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Abstract

A majority of the MPP systems designed to date have been MIMD
distributed memory systems. For almost all of these systems, message
passing environments have provided the primary mechanism for
programming multiprocessor applications.

In this paper we provide an introduction to MPP systems in
general. We then introduce current MPP message passing interfaces, by
tracing their historical development over the last 10 years. In addition to
their use within a single MPP architecture, we discuss the use of message
passing systems to interconnect more loosely coupled processors in
heterogeneous environments. Finally we review the development of
"portability platforms" - message passing systems that have been devised
solely to allow portability of message passing programs between different
systems.
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Oliver A. McBryan
Dept. of Computer Science
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Email: mcbryan@cs.colorado.edu

1. Introduction

This paper provides an overview of massively parallel processing (MPP)
hardware, an introduction to message passing systems used on MPP systems, and a
discussion of more general message passing systems used to interconnect processes
running on networks of computers of diverse types.

Sequential processors are controlled by a single program, which defines a set
of control instructions that are scheduled for execution in the specified order and
which access and use the available memory to effect the desired computation. MPP
computers are far more complex, having some number P of sequential processors,
and in many cases each processor has local memory which is not visible to other
processors. An MPP will again be controlled by a program, which defines and
schedules the operations to be executed in each of the P processors and which
accesses and uses the available memory (of all of the processors). Logically this is
equivalent to P programs, one running in each processor, plus a set of extra
instructions that specify the relative scheduling of operations on the P processors
and which provide access for each processor to the memory of other processors.

Message passing (MP) is one of several paradigms used to write an MPP
program. We briefly discuss a number of other well-known paradigms in section 2.
Message passing provides the two key aspects of MPP programming: a)
synchronization of processes and b) read/write access for each processor to the
memory of all other processes. Message passing is defined by the limited way in
which access to other memories is provided: a process can send a copy of any item in
its memory (called a message) to another process, but no other access is provided.
While apparently providing only a limited form of read access, this mechanism
actually allows cooperating programs to effectively have read/write access to each

“Research supported in part by NSF Grand Challenges Applications Group grant ASC-9217394 and by
NASA HPCC Group Grant NAGS5-2218.
* To appear in Parallel Computing, April 1994.



others memory. A process receiving a message containing a data item may write the
received item to a pre-agreed location in its own memory. Logically, the sender of
that message has now modified the receivers memory. Furthermore cooperating
processes can use the mutual receipt of messages as a pre-agreed synchronization
mechanism. While clumsy, this indicates that message passing is indeed capable of
providing the full functionality specified above for MP programming.

An MPP message passing program consists of P sequential programs, one run
in each process. Each sequential program uses message passing instructions to
synchronize with and to access memory of other programs. Typically these MP
instructions come from a limited set of instructions that define the Message Passing
Environment. Usually the instructions are made available to programmers in the
form of a Message Passing Library The MPP programming environment then
consists of a standard uniprocessor programming language such as C or Fortran,
along with the Message Passing Library. In the extreme case, each processor would
have a different program and each program would be synchronized with all others
by inserting a synchronization call after each instruction. In practice programs are
usually far more loosely coupled, with occasional synchronizations but also long
periods where programs run independently of each other using only their local
memories.

While all message passing systems are logically similar, there are differences
in the ways in which the two key services (synchronization, data exchange) are
provided. This has resulted in a large number of different incompatible systems.
Well known systems include Caltech's CROS, IBM's EUI, Intel's NX, Meiko's CS,
nCUBE's PSE and Thinking Machines CMMD. We will review each of these
systems and others, indicating their historical development and providing some
comparisons of features. Because the required services are fundamentally the same
it is possible to implement any of these in terms of another - for example given a
CMMD library one can create an NX library which makes one or more CMMD calls
to provide each desired NX function. Later papers in this volume address each of
these systems in greater detail.

Several groups have attempted to overcome the vendor/machine specificity
of the MP environments by developing so called Portability Platform MP
environments. The idea here is to choose one environment specification and
implement it on all hardware platforms - either as a native MP library, or by making
appropriate calls to the resident MP environment. Programs written using a
Portability Platform MP environment become portable to all systems, which is
obviously a great advantage. Examples of well-known portability platforms include
EXPRESS, Linda, P4, PARMACS, PVM and Zipcode. We will introduce these
systems later in this paper, and again papers following in the volume explore each
of these systems in greater detail.

The large number of portability platforms presents some of the same
problems as the number of vendor interfaces. Furthermore most of the portability
platforms support only a subset of the full features of the vendor systems. It was for
these reasons that the MPI Committee was formed in 1992 to define a new standard



message passing interface called MPI (for Message Passing Interface). MPI was to
support all of the best features of the various vendor and portability platforms. The
MPT definition has now been published and it is expected that all major vendors
will support it with native implementations. In the meantime implementations of
MPI in terms of the portability platforms are underway, and in some cases already
complete, providing portable MPI implementations that are available immediately
for evaluation. One of the papers in this volume is a complete introduction to MPL

Section 2 of this paper gives an introduction to design issues for MPP systems,
including both software and hardware. In section 3 we take a more detailed look at
the subset of hypercube architectures and introduce the major developments in
message passing environments for these architectures that has resulted in today's
programming systems. This section provides both an historical perspective and a
tutorial introduction to message passing features - we highlight the key concept that
led to introduction of each new feature. Section 4 looks briefly at several other
message passing systems that have been developed for non hypercube architectures.
Section 5 introduces the portability platforms that have been developed for message
passing systems as well as messaging environments designed specifically for
heterogeneous systems.



2. Overview of MPP Architectures

In this section we will provide a general discussion of design issues for
massively parallel systems, with some discussion of the historical developments
and systems that have resulted in the current massively parallel supercomputer
architectures. We will present a detailed look at message passing systems developed
for some of these architectures in sections 3 and 4.

2.1. Classification of Parallel Computers and Software

2.1.1. SIMD and MIMD

Parallel computers may be broadly categorized in two types - SIMD or MIMD
[1]. SIMD and MIMD are acronyms for Single Instruction stream - Multiple Data
stream, and Multiple Instruction stream - Multiple Data stream, respectively. In
SIMD computers, every processor executes the same instruction at every cycle,
whereas in a MIMD machine, each processor executes instructions independently of
the others. The vector unit of a CRAY computer is an example of SIMD parallelism
- the same operation must be performed on all components of a vector. The CM-200
and Masspar MP-2 are also examples of SIMD computers. Most of the interesting
parallel computers are of MIMD type which greatly increases the range of
computations in which parallelism may be effectively exploited using these
machines. However, this occurs at the expense of programming ease - MIMD
computers are much more difficult to program than SIMD machines. Many current
designs incorporate both MIMD and SIMD aspects - often each node of a MIMD
system is itself a vector processor, or as in the case of the CM-5, each node consists of
a scalar Sparc processor and four vector processors.

2.1.2. SPMD Paradigm

A SIMD computer is controlled by a single program, which greatly eases the
complexities of program development. A MIMD computer in principle will have a
different program running on every node, or possibly several different programs on
every node if multiprocessing nodes are involved. This makes for an extremely
complex programming environment. A frequent programming paradigm for
MIMD machines is the SPMD model, an acronym for Single Program - Multiple
Data. In this model the same program text is run on all processors of a system, but
the execution may follow different paths through the program on different
processors. Clearly any set of P MIMD programs can be replaced by a single merged
program, at the possible cost of some increased program memory. Thus there is
essentially no loss in restricting to SPMD programming.



2.1.3. Massive Parallelism

While many interesting parallel machines involve only a few processors, we
will restrict consideration to those machines which have moderate to large numbers
of processors, since they represent the path to the highest performance.
Furthermore, we will emphasize those machines which have a distributed memory
architecture, including virtual shared memory systems, because at this point such
systems are the only ones that appear to be truly scalable. Important classes of
machines such as the CRAY C-90, CRAY-3, and several similar Japanese
supercomputers are not the focus of our remarks because such systems do not
appear to offer true scalability (see below) using any current approach.

