”: He
would discover a problem, try to solve unsuccessfully to solve it for a while, then
continue with his work. When the same problem came up again on another day, he
would take a few minutes to try a different solution, but would give up again if that
failed. “You know, I want to get this thing edited,” he said, referring to the word
processing package he was currently learning “and if I can’t find a feature fast, I'm just
going to forget it.”

51

4.2.6 Summary

When learning a new piece of software, inexperienced users are likely to select
whatever method is available to them. More experienced users, however, select the
learning strategy that they believe will help them acquire the skills they need with the
least possible investment of time. With relatively simple or standard packages and
experienced users, exploration in the context of the user’s immediate task may be an
effective first strategy. With complex, novel packages, however, experienced users
prepare themselves for task-oriented exploration by reading the manual, working
through on-line tutorials where available, and availing themselves of their colleagues’
expertise through brief demonstrations.

4.3 Question: Resolving Problems.

For many of the informants, there was no clear distinction between learning a
new piece of softare and resolving problems with a software package they had been
using. This was the topic of the next question: “If you're working with a program that
you already know how to use, and you run up against something that you don’t know
how to do, how do you figure out how to do it?”

Three strategies for resolving problems dominated the informant’s answers:

» trying things out (exploration) was clearly identified as a first strategy for 9 users
(3,4,5,6,11,12,14,15,16). An additional 2 users (3,8) described their first action
as a combination of looking in the manual and trying things out.

* looking in the printed manual was a first strategy for 3 users (2,9,10) and a
second strategy for 7 (2,4,6,11,12,14,16).

e asking for help was a first strategy for 2 users (3,7), a second strategy for 5
(2,6,8,9,15), and the third strategy for 4 (4,10,11,14).

Additional strategies identified were working around the problem (informants 4,
5,10, and 12, the first three of whom would sometimes use programming for the work-
around -- although informant 4 also praised the efficacy of white-out), using on-line help
(informants 5, 7, and 11), and looking at the source code (a first strategy in complex
systems for informant 4, and a second strategy, after asking colleagues, for informant
11).

Note that some informants identified alternate “first” and “second” strategies,
depending on the problem, time and resource availability, and in two cases (2,3), their
mood at the time the problem arose. Informant 2: “It depends on my mood [laughs], if I
want to talk to somebody or if I want to read it.”

52

Many informants distinguished between things they would immediately ask
system support personnel to handle and things they would try to handle on their own.
Hardware problems were almost always referred to systems support. “That’s sort of
their job,” explained informant 12.

4.4 Question: Task-Free Exploration of Computer Systems

All but one of the informants answered that they did little or no exploration of
computer systems except for the purpose of performing current or impending tasks. The
one informant (11) who identified this as a common activity had, according to the diary
log, spent one third of his computer time exploring new software. Other examples he
gave of exploratory behavior were changing the appearance of his on-screen workspace,
“about once a day,” and producing graphs or charts for course materials that were
unnecessarily decorated. “Ireally don’t leather-look bar charts,” he admitted. “And I
don’t really need a sophisticated, vector-based graphics program.” He specifically
stated that he was a little embarrased about this behavior, because he knew it wasn't
productive. :

One other informant (9), an undergraduate, said he liked to do task-free
exploration, but didn’t have much opportunity. “Almost every program, I try to find
something fun about it,” he explained, giving the example of learning to use the sound-
recording capability of his department’s Macintosh to record alarm messages in his own
voice and the voices of his co-workers.

The remainder of the informants answered either that they never or almost never
did that kind of thing, at least not in their current sitution. “Only once have I ever done
that in my life,” said Informant 5, and then gave the details of his experience with a
Mandelbrot set program. Four of the informants (4,8,10,14) recalled doing more task-
free exploration in the past.

Essentially there were two reasons expressed for not exploring computer
systems. The most common reason was time constraints. Seven of the informants
(3,4,6,7,8,14,15) specifically said they didn’t have the time or they felt that exploration
was not productive, at least not in their current job.

The second clearly expressed reason stated for avoiding task-free behavior was
that it was simply not interesting. “I use [computers] only as an instrument, and I don’t
see them as something fun,” explained Informant 15. A similar attitude was expressed
by Informant 8: “I don’t explore the actual computer all that much. Of course, the
computer’s a tool.” And Informant 12, while admitting to have tried a few adventure
games, ranked the computer low on the scale of interesting activities: “For leisure I like to
run around outside or watch TV. I wouldn’t normally come up with the idea of
switching on the computer to entertain myself.”

53

4.5 Question: Eureka Strategies

The informants had stated their preferred strategies for resolving problems, and
these preferences were largely validated by the Eureka counts. It will be useful to
consider the the reasoning behind these preferences. Were the preferred strategies
simply the only ones the informants had ever tried? Or, more likely with the
experienced users, had they tried many strategies but found the preferred ones most
efficient?

To investigate these questions, and to provide the informants with a different
index into their exploratory experience, the interviewer asked: “You've been using these
Eureka slips in the diary study. Can you remember specific occasions in the past when
you learned something through each of the methods listed on the slip?” For strategies
discussed with users earlier in the interview, the answers were usually short, but for
other strategies the question provided a springboard into discussion of the strengths and
weaknesses of the approach.

The informants’ answers indicated that most of them had tried the strategies
available to them, but the ease with which they recalled specific instances echoed the
strategic preferences they had stated in Question 1. (In the interviews, this question
was asked after Question 4, Task-Free Exploration, so informants were not so likely to
immediately recall what they had just said in Question 1.) The results of the question
are summarized in Table 4.2.

4.5.1 Strategy 1: Read the paper manual

All informants recalled instances of solving problems by reading the software’s
manual. Only one user, who had stated a strong preference for exploration and asking
for help, hesitated briefly before answering affirmatively and providing the example.

For many users, the most useful manual was a commercial “how-to-use-Program-X” sort
of manual, written by someone other than the software manufacturer. In addition, users
of networked systems often maintained written notebooks of procedures learned in
training courses or from interactions with system support personnel.

54

Answers to Question 4, “Can you recall examples of learning things using each of the

Table 4.2.

categories in the Eureka report?”

Strategy Used Not Used
Read paper manual |all
Use on-line help yes, praise or yes, but tried, doesn’t no, no comment
or man no comment problems work

2,5,9,14 4,7,8,10,11,12,1 | 3,15 6

6

Tried things until it | yes, de novo yes, with
worked manual

all but three 8,9,10

Stumbled onto by yes, in yes, in manual | maybe, can’t
accident interface recall
9,11,12 4,58,15 2,3,6,7,10,14,16
Asked in person or by | colleagues or
phone sys. support
all
Sent e-mail unqualified yes yes w/ no, too slow no, no comment
reservations
5 4,8,11,12 2,3,12 6,7,9,14,15
Posted to network ‘ no, for reasons no, no comment
News 2,3,4,7 6,8,10,12,15*
Noticed someone yes, only in training no, no comment
else serendipitous or demo or can’t recall
2,4,579,12,14,1 6,8 3,11
5,16

Other yes (usr grp, no, can’t think
video, class) of any
4,11,16 6,9,15%*

* Informants 5,9,11,16 didn’t answer the “net news” question
** Informants 2,3,5,7,8,10,11,14 didn’t answer the “other” question.

4.5.2 Strategy 2: Used on-line “Help” or “Man”

All but one of the informants had tried on-line help or man, but for the majority
of them it was not highly regarded. Three users gave an example of usage without any
qualification (Informant 2 in Unix, 9 in Word Perfect, and 14 in DOS), and one
experienced user (Informant 5, user of DOS, Macintosh, and Unix) described on-line
help as his first fallback after trying things failed. The remaining comments were
strongly negative or qualified.

Two users, both heavy Macintosh users, had tried on-line help and decided it
was useless. “It never, ever, ever works for me,” stated Informant 15, explaining that he
either didn’t understand the help message or else it clearly didn’t answer his question.

55

Informant 3 also complained that the messages were difficult to understand, and that
they gave too much useless information: “I mean, you ask it for help and it tells you
everything in the universe.”

The remaining users recalled instances of finding things using on-line help, but
qualified their opinion of the approach. Informant 11 would use on-line help on DOS
systems, but only if the manual wasn’t readily available. Five informants would use on-
line help for some systems (VMS, Unix, Macintosh, SAS), but not for others (Unix,
Macintosh, DOS).

Comments on Unix man, even by informants who used it, were negative (except
for Informant 2, who had no positive or negative comments): Informant 4 uses man but
finds it “generally useless.” Informant 7 said it “doesn’t usually amount to much.”
Informant 8 would “rarely use the man stuff” and gave an example of how it failed to
resolve a problem. Informant 10 thought man was “the worst thing in the world.”

Informants 4, 8, and 12 would use on-line help for command-oriented systems
(Unix, VMS, SAS) but not for the software they had used on the Macintosh. Informant
4 thought the Mac help was “crap,” especially the balloon help: “I haven’t found any of
those messages useful.” Informant 8 would rather use the paper manuals, while
Informant 12 preferred to explore and complained that Microsoft Word's help kept
popping up when it wasn’t wanted. On the other hand, Informants 10 and 16 would
use on-line help with the Macintosh but not with command-line systems (Unix and
DOS, respectively).

It’s interesting to note that the three informants (5,10,16) who liked Macintosh
on-line help are users with extensive experience, including strong backgrounds in
command-line systems (Unix and DOS). On the other hand, three of the five informants
who did not like Macintosh on-line help ('3,12,15) had limited experience with
command-line systems. Informants 8 and 4 were exceptions to this pattern, having
strong command-line experience but disliking Macintosh help.

4.5.3 Strategy 3: Trial and error

All informants recalled instances of trying different things until they had resolved
a problem. Many of the examples had been given in answer to an earlier question or had
- arisen during the diary study, and there wasn’t a lot of further discussion. Three of the
informants (8,9,14) noted that they often used trial and error to disambiguate
information from the manual. (Informants 8 and 3 had made the same comment in
response to question 1).

One of the highly experienced informants (10) noted that this approach was
common in programming (it's one definition of “hacking”). He made the distinction
between a “quick and dirty” approach and doing a job well. He associated trying things

56

out with the quick-and-dirty approach, and said he would try to read the manual and
understand the software if he wanted to learn it well. He had earlier provided details
on his learning experiences with Microsoft Word’s “styles” feature, where he described
how the trial-and-error approach had led him to use the program in an inefficient
manner.

Another informant (16) noted that he also used trial and error for household
appliances, such as a microwave oven. He added that when the approach failed, he
usually gave up, and gave examples of his failure to set the time on a car clock or
program a VCR.

4.5.4 Strategy 4: Stumbled onto by accident

The phrase, “Stumbled onto it by accident,” was intended to cover unplanned
learning instances, such as intending to type tab to move the cursor forward, but
accidentally typing shift-tab and discovering that it moved the cursor back. However,
several informants gave examples of other unstructured learning strategies, such as trial-
and-error or noticing someone else, both of which fall within a reasonable interpretation
of the phrase.

Once they understood the question, informants generally had trouble recalling
instances. The only situation in which subjects easily recalled stumbling across new
features was when reading manuals, where Informants 4, 5, 8, and 15 had noticed things
they weren’t looking for. Every one of the other informants said something to the effect
of, “I'm sure that must have happened, but I don’t know if I can think of an example.”
Only two informants actually recalled stumbling onto a new feature in an interface:
Informant 11 discovered a table-formatting option that was in an inappropriate dialog
box, and Informant 12 discovered Microsoft Word’s “drag-and-drop” feature. Finally,
Informant 9 recalled discovering how not to do something in a spreadsheet -- that is, he
made an error and the program caught it.

In summary, the question might have been better worded, and it is possible that
the informants simply hadn’t indexed their experiences for retrieval through the cue
provided. But it seems most likely that stumbling across new features in an interface --
and remembering how to use them -- is a rare occurrence.

4.5.5 Strategy 5: Asked someone (in person or by phone)

All informants easily recalled asking for help on computer software problems.
The interviews provided weak evidence of a correlation between availability of software
help and willingness to ask. The informant most likely to ask for help (15, who said he
would “always!” ask for help) was a faculty member in a department with responsive

57

system-support personnel. Three of the four informants who pointed out problems with
asking for help (4,11,14) were in situations where support was not so readily available.
But no clear measure of willingness to ask or availability could be derived from the
interview data.

Several factors were raised that biased users against asking for help. Two
informants (11, 14) worked in situations where they were usually the most experienced
user of their software, so they could only get help from the phone-support lines, which
they both did. Another informant (4), who reported frequently calling a consultant for
help, gave the opinion that some expert users were annoyed by the frequent questions
from other users. Still another constraint was time, already mentioned in connection
with Question 1. Informant 12 stated that he would ask for help if someone was in the
room or in a nearby office, but if no one was readily available he would work around the
problem, leaving the question to be resolved later when a colleague was available.

An additional factor, pride in one’s ability to solve problems, was hinted at in
some of the interviews, but the bottom-line analysis indicates that the stereotype of the
lone computer scientist may be a false one. Informant 5, a computer science graduate
student, summarized the case nicely: “I'm not an asker,” he said. “Although, this Ph.D.
program has changed that. I ask more questions than I used to. Something about
graduating that appeals to me.”

4.5.6 Strategy 6: Sent e-mail or posted news request for help

Neither e-mail nor network news programs were widely used by the informants
as a problem-solving resource. Only five of the users recalled sending e-mail requests
for help. One informant (16) preferred e-mail over phone conversations because it
allowed a more detailed communication, but in the end he would select whichever media
provided the fastest response. Informant 5 was noncommittal, giving an example of a
successful e-mail request to a software author. Informant 11 used e-mail “very seldom,”
and Informant 8 considered it only an alternative to a phone call. Informant 4
complained that “ e-mail doesn’t work too well for me, because either I don’t explain
things too well or people don’t pay attention.” He added that he would only send e-
mail to systems personnel, since sending an e-mail request to a colleague would be
insulting.

Three of the users who said they would never use e-mail gave time constraints as
the reason. “If a problem comes up, you don’t want to wait on it,” explained Informant
2. The other users simply stated that they didn’t use it or preferred phone calls.

None of the informants recalled posting to network News with a software
problem. Four users gave no specific answer to the question. Eight more simply said

58

4

no.” Informants 3 and 12 said they would never ask a question on News because it
was too humiliating.

Informant 3 also thought News was too slow. “I don’t want to come back two
hours later and get 20 replies.” Informant 7’s expectations were even lower: “If you
post something saying, does anybody know how to do this? Then you get back twelve
replies from people saying, yeah, when you find out, tell me. Great. That's really
useful.”

4.5.7 Strategy 7: Noticed someone else doing it

None of the informants had a quick answer to this question, although 11 of them
eventually recalled examples of some sort. Six of the examples involved noticing a
specific command given by another user on a computer (2,4,12,14,16), although the
interviews did not always reveal whether the informants had noticed the command itself
or merely noticed its effect and then asked how to achieve it. Another three (5,7,9,15)
clearly recalled noticing the effects, which included a different text previewer, a text
format on an overhead slide, a sound output, and a way of combining two forms of
data. The remaining two occasions were in the contexts of demonstrations or training
sessions, which was not the intended meaning of the question.

