Toward Metrics for Process Validation
Jonathan E. Cook and Alexander L. Wolf

Department of Computer Science
University of Colorado
Boulder, CO 80309 USA

{jcook,alw }@cs.colorado.edu

University of Colorado
Department of Computer Science
Technical Report CU-CS-710-94 March 1994

A version of this report to appear in
The Proceedings of the Third International Conference
on the Software Process (ICSP3), October 1994

© 1994 Jonathan E. Cook and Alexander L. Wolf

ABSTRACT

To a great extent, the usefulness of a formal model of a software process lies in its ability
to accurately predict the behavior of the executing process. Similarly, the usefulness of an
executing process lies largely in its ability to fulfill the requirements embodied in a formal
model of the process. When process models and process executions diverge, something
significant is happening. We are developing techniques for uncovering discrepancies
between models and executions under the rubric of process validation. Further, we are
developing metrics for process validation that give engineers a feel for the severity of the
discrepancy. We view the metrics presented here as a first step toward a suite of useful
metrics for process validation.

This work was supported in part by the National Science Foundation under grant CCR-93-02739.

1 Introduction

Over the past several years, software process researchers have demonstrated the utility of formal
process models. Their advantages are numerous; a formal model of a process can serve as a
documentation aid, as a basis for automating portions of the process, and as a framework in which
to perform deductive analyses.

Yet, as useful as these models may be, a common complaint raised by practitioners is that a
formal model of a process often does not correspond to what is “really going on” in the process.
This could be true because it is difficult to construct an accurate model of a complex process or
because the process can change after the model is constructed. In either case, without confidence
in its accuracy, practitioners are loath to invest effort in defining the model or to make critical
decisions based on the model.

Software process researchers have historically attacked this problem through prevention; they
make the formal model be the process. In other words, the formal model is used to enforce the
process execution and, therefore, the model and process are necessarily in sync. Enforcement is
typically done by making the model executable and embedding that execution within the automated
software engineering environment used by the project. This approach, however, suffers from a
fundamental flaw. In particular, it assumes that virtually the entire process is executed within
the context of the automated environment. In fact, critical aspects of the process occur off the
computer and, therefore, not under the watchful eye of the environment [18, 20, 21]. That being
the case, there is no effective way to enforce the process using this approach nor to guarantee the
mutual consistency of a process model and a process execution.

Even if one could completely enforce a process, there still remains the issue of managing change
in a process, which might lead to a discrepancy between the process model and the process exe-
cution. There has, in fact, been considerable recent work that addresses process evolution [2, 13].
Commensurate with the historical approach mentioned above, that work is concerned more with
the problem of effecting changes to the process model used for automation in a software engineering
environment, than it is with the problem of uncovering inconsistencies between the model and the
execution.

Our goal is to develop techniques for detecting and characterizing differences between a formal
model of a process and the actual execution of the process. We refer to the detection and charac-
terization of differences as process wvalidation. Process validation serves several purposes. For one,
confidence in a formal process model is raised when it can be shown that the process execution is
consistent with the behavior predicted by the model. This, in turn, raises confidence in the results
of any analyses performed on the formal model. For another, process validation can be used as a
process enforcement tool, uncovering differences between intended behavior and actual behavior.
It is potentially a more flexible enforcement tool than others proposed, since it can accommodate
the unavoidable, yet necessary, local perturbations in a process. In fact, the techniques that we
are developing will provide tunable sensitivities to allow for a range of strictness in enforcement.
Finally, process validation can reveal where a process may need to actually evolve to accommodate
new project requirements and activities.

Note that process validation itself should be neutral with respect to the correctness of the model
(“Does our model reflect what we actually do?’) and to the correctness of the execution (“Do we
follow our model?”). Instead, the software process engineer must be given ultimate responsibility
to make the appropriate determination based on the particular inconsistency uncovered.