2.1.4. Shared and Distributed Memory

Another easy categorization is between machines with global or local
memories. In local memory machines, usually referred to as distributed memory
systems, communication between processors is entirely handled by a
communication network, whereas in global memory machines a single shared
memory is accessible to all processors. Shared memory systems offer the advantage
of much easier programming. Building massively parallel shared memory systems
that also scale (see below) is extremely difficult however.

2.1.5. Message Passing

Processors in distributed memory systems have no direct access to the
memory of other processors. In order to utilize multiple processors on one task it is
necessary to exchange information between processors by sending packets of data -
messages - between them using an available communication network. Software
libraries to facilitate such exchange of data are called Message Passing Environments.
While communication networks vary enormously in detail, they tend to provide
broadly similar capabilities for exchanging data. As a result, message passing
environments are often remarkably similar across architectures and this has led to
the development of portable message passing environments as discussed in the
Introduction. This paper deals almost entirely with message passing environments,
both machine specific and portable.

2.1.6. Virtual Shared Memory

Even in distributed memory systems it is possible to simulate a global shared
memory in software, or with a combination of software and hardware. Such
systems, referred to generically as virtual shared memory (VSM) systems, offer the
ease of use of a shared memory system, while preserving the scalability of
distributed systems. VSM is a powerful paradigm, but is currently available on only
a few architectures. Note that we distinguish here the case of disk-based virtual
memory supported on individual processors which is unrelated to VSM.



2.1.7. Scalable Systems

The driving force behind supercomputer development has been the
insatiable computational needs of the so-called Grand Challenge (GC) problems. GC
problems are those major problems of interest to science and engineering whose
solution is possible to contemplate using computers, either directly or through
numerical simulation. In order that parallel supercomputers can make a serious
attack on the Grand Challenge applications, it is essential that these systems have
the property of scalability. Scalability essentially means that performance increases
linearly with the number of processors P:

Perf(P)=0O(P),

In practice if performance drops below linearity by not more than a logarithmic
factor, it is also considered to be scalable:

Perf(P)=0O(P/(InP)*)

Scalability in parallel computer architecture is a critical issue for massively
parallel computer designers. This is a major departure from conventional
supercomputer design where at most eight or sixteen processors are involved. In
such systems the design emphasis is primarily on node performance and I/O to disk.

2.1.8. Scalable Algorithms

A second critical aspect of Grand Challenge applications is the need to design
scalable algorithms. An algorithm is scalable on a scalable architecture if
performance scales linearly with the number of processors, provided that the
problem size is scaled so as to need that many processors. The need for a particular
minimum number of processors is usually driven by the memory needs of the
application. Again a reduction from linearity by a logarithmic factor is still
considered scalable.

The design of scalable machines and the search for scalable algorithms for
Grand Challenge applications on such machines are the two dominant forces
controlling HPC activities today.

2.2. Approaches to Multicomputing

There are several hundred recent or current parallel computer projects
worldwide. Table 1 lists a selection of such projects, a mix of university and
industrial enterprises. This is just a sample of the diverse projects but covers a wide
range of different architectures chosen more or less at random. While some of these
projects are unlikely to lead to practical machines, a substantial number have
already, or will, lead to useful prototypes. Many commercial parallel computers are
included in the table and these have been or are already in production (e.g. Alliant
FX/8, FX/2800 and CAMPUS/800, Connection Machine CM-2, CM-5, CRAY
Research T3D, Denelcor HEP-1, Evans and Sutherland ES-1, FPS T-Series, IBM SP-1,
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ICL DAP, Intel iPSC2 and Paragon, Kendall Square KSR1, Meiko CS-2, Myrias SPS-3,
nCUBE-2, Parsytec GC(T805), SUPRENUM-1, Symult 2010) and more are under
development. Some of these products have been commercial failures (e.g. Denelcor
HEP, ETA-10, ES-1, FPS T-Series, Symult 2010), yet they have provided important
insights into parallelism. One should also remember that the latest CRAY Research
vector computers, (e.g. CRAY-2, CRAY Y-MP and CRAY Y-MP/C90) involve
multiple processors, and other vector computer manufacturers such as NEC, Fujitsu
and Hitachi have similar strategies.

Beyond the simple classification into SIMD or MIMD computers we recognize
a vast array of different approaches to the task of building a parallel architecture.
We will now look at the reasons for this broad range by discussing some of the
possibilities encountered for both node and communication facilities.

Table 1. Some Parallel Computer Projects

Alliant Campus/800 Alliant FX/2800

Alliant FX/8

BBN Butterfly

CalTech Hypercube

Cedar Project

Connection Machine CM-2

Connection Machine CM-5

CRAY Y-MP and CRAY-2

Data-flow Machines

Denelcor HEP-1

Encore Multimax

ETA-10 Evans and Sutherland ES1
Flex 1 FPS T-Series

Fujitsu AP-1000 Goodyear MPP

IBM GF-11 and TF1 IBM SP-1

ICL DAP Illiac IV

Intel DELTA Intel iPSC/860 Hypercube

Intel iPSC2 Hypercube

Intel iWarp

Intel Paragon

Intel Paragon

Intel Touchstone Kendall Square KSR1
Masspar MP1000 Meiko MK860 and CS-2
Multiflow Myrias SPS-3
Navier-Stokes Machine nCUBE2 Hypercube
NYU/IBM RP3 Parsytec

Sequent Balance SUPRENUM-1

Symult 2010 TERA

2.3. Node design

By node we mean the individual computational processor, along with its
associated communications hardware, and local memory if available. Node design
tends to be far less variable than other aspects of parallel computers. The main
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reason for this is that most architects have relied on off-the-shelf products for the
node - standard microprocessors, floating point accelerators and memory chips. The
advantage is that startup time for a project may be substantially reduced.
Additionally, there is a substantial body of low-level software available for such
processors - such as compilers, assemblers and debuggers. . Thus we find that an
enormous number of the recent or current parallel computer products are based on
one or more of the DEC Alpha processor, IBM R6000 processor, Inmos T800 and
T9000 transputers, Intel 80X86 and i860, Motorola 680X0, Sparc processors and
Weitek floating point accelerators. Typically one of these microprocessors will be
combined on a board with a floating point coprocessor (e.g. 80387 or 68881), possibly
a Weitek processor and several megabytes of memory. The more recent processors
(e.g. i860) tend to have built-in floating point processing, and sometimes a graphics
processing capability. Despite these general comments, it should be mentioned that
some manufacturers have developed custom processors specifically for parallel
computers. In the list above we would point to the CM-2, DAP, ES-1, HEP-1, iWarp,
KSR1, Navier-Stokes and nCUBE machines as examples.

Memory consumes substantial space, and current systems have in the range
of 1 to 32 Mbytes per node, although up to 128 Mbytes has been announced for some
systems. Most systems support several levels of memory on a node: frequently
main memory, cache memory and registers. Effective management of cache
memory is often critical for good node performance, and as a result both the design
of the cache and the quality of the single-node compilers are essential aspects of all
MPP systems.

Recently there has been a trend towards complexifying the physical node
concept in order to increase packaging density and reduce cost. Early examples were
the CM-1 and CM-2 machines which have 16 processors on a single chip. In the CM-
2 this is further confused by the fact that a single Weitek vector processor is shared
by the 32 processors on each pair of adjacent chips. The CM-2 and CM-200 slicewise
operating systems in fact recognize this in that they present a view of the system as
consisting of 2048 vector processing nodes, essentially ignoring the view of the
system as composed of 65,536 bit-serial processors. The CM-5 node consists of a
Sparc processor and 4 vector processors, which may only be treated as a unit. Intel
has announced that sometime in 1994 they will switch from the current Paragon
node design of two i860 processors (one computational and one communicational),
to a highly integrated chip containing 5 i860 processors - and in fact these processors
share memory.

The increasing complexity of the node concept is a major challenge for any
simulation system for massively parallel computers. It is also a major challenge for
users and software designers who would prefer not know about these details. One
resolution of this dichotomy is to separate the concepts of logical and physical node.
A logical node is a unit that supports a single thread of computation and memory
access at any time. A physical node is a level in the physical hierarchy constituting a
massively parallel system, and is the smallest hierarchical level that contains at least
one CPU.