Several interesting factors were noted by informants as they considered this
question. Informant 2 pointed out that this kind of learning event happened more
frequently when his workgroup had all just started on a new system. Informant 11, who
couldn’t recall an example, is a faculty member who explained that he almost never
worked in an environment where other people were using computers. Informant 15
stated a strong preference for asking for help, and his example of noticing involved
noticing that a colleague could do something with the computer, then going back to the
colleague at a later date and asking how to do it.

4.5.8 Strategy 8: Other

One informant (4) mentioned user groups as a place to learn things, another (12)
suggested videos. Neither recalled specific instances. A third informant (16) mentioned
classes, and several other informants had recalled attending classes when they described
their background. Most of the informants, who were reading the categories off a Eureka
slip as they gave their answers, simply skipped this category.

59

4.6 Question: Task-Free Exploration Outside of Computers

Question 4 established that task-free exploration of computer systems was
uncommon for the users studied. It is interesting to compare the informants’ behavior in
the domain of computers to their behavior in other domains. It might be the case that
some users are especially inclined to exploratory activities in any domain, an inclination
which might show up in their computer activities. Conversely, if the users did not
explore in any domain, then their failure to explore computers may reflect a more
fundamental preference or limitation.

To investigate these issues, informants were asked to recall exploratory activities
in non-computer domains. Because the words “exploratory activities” would have little
meaning to the informants, the question was supplemented by examples: shopping with
nothing to buy, or travelling without a detailed itinerary.

All fourteen of the informants readily recalled examples of unplanned, goal-free
activities, and all of the activities were recreational. (This may have reflected a bias in
the examples given as part of the question.) Travel was the most common domain for
exploration. Other domains included shopping and hobbies, such as gardening.

Eleven of the informants reported exploratory activities as part of their travel
experiences. Within this group, however, there was a wide range of exploratory freedom.
One informant described several weeks of bicycling through Europe, during which only
the trip’s endpoint and one intermediate stopover were preplanned. Each day’s activity
included a check of the map to see what towns were within biking distance as possible
places for the next night’s lodging. Another informant described a superficially similar
trip: bicycling through Europe for several weeks. However, for this trip all the details
had been planned on a spreadsheet, down to the individual hotels and restaurants.
Only the activities to fill a small amount of spare time were left unplanned and open to
exploration.

4.7 Question: Influence of Exploratory Activities

It had been suggested that exploration, especially in adults, might be rare, but
that it might be the source of significant learning events that led to major changes in a
person’s life. A history of fascination with how machines work might lead someone to
study mechanical engineering, for example. To investigate this possibility, informants
were asked whether their exploratory activities had ever led to discoveries that
significantly influenced their lives.

None of the informants could think of a significant example of exploratory
activities that had any significant influence. This negative result is in part related to the
answers given to the previous question, about exploratory activities. The activities

60

listed most frequently involved travel and shopping, and informants were hard-pressed
to imagine how these activities might have a long-lasting influence.

As a follow-up question, informants were asked how they came to select their
current career and how they had made other major decisions leading up to what they
were doing at the time of the interview, such as deciding where to go to college or where
to live. The answers to these questions provided a rich set of examples of serendipity.
Most of the informants were able to recall some unplanned occurrence that had aroused
their interest in a topic, or supplied information about a possible choice of university or
place to live. But none of these serendipitous occurrences had anything to do with
exploratory activities.

4.8 Discussion

Overall, the data collected in the interviews validated and helped to explain the
behavior recorded in the daily logs. Most importantly for our research into exploratory
learning, the interviews emphasized that users engage in task-free exploratory learning
only on very rare occasions. However, they do use exploration as one means to resolve
task-oriented difficulties, typically combining this approach with looking up things in
manuals and asking for help from other users or system support personnel.

61

62

Chapter 5

COGNITIVE MODELS OF EXPLORATION

This chapter describes a series of low-level models of exploratory behavior, in three different
cognitive architectures. The modelling efforts provide a detailed analysis of the knowledge
used in problem-oriented exploration. Common features of the models suggest important
cognitive strategies and problem areas.

Chapter 3 described a formal model of exploratory behavior, which revealed
some of the constraints of the task of exploration. Chapters 4 and 5 investigated how
users respond to those constraints, yielding the important conclusion that most
exploratory behavior occurs in the context of specific tasks that arise as part of the
user’s work. This chapter describes several cognitive models of task-oriented
exploratory behavior, at a grain size that is much finer than the general observations
derived from the diaries and interviews. In Chapter 6, empirical studies of users in the
laboratory will focus on a similar level of behavior.

With the exceptions of the Kitajima-Polson model (Section 5.2) and Richard
Young’s Soar model (Section 5.5), all models described in this chapter were implemented
by the author and reflect ongoing discussions with Clayton Lewis and Peter Polson.

5.1 Background

The models described in this chapter all reflect a fundamental understanding of
goal-oriented problem solving that is founded in Newell and Simon’s theories cognition
and artificial intelligence. Models in this family were initially developed in the context
of well-defined tasks, such as games and mathematical puzzles (Newell, Shaw, and
Simon, 1958; Newell and Simon, 1972; Simon and Greeno, 1988). Newell and his
associates have further refined the goal-oriented problem solving engine in the SOAR
computer model, and shown that the model predicts established empirical results, not

63

only in problem solving but in learning, language, and other areas (Laird, Newell, and
Rosenbloom, 1987; Newell, 1990; Rosenbloom, Laird, and Newell, 1991). Simon and
other researchers have suggested that the same fundamental approach can also describe
ill-structured tasks (Simon, 1973), such as scientific discovery (Klahr and Dunbar, 1988)
and software design (Polson, Atwood, Jeffries, and Turner, 1981).

The branch of this work underlying the current research is the CE+ theory of
learning by exploration, proposed by Polson and Lewis (1990). This theory merges ideas
described in cognitive complexity theory (CCT) and EXPL. CCT is a production-system
model for formally representing a user’s knowledge of an interface (Bovair et al., 1990;
Kieras and Polson, 1985), based on the GOMS model of human-computer interaction
(Card, Moran, and Newell, 1983). To this basic framework, EXPL (Lewis, 1988)
contributes heuristics for learning new functions.

The high-level description provided by the CE+ theory was further refined by
considering its instantiation within the framework of Kintsch’s construction-integration
model (Kintsch, 1988; Mannes and Kintsch, 1991). The construction-integration model
describes the processes by which users integrate a representation of text or other
perceptual input with background knowledge to construct a representation that will
enable them to perform a task.

5.1.1 Goals and Actions

In outline, the CE+ theory, understood in terms of the construction-integration
model, describes the cognitive component of exploratory behavior as follows: An initial
goal structure is constructed from a description of the user’s task. Goal structures in the
theory are similar to the goal hierarchies postulated by the GOMS model (Card, Moran,
and Newell, 1983; Bovair, Kieras, and Polson, 1990; Kieras, 1988), with a top goal
representing the overall task, intermediate level goals defining a task decomposition, and
lowest-level goals describing individual actions.

Goals are represented by propositions. They are linked to other goals, to
propositions representing background knowledge, to propositions representing objects
seen in the environment, and to actions. Activation flows from the top goal along these
links to the representations of actions. When an action becomes sufficiently activated, it
is executed. Any response by the system is observed and interpreted, causing
accomplished goals to be deactivated and new propositions to be built. These
propositions represent new goals and changes in the environment caused by the last
action. The new propositions are linked into the existing network of propositions.
Activation now spreads through this new network. The next action occurs when some
action becomes sufficiently active, and a new cycle begins.

64

As just sketched, actions are executed when sufficient activation reaches them.
For this to happen there must be a path of associative connections between a user’s goal
and the representation of the action. One situation in which such a path exists is the
label-following strategy employed by naive users (Engelbeck, 1986; Polson and Lewis,
1990). Here an action, such as pressing a button, is chosen because there is a label
associated with the action that shares terms with an active user goal. For example, a
user with the goal of turning a system off would be expected to press a button labelled
‘off’. In this case, the associative path between goal and action is composed of at least
four linked propositions: the representations of the user’s currently active goal, the
button label, the button description including its location, and the action of pressing the
button. Activation spreads across these links, and if it reaches a sufficient level, the
button will be pressed.

Not all actions must be linked to goals in as simple and direct a way as required
by the label-following heuristic. However, some added knowledge must be assumed if
the user is expected to link an action to a goal without benefit of a label or analogous
cue, or expected to link a goal with a label that does not share terms with the goal. For
example, if a button is labelled ‘1/0’ rather than ‘off’, a successful user must know what
the label means. Careful attention to questions of existing knowledge will allow the
model to reflect the behavior of expert system users faced with new applications or
functionality, as well as novice users who are approaching the system for the first time.

5.1.2 Extending the Theory

The research described in this chapter addresses two fundamental limitations of
the existing theory and models. As described, the CE+ theory is essentially a problem-
solving engine. Like most Newell-and-Simon style models, it relies heavily on a
hierarchy of well-defined goals. But as exploration has been defined in this research (see
Chapter 1), the explorer’s immediate goals are often unclear, and there is seldom any
preestablished subgoal hierarchy, or “plan.” While the formal analysis in Chapter 2 and
the field studies in Chapters 3 and 4 suggested that truly goal-free behavior was rare,
they also suggested that users were able to work with ill-defined goal structures, which
they refined based on the ongoing interactions between the existing goals and the
interface.

This opportunistic behavior is a clear instance of the “situated cognition” that
traditional problem-solving models have, according to many critics, failed to represent
(Neisser, 1967; Suchman, 1987; Lave, 1988; see Brooks, 1991, for related AI work).
Situated behavior is characterized by its responsiveness to a changing environment and
by its lack of reliance on preconstructed plans. The theory needed to describe explicitly
how this situation-based reasoning could occur.

65

The second fundamental weakness of the theory was that it did not provide a
story of learning. Again, the theory presented a problem-solving engine. Certainly some
of the correct actions uncovered by the problem solving would be remembered, but which
ones? Again, the theory needed to be extended clarify this issue.

5.1.3 Models Described in this Chapter

The rest of this chapter presents a series of models intended to address the
issues just described. Several early models are described only briefly, as a record of the
historical course of the research. The most advanced model, ACT-R version 4, achieves
the basic goals set for the modelling effort. That model is described in considerable
detail and compared to an alternative approach implemented in Soar. Partial code and
traces for models developed by the author are shown in an appendix of the author’s
dissertation, but are not included in this publication. '

5.2 A Construction-Integration Model of Expert Behavior

The cognitive modelling work that laid the immediate foundation for the current
research was a comprehensive effort by Kitajima and Polson to program and investigate
the behavior of a model of expert behavior with a well-defined task in a display-based
computing environment (Kitajima & Polson, 1992). This work was done in the context
of Kintsch’s construction-integration theory (Kintsch, 1988) with a system
implementation developed by Mannes and Roushey (Mannes & Kintsch, 1991). The
task was to start the Cricket Graph application on an Apple Macintosh, to create a
graph using data in a supplied file, and to edit certain features of the graph, such as title
size and legend placement.

The Kitajima-Polson model has a structure that echoes the yoked state space
hypothesis of Payne, Squibb, and Howes (1990). It provides a principled explanation
of errors observed in expert behavior, and it describes ways in which the experts’
subgoals and the computer display interact to locate an attentional focus. However, it
does not describe the exploratory behavior of a first-time user of the Cricket Graph
package. This was the goal of the modelling efforts performed in this dissertation.

5.3 The Novice Construction-Integration Model

The initial model of novice exploratory behavior was implemented under
Kintsch’s construction-integration theory. The same Cricket Graph environment and
task were assumed as in the Kitajima-Polson model. However, the new model described

66

a user whose experience covered basic Macintosh applications, but not Cricket Graph.
The computational substrate was the system developed by Mannes and Roushey,
supplemented by the“wrapper” code developed by Kitajima. Kitajima’s code made it
simple to develop the model iteratively, with repeated testing.

The Kitajima-Polson model described the behavior of an expert user. It relied
heavily on knowledge that reflected complete and complex representations of the screen,
the Macintosh control conventions, and the task. To produce a model of novice
behavior, the Kitajima-Polson model’s knowledge structures were completely eliminated.
They were replaced with the simplest possible representation of the screen state, along
with simplified plan elements, including a “move-to” plan, a “double-click-on” plan, a
“release-on” plan, and a few others.

A very significant change from the Kitajima-Polson model was the use of a single
unstructured goal for most of the task. The goal was nothing more than an unordered
sequence of keywords, which produced “label-following” behavior by overlapping with
screen features when appropriate.

There were problems with the model. First, the unstructured goal failed to take
the model through the axis-selection dialog box. To achieve this final step, the goal had
to include two minimal subgoals, each associating the name of an axis with its data.
Further, only one of these subgoals could be strongly active at any given time. This was
accomplished by establishing a focus of attention on the screen, then using the activation
from that screen element (e.g., the list label “x-axis”) to activate the appropriate subgoal
(e.g., “x-axis: observed”). While this was an effective solution, it was not an elegantly
simple one, and it required knowledge structures and manipulations of state that were
not predicted by the basic construction-integration model.

A second, deeper problem involved learning, both long-term and in support of
the immediate task. The construction-integration model, in the implementation we were
using, did not support learning. But without some kind of learning, the model could be
doomed to repeatedly perform the same actions, since it could not remember that that
part of its goal had already been satisfied. When a screen update prevented such
repetition, this was not a problem. But in the case of the axis-selection dialog box, both
axis lists remained visible, and there was no elegant way to ensure that the model would
click the OK button after the axis selections had been made.

5.4 The ACT-R Models

To overcome the shortcomings of the novice construction-integration model, and
to investigate similar issues under somewhat different assumptions, we decided to move
our modelling efforts to a different cognitive architecture. We chose Anderson’s ACT-R
(Anderson, 1993).

67

The ACT-R architecture is the most recent of a series of ACT theories of
cognition (Anderson, 1983). It is the first version of ACT for which an implementation
has been generally available outside of Anderson’s laboratory. Like all ACT versions,
ACT-R incorporates two forms of long-term memory: declarative memory for facts and
production memory (rules) for cognitive skills. A small portion of long-term declarative
memory is active at any one time, forming the system’s Working Memory. ACT-R is
distinguished from earlier versions of ACT by its rational analysis component, which
replaces traditional conflict-resolution rules. The rational analysis mechanism considers
cost and predicted success of competing productions and decides which to fire. There is
a single method for learning new productions in ACT-R: analogy.