In this paper we report on some initial techniques that we have developed for process valida-
tion. The techniques borrow from other areas of computer science, including distributed debugging,
concurrency analysis, and especially pattern recognition. The techniques go further than simply
detecting an inconsistency; they provide a measure of that inconsistency. We believe that develop-
ing metrics for process validation is critical because the highly dynamic and exceptional nature of
software processes means that simply yes/no answers carry too little information about the signifi-
cance of any given inconsistency. Managers need to understand where an inconsistency occurs and
how severe might be that inconsistency before taking any corrective action. We view the metrics
presented here as a first step toward a suite of useful metrics for process validation.

The next section of the paper describes the framework within which the techniques have been
developed. Section 3 introduces the process validation metrics. A portion of the ISPW6/7 exam-
ple [15] is used in Section 4 to demonstrate the application of the metrics to a process. We conclude
in Section 5 with a discussion of related work and future directions.

2 Validation Framework

The framework in which the process validation techniques presented here were developed is
based on a view of processes as a sequence of actions performed by agents, whether human or
automaton, possibly working concurrently. Thus, we are taking a decidedly behavioral view of
processes, primarily because we are interested in the dynamic activity displayed by the processes,
rather than the static roles and responsibilities of the agents or the static relationships among
components of the products. Of course, this does not mean that the static aspects of a process are
irrelevant to validation. It is simply that the metrics we have chosen to first investigate are those
having to do with behavior rather than structure.

Following Wolf and Rosenblum [20], we use an event-based model of process actions, where an
event is used to characterize the dynamic behavior of a process in terms of identifiable, instantaneous
actions such as invoking a development tool or deciding upon the next activity to be performed. For
purposes of maintaining information about an action, events are typed and can have attributes; one
attribute is the time the event occurred. Because events are instantaneous, an activity spanning
some period of time is represented by the interval between two or more events. For example, a
meeting could be represented by a “begin-meeting” event and “end-meeting” event pair. Similarly,
a module compilation submitted to a batch queue could be represented by the three events “enter
queue”, “begin compilation”, and “end compilation”. The overlapping activities of a process, then,
are represented by a sequence of events, which we refer to as an event stream.

Separate from the process itself are the (formal) model of the process and the ezecution of the
process. The model is a specification of predicted or intended behavior of the process, while the
execution is the actual behavior of the process. In a sense, the process is what the agents think

they are doing, the formal model is a description of what the agents should (or could) be doing,
and the execution is what the agents are really doing.

We make no assumptions about the formalisms used to model processes, other than that they
must have a well-defined behavioral semantics permitting simulation of the specified behavior. By
simulation, we simply mean the ability to generate (pseudo) execution paths through the speci-
fication. Along with this, it must be possible to identify locations in the specification where the
simulation could produce an event of a specified type. We refer to such a location as an event
site. Thus, possible paths through the specification—that is, possible behaviors specified by the
model—can be represented by event streams produced by a simulation.

Several formal models suitable for our analyses have been used to described software processes.
These include models based on state machines (e.g., Statemate [12]), Petri nets (e.g., Slang [3] and
FUNSOFT Nets [11]), and procedural languages (e.g., APPL/A [19]).

Techniques for process validation clearly depend on an ability to collect data about an executing
process, but we do not address this topic here. Fortunately, a variety of methods for collecting
process execution data have been devised. Basili and Weiss describe a method for manual, forms-
based collection of data for use in evaluating and comparing software development methods [4].
Amadeus is a system for automated collection and analysis of process metrics [17]. Wolf and
Rosenblum use a hybrid of manual and automated collection methods [20]. We also do not address
the issue of data integrity; we assume that the data are correct (i.e., the events that are collected
have actually occurred) and consistent (e.g., all “begin” events for an activity have a corresponding
“end” event).

From the previous discussion it should be evident that there are really two universes of event
types. One universe is the set of event types associated with the model of a process, while the other
is the set of event types associated with the execution of the process. Although one would expect a
high degree of overlap between these two sets, in general they are not equivalent. This is depicted
in Figure 1. For example, consider a project that executes a process and performs occasional code
inspections as part of that process. A formal model of that process might not account for such an
activity.