2.4. Communication Features

The range of interprocessor communication facilities is what really
characterizes the differences in architecture among various parallel machines.
While we have previously distinguished the shared memory and distributed
memory classes, one should observe that this distinction should not be taken too
seriously. A distributed memory computer can certainly simulate a global shared
memory and vice versa.

Communication pathways are typically built either from direct point-to-point
connections, or from busses. Busses have the advantage that many processors may
be serviced by one communication path, but have the disadvantage of slower
bandwidth performance as the number of processors increases. With point-to-point
connections, processors that are directly connected will have very efficient
communication, but indirectly connected processors will likely incur substantial
extra overheads including increased latency as well as lower bandwidth. Over the
last seven years, interconnection performance has improved almost as fast as
processor performance. For example, the Intel systems have moved from
performance in the range of hundreds of Kbytes/sec on the iPSC1 to 200 Mbytes/sec
(peak) on the Paragon. Communication latency has also improved substantially
although to a lesser extent over this period, from about 5000 microsecs on the iPSC1
to 60 microseconds on the Intel Paragon for example.

The most popular interconnection strategies involve simple symmetric
arrangements including rings, meshes, hypercubes, trees and complete connections
or crossbars. The prevalence of hypercube designs is explained by the fact that the
architecture supplies substantial parallel bandwidth for many standard algorithms,
for example the Fast Fourier Transform, while at the same time incurring only
relatively modest fan-in and fan-out of connections which grow in number only
logarithmically with the processors. However, total hypercube wiring complexity
grows super linearly with the number of processors and the likelihood increases
that most wires are unused most of the time. Table 2 compares several simple
topologies as a function of processor number P from the point of view of amount of
wiring (difficulty of building), connectivity (ease of programming) and maximal
path (efficiency of long-range communication).



Table 2. Properties of Interconnection Networks
Network Wires Connectivity =~ Max Path
Cross Bar P(P-1) P 1
1D Grid P-1 2 P-1
2D Grid 2P 4 2+/P
Binary Tree P 3 2log, P
Hypercube 1 Plog, P log, P log, P

While cross bar switches are extremely difficult to build for large numbers of
processors, they have tremendous flexibility in terms of efficiency and ease of use. It
is conceivable that a technological breakthrough such as optical switching might
allow cross bars to be built that would connect thousands of processors. For the time
being, crossbars are restricted to small systems of at most 64 processors, or to
providing interconnects among the processors of sub-clusters within larger
machines (e.g. the ES-1 and Alliant FX/2800).

Bus based connection networks are attractive for moderate numbers of
processors, for example 16 to 32. Beyond this point bandwidth begins to suffer
intolerably. Architectures based on busses therefore tend to be hierarchical beyond
that number of processors. As an example, the SUPRENUM-1 computer used a fast
local bus to connect within a cluster of 16 processors. Clusters are arranged in a
rectangular grid and connected by row and column busses, which has the added
attraction of providing redundancy and double bandwidth. The Myrias SPS-3 is
similar, utilizing three levels of bus: 4 processors connected on a single board by a
bus, cages of 16 boards connected by a pair of backplane busses, and finally cages
connected by third-level busses. The KSR1 connects 32 processors in a ring as a basic
cluster, with rings of clusters used to scale the system up to 1088 nodes.

New configurations of processors continue to be proposed. One common
technical approach is the use of "worm-hole" routing in distributed systems. The
basic idea here is to allow circuits to be established between remote processors,
without the necessity of interrupting any intermediate nodes. While there may be a
small overhead for circuit creation, subsequently all data traverses the circuit
without overheads such as multiple startup costs at intermediate nodes. Once a
circuit is established, communication proceeds essentially in pipelined fashion.
Frequently it suffices to create logical rather than physical connections. These allow
messages to proceed on virtual worm-hole channels, but with the possibility that
physically the channels are multiplexed. This is particularly convenient as a means
for preventing dead-locks and blocking of small messages by large ones. The
resulting communication performance tends to be essentially independent of
distance.

Worm-hole routing is utilized in the CM-2, CM-5, the iPSC2, iPSC/860, the
Intel Paragon and the Intel iWarp among others. The CM-2 and the Symult 2020
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were the first systems to emphasize wormhole routing. In the case of Symult, the
designers were so confident of the advantages of wormhole routing that they
abandoned a hypercube architecture from their first generation in favor of a simple
two-dimensional rectangular grid. The Intel iPSC2 hypercube has similarly given
way recently to a rectangular-grid based Intel Paragon, similar in spirit to the
Symult. This could not have been attempted without worm-hole routing.

2.5. Parallel Software

Software for currently available parallel computers is extremely limited. In
all cases manufacturers provide Fortran and C compilers, which are frequently just a
single processor compiler. These compilers usually have no concept of parallelism
or of communication capability. Typical examples are the systems supplied by Intel,
Meiko and nCUBE. In these systems, all communication and process control is
initiated explicitly by the user, resulting in substantial code modification as well as a
loss of portability of software. Typically libraries of low-level communication
primitives are supplied with these systems to allow the user to initiate
communication operations.

A few manufacturers have gone beyond this by providing language
" extensions that capture aspects of the parallel hardware. Thinking Machines
provides a parallel Fortran, CMF, for their Connection Machine CM-2 and CM-5
computers. The compiler supports the Fortran 90 array extensions to Fortran 77,
and the convention is that objects used as arrays are understood to be distributed
across the parallel processors. Communication among processors is supported by
the FOO shift operations, as well as the various reduction operators such as vector
sum. While the CMF environment is remarkably elegant and user-friendly, one
should point out that the task is much simplified by the SIMD nature of the CM-2
hardware onto which array operations map extremely well. CMF also runs on the
MIMD CM-5, but is less natural there. New language standards such as HPF (High
Performance Fortran) extend on languages such as CMF, but offer significant
advantages only for essentially SIMD computations.

Myrias Corporation (SPS-2, SPS-3) and Evans and Sutherland (ES-1, no longer
in production) both supported a virtual address space across processors. If a
processor attempts to access a memory location not in its physical memory, then a
page fault occurs and the appropriate memory page is fetched from the processor
which has it. Myrias in particular have implemented a sophisticated mechanism
for load balancing and rapid access to memory. The system attempts to localize page
table information and to provide access to it in a distributed fashion. The Myrias
system was the first to provide virtual shared memory on a distributed memory
architecture. The ES-1 was actually a cross-bar based shared memory computer, and
here again virtual memory was provided to make the memory system more
transparent.

The most recent system of this type is the KSR1 (and now KSR2) which
combines a two-level hierarchical memory based on rings, with real supercomputer

-11-



performance (1088 nodes, 40 Mflops/node peak). The system implements a global
40-bit address space using hardware assistance for virtual shared memory
operations. The KSR-1 system supports interprocessor communication at rates of 34
Mbytes/sec with a latency of only 6 microsecs.

One should also note the tendency to support virtual processes. This is an
important aid to software development as it allows an application to simulate a
larger number of processors than are physically present. Virtual processing actually
can increase system throughput by allowing nodes to remain computationally active
while a process is suspended waiting for memory or messages. Virtual processing is
supported by the majority of systems in one form or another. Examples include
CM-2, iPSC, Myrias and SUPRENUM.

Another recent trend is towards providing a complete UNIX capability on
every node. For example the Alliant CAMPUS/800, the KSR1 and the Intel Paragon
provide this feature. In some cases (e.g. Paragon) this is accomplished by supporting
a microkernel on computational nodes which relies on services provided by special
server and I/O nodes. In addition to UNIX, other standard software products are
being offered by a wide range of vendors: for example NFS file systems, TCP/IP
networking to nodes, and support for graphics systems such as AVS and Explorer.
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3. Message Passing in MPP Environments: The Hypercube Example

3.1. Hypercube Architectures

Hypercube architectures have been very frequently developed because of the
advantages of high connectivity and low wiring costs already referred to above in
Table 2. Mathematically, a hypercube may be easily defined recursively, as a set of
vertices and edges, as follows. A 0 dimensional hypercube consists of one vertex. A
d dimensional hypercube consists of a pair of -1 dimensional hypercubes in
which corresponding vertices of each hypercube are joined by a new edge. It follows
that the number of vertices P in a hypercube doubles and the number of edges C
leaving a vertex (i.e. the connectivity) increases by one, with each increase in

dimension. Therefore we have P=2% and C= log,(P), which establishes several of
the entries in Table 2.