The implementation includes no clearly defined mechanism for long-term
declarative learning or for forming declarative categories. This is significant because
much of the power of the analogy mechanism derives from its ability to work with
identities and differences between slot fillers of two “Working Memory Elements”
(WMES) that fall into the same declarative category. Every WME must be identified as
belonging to a predefined declarative category, termed a “WME Type,” and the WME
Type defines exactly the slots that WMEs of that type can have filled. These slots, in
turn, are examined by the analogy mechanism. In Anderson’s addition model, for
example, there is a WME Type for addition facts, which has attribute slots labeled
“addendl,” “addend2,” and “sum.” An individual addition fact can then be
represented as: (fact-1 is-a addition-fact, addend1 5, addend2 4, sum 9). A major goal
in the modelling work was to reduce the dependency on categorical structure, so the
model could learn as much as possible from scratch.

Several models of the Cricket-Graph task were implemented in ACT-R. The first
efforts are described only briefly, to highlight certain problems with the system, as well
as insights into the cognitive demands of the task. The final model is described in
considerable detail.

5.4.1 Version 1

The first version of the model reflected a traditional, goal-oriented Al approach.
The model was provided with a list of things that needed to be accomplished, and it
worked its way through that list. Knowledge of the current world state was maintained
using categorical structures were simple, but were explicitly designed to represent
exactly the information needed to support analogy. The model was able to learn general
rules by analogy to previous instances of similar problem-solving episodes. For
example, given the goal of starting Cricket Graph, and recalling a previous episode in
which double-clicking the Microsoft Word icon started that program, the model would
infer that double-clicking any application’s icon would start that application.

68

The critical failure of this model was its inability to describe the “situatedness”
of behavior that seems to correctly reflect a novice user’s behavior. The model relied on
a list of higher-level goals, and within that list it pushed and popped subgoals onto the
goal stack, an activity that ACT-R explicitly supports but that clearly locked the model
into behavioral states that could not be broken out of, even if the screen were to change
in an unexpected manner. A second failure of this model was the specificity of its
categorical structures.

5.4.2 Version 2

In the next version of the model, the categorical structures were redesigned to
provide the absolute minimum of information. Using a convention suggested by Clayton
Lewis, the structure of each element in working memory was essentially reduced to a
simple subject-verb-object triple, termed a “prop” (proposition). Additional categorical
structures (“Working Memory Types” in ACT-R terminology) were provided for actions
and effects, which ACT-R required for analogies to form, and for objects, which were
simply anchor nodes referred to by the props.

This model performed the basic Cricket-Graph sequence required to create the
default graph: double-click on the data icon, pull down the graph menu, release on “Line
Graph,” associate data with the x and y axis, and click on “OK” in the dialog box. It
relied on a large network of basic Macintosh facts, such as the fact that icons can be
double-clicked. In addition to its simplified categorical structure, it also satisfied the
constraint of situatedness: the goal stack was almost never used, except to maintain the
single, top-level goal: “figure out what to do.” The model performed the task through
“label following,” comparing the current screen state to an unordered list of instructions
describing the task. Instructions and objects were marked “processed” in memory to
prevent repetitive actions.

The model’s shortcoming, however, was that it did not learn. The declarative
knowledge now met the constraint of being categorically simple and hence learnable in
principle, but this simplified structure no longer supported analogical formation of new
productions.

The model also had potential problems related to its strategy of “dumb” label
following. These problems did not surface in the early stages of the Cricket Graph task,
but our examination of several other graphing programs, part of a “bestiary” collected
by Peter Polson, suggested difficulties that could arise. The problem was this: The
model looked for overlaps between instructions and screen objects, then blindly acted on
the screen objects when overlaps were found. But what if an object appeared on the
screen that matched an instruction which had already been used to select a different
object? If the instruction had been satisfied, the model would not act on the overlap

69

again. But if the instruction were only potentially satisfied, as it would be if a dialog
box had been partially filled in, the model would act again - and again, and again, and
again, if the object continued to reappear. This problem, along with problems in
deciding when to click the “OK” button in a dialog box, suggested that blind label
following was not a sufficiently sophisticated strategy. What was needed was the
ability to predict an action’s result and decide on its appropriateness.

5.4.3 Version 3

The next version of the model incorporated the look-ahead needed to
supplement the label-following strategy. This involved a major revision of the
knowledge base and the model’s control strategies. Where the previous model had
simple looked for label-instruction overlap and acted, the new model looked for label-
instruction overlap, envisioned the result of acting, and then acted if that result was
appropriate. Two tests of appropriateness were made: (1) did the envisioned effect
match the instruction? and (2) had the effect not yet been achieved?

Not only was the knowledge base heavily revised to support this more
sophisticated strategy, but the knowledge was significantly shifted from declarative to
production form. Where the earlier model had contained declarative knowledge that
icons were double-clickable, this model had a production which proposed double-
clicking icons, with an envisioned result being produced as part of the proposal.

This sophisticated version of the model was able again to complete the entire
first part of the Cricket Graph task, from start-up through double-clicking the “OK”
button. Furthermore, it did so in a manner that would have supported other interfaces
that provided fewer guiding constraints than Cricket Graph. However, the model still
did not learn.

5.4.4 Version 4: OQverview

Version 4 of the ACT-R model finally achieved our basic goal of modelling plan-
free exploration with learning. This subsection provides an overview of that model in its
current form. Details of the ACT-R implementation are provided in the next subsection.
The overview also applies to the Soar model, described briefly in Section 6.3.

The task is represented in the model as instructions that have been acquired by
some parsing process that we do not describe. The model knows how to start at least
one other program, Microsoft Word, by double-clicking on its icon, but it has no general
rule for starting Mac programs. Knowledge in the model is contained partially in
declarative form and partially in rules (“productions” or “chunks”).

70

The reasoning process proceeds as follows. The model sets the goal of starting
Cricket Graph, but no rule fires to achieve that goal. An impasse occurs. In response to
the impasse, the model attempts to use knowledge of similar situations to solve the
current problem.

The model recognizes that starting Microsoft Word is similar to starting Cricket
Graph. It considers the similarities and the differences between its experience with Word
and its current Cricket Graph task, and it concludes that double-clicking the Cricket
Graph icon will achieve its current goal. It takes that action and recognizes that the goal
has been satisfied. To make the results of its reasoning available for future situations, it
forms a new rule of the form: “If you want to start Cricket Graph, then double-click on
the Cricket Graph icon.” '

The analogical reasoning process, summarized in the previous paragraph, can be
broken down into several steps, similar to those identified in Holland, Holyoak, Nisbett,
and Thagard’s (1986) general model of analogy and to the more abstract process of
metaphor described by Carroll, Mack, and Kellogg (1988).

1. Recall a previously accomplished example task that is potentially analogous to the
current task (also called the analogy’s source and the target, respectively).

2. Identify a mapping between the conceptual structures of the example task and the
current task.

3. Describe a new action that will accomplish the current task. Do this by applying the
mapping to the example action that achieved the example task.

Test the analogy by trying the new action.

5. Learn a new rule (production) for this situation, so the cognitive overhead of
performing analogy can be avoided if an identical or similar situation arises again.
The next subsections describe each of these steps in detail.

1. Recalling Candidates for Analogy

To begin the analogy process, the model must retrieve knowledge about past
interactions (example tasks) that might suggest a method for completing the current
task. Empirical research suggests that the retrieval process is highly dependent on
surface similarity between the current task and the example (Chi, Feltovich, & Glaser,
1981; Gick & Holyoak, 1983; Holyoak & Koh, 1987; Ross, 1984). In the domain of
computer interfaces, for example, Ross (1984) taught users two equally successful
methods for a word-processing task, such as append and insert for adding a word to
the end of a line. When tested on a new task, users tended to choose the method learned
with text that had similar content to the text in the current task, even though either
method would work.

71

2. Mapping Between Conceptual Structures

Once an example is retrieved as a candidate for analogy, a mapping must be
identified between its conceptual structure and the structure of the current task. If the
current task involves something that is-a program and has-name Cricket Graph, then a
mapping can be made to an example involving something that is-a program and has-name
Word.

In our implemented models, declarative knowledge such as has-name Word is
expressed in attribute-value notation. “Has-name” is an attribute of programs, and one
of the programs our model knows about has its “has-name” slot filled with the value
“Word.” The knowledge structure representing a program or any other real-world object
can involve many attribute-value relationships. The facts may be episodic (was started)
instead of categorical (is-a program), but the structures still need to be similar if analogy
is to succeed.

3. Using the Mapping to Describe a New Action

The mapping, once identified, is applied to the example action that
accomplished the example task. In our case, has-name Word in the example task was
mapped to has-name Cricket Graph in the current task. Applying this mapping to the
example action, double-click X, where X is-a icon and has-name Word, must be transformed
into double-click Y, where Y is-a icon and has-name Cricket-Graph.

The success of this step requires that the previous step identified the appropriate
attributes and values. In our example, the model must identify the name of the program
as a meaningful attribute in the current and the example tasks, and it must identify the
name of the icon as a meaningful attribute in the example action. This seems trivial, but
there is no a priori reason why these text strings should be the linking feature. The
relationship might be one of location, like handles on spigots, or of meaningful iconic
representation, like the labels on a car dashboard.

Additionally in this step, the mapping may need to incorporate chains of facts
between the example task and the example action, to make features of the action
meaningful. Imagine that the current task is to make cool air come out of a car’s vents,
and the driver knows that the red button of the climate control turns on the heater. To
propose pushing the blue button for air conditioning requires the additional knowledge
that red stands for hot and blue stands for cold. Identifying this linking knowledge
requires search through all knowledge associated with the example.

72

4. Testing the New Action

Having identified an action that may accomplish the current task, the model
takes that action and observes the result. Since analogy is an inductive process, there is
no guarantee that the action will have the desired effect. For our model’s task, the action
of double-clicking on Cricket Graph produces a clear indication of success: the
program’s start-up greeting. In other cases success is not so certain. The user who has the
goal of printing a document may choose “print” from a menu, only to be shown a dialog
box of print options. This is at best a step on the way to success, if the user can
recognize it as such and continue.

5. Learning New Rules

The model learns two kinds of rules. First, in the process of analogical reasoning,
it may learn rules that will make it easier to perform similar reasoning when another new
program has to be started. The exact form of these general rules depends on the
implementation. Second, the model learns the very specific rule already described: “If
you want to start Cricket Graph, then double-click on the Cricket Graph icon.” (Note
that this rule cannot be learned reliably until the action’s effect is confirmed.) The model
does not learn a general rule for starting an arbitrary new program.

5.4.5 Version 4: Details

Again in this model all knowledge has been represented using just four generic
Types: object, action, effect, and proposition. The bulk of the knowledge is represented
as propositions about objects, where each proposition has a subject, a relation, and an
object. For example, the Cricket Graph icon is an object with internal identifier 05, and
one of the propositions describing it is: (p09 is-a proposition, subject 05, relation has-
name, object Cricket-Graph).

In addition to declarative knowledge represented in Working Memory structures,
the model represents certain basic procedural knowledge as productions. Productions
fire when their condition side matches the current goal. For most productions in the
model, the result of firing was to add new information to Working Memory. Many
productions also alter the goal or the stack of goals, and a few productions have the
special function of causing physical movements that interact with the outside world.
Productions are divided into those that are specific to the interface and those that are
not. For those that are, our interest in producing a learnable system demanded that we
tell a story of how they were acquired and that we implement that acquisition process if
possible.

73

The behavior of the model closely tracks the abstract model presented in the
previous section. Here again, only the first action (double-click the data icon in the
Finder) is described, although the implemented model can work all the way through to
click on the “OK” button.

The model begins the task by looking for matches between objects on the screen
and elements of the instructions. Instructions are represented in subject-relation-object
form, such as “subject me, relation start, object Cricket Graph.” The first such overlap to
occur is between the name of the Cricket Graph icon and the object slot of the
instruction. Having identified an overlap, the model focuses on the Cricket Graph icon
as a candidate for action.

Once an object becomes the focus of attention, the model must propose an action
to be taken on that object. It does this with an interface-specific production, which is a
procedural encoding of the object’s affordance and its effect. If this production already
exists, it simply fires and the model continues. If the production does not exist, the
model attempts to form an analogy between the current situation and experience with a
similar object in the past. In the case of the Cricket Graph icon, the model recalls a
similar experience with the Microsoft Word icon; it decides to form an analogy to that
experience, and it restructures its working memory and sets its goal to force an impasse.
This situation -- an appropriate memory structure and an impasse -- is exactly what is
required for ACT-R’s built-in analogy mechanism to engage. The analogy mechanism
then creates a new production, available now and in the future, to propose actions on
application icons in the Finder.

In ACT-R, analogy is the only way that new productions can be formed, and
analogy will take place only when no other productions apply. The rather convoluted
way of inducing analogy in our model reflects the inability of the ACT-R implementation
to treat analogy as a member of the conflict set to be considered along with applicable
productions.

The action proposing production has two effects: (1) it proposes a specific
action: double-click on the icon; and (2) it places in Working Memory an envisionment of
the effect of that action: the Cricket Graph program has been started. The envisioned
effect may, as in this case, reflect interface-specific knowledge: double-clicking starts a
program. But in some cases, no such knowledge is available. What, for example, is the
result of selecting a menu item that has never been selected before? Menu items may be
nouns, verbs, or modifiers, and there is no reliable prediction of what an item will do. In
such cases, the system performs what we term “wishful envisionment.” It knows from
the instructions what effect is desired, and it places that effect into Working Memory as
the envisioned result.

Having envisioned the effect of the proposed action, the model now checks that
effect for two conditions. First, is it consistent with the instructions? Of course, it will be

74

if it is a wishful envisionment, but it may not be if it is derived from interface-specific
knowledge. Second, is the envisioned effect something that still needs to be achieved? To
confirm this, the model consults a task-status record that will be updated when actions
are performed. Conceptually the two conditions can be checked in parallel, although the
implementation does them serially, in random order.

If both conditions are satisfied, the model decides to achieve the effect by
performing the action. It does this by setting the effect as its goal and then placing into
Working Memory an imagined past interaction in which that goal was satisfied by taking
the proposed action. Because there is no preexisting production that will fire to satisfy
the goal, the ACT-R analogy mechanism again engages. It forms an analogy between the
goal and the imagined past interaction, identifies the mapping, uses that mapping to
define the new action, and produces new production rule. The rule has the current goal
as its condition, and it fires immediately, causing the model to take the proposed action.

After the action is taken, the model must check to see that it caused the desired
result. Any decision based on wishful envisionment has a chance of being wrong, and
even decisions based on known interface conventions will fail for programs that do not
adhere to the standards. Therefore, after the action is taken, the model compares the
perceived change in the world to the envisioned result. If the world matches the
envisionment, the model updates the task status and continues. If the match fails, the
model leaves the task status unchanged. In this case, it must also disable the production
that has just been formed, to prevent the production from firing in future, similar
situations. It does this by altering an element in Working Memory that we call the “fuse”
for the newly formed production. The fuse is a declarative proposition referenced in the
production’s condition, and altering the fuse will permanently prevent the production
from firing.

5.5 The Soar Model

The Soar model was developed and programmed by Richard Young (Rieman et
al, 1994). Soar is a cognitive architecture developed by Newell and his colleagues and
proposed as a “universal theory of cognition.” Soar is essentially a production-system
architecture, which includes a declarative working memory but no long-term declarative
memory. Behavior in Soar is structured around “problem spaces.” When the current
goal cannot be satisfied by productions that fire in the current problem space, the Soar
system impasses and selects another problem space to resolve the difficulty. Soar
includes a universal method for learning, called “chunking,” that records the results of
problem solving and makes them available when similar situations arise in the future.

The Soar model of the Cricket Graph task performs essentially the same high-
level reasoning sequence as described for the final version of the ACT-R model, but with

75

some important lower-level differences. Note that the Soar model is implemented only
to handle the task of starting the Cricket Graph program by double-clicking the icon.

The Soar model begins with the goal of starting the Cricket Graph. Because no
known production can satisfy this goal, the system impasses. To resolve the impasse, it
chooses the analogy problem space. This is a problem space specifically created for this
model; unlike ACT-R, Soar does not include analogy as a default feature.

In the analogy problem space, Soar takes the strategy of imagining how to solve a
similar problem with another software application. Specifically, it imagines how it
would solve the problem of starting Microsoft Word. This is something it knows how to
do. It then uses the declarative trace of this activity as the basis for “deliberate
analogy.” Quite simply, it maps the process for starting Word onto the current problem
by substituting “Cricket Graph” for every instance of “Microsoft Word.” This yields the
suggestion that it should double-click the Word icon, which it does.

The model learns certain things about the process, using Soar’s built-in chunking
mechanism. First, it learns a specific production that describes how to start Cricket
Graph: double-click the Cricket Graph icon. Second, it learns a support production that
might be useful if it had to figure out how to start yet another application; this support
production embodies the result of imagining the start-up of Microsoft Word, so the step
of imagining it need not be performed again. The Soar model does not learn a general
production that tells it how to start any application by double-clicking that
application’s icon.

5.6 Soar vs. ACT-R: Problem Solving vs. Situated Cognition

In comparing the Soar and ACT-R models, the most significant difference is the
handling of goals. The Soar model begins with the goal of starting Cricket Graph,
whereas the ACT-R model begins with the generic goal of figure-out-what-to-do. The
issue here is not whether or not Soar could handle the entire problem, from presentation
of instructions to final problem solving. Soar models have been produced that interpret
instructions and transform them into goals, and such a instruction-following model can
be assumed as part of a more complete system. The issue, instead, is that the Soar and
ACT-R models are designed to deal with the world in fundamentally different ways.
The Soar model must work with a single, well-defined goal, while the ACT-R model
always draws information from both the interface and its list of remembered
instructions in order to decide what to do next. In terms of the discussion at the
beginning of this chapter, the Soar model is a problem solver, while the ACT-R model
engages in situated cognition.

Note that this difference between the models is not necessarily inherent in the
difference between Soar and ACT-R. In fact, our ACT-R model takes an unusual

76

approach as compared to models supplied as examples with the ACT-R
implementation. It may be that Soar could be programmed to perform situated cognition
isomorphically to the ACT-R model; it appears even more likely that the reverse is true:
ACT-R could take the same general approach as Soar.

Notwithstanding their fundamental differences, the ACT-R and Soar models
share some interesting details. Both models rely on imagining (or “envisioning”) the
effect of an action, although they use this information somewhat differently. The ACT-R
model imagines the proposed action, then treats that as past experience; the Soar model
imagines the action needed for another program, then analogizes to that.

The models also share the common feature of maintaining most of the interface-
specific knowledge as production rules, not as declarative facts. Thus, for example, the
ACT-R model does not include a general declarative fact that icons can be double-
clicked, only a production that proposes double-clicking them. This approach is not
surprising for Soar, which has no long-term declarative memory, but it is unexpected for
ACT-R.

The models differ significantly in the kinds of general rules they learn. In ACT-R,
where analogy is part of the basic system, the model learns interface-specific
generalities, such as the rule for proposing double-click as an action associated with
icons. In Soar, where analogy is simply another approach to problem solving, the model
learns rules that will assist similar analogical reasoning. Additionally, the Soar model’s
analogy process can handle only simple substitution, “Cricket Graph” for “Word,”
whereas ACT-R’s analogy mechanism can include chains of knowledge, as in the
red /blue temperature example.

Neither model learns a general rule of the form, “To start any Mac program,
double-click its icon.” We were able to build models that learned such a rule in both
architectures, but those models failed to satisfy our concerns about learnability. The
models could learn the general rule, but we couldn’t justify the knowledge they needed
as a prerequisite.

Finally, it should be noted that neither of the implemented models treats the
entire process of analogical learning. The importance of surface similarity is only weakly
represented, and there is no facility for restructuring knowledge. Only the ACT-R model
checks the action’s effect before learning a new rule.

5.7 Discussion

The novice construction-integration model along with the early ACT-R models
demonstrate that label following is a powerful but limited strategy. It can pull the naive
user through a narrowly constrained path (assuming the user’s task description closely
matches the labels provided by the interface), but it fails when multiple choices must be

77

compared, or when the user must consider the current action as it relates to past
interactions.

Quite simply, label following operates only when all necessary information is
contained on the screen in the immediate present. For more sophisticated interactions,
both the past and the future must be considered. Past actions must be remembered so
they can be avoided (don’t double-click the Cricket Graph icon twice), supplemented
(click OK now that the relevant parts of the dialog box have been handled), and checked
(now that the dialog box has disappeared, are the results as expected?).

Remembering past actions is relatively simple, as shown in the earlier ACT-R
models. The key to sophisticated interactions, however, seems to be envisioning future
states. The final ACT-R model and the Soar model both rely on this facility.

An additional lesson is that handling fallback actions is surprisingly difficult in
the ACT-R framework. Fallbacks here are defined to include actions such as clicking
“OK” or pulling down a different menu when no menu matches an instruction. In
general, fallbacks must be taken whenever the instructions don’t provide a clear label-
following path, or when that path has already been taken and the next step is not
specified by the interface. Handling fallbacks requires checking the entire interface to be
sure nothing matches an instruction. Indeed, it may even require search to some depth,
scanning all pulldown menus, for example. Situations such as these clearly call out for
an associative component to the model, one in which fallback actions gradually become
more attractive as other actions fail, instead of simply counting off all possible actions
and then immediately choosing the fallback.

Once the need for a fallback is evident, the appropriate action itself must be
selected, with options that may range from clicking “OK” to looking through more menus
to asking someone for help. These are exactly the kinds of activities observed in the
diary studies, activities which more experienced users had clearly prioritized as to
predicted effectiveness. A still more sophisticated model of exploratory learning would
include productions that implemented this range of fallback activities.

78

Chapter 6

LABORATORY OBSERVATIONS OF EXPLORATION

To provide a deeper understanding of how users handled the difficulties revealed by the
theoretical analysis and modeling efforts, users were observed in a controlled laboratory
situation as they attempted a task that required them to perform task- and problem-oriented
exploration in a display-based interface.

The field work described in Chapters 3 and 4 indicated that users typically
explore new computer applications in the context of a defined task. The theoretical
analysis described in Chapter 2 and the cognitive modelling efforts described in Chapter
5 predict that certain forms of behavior will characterize those explorations. To test the
predictions of the theory and the model, we observed the task-oriented exploratory
behavior of users in a laboratory situation. Subjects were asked to perform the same
Cricket Graph task that had been investigated in the modelling work described in
Chapter 6.

The experiment described in this chapter was designed primarily by the author.
Marita Franzke assisted in setting up and monitoring the experimental procedure, and
subjects were run by Marita Franzke and Troy Davig. The larger purpose of the
experiment was to investigate training and transfer effects between two versions of the
Cricket Graph program. Preliminary results of that investigation are reported in
(Franzke & Rieman, 1993), and a detailed analysis of more extensive work on this topic
can be found in (Franzke, in preparation). The Method section of this chapter is
excerpted from (Franzke & Rieman, 1993); the results described in this chapter are
reported here for the first time.

79

6.1 Method

The experiment investigated users’ interactions with versions 1 and 3 of the
Cricket Graph software. Subjects were initially given a task to solve with Cricket Graph
1, then tested on a similar task using Cricket Graph 1 or Cricket Graph 3. Only the
initial training sessions with Cricket Graph 1 are reported here.

6.1.1 Subjects

Twenty-two undergraduates from the University of Colorado subject pool
participated in this experiment for class credit. Subjects had an average of 2.4 years of
experience with Macintoshes but no experience with Cricket Graph. Subjects were
randomly assigned to several conditions for the training and transfer experiment. For
the purposes of the current analysis, subjects are treated as single group, since all were
initially given a task with Cricket Graph version 1. One subject was removed from the
data set because of equipment failure and one because of inappropriate experimenter
intervention early in the experiment, leaving an n of 20.

6.1.2 Tasks and Procedure

6.1.2.1 Cricket graph Tasks

The experimental task given to subjects consisted of two main phases: (a)
creating a new graph from a data file provided to the subjects, and (b) editing the
default graph to match it to a given sample graph. The data was provided in a Cricket
Graph data file that the subjects could use without further modifications. Subjects also
received a sample graph that differed from the default created by Cricket Graph in a
number of dimensions. To create a near-perfect duplication of the sample format,
subjects would have to change the style of the graph title and axes labels, the Y-axis
label, the data-point symbol and plot-line style, the style of the legend label, the location
of the legend, the style of tick marks, and the range of the axes.

Subjects had to decide on the types and the order of modifications they wanted
to attempt. A perfectly duplicated format was impossible, since the sample graph had
been created with a different program than Cricket Graph. The freedom of subjects to
choose their own goals, combined with the imperfect sample, gave us the opportunity to
observe goal instantiation and management in a relatively natural task environment,
without enforcing a particular grain size or order of subgoals.

The instructions were written in a small HyperCard stack, which included
general instructions, a sample graph, and details about the data, graph type, and data-

80

axis mappings. Subjects could page through the three instruction cards by clicking on
labeled buttons, and the stack was designed to ensure that the subject looked at each
card at least once before beginning the task. An opened folder in the Macintosh finder
contained the appropriated Cricket Graph version and the data file. The folder window
was partially covered by the stack and could be activated and brought to the front by
clicking on it. The HyperCard stack was accessible during the whole task. This setup
enabled us to record precisely when subjects consulted the sample graph or the written
instructions for further directions.

6.1.2.2 Warm-Up Tasks

Before subjects were presented with the main graphing tasks, they had to be
warmed up to two procedures: thinking aloud and using Macintosh Multifinder. Initial
screenings of the tasks warned us that our subject population might not be accustomed
to moving back and forth between different application windows. To give them some
practice in toggling between the HyperCard instructions and the task window, subjects
first had to perform a brief word-processing task using Microsoft Word, in which they
were asked to format document to match a sample text given on HyperCard. This task
and the instructions had a similar format to the Cricket Graph task and familiarized
subjects with the Multifinder environment.

While subjects were doing these tasks they were encouraged to think aloud
(Lewis, 1982). With this method we were able to collect additional information on what
goals subjects were pursuing throughout the task, as well as which interface object they
were attending to. Prior to any tasks involving the computer, subjects were warmed up
to thinking aloud with a brief verbal problem-solving task. All computer tasks were
performed on a Macintosh Ilex computer with a 13-inch color monitor.

Procedure. Upon arrival subjects were instructed in the thinking aloud procedure
and did the verbal problem-solving task. After this the experimenter directed their
attention to the Macintosh display and asked them to read through the instructions
aloud and follow the instructions on their own. Subjects were informed that the
experimenter would remind them to verbalize their thoughts but would not answer any
questions or provide any hints about the task. Subjects were given ten minutes to
complete the word-processing task.

After the word-processing task was completed, the experimenter brought up the
instructions for the graphing task as well as the folder containing the data and the
Cricket Graph application. Subjects were not allowed to use the Cricket Graph manual.
The lack of a manual reflected the finding in diary studies and interviews (Chapters 3
and 4) that novice users were often unable to find what they needed in documentation,
even if it was available. Similarly, telling the subjects that the experimenter would not

81

answer questions forced the user to perform some exploration, simulating a natural
situation in which asking questions requires more initial effort than searching for a
command in the interface. If subjects persistently failed to discover critical interaction
techniques and continued to explore the same parts of the interface, the experimenter
would volunteer brief hints, such as “try working directly on the graph” (intended to
divert attention from the menus).

Subjects were allowed ten minutes to complete the first Cricket Graph task. If
they had been unable to accomplish any of the editing subtasks, because they did not
discover the methods that would lead to their completion, they were given a brief
demonstration by the experimenter. Essentially, the experimenter showed the subject
how to accomplish the immediate goal(s) that the subject had been working on. This
manipulation ensured that all subjects entered the transfer task with some knowledge
about successful interface techniques in one Cricket Graph version.

After the experimenter’s demonstration, subjects were transferred to the other
version of the software, where they performed a second task. The complete
experimental procedure lasted approximately 45 minutes and was videotaped by a
camera that recorded the interactions visible on the monitor, along with the thinking-
aloud protocols.

6.2 Label Following

The ACT-R and construction-integration models of cognitive behavior, described
in Chapter 5, both predict that much of the exploratory behavior in the Cricket Graph
task will reflect a label-following strategy. In label following, the user attempts to
identify visible controls with labels that match the current goal. When such a control is
located, the action it affords is taken.

A point within the Cricket Graph task where label following is unequivocally
predicted by the models is the situation where Cricket Graph has been started, the data
file has been loaded, and the next appropriate step is to create the default graph. The
goal should be to “create a graph,” and a menubar item labelled “Graph” is the correct
control to select. The behavior of each subject was examined at this point in the
interaction.

6.2.1 Results

Of the 20 subjects, 3 subjects moved the mouse cursor directly to the graph menu
and pulled it down, without pointing at or clicking on any other part of the interface.
Another 4 subjects moved the cursor to the graph menu without clicking anything else,
but they did pass over other parts of the interface, as if using the mouse cursor to focus

82

their visual search. The behavior of these subjects falls entirely within the predictions of
the model, which implicitly includes the action of scanning the visible screen.

Another 5 subjects actually pulled down other menubar menus or clicked on
tools within the toolbar, extending their search a level deeper than that allowed by
simple visual scan of the current screen. The model does not explicitly predict these
actions. Interestingly, 3 of the 5 subjects pulled down the Graph menu at least once,
then checked other menus, before returning to select from Graph.

The 8 remaining subjects initially engaged in actions that showed evidence of
strategies or goals not predicted by the model. One of these subjects explicitly stated
the goal of “seeing what kind of stuff” the interface offered; he spent about 15 seconds
looking at all the menus before returning to Graph. Five subjects restarted Cricket Graph
one or more times after the data spreadsheet was visible, perhaps thinking that some
kind of graphics window should appear. One of these subjects explained that he was
“trying to get the graph part,” while another stated that she was “looking for those
things up there,” pointing to the menubar area; she may have been looking for a
Microsoft-style toolbar. All of these subjects eventually found the Graph menu. Finally,
2 subjects attempted to manually draw the graph into the spreadsheet window; both of
these subjects found the Graph menu after the experimenter suggested they look in the
menubar.