From the computational point of view, a major significance of hypercubes is
that topologies for many important algorithms map naturally and efficiently to
hypercubes. For example, rings, grids, binary and other trees and butterfly networks
all map to hypercubes. Furthermore algorithms that utilize these structures will
typically be able to fully overlap communications on different wires - i.e. there is
sufficient parallelism in the hypercube wiring to allow communication, as well as
computation, to be fully parallelized. This is a key aspect of developing scalable
algorithms.

As an illustration of developments in message passing interfaces we will now
trace the progress in such interfaces for hypercubes over the last decade. This
discussion is intended as both an historical review and a tutorial introduction.

3.2. The Caltech Hypercube

The original distributed memory MPP computer from which many later
designs were derived, was the Caltech Hypercube. This system, built around 1984
was based on the simple d-dimensional hypercube model. As noted above, a d

dimensional hypercube has 29 vertices with d edges radiating from each. In the
original Caltech design, which was a 6 dimensional hypercube, each cube vertex
(termed an Element, or ELT for short) contained an Intel 286/287 processor and
64KB of memory. The cube edges were data communication channels allowing data
transfer between adjacent processors. In addition to the 64 nodes, an additional
processor called the Intermediate Host (IH for short) was provided as the user
interface and was connected to node 0. All user communication with the hypercube
occurred via the IH. The software environment of the system consisted of standard
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Fortran 77 and C compilers, plus a library of communication calls, known as the
Crystalline Operating System or CROS [2].

3.2.1. Caltech Hypercube Programming: CROS

Assignment of a numbering scheme for nodes of an MPP is a necessary
prelude to any communication operations. The topology of an architecture usually
suggests natural numbering schemes. For example, in a two-dimensional grid
architecture, coordinate pairs provide a natural numbering system for nodes. In a
hypercube it is possible to represent each vertex (processor) by a binary number such
that physically adjacent processors always differ only in 1 bit - in fact there are many
different numberings of vertices that satisfy this condition.

In the Caltech Hypercube, this property was used to define the concept of the
channel connecting neighboring processors. Each processor has d =log,(P) wires
connecting it to neighbors. The wire connecting to the neighbor whose processor
number differs in bit ¢ is called channel ¢, 0<c<d. Thus each processor sees d
channels numbered 0,1,...,d —1. It is easy to verify that if processor A sees processor
B at the end of channel ¢, then processor B will also report that processor A is on the
end of its channel c¢. An extra channel is also defined to connect from the
Intermediate Host to Node 0. All data transfers are then specified by channel. Data
packets were restricted in the original CROS to a size of 8 bytes.

The complete communication interface for the Caltech Hypercube is
summarized in Table 3. While a few extra calls were supported, these typically
combined two of the operations into a compound operation.

Table 3: Caltech Hypercube Communication Calls

Host-Node Routines:

wtiH(data, CUBE) Write a packet from IH to node 0
rdsig(data) Data from IH is read by each node
wtres(data) Data sent from node to [H
rdbuflH(datas, CUBE,P) Read in all data sent by the nodes

Node Routines:
wtELT(data,chan) Send data on channel chan
rdELT(data,chan) Read data on channel chan

The first four routines listed provide communication between the IH and the
hypercube nodes. Typically a program begins with a call to wtIH which sends an
item of data to the cube (CUBE denotes the unique extra channel provided to node
0). The 8 bytes of data might contain information in the form of two integers or
floats, a double, or a string of up to 8 characters. The cube nodes respond to the wtIH
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call by themselves calling rdsig to receive the incoming data. The name rdsig
denotes "read signal” - the incoming data from the host being typically used to
signal the nodes to start their work. On completion of work, the nodes can return
their results by calling wtres which allows each node to return an 8-byte result to the
IH. Finally the IH can receive the incoming stream of P results by calling rdbufIH
and providing it a buffer of length 8P. The final two routines are used for inter-
node communication within the cube, whose nodes were called Elements, hence
the ELT. The routine wtELT sends an 8-byte packet to the neighboring processor on
channel number chan, while rdELT is used to read an incoming message on
channel chan.

This system provided a highly efficient representation of the hypercube
physical communication structure.  Note that only nearest neighbor
communication is allowed, corresponding to the actual hardware wiring. One
major restriction imposed by CROS is that only SIMD communication patterns are
allowed. If one node issues a wtELT call, then all nodes must do so simultaneously.
Similarly if one node returns a result to the IH, all must do so, even if they have
nothing useful to return. Because only such regular communication patterns were
accepted, the communication library was referred to as the Crystalline Operating
System.

3.3. The Intel iPSC1 Hypercube

The iPSC1 was developed by Intel shortly after the Caltech Hypercube was
built. It was very close in design, although differing in several features. The system
was based on 80286 nodes, each supported by 512K of memory. Intel used some off
the shelf Ethernet chips to implement a fairly fast communication structure. The
iPSC1 design allowed up to a 7 dimensional hypercube to be constructed, i.e. 128
nodes. As with the Caltech machine, the system used a host machine, consisting in
this case of a Xenix workstation.

3.3.1. Intel iPSC1 Programming: NX1

While the underlying hardware of the Intel iPSC1 was fundamentally similar
to the Caltech Hypercube, the software environment developed - known as the NX1
operating system - was fundamentally different. The system was based on the
Reactive Kernel [3], also developed at Caltech. We highlight key developments
from the Reactive Kernel paradigm as these have all become important aspects of
modern message passing systems. All of the key communication routines are
shown in Table 4, and their purpose is described here.

Topology Independence: To begin with, the communication software
attempts to hide as much as possible the details of the connection topology. Each
processor is represented by an integer - the node number - in the range [0,P 1]
where P is the number of processors. The host is denoted by a special integer,
HOSTID, which is a negative integer such as -1.
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Multiprocessing Nodes: In a distinct departure from the Caltech design, each
processor of the iPSC1 may have several processes running simultaneously, each
distinguished by a process identity number, or pid, which is local to that node.
Since processes rather than processors are the logical communicating entities in any
system, it follows that rather than node to node communication, we are now
dealing with process to process communication. Thus a communication operation
must specify the destination node and pid.

Transparent Access: In another major departure from the Caltech approach,
the NX1 system allows each process to communicate with any other process, not just
processes on neighboring nodes. Furthermore there is no distinction between
neighboring nodes and others - all nodes are represented by a number, and only
with considerable difficulty can a programmer even determine whether two nodes
are nearest neighbors or not. The communication routines (see Table 4) appear to
have a channel parameter chan, but this is misleading - the channels used here are
simply software channels used to allocate storage for parameters and data needed by
the succeeding communications.

MIMD Communication: NX1 communication is true MIMD communication:
one, some or all nodes may participate in a communication operation. Certain
global patterns, such as global synchronization or global sums, are represented by
NX1 operations that require all nodes to participate simultaneously. But the vast
majority of NX1 operations require only a sender and a receiver.

Non-Blocking Communication: The blocking routines - sendw and recow -
do not return until they have completed their operations. Thus sendw returns after
it has sent a message, and recvw returns only after a requested message has been
received. Note that this latter situation will lead to a lockout if no sender sends an
appropriate message. The non-blocking routines are send and recv. These return
prior to completion of the operation, basically right away. It is necessary to later call
status(chan) to find out if the requested operation has completed. Until it does
complete, the corresponding data buffers are not safe to use.

Asynchronous Communication: It is not even necessary that senders and
receivers of data match their communication requests. NX1 provides for
communication that may be either synchronous or asynchronous. Asynchronous
communication utilizes the probe call which a receiver may use to determine if
there are appropriate messages waiting. The receiver is free to read (receive) these
messages at a later time, or indeed to ignore them.