6.2.2 Discussion

To summarize, 7 out of 20 subjects (35 percent) selected the Graph menu through
label-following behavior exactly as predicted by the model. An additional 5 subjects
(25 percent) used a label-following strategy supported by an active search to one level of
controls beyond those displayed on the initial screen. The remaining 8 subjects (40
percent) showed the ability to use label following, but that behavior was initially
blocked by misconceptions or alternate goals.

The behavior of the subjects who supplemented their label-following strategy
with active search is especially interesting. This strategy may be a learned response to
applications that have menubar titles with low or overlapping semantic content, such as
the “Font” and “Format” menus found in many word processors. In such a situation,
the items on the pulldown menus carry most of the semantic information needed to drive
successful label following, and an unaided visual search of just the top-level items on the
menubar will seldom yield success. This strategy has important implications for design
and evaluation of interfaces. In the cognitive walkthrough evaluation method (Polson,
Lewis, Rieman, Wharton, 1992), we advise the evaluator to examine the screen for an
easily identified correct control label. The evaluator is also told to check for “foils,”
incorrect labels that might be a good match to the current goal. The behavior observed in

83

this experiment suggests that evaluators and designers should extend their attention
beyond the visible screen to include those parts of the interface that are easily accessible
by common actions, such as scanning the pulldown menus.

Also of interest is the behavior of the five subjects who restarted Cricket Graph
after the spreadsheet data window appeared. Within the framework of the cognitive
walkthrough, this can be simplistically described as a failure to provide adequate
feedback; the users were evidently unsure that they had actually started the graphics
program, even though Cricket Graph provides a start-up banner message that is visible
for more than a second. But the behavior also has strong implications for label
following. Here is a situation in which the correct label was clearly visible, yet a
significant number of users were initially unwilling to look for it, because their
expectations as to the result of the previous action had not been met. After one or more
restarts of Cricket Graph, each of these users evidently felt satisfied that the program
had started, at which point they shifted to a label following strategy and successfully
located the correct menu item.

Finally, note that two of the subjects were completely stalled because they had
formed the inappropriate subgoal of manually creating a graph. For these users as well,
the clearly visible label “Graph” had no impact. Indeed, these users were in a worse
situation than the Cricket Graph restarters, since the interface offered no help in
redefining their goal. Both users required a hint from the experimenter before they could
continue.

6.3 Menu Search Strategies

As soon as the default graph is created, subjects must begin to modify it to
match the sample graph shown in the instructions. The modifications required include
changing the text of one axis label and the graph title, changing the type style of several
items, and changing the line style and the style of the data points. Each of these changes
can only be accomplished by double-clicking on the screen object to be modified.
Experience with pilot experiments showed that few subjects would discover this
method; almost all would first explore the menus looking for a Font or LineStyle option.
Eventually subjects would discover the graphic Toolbox, but typically they tried these
options after a fair amount of menu search. Because this search was doomed to fail,
this point in the interaction was ideal for observing extended menu search strategies.

The formal analysis predicted that a guided depth-first search with iterative
deepening (gDFID) would be the most effective way of locating the controls needed
within the interface. With the Macintosh interface, this would be realized by first
scanning the menubar, then pulling down each of the menus, then selecting attractive
menu items to observe their dialog boxes or effects, then delving progressively further

84

into potentially useful dialog boxes. The protocols of the 20 subjects were examined for
evidence of gDFID or alternate strategies.

6.3.1 Results

6.3.1.1 gDFID

The search behavior observed did show evidence of gDFID search, but not in the
simple, immediate manner predicted. Only one of the subjects obviously scanned each
item in the menubar before first pulling down the menus. And once the menus had been
pulled down and examined, the next level of search was almost never pursued before
scanning the menus again. The next level of search after scanning should have been to
try attractive menu items. There are 43 pulldown menu items in the Cricket Graph
program that could be selected, and it was clear that subjects used semantic behavior at
this level to limit the search space, as predicted by the “guided” component of gDFID.
Seventeen of the subjects tried 7 or fewer pulldown menu items; the largest number of
items selected by any subject was 16. However, this limitation of the search was
maintained in spite of the fact that the menu items selected did not yield success with
the subjects” goals. Subjects failed to extend their search when the semantically guided
search failed.

6.3.1.2 Deepening Attention

How, then, did the subjects spend their exploratory time? For most of them, the
time was filled with another form of deepening search. That search was of memory,
activated by iterative scans over the same menus with increasingly greater attention to
each item, and especially to pulldown menus whose options did not have effects that
were obviously inappropriate to the current goal. The iterative deepening of attention
was clearly observed in 15 of the 20 protocols, as evidenced by sliding the mouse cursor
down a menu that had only been visually scanned on the first pass (11 subjects), by
increasing time spent looking at a pulldown menu (10 subjects), and by reading the menu
~ items out loud on a later pass (3 subjects).

6.3.1.3 Spatial Scan Strategy

The gDFID algorithm suggests scan strategy of checking attractive menus first,
then falling back to look into menus that seem less likely to contain the necessary
options. A competing scan strategy for the Macintosh menu structure is spatial: left-to-

85

right across the menubar, top-to-bottom for each pulldown menu, and left-to-right, top-
to-bottom (reading-scan style) for dialog boxes. This strategy requires the least physical
work and also reduces the cognitive load of remembering which menus have been
checked. Subjects showed a combination of these strategies. Eight of the 20 protocols
showed full left-to-right or right-to-left scans at one point in the protocol, with the scans
typically starting in the middle of the menubar. Another 5 showed partial scans, often
beginning in the middle of the menubar with the Graph menu and scanning to the right,
skipping the File and Edit menus, as well as the grayed-out Data menu. Even the
subjects who scanned the full menubar at first would typically reduce the breadth of
their scan in later iterations of the search, sometimes to the point of concentrating on one
or two menus, usually including Goodies.

There was also evidence of top-to-bottom scans of pulldown menus, but this
was much weaker. A few subjects slid the cursor all the way down some of the menus
or read the menu items out loud from top to bottom. No subject did this with all of the
menus.

6.3.1.4 Label Avoidance

The menu scan strategy and the deepening attention behavior both showed
evidence of a strategy that could be termed “label avoidance.” In this behavior,
interface controls that are clearly inappropriate to the current task are avoided, while all
others are considered. This is an elimination strategy as opposed to the selection
strategy of “label following.” Label avoidance was hard to distinguish in the protocols
from simple random scan strategies. However, it was reflected in much larger amount of
time spent by most subjects in the Goodies menu as opposed to the File menu. With
specific menu items, the verbal protocols gave some evidence of the strategy. One
subject selected Interpolate from the Curve Fit menu, saying: “I don’t know that so I'll
try that.” Later he paused over the Switch Axes item under Goodies, then went on,
saying: “No, I don’t want to switch axes.”

A possible result of the label avoidance strategy was the popularity of the Add
Depth menu item under Goodies. Add depth makes the graph’s frame appear to be
three dimensional, if the frame is turned on. Since the frame is turned off by default, the
Add Depth option usually had no effect. The option was selected by 9 of the 20
subjects, often with a verbal comment to the effect of, “Let’s see what this does.” A
tenth subject paused the mouse cursor over the option twice but avoided the selection at
the last moment: “No, I don’t want to add depth.” The option was selected while
subjects were pursuing a variety of goals, although the goal of making the line bolder
seemed more likely to attract it.

86

6.3.2 Discussion of Menu Search Strategies: a Dual Search Space

The most important guiding strategy for the majority of the subjects observed
was the deepening attention strategy. This was supplemented to a greater or lesser
degree by label avoidance (i.e., avoiding the file menu) and limited trials of options that
could neither be selected nor rejected on the basis of their labels.

This deepening of attention can best be understood in terms of the construction-
integration model of expert behavior described by Kitajima and Polson (1993). Their
model predicts that even experts will make errors with an interface if they do not allow
themselves to retrieve all the information needed about an interface object. The
protocols reported here appear to show novice users making a similar judgement. When
the first, cursory examination of a set of interface objects does not activate sufficient
information to suggest an action, the users examine the objects again with longer and
more focused attention, forcing deeper activation of information in long-term memory
and increasing the likelihood that the facts needed to make a decision will be retrieved.
For some users the iterative scan strategy is made even more sophisticated by reducing
the attended set of objects to those that could not be clearly eliminated by the earlier
scan, a “label avoidance” technique that is discussed in greater detail below.

The menu search strategy, then, actually involves two coordinated searches, one
of the interface and one of memory. Each component of this dual search affords the
potential for iterative deepening. The interface search can be deepened by trying lower
levels of controls, while the memory search is deepened by allowing longer times for
activation. '

6.4 Goal Setting Strategies

The instructions given to the subjects did not provide detailed, step-by-step
instructions concerning the changes that had to be made to transform the default graph
into the required format. The subject’s task was to discover differences between the
default graph and the sample, post goals to reduce those differences, and decide when
those goals were satisfied. There was no guarantee that all differences could be
eliminated, and indeed, some features of the sample graph, such as the background
pattern, could not be matched in Cricket Graph. The protocols, therefore, provide an
opportunity to observe how users set goals, the tenacity with which they maintain those
goals, and the abilities they have to supplement their higher-level goals with subgoals or
temporary alternative goals.

87

6.4.1 Results

6.4.1.1 Weakly Posted Goals

The formal analysis predicted that weakly posted goals would be an effective
strategy for exploration. Such goals would be stated and pursued, but if success was
not achieved with a reasonable amount of time and effort, they would be dropped. Of
the 20 protocols, 13 showed evidence of goals being dropped after efforts to achieve
them failed.

There was a wide range of attention times per goal. At one end of the spectrum,
one subject posted and then dropped several goals after working on each for less than
two minutes: “It won’t let me do this so I'm not going to worry about it,” he said.
Another subject maintained a single goal for 8 minutes with little evidence of progress,
then continued to work on the same problem for another 3 minutes after the solution
path became obvious.

Although difficult goals appeared to be disabled, it was common for subjects to
discover a solution path to a previously dropped goal and to then reactivate that goal.
It was also common for subjects to achieve success at a new goal and then restate the
goal that had been dropped earlier.

6.4.1.2 Opportunistic Sidegoals

A strategy closely related to weakly posted goals is the use of opportunistic
goals, or “sidegoals.” Opportunistic sidegoals were recognized and acted on by 8 of the
subjects. These sidegoals included goals that had not been clearly stated earlier in the
protocol as well as goals that had earlier been only partially satisfied. They were
“opportunistic” in the sense that they were activated when some interaction with the
interface made their solution obvious. In each case, the goal preceding the sidegoal was
returned to after the sidegoal was achieved. A common example of this in the protocols
was moving the legend. A subject would accidentally drag the legend a few pixels while
trying to click on screen objects to change fonts or line sizes. The subject would then
drag the legend into its correct position and return to the earlier goal of setting font or
line size.

6.4.1.3 Error-Correction Subgoaling

The third form of goal management observed in the protocols was the correction
of errors. In attempting to change the line size and plot-point style, subjects would often
try the curve-fit options, which placed the text of an equation in the graph window, or

88

they would work with the graphics toolbox, leaving messy circles and arrows on the
plot. Thirteen of the 20 subjects set the subgoal to correct these errors before continuing
with their current goals. As with the higher-level goals, these would be weakly posted
by some subjects and dropped if they were not satisfied in a short time.

6.4.2 Discussion of Goal Setting Strategies

There seems to be no rational way to decide how long a goal should be pursued
before it is dropped, and the widely varying behaviors of the subjects may reflect this
lack of a good solution. It was interesting to note, however, the ease with which most
subjects “pushed” their current goal onto a goal stack and then retrieved it after
correcting an error, taking care of an opportunistic sidegoal, or looking back at the
instructions. Similarly, goals that had been dropped as unsatisfiable seemed easy to
retrieve when new information about the interface suggested ways to achieve them.
Within the short period spanned by our protocols, typically 10 to 15 minutes, subjects
showed very few problems with forgetting goals once the goals had been clearly stated.

6.5 Discussion

In analyzing the protocols it was surprisingly difficult to associate specific
patterns of behavior with success or failure at the task, perhaps because the laboratory
situation lacked realistic resources for supplementing exploration with help from other
sources, such as manuals and more knowledgeable users. A more detailed description
of the behaviors of two users, who represent composit pictures of two behavioral
extremes observed in the subjects, will help bring this point home.

User A carefully checks the instructions, finds several changes that need to be
made to the default graph, and explicitly posts the goal of changing the line and plot
symbol styles. He begins his investigation with a slow scan of each of the pulled-down
menus, an unusual technique that evidently assumes that he will not recognize the
appropriate menu item with just a quick glance in a new application. He then goes back
through the menus and carefully tries several options that could reasonably be expected
to advance his goal: Add Format, a different style graph from the Graph menu, Simple
from Curve Fit, which he follows by Remove from Curve Fit to clean up the screen.
Eventually he gives up on the menus and tries to work with the toolbox. He has no
success there either, and he soon gives up, saying he’s tried everything he can think of.
The experimenter then tells him how to double-click on screen objects. With this added
piece of information he quickly completes the task, posting and achieving a series of
subgoals that transform the graph.

89

UserB, in brief, shows very little ability to rationally search the interface. He
pulls down random menus, selecting items that don’t even seem to have any arguable
overlap with the task, items such as “Show Clipboard,” and “Add Depth.” He jumps
back to the instructions without fully investigating the interface, then gets lost in the
interface as he tries to find the default graph again. He adds Curve-Fit information and
doesn’t seem to notice that the screen has changed. But his erratic behavior eventually
pays off -- he double-clicks a screen object, possibly in a clumsy attempt to drag or
single-click it, and discovers the key technique that allows him to edit the default graph.
Having discovered the technique, however, he lacks the task-management skills to
cleanly identify necessary subgoals and accomplish them. He fixes the font size on one
axis, neglects to take care of it on another, and fails to notice that the legend is
misplaced. Overall, his performance is poor -- but he did it without help.

Which approach would be most productive in a real-world situation? The diary
studies and interviews suggest an answer. Without the experimenter present, User A
would likely have given up after a reasonable amount of time and gone to the manual or
another user for help, allowing him to finish his work in a controlled fashion. User B’s
erratic approach yielded such an incomplete search that he would have been unable to
make a reasonable decision about when to give up, had he not serendipitously
discovered the double-click trick.

90

Chapter 7

SUMMARY AND FINAL DISCUSSION

The research revealed little evidence of task-free exploration in an everyday work context, but
found task-oriented exploration, supported by manuals and personal help, to be widespread. An
analysis of the theoretical difficulties of exploration and the cognitive strategies used to
support it helps explain these results and suggests ways in which interfaces themselves could
be made more explorable.

As described in Chapter 1, there was reason to believe when this research began
that exploration might be a productive and enjoyable strategy for learning about
computer applications. However, there was also reason to believe that it had not been
successfully applied by many users. The goal of the research was to provide a better
understanding of exploratory behavior, where that behavior was defined to include a
range of activities, from task-free investigations to task-oriented exploratory learning. It
was hoped that this understanding would suggest interface design strategies in support
of exploration.

7.1 Review of Research Strategy

The research reported in this dissertation approached the issue of exploratory
learning on several fronts. Formal models suggested absolute constraints and practical
difficulties associated with exploratory behavior. Field investigations identified areas in
which users were able to overcome those constraints in the real world. Cognitive models
suggested low-level behaviors that could effectively navigate novel interfaces. And
laboratory protocols validated and enriched the models.

The sequence of the chapters roughly indicates the information flow from one
research effort to the next, but to some extent all efforts overlapped and fed their results
into each other. This partially parallel approach was perhaps not as clean as the

91

idealized research paradigm attributed to the students of animal behavior in the first
chapter, but it yielded a rich body of converging evidence describing interactive
computer users’ actual behavior and the theoretical reasons for that behavior. The next
section summarizes that data.

7.2 Summary of Results

The theoretical investigations in Chapter 2 revealed that exhaustive task-free
exploration of an interface appeared to be a difficult, almost insurmountable problem.
The exploration space of even a simple program was simply too large to approach
without a guiding task. However, the analysis concluded that task-oriented exploration
was a more tractable problem, and suggested that users might approach task-free
exploration by setting weakly defined, opportunistic goals, associated with
“microtasks” defined in response to the offerings of the interface. A potentially effective
algorithm for task-oriented exploration, guided depth-first search with iterative
deepening (gDFID) was proposed.

In Chapters 3 and 4, field studies and associated interviews were described that
attempted to gather high-level evidence of exploratory behavior and strategies. This
focus was part of a wider net that was cast to capture all forms of ongoing learning
associated with computer systems. The most striking result of these studies, from the
point of view of this research effort, was the paucity of task-free exploration observed.
In both their behavior and their interview statements, the majority of users seemed to
have recognized the difficulties of task-free exploration and to have made the decision
to avoid this time-consuming and often unproductive behavior.

On the other hand, these same users were almost universally willing to engage in
at least some amount of task-oriented exploratory learning when a real-world task took
them beyond the bounds of their current computing skills. They typically supplemented
their on-line explorations with searches through printed manuals and interactive
requests for help from other people. ‘

Because task-oriented exploratory learning was found to be a prevalent behavior,
the cognitive modeling efforts reported in Chapter 5 focused on that activity. A series of
models of increasing complexity were developed that suggested ways in which the user
could handle the problem solving and learning involved with accomplishing a new task
through exploration. These simple models addressed only the leading edge of the user’s
behavior, i.e., the investigations within the interface itself, without looking at how
manuals or other resources might be used to aid the investigation. The models
demonstrated that simple label following, which is a behavior with very low cognitive
costs in terms of memory or problem solving, could lead the user through a new section
of the interface, if the interface structure and labels closely matched the task.

92

Chapter 6 described low-level exploratory behavior of users in a laboratory
situation. The users’ protocols were examined for evidence of the strategies predicted
by the formal analysis and the cognitive modelling, particularly weakly posted and
opportunistic subgoals, gDFID search, and label following. All of these strategies were
found, but not in the simple form described by the earlier analysis. Label following was
often supplemented with an active investigation of hidden control options, and gDFID
was combined with an iteratively deepening search of memory.

7.3 Discussion

7.3.1 Learning Strategies and Support

Task-free exploration was not found to be a preferred strategy for learning an
interface. Itis difficult and time consuming, and users are unwilling to allocate time for
activities that are not clearly work related. Even experienced users, whose greater
knowledge of the interface and richer long-term memory structures could potentially
support task-free exploration, generally find this behavior unproductive. Task-oriented
exploratory learning fares better. In the context of current or impending problems, users
are willing to spend time exploring the interface for solutions, especially when that
exploration is combined with the use of manuals and access to personalized help.

Keeping in mind the informants’ stated concern with time and productivity, we
can identify two important functions of manuals and other resources in support of
exploratory learning.

First, these resources provide an overview of the program and its mapping to the
user’s task. This overview includes the invaluable evidence that the current task actually
can be performed with the given program. Without this assurance, any exploration has
the potential of becoming an exhaustive exploration of the system’s capabilities, needed
to ensure that the sought-for feature does not exist. The overview also describes the
overall task structure. The user who knows that Cricket Graph automatically creates
graphs showing the relationships of values in a spreadsheet is in a far better position to
explore the interface than is the user who thinks Cricket Graph is a manually operated
drawing program. This kind of information not only aids in label following, it also helps
in envisioning the effects of controls and checking for task completion.

Second, the support of a good manual or a more experienced user provides
details that the user can use as fallbacks when exploration fails. This will often happen
when the user’s terminology for an operation does not match the terminology used in the
interface. As Furnas, Landauer, Gomez, and Dumais (1987) have observed, this
“vocabulary problem” is inevitable in interface design. Whatever term the designer

93

chooses for an interface control, there will be many users who expect some other term.
For display based interfaces the issue is one of recognition and not generation, but
protocols of users working with the Cricket Graph task show that this is still a problem.
A well organized and indexed manual or a few words from an experienced user may
overcome these difficulties, constraining a large exploration space to a manageable size.

7.3.2 Suggestions for Improving Interfaces and Computing Environments

It was hoped that this research effort would suggest design guidelines for more
easily explorable interfaces. Reviewing the research results suggests that there are two
approaches to this goal.

7.3.2.1 Modifications to the Interface

On the one hand, interfaces themselves can be modified. Given users’ preference
for task-oriented activities, there seems to be little benefit in supporting task-free
behavior by structural modifications to the software such as those suggested in the
formal model of Chapter 2. However, task-oriented exploration might be supported by
methods that overcome the difficulties identified in the cognitive modelling and
laboratory work. Two important modifications recognize the fact that users are
comfortable with scanning pulldown menus but reluctant to actually select an item that
doesn’t clearly match to their current goal.

The first modification is to use labels that clearly predict the results of selecting
the control, using terminology that a task and user analysis has shown to be appropriate
to the user population. The second modification is to place as much of the system’s
main functionality as possible on controls that can be accessed by shallow active
scanning behavior, that is, by looking at the interface and sliding the mouse cursor over
menus and buttons. One way to accomplish this would be to temporarily display the
effect of a menu item or button when the user pauses the mouse cursor over the item. For
example, holding the mouse cursor over “Open...” in the “File” menu for more than 200
ms could cause the dialog box for opening files to appear. The dialog box would
disappear when the user moved the mouse to another menu item. (The 200 ms delay
reduces computational load and avoids annoying the user who knows what menu item
he or she is moving to.)

7.3.2.2 Modifications to the Extended Interface

The stronger message of the research is to look beyond the interface in designing
explorable systems. In the short view, this means considering what we have termed “the

94

extended interface”: manuals, on-line help, help lines, and even marketing documents,
all of which help the user to acquire a overview of the tasks supported by the interface,
as well as the general solution paths associated with those tasks (Lewis & Rieman,
1993).

A specific area of interest is on-line help. Although opinions vary with the user
and the computer system, the great majority of informants reported in this study, as
well as many users the author has spoken with informally, find on-line help difficult or
impossible to use. One reason seems to be that the on-line system fails to provide the
appropriate mix of overview and detail, where overview describes the general mapping
between the user’s task and the interface, while details provide specific information,
such as the name of the menu item to perform a subtask the user knows must be
performed. A second possible reason, related to user’s reluctance to take exploratory
actions that require explicit undo actions, is that using on-line help forces the user to
deal with one more set of system interactions and states, on top of the task-oriented
system state that is already a problem. The perceptual and cognitive overload may
simply compound the problem.

From a broader point of view, the research suggests that the work environment in
which a system is embedded has a powerful influence on the user’s success with the
software. A productive environment is likely to include systems personnel who respond
rapidly to help requests, as well as a cooperative work attitude where workers are
encouraged to spend a few minutes sharing their skills with others when those skills are
needed.

7.3.3 Caveats

It is appropriate here to identify significant limitations of the research and
conclusions just summarized. The research investigated the behavior of a relatively well-
educated, computer sophisticated sample of users, most of whom have had long-term
access to modern computing facilities including display-based personal computers and
electronic mail. The behavior of these users, in particular the reliance on manuals and
help from systems support and other users, strongly reflects both the information
richness of their environment and the confidence and sophistication of the individuals.
Nardi (1993) and MacKay (1990) found similar collaborative work in studies of
spreadsheet and CAD users. The results of the current research, then, describe a
situation that may be widespread in the culture of today’s workers in large
organizations, but the result may not apply to individuals who work at home or in very
small offices.

Furthermore, this is an area of changing individual and social behavior. In offices
where the author worked with users of word processors and dedicated typesetting

95

equipment in the mid-1980s, the dominant learning approach was to rely on formal
training. The widespread availability of personal computers, and the widespread need
for local expertise, were able to create today’s collaborative computer work culture in
roughly a decade. Changing conditions in the working environment could produce a very
different approach in the future. For example, the informants’ current reliance on
manuals indicates that they have had success with manuals in the past, while their
avoidance of on-line help indicates an experience of failure. As popular programs
evolve, particularly word processors and electronic mail, these experiences may change,
and users may come to view other resources or behaviors as most productive in
completing their work-related tasks.

In short, the research reported here applies theoretical considerations to a narrow
time-slice of real-world behavior. Extending the theoretical considerations to users in
other situations is a meaningful enterprise. Extending the practical conclusions requires
careful attention to the new situation and the user population involved.

7.4 Future Work

This findings reported here suggest ideas for additional research in several areas.
There is a need to focus more sharply on individual learning events, in order to develop
a finer-grained understanding of how users distribute their information-seeking activities
among the interface, on-line help, manuals, personal interactions, and other resources.
This might help designers create better programs and manuals, but it could also suggest
improvements to interpersonal workplace arrangements that would better support
“distributed cognition,” in the sense that the full understanding of the system is spread
across the skill sets of many users.

The findings concerning problems with on-line help suggest a specific area on
which further investigation needs to focus. What is the cognitive cost of using on-line
help in the context of a particular system problem? What are the perceptual difficulties
associated with intermixing the system display and the help display? The hypertext
capabilities of on-line help, as well as the ease with which it can be distributed and
updated, make it potentially a very attractive medium for providing information to the
user, if the problems can be identified and overcome.

Finally, the modelling work only touches the surface of an experienced user’s
skills and strategies for investigating a new interface. As computer skills become a
standard part of many worker’s job qualifications, it becomes increasingly important to
understand how experienced users extend their knowledge to new systems and system
upgrades. Further modelling and empirical work can inform this question.

96

References

Anderson, J.R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard
University Press.

Anderson, J.R. (1987). Skill acquisition: Compilation of weak-method solutions.
Psychological Review, 94, 192-211.

Anderson, J.R. (1993) Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum.

Archer, J. and Birke, L., Eds. (1983). Exploration in Animals and Humans. Berkshire,
England: Van Nostrand Reinhold.

Aho, A.V,, Hopcroft, J.E., and Ullman, J.D. (1983). Data Structures and Algorithms.
Reading, MA: Addison-Wesley.

Bellotti, V.M.E. (1990). A framework for assessing applicability of HCI techniques.
Proceedings of Interact90, 3rd IFIP Conference on Human- Computer Interaction, Cambridge,
England, August, 1990.

Berlyne, D.E., (1960). Conflict, Arousal and Curiosity. New York: McGraw-Hill.

Bias, R. (1988). User interface walkthroughs with representative users and usability
experts. Paper read at the symposium “Human Factors Methods (th)at Work,” Annual
Meeting of the Human Factors Society (Anaheim, CA, October, 1988).

Bovair, S., Kieras, K. E., and Polson, P. G. (1990). The acquisition and performance of
text editing skill: A production system analysis. Human Computer Interaction, 5, 1-48.

Brain, P. F. (1988). Ethology and experimental psychology: From confrontation to
partnership. In Blanchard, R.J., Brain, P.F., Blanchard, D.C., and Parmigiani, S. (Eds.),
Ethoexperimental Approaches to the Study of Behavior. Dordrecht/Boston/London:
Kluwer, pp. 18-27.

Broadbent, D. (1982). Task combination and selective intake of information. Acta
Psychologica, 50, 253-290.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139-
159.

97

Card, S.K., Moran, T.P., and Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale, NJ: Erlbaum.

Carroll, J. M. (1982). The adventure of getting to know a computer. IEEE Computer 15
(11), 49-58.

Carroll,].M. (1990). The Nurnberg Funnel. Cambridge, MA: MIT Press.

Carroll, .M., Mack, R.L., Lewis, C.H., Grischkowsky, N.L., and Robertson, S.P. (1985).
Exploring a word processor. Human Computer Interaction, 1, 283-307.

Carroll, J. M., Mack, R.L., and Kellogg, W.A. (1988). Interface metaphors and user
interface design. In M. Helander (Ed.), Handbook of Human-Computer Interaction.
Amsterdam: Elsevier (North-Holland). pp. 67-81.

Carrol,].M., and Mazur, S.A. (1986). Lisa Learning. IEEE Computer 19 (10), 35-49.

Carroll,].M., and Rosson, M.B. (1987). The paradox of the active user. In J.M. Carroll
(ed.), Interfacing thought: Cognitive aspects of human-computer interaction. Cambridge:
MIT Press/Bradford Books, pp. 80-111.

Charney, D., Reder, L, and Kusbit, G. (1990). Goal setting and procedure selection in
acquiring computer skills: a comparison of tutorials, problem solving, and learner
exploration. Cognition and Instruction, 7, 323-342.

Chi, M.T.H., Feltovich, P.]., and Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Christ, R.E. (1975). Review and analysis of color coding research for visual displays.
Human Factors, 17, 542-570.

Day, H.L.,, Ed. (1981). Advances in Intrinsic Motivation and Aesthetics. New York:
Plenum.

Doane, S., Kintsch, W., and Polson, P.G. (submitted). UNIX command production:
What users must know. Human Computer Interaction. Also available as ICS Technical
Report #90-1, Institute of Cognitive Science, University of Colorado, Boulder, CO
80309-0345.

Draper, S.W. (1985). The nature of expertise in UNIX. In B. Shackle (ed.), Proceedings of
First IFIP Conference on Human-Computer Interaction — Interact’'84. Amsterdam: North-
Holland, 465-472.

Engelbeck, G.E. (1986). Exceptions to generalizations: Implications for formal models
of human-computer interaction. Unpublished Masters Thesis, Department of
Psychology, University of Colorado, Boulder, CO.

Ericsson, K.A., and Simon, H.A. (1984). Verbal reports as data. Psychological Review,
87, 215-251.

Fantino, E., and Abarca, N. (1985). Choice, optimal foraging, and the delay-reduction
hypothesis. Behavioral and Brain Sciences 8 , 315-330.

98

Fischer, G. (1987). Cognitive view of reuse and redesign. IEEE Software, Special Issue on
Reusability, 4 (July 1987), 60-72.