Typed Messages: A further innovation of NX1 deals with the fact that often
one finds a proliferation of messages arriving at a process, some not in the order
that the receiver would like to have them in. NX1 requires that each message has a
user-assigned type - an integer value. Messages are received only by type. The
communication calls for receiving messages allow only the specification of a
message type, or message type wildcard, but not a source node or process number.
As a result, type becomes an important characteristic that permeates all
communication and can be used to discipline programming style. In the context of
asynchronous communication, where the user may request to read messages out of
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order, type is invaluable for selecting messages appropriately. While type is a
powerful aid to programming complex applications, it is not a restriction in any
sense. A user may choose to ignore type altogether of course by assigning the same
type number to ALL messages. Similarly a user who wants to receive messages by
source node number and pid could achieve this by encoding the source node and
pid in the type integer.

Unknown Message Lengths: It frequently happens, especially in the course of
asynchronous communication, that a receiver may be unsure about the expected
length of incoming messages. The recv and recvw routines both require a buffer
mesg and its length len into which the message will be stored. However after
receipt of the message, an output parameter cnt records the actual number of bytes
received - if cnt is greater than len, part of the message will be lost.

Non-Busy Waits: Because multiple processes can run on a node, deadlocks or
inefficiencies could occur if processes awaiting messages remained active. The flick
routine was provided to allow control to transfer to other processes at such times.

Perhaps the only place in NX1 where the underlying hardware appears in
some way, is that all data packets must have a size of at most 16,384 bytes.

Table 4: iPSC1 NX1 System Calls:

Node Routines:

chan = copen(pid) open a virtual channel
send(chan,type,mesg, len,node,pid) send a type message to pid on node.
recv(ci,type,msg,len,&cnt,&node,&pid) receive message of type

length = probe(chan,type) are there messages of type?
status(chan) is a channel free yet?

flick() non-busy wait.
sendw(chan,type,mesg, len,node, pid) blocking send to pid on node.
recvw(ci,type,msg,len, &cnt,&node, &pid) blocking receive of type
syslog(pid,string) print a message on the host

Host routines:
sendmsg(chan,type,mesg,lennode,pid) blocking send to pid on node.
recvmsg(ci, &type,msg,len, &cnt,&node,&pid) blocking receive

One peculiarity of NX1 is that the host call recvmsg is more restrictive than
the node version. The host is not allowed to receive messages by type. Thus
effectively the host is forced to receive whatever arrives first. Furthermore only
blocking communication calls are supported at the host. These features were fixed
in NX2 which provides full symmetry between host and node operations.
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3.4. The Intel iPSC2 Computer

3.4.1. Intel iPSC2 Programming: NX2

NX2 is the current Intel operating system for the iPSC/860 and Paragon
computers [4,5], see Table 5. The NX2 operating system introduced some small
changes to the NX1 system, and added extra capabilities such as interrupt driven
communication. Again NX2 represents each processor by an integer node number
in the range [0, P —1], but now the host is denoted by the integer P. As in NX1, each
processor may have several processes, distinguished by a pid, and each process may
communicate with any other. Communication may be either blocking or non-
blocking, synchronous or asynchronous. Each message has a user-assigned type and
messages are received by type request only.

Message Identifiers: NX2 introduced the concept of a Message Identifier
(MID), an integer associated with any incomplete non-blocking operation. Both
send and recv (now renamed isend and irecv) return an MID. Three routines are
then available for later processing of the message: msgdone(mid) reports whether
the operation has completed; msgwait(mid) returns only when the operation has
completed; and msgcancel(mid) cancels the pending message if it has not already
completed. These operations allow for a programming style in which senders
communicate data as soon as possible, while receivers postpone receipt until they
are fully ready to use data, performing useful computations in the interim. This
allows some messages to be overlapped with computation, which in turn leads to
the possibility of message passing algorithms that exhibit no efficiency losses due to
communication.

Interrupt Driven Communication: NX2 also supports interrupt driven
versions of communication routines. This allows a receiver to be interrupted upon
receipt of a message at its process, in a fashion similar to handling of signals in
UNIX.

Receive Info Calls: On receipt of messages, the source information such as
node, pid, type and length are not returned by the receive calls as happened in NX1.
Instead a set of four information routines is provided for that purpose. Calls to
these routines return information on the most recently concluded communication.

Wildcard Arguments: NX2 includes a wide assortment of wildcards that may
be used in communication routines - wildcards are represented typically by negative
node or type integers. For example, writing to node -1 denotes writing to all nodes -
i.e. a broadcast. It is also possible to write to complete subcubes using a similar
notation. A request to receive a type -1 message is interpreted to allow receipt of any
message type whatever, and again there are other conventions that restrict to certain
subsets of types. While many of the more specialized node and type conventions
are ad hoc, are not portable to other systems, and are potentially dangerous, several
such as those we have mentioned, are extremely useful.
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Global Operations: NX2 supports a full range of global operations such as
synchronizations and associative commutative arithmetic operations. Broadcasts as
well as reductions are included. Each of these operations is carefully coded using
optimal mappings of binary trees to the architecture.

Configuration Operations: While not discussed previously, each of the
hypercube message passing systems supports a set of configuration operations.
These may be used to learn the number of nodes in use, the node and pid of the
current process, and similar information.

Table 5: iPSC2 Communication Routines

Configuration Routines:

numnodes() return number of nodes
mynode() return node number of mv node
myhost() return node number of my host
setpid() used by host to set a pid
mypid() return pid of host or node

Synchronous Routines:

csend(type,msg,len,node,pid) blocking send to pid on node
cprobe(type) wait for a message of type npe
crecv(type,buf len) blocking read of type fype
infocount() returns actual length of last message
infotype() returns type of last message
infonode() returns source node of last message
infopid() returns source pid of last message

Asvnchronous Routines:

isend(type,msg,len,node,pid) send a rype message to pid on node
irecv(type.buf,len) read message of type nype

iprobe(type) is there a message of type tvpe
msgwait(mid) await completion of message with ID mid
msgdone(mid) is message with ID mid completed
msgcancel(mid) cance! message with ID mid

flick() non-busy wait

Global Routines:

async() globally synchronize all nodes
gopf(x,len,work,f) global associative operation f{x,work)
gdsum(x,len,work) global sum, elements of x(/en) independent
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3.5. nCUBE Hypercubes

The nCUBE series of MPP systems (nCUBE1 and nCUBE2) are unique in
having remained faithful to a single design from the outset. The systems are also
the only MIMD hypercubes still being manufactured. nCUBE supports a 13
dimensional hypercube. Each node has 14 built-in bi-directional communication
channels - 13 to hypercube neighbors and one being an I/O channel. nCUBE nodes
have always been rugged custom-designed scalar processors, and the simplicity of
design has led to both very long mean-time to failure and good performance for
non-vectorizable or non floating point applications. In the nCUBE2, messages
travel at about 2.75MB/sec and message startup time is about 150us (there is an extra
2us overhead for each intermediate node traversed, up to a maximum therefore of
26us)

3.5.1. nCUBE PSE

The nCUBE Parallel Software Environment (PSE) provides a set of
communication primitives [6] similar to those of Intel NX. Communication
routines use a process id that combines both the processor location and the process
number on that processor into a 32-bit integer. Messages carry an integer type,
allowed in the range [0,32,767]. The basic communication calls are nwrite and nread.
Here nwrite is non-blocking, but nread always blocks. However an extra routine
ntest allows a receiver to check for a suitable message, so that nread is typically only
called when it is known already that it will return with a message. PSE supports
global communication calls, and in addition has support for grid-based
computation. In the latter case it is possible to layout data as a multi dimensional
distributed array, and PSE provides explicit calls to exchange boundary edges of
subarrays as required by many algorithms.