Floyd, C., Wolf-Michael, M, Reisin, F.-M., Schmidt, G., and Wolf, G. (1989). Out of
Scandinavia: Alternative approaches to software design and system development.
Human-Computer Interaction 4 , 253-350.

Fowler, H. (1965). Curiosity and Exploratory Behavior. New York: Macmillan.

Franzke, M. (in preparatino). Exploration, acquisition, and retention of skill with
display-based systems. Ph.D. Dissertation, University of Colorado.

Franzke, M. and Rieman, J. (1993). Natural training wheels: Learning and transfer
between two versions of a computer application. Proceedings of Vienna Conference on
Human Computer Interaction 93. Sept. 20-22, 1993. Vienna, Austria.

Furnas, G.W. , Landauer, T.K., Gomez, L.M. , andDumais, S.T. The vocabulary
problem in human-system communication. Communications of the ACM, 30 (Nov. 1987),
964-971.

Gibson, E.J. (1988). Exploratory behavior in the development of perceiving, acting, and
the acquiring of knowledge. Annual Review of Psychology, 39, 1-41.

Gick, M., and Holyoak, K. (1983). Schema induction and analogical transfer. Cognitive
Psychology, 15, 1-38.

Gorlitz, D. (1987). Exploration in an everyday context: situational components and
processes in children and adults. In Gérlitz, D., and Wohlwill, J.F. (Eds.), Curiosity,
Imagination, and Play. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 106-125.

Gould, J.D., Boies, S., and Lewis, C. (1991). Making usable, useful, productivity-
enhancing computer applications. Communications of the ACM 34 , 74-89.

Hayes-Roth, B., and Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive
Science, 3, 275-310.

Holland, J., Holyoak, K., Nisbett, R., and Thagard, P. (1986). Induction: Processes of
Inference, Learning, and Discovery. Cambridge, MA.: MIT Press.

Holyoak, K.J., and Koh, K. (1987). Surface and structural similarity in analogical
transfer. Memory and Cognition, 15, 332-340. -

Houston, A., Kacelnik, A., and McNamara, J. (1982). Some learning rules for acquiring
information. In Functional Ontogony, David McFarland, Ed., Pitman, London, pp. 140-
190.

Howes, A. (1994). A Model of the Acquisition of Menu Knowledge by Exploration. To
appear in Proceedings of CHI'94 Conference on Human Factors in Computer Systems. New
York: Association for Computing Machinery.

Johnston, W.A,, and Dark, V.J. (1986). Selective attention. Annual Review of Psychology,
37, 43-75.

99

Kamil, A.C., and Balda, R.P. (1985). Cache recovery and spatial memory in Clark’s
Nutcrackers. J. Exp. Psych., Animal Behavior Processes 11 , 95-111.

Karat, J., Fowler, R., and Gravelle, M. (1987) Evaluating user interface complexity:
Experiences with a formal model. Proceeding of Interact87, 2nd IFIP Conference on Human-
Computer Interaction, Stuttgart, September 1987.

Kieras, D.E. (1988). Towards a practical GOMS model methodology for user interface
design. In M. Helander (Ed.), The handbook of human-computer interaction. Amsterdam:
North-Holland.

Kieras, D.E. and Polson, P.G. (1985). An approach to the formal analysis of user
complexity. International Journal of Man-Machine Studies, 22, 365-394.

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-
integration model. Psychological Review, 95, 163-182.

Kintsch, W., and Ericsson, A. (1991). Memory in comprehension and problem solving: A
long-term working memory. ICS Technical Report 91-13, Institute of Cognitive Science,
University of Colorado, Boulder, CO 80309-0430.

Kitajima, M., and Polson, P.G. (1992). A computational model of skilled use of a
graphical user interface. Proceedings of CHI'92 Conference on Human Factors in Computing
Systems. New York: ACM, pp. 241-249.

Klahr, D. and Dunbar, K. (1988). Dual space search during scientific reasoning.
Cognitive Science, 12, 1-48.

Koran, J.J. Jr., Morrison, L., Lehman, J.R., Koran, M.L., and Gandara, L. (1984).
Attention and curiosity in museums. Journal of Research in Science Teaching, 21, 357-363.

Korf, R.E. (1985). Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence, 27, 97-109.

Korf, R.E. (1988). Search: A survey of recent results. In Shrobe, H.E., and the
Association for Artificial Intelligence (Eds.), Exploring Artificial Intelligence. San Mateo,
CA: Morgan Kaufmann. pp 197-237.

Laird, J., Newell, A., and Rosenbloom, P. (1987). SOAR: An architecture for general
intelligence. Artificial Intelligence, 33, 1-64.

Landauer, T.K. (1988). Research methods in human computer interaction. In Handbook of
Human-Computer Interaction, M. Helander, Ed., Elsevier Science, Amsterdam, 1988, pp.
905-928.

Lave, J. Cognition in Practice. Cambridge/New York: Cambridge University Press.
Lewis, C. (1982). Using thinking aloud protocols to study the “cognitive interface.”

Research Report RC 9265, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY.

100

Lewis, C. (1988). Why and how to learn why: analysis-based generalizations of
procedures. Cognitive Science, 12, 211-256.

Lewis, C., and Polson, P.G. (1991). Exploration and learning in interactive systems.
Proposal submitted to the National Science Foundation.

Lewis, C.H., Polson, P.G., Wharton, C., and Rieman, J. (1990). Testing a walkthrough
methodology for theory-based design of walk-up-and-use interfaces. Proceedings of
CHI'90 Conference on Human Factors in Computer Systems. New York: Association for
Computing Machinery, 235-241.

Lewis, C. and Rieman, J. (1993). Task-Centered User Interface Design: A Practical
Introduction. Boulder, Colorado: Shareware electronic publication, available via
anonymous ftp to ftp.cs.colorado.edu.

Mackay, W. (1990). Users and customizable software. A co-adaptive phenomenon.
Ph.D. dissertation. Sloan School of Management. MIT, Cambridge, MA.

Malone, T. W. (1982). Heuristics for Designing Enjoyable User Interfaces: Lessons from
Computer Games. Proceedings of the Conference on Human Factors in Computing Systems
(Gaithersburg, MD). New York: Association for Computing Machinery, 63-68.

Mannes, S.M. and Kintsch, W. (1991). Routine computing tasks: Planning as
Understanding. Cognitive Science ,15, pp.305.

Miller, D. B. (1985). Methodological issues in the ecological study of learning. In Issues in
the Ecological Study of Learning, T.D. Johnston and A.T. Pietrewicz, Eds., Lawrence
Erlbaum, Hillsdale, N.J., pp. 73-95.

Molich, R. and Nielsen, J. (1990) Improving a human-computer dialogue: What designers
know about traditional interface design. Communications of the ACM, 33, 338-348.

Muncher, E. (1989). The acquisition of spreadsheet skills. Unpublished master’s thesis,
University of Colorado, Department of Psychology, Boulder, CO.

Nardi, B. (1993). A Small Matter of Programming. Cambridge, Mass: MIT Press.

Neal, L.R. (1987) Cognition-sensitive design and user modeling for syntax-directed
editors. Proceedings of CHI+GI '87 Conference on Human Factors in Computing Systems and
Graphics Interfaces,. New York: Association for Computing Machinery, 99-102.

Neisser, U. (1967). Cognition and Reality. San Francisco: W.H. Freeman

Newell, A. (1990). Unified Theories of Cognition. The William James Lectures.
Cambridge, MA: Harard University Press.

Newell, A., and Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice Hall.

Newell, A. Shaw, J.C., and Simon, H.A. (1958). Elements of a theory of human problem
solving. Psychological Review, 65, 151-166.

101

Nielsen, J., Mack, R.L., Bergendorff, K.H., and Grischkowsky, N.L. (1986). Integrated
software usage in the professional work environment: evidence from questionnaires and
interviews. Proceedings of CHI'86 Conference on Human Factors in Computing Systems,.
New York: Association for Computing Machinery, 162-167.

Nielsen, J. and Molich, R. (1990) Heuristic evaluation of user interfaces. Proceedings of
CHI'90 Conference on Human Factors in Computer Systems. New York: Association for
Computing Machinery, 249-256.

Norman, D.A. (1986). Cognitive Engineering. In D.A. Norman and S.W. Draper (Eds.),
User Centered Systems Design: New perspectives in human-computer interaction. Hillsdale,
NJ: Lawrence Erlbaum Assoc.

Norman, D.A. (1988). The Psychology of Everyday Things. New York: Basic Books.

Payne, S.J., Squibb, H.R., and Howes, A. (1990). The nature of device models: The
yoked state space hypothesis and some experiments with text editors. Human-Computer
Interaction, 5, 415-444.

Polson, P.G. (1987). A quantitative theory of human-computer interaction. In J.M.
Carroll (Ed.), Interfacing thought: Cognitive aspects of human-computer interaction.
Cambridge, MA: Bradford Books/MIT Press.

Polson, P.G., Atwood, M.E,, Jeffries, R., and Turner, A. (1981). The processes involved
in designing software. In J>R> Anderson (Ed.), Cognitive skills and their acquisition.
Hillsdale, NJ: Erlbaum.

Polson, P.G. and Lewis, C.H. (1990). Theory-based design for easily learned interfaces.
Human-Computer Interaction, 6, 191-220. :

Polson, P.G., Lewis, C., Rieman, J., and Wharton, C. (1992). Cognitive Walkthroughs:
A Method for Theory-Based Evaluation of User Interfaces. International Journal of Man-
Machine Studies.

Renner, M.J. (1991) Neglected aspects of exploratory and investigatory behavior.
Psychobiology, 18, 16-22.

Rieman, J. (1993). The diary study: A workplace-oriented tool to guide laboratory
studies. Proceedings of InterCHI'93 Conference on Human Factors in Computer Systems.
New York: Association for Computing Machinery. pp.321-326.

Rieman, J., Lewis, C., Young, R.H., and Polson, P.G. (in press, 1994). "Why Is a Raven
Like a Writing Desk?" Lessons in Interface Consistency and Analogical Reasoning from
Two Cognitive Architectures. Proceedings of InterCHI'94 Conference on Human Factors in
Computer Systems. New York: Association for Computing Machinery.

Rieman, J., Davies, S., Hair, D.C., Esemplare, M, Polson, P.G., Lewis, C. (1991) An
automated walkthrough (demonstration). Proceedings of CHI'91 Conference on Human
Factors in Computer Systems. New York: Association for Computing Machinery.
Expanded version available as ICS Technical Report # 90-18, Institute of Cognitive
Science, University of Colorado, Boulder, CO 80309-0345.

102

Rolleston, J. (1970). Rilke in Transition: an Exploration of his Earliest Poetry. New Haven:
Yale University Press.

Rosenbloom, P.S., Laird, J.E., Newell, A. (1991) A preliminary analysis of the SOAR
architecture as a basis for general intelligence. Artificial Intelligence, 47, 289-326.

Ross, B.H. (1984). Remindings and their effects in learning a cognitive skill. Cognitive
Psychology, 16, 371-416.

Rosson, M.B. (1984). Effects of experience on learning, using, and evaluating a text-
editor. Human Factors, 26, 463-475.

Rubenstein, R. and Hersch, H.M. (1984). The human factor: Designing computer systems for
people. Burlington,MA: Digital Press.

Russell, P.A. (1983) Psychological Studies of exploration in animals: a reappraisal. In
Archer, J. and Birke, L. (Eds.), Exploration in Animals and Humans. Berkshire, England:
Van Nostrand Reinhold, pp. 22-54.

Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages.
IEEE Computer, 16 (8), 57-69.

Shrager, J. (1985). Instructionless learning: Discovery of the mental model of a complex
device. Unpublished Ph.D. dissertation, Carnegie-Mellon University.

Shrager, J., and Klahr, D. (1986). Instructionless learning about a complex device: The
paradigm and observations. International Journal of Man-Machine Studies, 25, 153-189.

Simon, H.A. (1973). The structure of ill-structured problems. Artificial Intelligence, 4,
181-201.

Simon, H.A. (1990). Invariants of human behavior. Annual Review of Psychology, 41, 1-
19.

Simon, H.A. and Greeno,].G. (1988) Problem solving and reasoning. In Atkinson, R.C.,
Herrnstein, R.J., Lindzey, G., and Luce, R.D. (Eds.), Stevens’ Handbook of Experimental
Psychology (2nd ed.), Vol. 2, pp. 589-672.

Singley, M.K., and Anderson, J.R. (1988). A keystroke analysis of learning and transfer
in text editing. Human Computer Interaction, 3, 223-274.

Smith, S.L. and Mosier,].N. (1986). Guidelines for designing the user interface software.
Bedford, MA: Mitre Corporation. Report 7 MTR-10090, Esd-Tr-86-278

Sperling, G., and Dasher, B.A. (1986). Strategy and optimization in human information
processing. In Boff, K.R., Kaufman, L., and Thomas,]J.P. Handbook of Perception and
Human Performance, Vol. I, pp. 2-1 - 2-65.

Spohrer, J., Soloway, E., and Pope, E. (1985). A goal/plan analysis of buggy Pascal
progams. Human Computer Interaction, 1, 1985, 163-207.

103

Suchman, L. A. (1987) Plans and Situated Actions. Cambridge, England: Cambridge
University Press.

Sweller, J. (1988) Cognitive load during problem solving: effects on learning. Cognitive
Science, 12, 257-285.

Sweller,], Chandler, P., Tierney, P., and Cooper, M. (1990) Cognitive load as a factor in
the structuring of technical materials. Journal of Experimental Psychology: General, 119,
176-192.

Tomback, D.F. (1978). Foraging strategies of Clark’s Nutcracker. Living Bird 16 , 123-
161.

Treisman, A. (1986). Properties, parts, and objects. In Boff, K.R., Kaufman, L., and
Thomas, J.P. Handbook of Perception and Human Performance, Vol. II, pp. 35-1 - 35-70

Vander Wall, S.B. (1982). An experimental analysis of cache recovery in Clark’s
Nutcracker. Animal Behavior 30 , 84-94.

Vander Wall, S.B., and Balda, R.P. (1977). Coadaptations of the Clark’s Nutcracker
and the pifiion pine for efficient seed harvest and dispersal. Ecological Monographs 47 ,
89-111.

Voss, H-G. (1987). Differences between exploration and play in terms of action theory.
In Curiosity, Imagination, and Play. Gorlitz, D., and Wohlwill, J.F. (Eds.). Hillsdale, NJ:
Lawrence Erlbaum. pp.152-177.

Winston, P.H. (1984). Artificial Intelligence (2nd ed.). Reading, MA: Addison-Wesley.

Wixon, D., Holtzblatt, K., and Knox, S. (1990). Contextual design: An emergent view of
system design. In Proceedings of the Conference on Human Factors in Computing Systems .
New York,: Association for Computing Machinery, 331-336.

Wohlwill, D. (1987). Curiosity, imagination, and play: communality and
interrelationships. In Gorlitz, D., and Wohlwill, J.F. (Eds.), Curiosity, Imagination, and
Play. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 2-21.

Young, RM., Green, T.R.G., and Simon, T. (1989). Programmable user models for
predictive evaluation of interface designs. Proceedings of CHI'89 Conference on Human
Factors in Computer Systems. New York: Association for Computing Machinery, 15-19.

Young, R.M., and Whittington, J. (1990). Using a knowledge analysis to predict

conceptual errors in text-editor usage. Proceedings of CHI'90 Conference on Human Factors
in Computer Systems. New York: Association for Computing Machinery, 91-97.

104

Appendix. Summaries of Eureak Reports

Key

R: Read the paper manual, U: Used on-line help, T: Tried different things until it
worked, St: Stumbled onto by accident, A: Asked (phone or in person), Se: Sent e-mail
or posted to newsgroup, N: Noticed someone else doing it, O: Other

Informant 2.

2.1/A. Restructured directories in Unix -- asked systems support for help.
2.2/A. Saved article from News group -- asked student (me) for help.

2.3/0. Subscribed to new News group. O=Remembered instructions from previous day,
tried it.

Non-computer Eurekas:

2.4/AT. Figured out how to spell word, asked someone, then tried it out (recorded as
O) by writing word down, saying it out loud.

2.5/0. Found phone number, O=looked in old mail, then notes.

Informant 3.

3.1/A. Posted article on bulletin board from e-mail, called systems for help.

3.2/T. Needed to log OUT of payroll system, tried things until it worked -- could have
called or looked at manual, but didn't because of time constraint: "When am I supposed
to read all this stuff? [referring to all the manuals for office systems]"

3.3/TA. Payroll program wouldn't print to printer, tried things, then called software
support; they said call hardware, S did.

3.4/T. Needed borders on Table cells, read mfgr + 3rd-party manuals, tried things out.
Didn't use index or contents -- all Table stuff in one place.

3.5/T. Wanted to paste one thing into several places; tried pasting more than once after
a single copy. Knew clipboard concept, just "occurred to S" that it might work.

105

Non-computer Eurekas

3.6/T. Needed to add new account on copy machine. Systems people not available
immediately, so tried things -- never could get it right.

Eurekas outside of log period:

3.7/TN. Tried, noticed: Wanted to move several files at one time into a folder.
Remembered seeing it done, remembered hearing someone say "shift-click" while they did
it. Couldn't remember what to do then, so experimented (what to click, when to release
keys, what to drag).

Informant 4.

4.1/0. Looked for databases on Carl for a thesis. About 25-min through terminal,
added time in library. Was looking for non-book entry, eventually looked under book
and found it.

4.2/TUN. Worked with Unix "last" and "head" and "grep." Got basics out of Man
pages, then tried it. Had seen colleague do something similar.

Eurekas outside log pefiod:

4.3/RT. Wanted to match upper case only in Grep. Checked Man, didn't find answer;
guessed that quotes would do it and tried: it worked.

Informant 5.

5.1/RT. Got a form entered for FoxBase, Read and Tried. Has 4 manuals, knows
similar database (dbase). So knows what can be done, but not how to find it or what
it's called. Does some browsing of menus to find things.

5.2/UTSeO. Downloaded OzTex and printed manual. Four hours of work: U, T, Se (e-
mail to colleague), O (knew ftp). Had to learn binhex, stuffit. Had to ftp Unix->Unix,
then Unix->Mac. Didn't ask except one specific question about bibtex/latex.

5.3/TSt. Couldn't get ftp & binhex stuff to work on some files, so tried Xferit on a Mac
(hunting for any possibility). Ftp stuff is hard, because it's Unix style. Mac stuff is easy
to learn. Didn't have manuals.

5.4/RT. Got FoxBase to do complex input checking -- read paper manual, tried things.
Knew another database that would do this easily, but this was difficult.

5.5/TO. Bib program wouldn't read more than seven files, but error message didn't
explain that was the problem. Tried things and O=worked with another user (who

106

didn't initially know the answer either -- cooperative problem solving episode, so not
scored as "A").

5.67RT. Got a simple, "hello-world" program to run. Had to figure out several subparts.
Read manual and tried things.

5.7/5t. Found that "&" would do macro-expansion in a Fox command. Reading manual
for something else, and stumbled onto this. Had hoped it would be possible (so was
prepared for the accident). I'll score this as a "St".

5.8/RO. Figured out how to select multiple items on the Mac. S scored as "O": knew it
should be possible (based on other op sys knowledge), along with "R" the paper manual.

5.9/RTO. Figured out how to make an NCSA-TCP set file and get it to come up on the
desktop. Read manual - didn't help. Tried things. Knew it had been done on another
machine, so no doubt it could be done.

5.10/R. Got OzTex to include mac pict files from MacDraw clipboard. Read paper
manual.

5.11/RT. Found that & macro doesn't work w/ variable names longer than 10 chars.
Read manual, but it didn't give this info. Experimented (tried things) to debug.

5.12/RT. Learned that MacDraw won't put arrow on curved line. Read manual, tried
things, finally concluded failure. Expected feature to work since it works in another
program.

5.13/T. Tried to transfer files from Mac to Unix using XFer. Gave up after 15 minutes
(trying things).
5.14/TASe. Problem with MacBibTex -- it can handle only three files. Tried different

things, asked colleague in office, sent e-mail to program developers and got updated
version that fixed the problem.

5.15/RT. Wanted to use OzTex on a LaTex file instead of a Tex file. Read paper
manual and tried things. Config file had to have options in a certain order -- trial and
error was only way to discover it.

Eurekas outside of log period

5.16/AN. Learned that "/ /t" on library on-line database would limit search to titles.
Asked librarian how to find a periodical, watched while she did it

5.17/RO. Wanted to set Penman (natural language program in Lisp, with Mac
interface) to use a specific option: set-system-mode-manual. Had seen the option in the
interface, but never used it. (Sometimes browses systems.) Read manual, but that was
a waste. Used on-line "find-file/code" to look into the source code, since the feature
was undocumented.

5.18/T. Another Penman problem. Penman developers evidently had a similar-
problem, had already solved it.

107

Informant 6.

Non-computer Eurekas

6.1/T. Programmed VCR to record upcoming program. Couldn't remember order in
which to push buttons, but figured it out by trying things.

6.2/A. Needed authorization code to send FAX. Asked supervisor, who gave it to S.
6.3/0. Showed someone else how to make transparancies on copier.

6.4/TA. Tried to put chain back on wheel of bicycle. Didn't succeed. Tried different
things, then asked someone to help. Still no luck.

Informant 7

7.1/StA. HCIBib (on-line database) came up in conversation, S' asked for info.

Eurekas outside of log period

7.2/A. Tried to find volume info for usenet newsgroups. Asked collegue who was
down the hall (knew student who would be more likely to have answer, but he wasn't
down the hall).

7.3/0. Got and explored new on-line text corpus. Just looked at readme files and in
various directories. (Not trying to do anything with it yet, so coded as "O" not "T".)

Informant 8

8.1/R. Wanted to see form of function. Used pprint, looked up form of argument in the
paper manual. (Note that "paper manual” for this informant is always Franz Lisp, the
Reference.)

8.2/R. Same as 8.1, for different function.
8.3/R. Same as 8.1, for different function.
8.4/R. Same as 8.1, for different function.
8.5/R. Had name conflict problem, read manual to help debug problems.

8.6/R. No Lisp routine called "before." Could have looked through code to find
definition (i.e., it is defined in own code), but easier to check the paper manual.

Informant 9

108

9.1/TR. Needed to fit large spreadsheet onto single page. Did it by reducing fonts and
changing orientation. First tried different things, but couldn't find reorient function. So
looked in manual from a class he had taken.

9.2/RT. Learned that endnote does the underlining of titles automatically. Read
manual and tried things. (Printed out all the material he had been entering for several
days, saw how it printed.)

Non-computer Eurekas

9.3/T. Found out how to stack originals for duplex copies on the copier.

9.4/R. Learned that correct bibliographic style is to underline conference proceedings.

Informant 10

10.1/TStA. Had problem reading directory in emacs that had links. Tried things, gave
up, later ran into someone and asked them, then when problem was carefully
demonstrated it disappeared. Weird emacs-Unix interaction.

10.2/RUTA. Tried to load unix-based authoring system three times. Several versions
on system, Unix confused about which to use. Had to go to manual for Lisp. Called
system support, got that to run. Then ran into another problem while working through
the next steps in a README file.

Eurekas outside computer.

10.3/0. Used copier. Tried things, it failed. Someone notice problem and helped.
(coded as "O")

10.4/RTA. Programmed the phone to dial common numbers. Tried things, but it didn't
work. Asked someone, also read paper manual. Part of the problem was that
functionality was literally hidden under a card that contained pencil annotations of the
programmed numbers.

Informant 11

11.1/RT. Wrote a batch file to pop-up an electronic form of the diary log on screen
every half hour. Looked up relevant statements in table-of-contents of batch editor
technical reference manual.

11.2/UT. Scanned picture wouldn't open in editing program. Checked on-line help,
found nothing. Saved picture in different format and tried again; it worked.

11.3/RUT. Wanted to crop photo. Looked for "crop” tool or masks in help and
manual, found nothing. Tried selecting portion and copying to another file; didn't work
because resolution deteriorated. Finally used "line" tool to draw white line around
edges.

109

11.4/RUT. Used lots of new features of Corel draw: extension, blends, perspective,
layers. Tried lots of buttons. Also recalled watching video (yesterday) that came with
the program. This is an update of a program Informant has used before. -

11.5/T. Wanted to work on a paper which I had on tape but not on disk; but had also
removed the software used to make the tape. Restored old backup software from new
backup tape, then used old software to retrieve paper from old tape.

11.6/RT. Produced on-line version of Eureka slip using scanner. Figured out how to
insert date/time automatically and add check symbol. Basically a matter of getting
formatting to within aesthetic threshold.

11.7/RUT. Paste together small scanned pieces into a bigger image. Looked in manual
and help to see if there's any way to increase the dimensions of an image or to join
images side-by-side; couldn't find anything. Eventually figured out I'd have to open a
new blank image of the correct size and paste all the pieces into it and position each
one.

11.8/RUTA. [Eureka occurred over two days] Day 3: Tried to link text from Word file
into new presentation software. Couldn't actually be done. Best way was to paste data
into grpahics file and link that to presentation software. (NB: I didn't actually have any
immediate reason to want to do this, just thought I might in future. Day 5: Called MS
tech support. Evidently there was something wrong with the "registration database."
Reinstalled part of Word. Now I can embed Word objects in other applications, ubt in
CorelShow they still display only as an icon and not as text. Will call tech support
again tomorrow.

Eurekas outside of log period

11.13./U. Needed to insert a date so it won't be updated, in Word on PC. Poked
around in help topics relating to fields until I found it. Since this is actually what I
normally want when I insert a date, fixed date macro so it always does this. (You have
to insert a "date field" and then "unlinmk" it.)

11.15/T. Tried to use a photo of beach pebbles for Windows background. Scanned
photo; loaded it into Photo-Pain; converted grayscale scanm to color; tried out various
new tools in Photo-Paint to alter the colors and even the image; saved it as a bitmap
and loaded it as "wallpaper.”" Colors came out different. Gave up.

11.16/RT. Excel wouldn't open files from Quattro. Used manual to find a file format
both programs would read: Lotus. Restored quatro from tape (it had been deleted),
translated files into Lotus format, deleted Quattro again, loaded Lotus-format files into
Excel.

Non-computer Eurekas

11.9/0. Coral manual too thick. Added improvised index tabs.

11.10/T,A (also outside log period). With colleague, attempted and failed to help
speaker set up overhead projector. Someone else walked by, they asked her and she
showed them how to do it.

11.11/T. Too much documentation kicking around desk. Made a plastic pouch from a
sheet-protector and taped it to side of computer for quick-reference guides and
keyboard templates.

110

11.12/T. (also outside log period). Nut coming loose on lawnmower handle. Nutdriver
too small. Used a crescent wrench and pliers.

11.14/RT. (also outside log period). Wanted to see if it were possible to make an ice
cream soda at home. Looked for a recipe (in cook boods) but couldn't find one.
However found a recipe for chocolate syrup to be used in milshakes. Adapted it for
microwave. Made some of that and combined it with tonic water, milk & a scoop of ice
cream. Came out not very authentic but pretty good.

Informant 12

12.1/TO. Colleague volunteered information on making Mac window to VAX display
more than 24 lines. Informant later discovered that you have to set the option every
time you log in, or put the information in login.com.

12.2/T. Learned how to make large cells around small font text in MS Word table.
12.3/N. Found out how to edit a button icon in HyperCard by noticing someone else do
it.

12.4/T. Learned there is no "transpose” function in Cricket Graph III. Had to paste
every cell by hand. (Tried things until sure that it didn’t work.)

12.5/R. Learned how to save a screen shot and resize it in MacDraw. Read "The
Macintosh Bible."

12.6/TA. Tried to eject Mac disk, couldn't because "item is still in use" message
appeared. Overrode by shutting off computer. Later talked to colleague and learned
that I need to Quit MS Word when I've worked on a document on the disk.

Informant 13 -- There was no informant 13.

Informant 14

14.1/N. Lotus can do "joins" on a field. (Not that I'll ever use it.) Colleague was doing
it with Lotus. Idid it for him in R:Base.

14.2/A. Discovered only had 12 copies of Lotus on network. It doesn't let you in when
12 people are on.

14.3/T. Setting the "rules” off in "Set-up" menu doesn't apply for importing -- must set
rules off in "import/export" menu. Tried translating to older version, other experiments.

Informant 15

Non-computer Eurekas

111

15.1/5t. Found out about metal-filled extracellular recording electrodes -- "hold" cells
for long periods of time, easy to make. Was talking about related topic with colleague,
she mentioned metal-filled electrodes as a viable option for records.

Informant 16

16.1/T. Wanted to print calender using PC. Looked at all available software:
scheduler, spreadsheet, Windows, paint, etc. Was in a hurry so didn't look at manual.
Accustomed to Mag, so if menus don't work, gives up fast -- "no time for manuals (or
DOS!)."

16.2/A. Learned how to access dedicated customer information system on
minicomputer workstation.

16.3/A. Learned how to run credit-card payment. Batch mode.

16.4/A. Learned how to use dedicated billing/payment system. Included learning to
process customer payments by cash, checks, credit cards. Need to login to system, then
use lots of codes. Need additional knowledge [overview of what's happening].

16.5/A. Learned to access classified advertising system and perform some operations.

16.6/TA. Attempted an upload, PC->Mainframe, but it failed. (Couldn't find the
problem.)

16.7/A. Learned to use advertising info system to run schedules, schedule ads, run
balance.

Non-computer Eurekas
16.8/A. Needed to use fax, didn't know how. Found out that fax tries 5 times, then

gives up -- with no indication that it's failed.
16.9/A. Learned to work the switchboard.

112