3.6. Cost/Benefit Aspects of Different Message Passing Environments

In order to evaluate the costs associated with the increasing sophistication of the
message passing interfaces, it is interesting to compare the messaging performance
of the systems discussed above. For this purpose, we will introduce the time to
transfer k words between neighboring processors. To a good approximation this
may be represented on all systems by a linear function:

T(k)= o+ Pk .
This time should be compared to the time y required for a multiply on that system.
The value of y characterizes the computational speed of a system, while the ratios
aly, B/y characterize the communication efficiency of a system.
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Table 6: Comparison of Communication Efficiencies

Machine MPI QUS| B ous YUS |\ oly | Bly
Caltech Hypercube | CROS 92 5.0 | 30.0 3 17
Intel iPSC1 NX1 5,500 2.8 | 30.0 183 .09
Intel iPSC2 NX2 500 2.0. 1 10.0 50 .20
Intel iPSC /860 NX2 470 0.77{ 0.025 | 18,800 30.80
Intel Paragon NX2 ‘ 60 0.05f 0.015 | 4,000 3.33
KSR1 TCGMSG 160. 0.26] 0.025 | 6,400 10.40
nCUBE2 Vertex 210. 0.58] 0.5 420 1.16

Table 6 records measurements we have made for several representative
systems. It is clear from Table 6 that the Caltech Hypercube is by far the best balanced
of these systems. It had the lowest latency and the second fastest transfer rate of any
system, relative to floating point performance. It is also clear that current machines
are doing much more poorly than the early systems, a reflection of the fact that
processor speedups have far outpaced communication speedups. The only
mitigating factor is that the amount of memory per node has also been increasing
rapidly, a factor that tends to diminish the relative amount of communication
needed in most computations (perimeter to area ratio).
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4. Other Message Passing Systems

There is insufficient space to cover all of the interesting message passing
systems developed todate. However we will use this opportunity to note here
several of these because of particularly interesting features.

4.1. IBM EUI

The IBM External User Interface (EUI) is the message passing system for the
IBM SP MPP computer series [7]. EUI is also designed to run on a loosely coupled set
of workstations such as the RS/6000. EUI supports both blocking and non-blocking
I/O, and the usual forms of collective communication. The number of tasks in a job
is fixed.

An interesting feature is support for groups of tasks - a group being an
ordered subset of the tasks in a user's partition, which is known as the allgrp.
Groups can be created dynamically either by specifying a list of member tasks to the
mp_group routine, or by partitioning another group into several disjoint parts
using mp_partition. Collective communication routines work on groups rather
than the full partition. Typical applications of groups include creating row and
column groups in grid based applications, and allowing collective communications
to be performed on single rows or columns. The collective communication
routines include barrier, shift, broadcast, scatter, gather, reduction, and parallel
prefix. EUI supports both blocking and non-blocking barriers.

EUI messages carry a user defined type and messages may be received by
source and/or type, with wildcards allowed. The facilities available are very similar
to those seen in Intel NX2 so we do not discuss these further. EUI will in the future
support a concept of channel similar to that on the Caltech Hypercube. A channel
connects a specific pair of processes and is optimized to provide very efficient
communication between those processes. Separate channel communication
operations use the channel number rather than process information for send and
receive operations. The real payoff for channel communication will be for repeated
communication patterns - channel creation will be expensive, but once created a
channel can preserve buffers that will be used in later repetitive communication on
that channel.

4.2. Meiko CS Svystem ‘

The Meiko Computing Surface (CS) operating system was developed for the
Meiko line of transputer, i860 and Sparc based MPP systems. These systems are
typical message systems, and the most recent product, the CS-2, is among the most
powerful MPP systems developed todate.
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CS communication, outlined in Table 7, differs dramatically from other
systems in that it is based on a communications name space [8]. Processes create
virtual communication objects called transports. Transports become useful only
when registered with a global name server - implemented by the function
csnregname. Once a transport has a registered name, other processors that know of
the name can look up the name and, if successful, are returned a netid to be used in
further communications. As in the Intel case, blocking, non-blocking, synchronous
and asynchronous communications are all supported. All of these communications
are performed to a previously opened transport, which in turn is expected to be
connected to other processes.

Table 7: Meiko CS Communication Routines
Configuration Routines:
csgetinfo(numnodes, mynode, mypid) return numnodes, mynode, mypid
Transport communication object, access via global netid
csnopen(index,tr) create a new transport tr with ID index
csnclose(tr) close out a transport
csnregname(tr,name) establish global name for transport tr
¢snderegname(tr) remove any global name for transport tr
csnlookupname(netid, name,block) return netid of transport called name
csngetid(tr) return netid of transport tr
csngetnode(netid) return node given a netid
csngetnet(netid) return network number given a netid
csngettransport{netid) return transport number given a netid
Synchronous Routines:
csntx(tr,netid,flag,msg, len) blocking send to transport netid
csnrx(tr,netid,buf,len) blocking read - returns netid
Asynchronous Routines:
csntxb(tr,netid,flag,msg,len, mid) non-blocking send to transport netid
csnrxnb(tr,buf,len,mid) non-blocking read - assign mid as an ID
csntest(t,,,,mid,.) test if a non-blocking message mid is complete
csncancel(tr,,,mid) cancel message mid

4.3. SUPRENUM

The German SUPRENUM computer is a 256-node system based on a 2-level
hierarchical design. At the bottom level, 16 processors connected by a bus form a
cluster. A full system consists of 16 clusters interconnected by a grid of horizontal
and vertical busses. Despite this complexity, SUPRENUM communication concepts
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are quite similar to other systems. An unusual aspect is that SUPRENUM supports
extensions to Fortran for task control and to assist in communication operations.
For example, SUPRENUM uses language extensions similar to Fortran I/0O lists to
call communication functions. This allows compilers to optimize communication -
for example by concatenating multiple arrays into a single one, which can greatly
reduce latency overheads. The disadvantage is that SUPRENUM message passing
programs are then not completely portable.

SUPRENUM is unique in providing a sophisticated high-level library
interface to the communication system [9]. The library supports a range of 2D and
3D grid-oriented operations that largely shield a numerical user from dealing with
the communication system directly. In addition to providing powerful
programming tools, such systems deliver the possibility of substantial program
portability across architectures that support the common set of primitives. In fact
these grid communication routines have been ported to other systems as well.

4.4. Thinking Machines CMMD

The Thinking Machines Corporation (TMC) Connection Machine CM-5
supports two distinct programming models. The simplest and most elegant is CMF
- Connection Machine Fortran - which provides a Fortran 90 style SIMD
programming system [10]. This is clearly the method of choice for those applications
that are representable as SIMD processes in an efficient way. For truly MIMD
applications it is necessary to write message passing programs, which are similar in
style to Intel NX programs. The message passing system for the CM-5 is known as
CMMD [11,12]. A further complication is caused by the complexity of the nodes each
of which contains a Sparc scalar processor and four vector nodes. To utilize the
latter, node programs must be written in a vector language, either in a flavor of
Fortran 90 or by explicitly calling vector routines from Fortran or C. In addition to
standard send/recv communication, CMMD supports a second channel-based
communication mode. In this case, once a channel has been allocated, further
repeated communication calls on the same channel have very low overhead. As an
example, message latency is about 35us for send/recv communication, but only 14us
for channel communication between nearest neighbors. Typical long-message data
rates are of order 20 MB/sec.

_ CMMD supports the full range of messaging capabilities familiar from other
systems - blocking, non-blocking, synchronous and asynchronous sends and
receives, probe operators and collective communication routines. The hardware
has separate communication channels for point to point and for collective
communication. Interrupt driven communication is also available, at an increased
cost of about 20us per interrupt.

TMC has been especially effective in reducing messaging latency. The key has
to been to implement the CMMD system in terms of a simple low overhead
communication mechanism called the Active Message Layer (AML) [12,13]. An
AML message is a message consisting of a function pointer (i.e. an address in the
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program address space), along with a set of arguments. Upon receipt it causes the
specified function to be activated with the supplied arguments. Because the CM5
supports only the SPMD programming paradigm, all nodes run the same text
program, and so function pointers are exchangeable between nodes. A special case
of an active message is where the function simply deposits the argument data to a
specified memory location - known as a Data Deposit. Data sent in this ways incurs
a latency of only 8s, and travels at bandwidths as high as 25MB/sec. Injection of an
Active Message into the network requires only about 1us.

4.5. Virtual Shared Memory

‘ Several MPP systems such as the Myrias SPS-2, the Evans and Sutherland ES-

1, and the Kendall Square KSR1 and KSR2, implement virtual shared memory
(VSM) on a distributed memory system [14]. In these systems the user no longer
needs to employ a message passing library for communication. Instead, all
communication is handled by direct virtual memory loads and stores. This is an
enormous convenience to the user, and greatly reduces the effort needed to port a
program from a sequential machine. There are significant overheads involved in
VSM and in addition one always has to remember that the underlying architecture
is a distributed memory system. Thus certain easily programmed VSM algorithms
may result in hopelessly inefficient code. Experience with the KSR1 indicates that
VSM can do almost as well as message passing for regular grid applications,
although it does not do as well for highly irregular problems.
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5. Portability Platforms and Heterogeneous Environments

Portability platforms are message passing environments developed by non-
vendors, with a view towards using the same environment on several different
MPP architectures. Heterogeneous computing refers to all situations where two or
more different computers cooperate on a task. Heterogeneous computing has
become increasingly important due to the need to tie together disparate resources.
Because portability platforms run on several architectures, they automatically tend
to be well suited to heterogeneous computing as well. For this reason we treat
portability platforms and heterogeneous computing environments together in this
section.

5.1. RPROC

The RPROC system, developed by McBryan in 1982 [15,16], anticipated many
features of current heterogeneous message passing systems - particularly
heterogeneous use, active messages, mixed data packets and automatic data
conversion. The system was designed to interconnect computers which had
different operating systems, a common problem at that time. Furthermore because
important systems (such as CRAY) did not support TCP/IP, it was designed to
assume only the most minimal communication facilities.

The only assumption in RPROC was that an unreliable file transfer
mechanism was available between interconnected systems. All RPROC messages
-were delivered as a pair of transferred files. The first file delivered the message,
while the second file, called a signal file, signaled that the message file was complete.
Thus even if the file transfer failed half-way through, the receiving program would
not assume the message was complete until it saw the signal file. These file transfer
features were invisible to the user and indeed could be replaced by a different
message transfer protocol (such as TCP/IP) if desired. Typical methods used for file
transfer included rcp, ftp, and decnet.

RPROC messages were packed in a fashion similar to that proposed for MPL
Packing of messages was essential because of the overhead of file access. Messages
consisted of a header followed by one or more arrays of data, each preceded by a
count. The header provided information on the source of data, and in particular the
machine type. Message creation, message packing and message transmission were
separate logical operations. Having created a message header, it could be packed
with many data items in succession by calls to user-defined packing routines.
Having completed a buffer, the message was then sent to the destination. On the
receiving end, a matching receive routine located and accepted the message, and
called a user supplied routine to decode it. Several pairs of compatible send/receive
routines were available. For example, in some cases the send did nothing, whereas
the receive fetched the message.

-26-



For packing messages, a set of routines was supplied that read and write arrays
of each of the basic datatvpes. These routines utilized the header data to determine
if data conversion was required, and if so each data item was automatically
converted to the correct form for the local machine while being read. The
conversion was not always done on the receiving machine, but instead the decision
on whether to convert on send or receive was based on machine performance. For
example, when communicating from a SUN or VAX to a CRAY, the conversions
were always performed on the CRAY, using highly efficient vectorized code, see [16]
for examples. As a result data conversion was a negligible part of communication
cost to CRAY or other fast machines. For debugging purposes, an ascii format (i.e.
formatted) data transfer was available in addition to the binary transfer mode.

RPROC messages were actually active messages. Each message specified in its
header a routine to be executed on the receiving process. On receipt, the routine was
called with the associated incoming data as arguments. RPROC was asynchronous
and could be either blocking or non-blocking, allowing extensive opportunities for
overlap of communication and computation.

RPROC ran on over 10 architectures. It was used extensively at many sites to
build heterogeneous applications, and also as an effective way to harness otherwise
inaccessible resources. For example it was used at several sites to allow FPS Array
Processors attached to VAX or IBM computers to be accessed from UNIX machines.
It was also used to allow a single SUN workstation to harness three CRAY
computers at Los Alamos National Laboratory. A 200,000 line C program running
on the SUN performed all its compute-intensive operations in parallel on the
CRAY machines, at a time when CRAY C compilers did not yet exist. Finally it was
used in an early (1983) long-distance experiment in which computers in New York
and Los Alamos cooperated on the same CFD computation.

5.2. P4 Macros

The P4 system developed at Argonne National Laboratory [17,18] was the
earliest attempt to develop a portability platform. The original system, known as
MonMacs, was a set of M4 preprocessor monitor macros for the HEP shared memory
MPP. Later developments added support for other shared memory systems, added
message passing and finally support for mixed systems such as loosely coupled
shared memory clusters. The system has spun off several other well-known
systems as by products, including the PARMACS system from GMD, an object-
oriented C++ version for the Sequent and the Argonne TCGMSG message passing
system.

P4 is unique in its comprehensive treatment of both shared and distributed
memory systems. It is also extremely efficient, because it avoids introducing
function call overheads through the use of macros (a critical issue on shared
memory systems). P4 provides built-in facilities for process generation using a
"procgroup” file. One notable restriction is that P4 message passing is entirely
blocking.
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5.3. PARMACS

PARMACS is a macro based message passing system developed initially from
the P4 macros [19]. Execution starts with a single host process which can spawn node
processes using the remote_create() macro which reads a machine dependent input
file that specifies the programs to run on nodes, and the pid to assign to each.
PARMACS supports both synchronous and asynchronous send routines. In the
synchronous case, the sender is suspended until the receiver has completely
received the message. Messages carry an integer type parameter and may be received
by process id of the sender and/or type. Standard forms of message probe and
collective communication are also supported.

PARMACS supports heterogeneous computing and the msg_format macro
is provided for use before a send to specify the contents of a buffer. This
information is used on the receiving end to automatically convert the data as
needed. A buffer can contain any number of arrays of arbitrary lengths of seven
different data types ranging from 2-byte integers to double precision complex.

One of the most interesting features of PARMACS is the extensive support
for application topologies. The torus macro maps rings and process grids of 2 or 3
dimensions, while the graph macro maps arbitrary process configurations defined by
a graph. The torus macro actually creates the input file for the remote_create macro.
This allows the topological mapping to be optimized to the hardware. Special
macros are then provided so that processes can locate their position in grid or graph
coordinates. Macros are also supplied to map between tori of different sizes and
dimensions, the latter case allowing one to switch to planes in a 3D torus for
example. PARMACS has strongly influenced the topological aspects provided for in
MPL

5.4. EXPRESS

The EXPRESS system grew directly from the Crystalline Operating System
developed at Caltech [2,20]. In fact EXPRESS is a product of the Parasoft company
which is a Caltech spin-off. Initially Parasoft was oriented to implementing Express
on a range of architectures and attempting to get highest performance from each. It
was quite successful, often reducing message latency by factors of four or more.

More recently, Parasoft has emphasized useability and attempted to hide
many of the details inherent in EXPRESS. This led to the development of mapping
and communication libraries for rings, grids, tori and so on, each optimized to a
specific hardware platform. EXPRESS has also begun to tackle the problem of
performing parallel I/O as well as dynamic load balancing [20]. These latter two are
issues that are almost universally ignored by message passing systems, including
MPL.

-28 -



5.5. PVM

PVM - Parallel Virtual Machine - represents an extremely successful example
of a message passing environment for heterogeneous computing. PVM, developed
at Oak Ridge National Laboratory, uses a simple send/receive library to control the
interaction of an arbitrary number of possibly remote computers [21]. Early versions
of PVM used TCP/IP sockets to implement all communication, but recent versions
also provide more efficient implementations for use within an MPP.
Conseqwuently PVM has evolved to become a portability platform. In fact it is
reasonable to guess that PVM is the most widely used of all message passing
environments because of its generality and its applicability to networks of
workstations. Because the PVM library routines are so similar to others we have
seen above, we refer here to the detailed paper describing the system [21].

PVM differs from most message passing systems by supporting dynamic
creation of processes. Because of the intended heterogeneity, PVM uses strongly
typed constructs for buffering. The system is remarkably small, ignoring features
such as collective communication or process topologies found in other systems.
However this simplicity of design is actually a key to the current success of PVM.
PVM supplies routines to register a collection of cooperating processes, to initiate
and terminate tasks, to synchronize with other PVM tasks and to obtain
configuration information. Synchronization is accomplished using either barriers
or signals.

Blocking and non-blocking asynchronous sends and a non-blocking receive
are supported between tasks. Messages can be selected by source and/or tag.
Dynamic process groups are supported, and broadcasts and barriers use the group
name as a qualifier. A form of context switching is supported that allows libraries to
safely interact with applications without danger of message interference. PVM v3
allows native MPP message passing calls to be used to implement PVM
communication. PVM latency is typically of order milliseconds, but with the new
native messaging implementations, substantial improvement can be expected.

5.6. Zipcode

Zipcode is another portability platform that has been used effectively as an
experimental laboratory for message passing [22]. During its development many
new concepts have been tested, and the result has been a considerable influence on
MPI design. Zipcode made a special effort to tackle the problem of providing a
development environment for parallel libraries. Standard message passing systems
are not adequate in this regard because of the danger of confusion between internal
library messages and user messages. For example there is no mechanism to restrict
message types that a user can employ. Indeed by using a wildcard a user can
potentially intercept any message in most systems, effectively introducing errors or
deadlock in an associated library.
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Zipcode overcame the difficulties of other systems by providing a safe
communication space for libraries, and by providing collective operations to operate
on only a subset of all processes. Zipcode introduced three concepts to provide for
these features. Process Groups define ordered sets of processes, and within process
groups, process names are determined relative to rank in the group. Similarly
groups are used to define collective communications. Zipcode groups are static.
Contexts provide the ability to separate universes of messages. Contexts can be
thought of as a second system-supplied message tag. Zipcode does not allow
communication between different contexts. Mailers bind process groups and
contexts together to form a safe communication space within a group. Zipcode also
provides for concepts of process group topology by allowing for different forms of
message selection - for example, mail can be selected by source using grid
coordinates in 1, 2 or 3 dimensional grids. Zipcode influence on the design of MPI is
particularly apparent in the area of process groups and contexts.

5.7. LINDA

Linda [23] is a communication system that is in a different category from the
other message passing systems we have discussed above. Linda is an associative,
virtual shared memory system. The associative memory is called Tuple Space.
Linda's operations applied to Tuple Space provide the process management,
synchronization, and communication functionality required for MIMD
programming. Data objects are known as tuples and Linda basically provides four
operations that operate on tuples: - out, eval, in, rd.. Here out generates a tuple
serially, eval generates a tuple asynchronously (used to create tuples in parallel), rd
reads a tuple and in withdraws a tuple destructively. The in operator provides a
template for matching tuples in tuple space. If a match occurs then the tuple is
withdrawn, effecting communication.

The most interesting versions of Linda - C-Linda and Fortran-Linda - are
actually language extensions to standard C and Fortran. These allow shared
memory programs to be written in a very modest extension of a standard sequential
language, yet run on systems that actually have only a distributed memory. All of
the required message passing is then generated automatically by the Linda
translator.

Linda is best suited to those problems that involve many processes per node,
ill-defined communication, extensive asynchrony and global communication.
Surprisingly, recent work at Yale [24] shows that Linda can be fairly competitive with
standard message passing systems even for typical numerical applications.

5.8. MPI
MPI is a new message passing standard that has evolved from a series of

meetings held between November 1992 and January 1994 by the MPI Committee [25].
‘The committee consists of members from about 40 institutions and includes almost
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all of the MPP vendors, as well as universities and government laboratories
worldwide that are involved in parallel computing.

The MPI standard is intended to be comprehensive enough to encompass the
major features of all of the vendor systems, while at the same time being efficient
enough to allow vendors to move to native MPI implementations on their
platform as an eventual replacement for their current systems. MPI draws on
features represented in all of the other systems described above. However it is not
necessarily inclusive - some features have been omitted where they were felt to be
inefficient or inappropriate.

MPT generalizes the concept of message buffer by allowing elementary data
types, contiguous arrays, strided blocks, indexed arrays of blocks and general
structures. Datatypes are constructed recursively. MPI generalizes the tag or type
field by introducing a second context field which is system allocated (and for which
wildcards are not allowed) to define families of messages. MPI provides groups of
processes, as well as group management routines. All communication occurs
within groups. Groups and contexts are combined in the concept of a
communicator. The source/destination in send/receive operations is the rank in
the communication group. Finally MPI supports application-oriented process
topologies, and has built-in support for grids and graphs. MPI provides no
mechanisms for process management, remote memory transfers, active messages,
threads or virtual shared memory. However MPI has tried to remain compatible,
for example by being thread safe.

-31-



References

—

. M. Flynn, "Some Computer Organizations and Their Effectiveness”, IEEE
Transaction on Computer C-21 pp 948-60.

2. A. Kolawa, B. Zimmerman, “CrOS III Manual”, Caltech C3P-253, 1986.
3. J. Seizovic, "The Reactive Kernel”, Caltech CS-TR-88-10, Oct. 1988.

4. P. Pierce, "The NX/2 Operating System”, Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, January 1988.

|9)]

. P. Pierce, "The NX Message Passing Interface”, later in this volume.

. M. Schmidt-Voigt, “Efficient Parallel Communication with the nCUBE 25
Processor”, later in this volume.

7. V. Bala, J. Bruck, R. Bryant, R. Cypher, P. de Jong, P. Elustondo, D. Frye, A. Ho, C.-
T. Ho, G. Irwin, S. Kipnis, R. Lawrence, M. Snir, "The IBM External User
Interface for Scalable Parallel Systems”, later in this volume.

(o)}

09)

. E. Barton, ]J. Cownie, M. McLaren, "Message Passing on the Meiko CS-2”, later in
this proceedings.

9. K. Solchenbach, U. Trottenberg, "SUPRENUM - System Essentials and Grid
Applications”, Parallel Computing, 7, North Holland, 1988.

10. Thinking Machines Corporation, Connection Machine CM-5 Technical
Summary. Nov 1993.

11. Thinking Machines Corporation, CMMD Reference Manual V 3.0, May 1993.

12. L. Tucker and A. Mainwaring, "CMMD: Active Messages on the CM-5", later in
this volume.

13. T. Eicken, D. Culler, S. Goldstein and K. Schauser “Active messages; A
mechanism for Integrated Communication and Computation” In Proceedings

of the Nineteenth International Symposium on Computer Architecture.
ACM Press, May 1992.

14. O. McBryan, “Software Issues at the User Interface,” in Frontiers of
Supercomputing II: A National Reassessment, ed. W.L. Thompson,
University of Colorado CS Dept. Tech Report CU-CS-527-91 and MIT Press,

1994, to appear.
15. O. McBryan, Los Alamos National Laboratory Annual Report, 1983.

16. O. McBryan, “Using Supercomputers as Attached Processors”, in New
Computing Environments: Microcomputers in Large-Scale Scientific
Computing, ed. A. Wouk, SIAM, Philadelphia, 1987.

-32-



17. R. Butler and E. Lusk, "User’s Guide to the P4 Programming System”, Technical
Report TM-ANL-92/17, Argonne National Laboratory, 1992.

18. R.M. Butler, E.L. Lusk, "Monitors, Messages, and Clusters: the p4 Parallel
Programming System”, later in this volume.

19. R. Calkin, R. Hempel, H.-C. Hoppe, P. Wypior, "Portable Programming with the
PARMACS Message-Passing Library”, later in this volume.

20. J. Flower, A. Kolawa, "Express is not just a message passing system”, later in this
volume.

21. V.S. Sunderam, G.A. Geist, J. Dongarra, R. Manchek, "The PVM Concurrent
Computing System: Evolution, Experiences and Trends”, later in this
volume.

22. A. Skjellum, S.G. Smith, N.E. Doss, A.P. Leung, M. Morari, "The Design and
Evolution of Zipcode”, later in this volume. ;

23. N. Carriero, D. Gelertner, T. Mattson, A. Sherman, "The Linda alternative to
message-passing systems”, later in this volume.

24. C. Douglas, T. Mattson, M. Schultz, “Paralle]l Programming Systems for
Workstation Clusters”, Yale CS Dept Research Report YALEU/DCS/TR-975,
Aug 1993.

25. D. Walker, "The design of a standard message passing interface for distributed
‘memory concurrent computers”, later in this volume.

-33-