Figure 1 also illustrates another facet of the problem. The set of events about which data
are collected is in general a subset of the set of events generated by the process execution. This
means that data about some events, including some events called for in the model, may not get
collected. There are several reasons why this might occur, but two obvious reasons are that data
about a particular event type might be considered inconsequential or the data might be considered
too expensive to collect. For instance, events that occur off the computer are likely to be more
expensive to collect than events that occur on the computer.

2.1 Event Visibility

Cost is probably the overriding consideration when deciding which types of events to collect.
Thus, one would like to have some sort of justification for collecting or ignoring particular types
of events. We can think of the collected event types as acting like a window onto the execution

Execution Events

Collected Events
Model Events

Figure 1: Venn Diagram of Model Event Types, Execution Event Types,
and Collected Event Types.

event types, limiting what can be seen of the process execution. The question then becomes, what
portion of the model event type set overlaps the window? The answer gives us a characterization
of the wvisibility of the execution from the perspective of the model. A low visibility might serve
as justification for collecting additional types of events, while too high a visibility might indicate
wasted effort collecting irrelevant data.

Let C be the set of collected event types and M be the set of event types associated with the
model. Then a simple visibility metric is given by the following ratio.

|CN M|
| M|

Event visibility is thus described by the fraction of model event types that are collected. A value
of 1.0 indicates maximal visibility, while a value of 0 indicates no visibility. A somewhat more
refined visibility metric normalizes against the number of event sites in a model. It is given by the
following ratio
C
i S(e)
M
EH S(m;)
where ¢ € C, m € M, and S(t) is a function that returns the number of event sites in a model for
an event type t. The numerator is the total number of event sites for all collected event types that
are modeled, while the denominator is the total number of all event sites in the model. This second
metric effectively weights the calculation of visibility toward the types of events that appear most
often in the model.
Wasted collection effort—that is, effort spent collecting events that are not visible in the model—
is also an important thing to measure. Using the style of the first visibility metric we can define

the following metric.
|C—CnNM|
IC|
This metric is a measure of the fraction of collected events that are only found in the set of execution
events and not in the set of model events (see Figure 1). A value of 1.0 indicates that all of the
event types being collected are invisible with respect to the model, while a value of 0 indicates that
all collected event types are represented in the model.

Notice that these metrics take a static perspective on event visibility. One could go further and
devise metrics that normalize against the number of actual events produced dynamically during a
process execution. However, it is not clear that rather complicated, dynamic metrics would be any
more useful than the simpler, static ones. In fact, experience is needed with all the metrics before
definitive statements about their usefulness can be made.

3 Validation Metrics

In this section we introduce three metrics for determining the correspondence between a formal
model of a process and an execution of the process. The metrics are successively more refined and,
not surprisingly, successively more complex. They share the characteristic that they compare the
event stream produced by a process execution to an event stream representing a possible behavior
predicted by the process model. The issue of how the second of these event streams is constructed
is an important one and is discussed in Section 3.4. Two of the methods require a “base” stream
for comparison; arbitrarily we choose the execution event stream as the base. We defer detailed
examples of applying the metrics to Section 4.

3.1 Recognition Metric

The first metric is a very straightforward one that has just two values, true and false. The value
is true if the event streams exactly match and is false otherwise. We refer to this metric as the
recognition (REC) metric because we imagine an implementation of the measurement that operates
as a simple recognition engine in the style of a grammar checker, one that terminates by returning
the value false at the first error or by completing the recognition and returning the value true. An
implementation of the measurement can also easily point out the event at which the two streams
diverge. For example, consider the two event streams shown in Figure 2, where the lettered boxes
indicate events. The recognition metric applied to the two streams would result in the value false
because they diverge after the third event.

3.2 Simple String Distance Metric

For the second metric, we view event streams as strings, where event types appear as distinct
tokens in the strings. We can then apply a well-known method for calculating the distance between
strings [16] and use distance as the metric of difference between the process model and process
execution.

Stream 1 Al B | C

C/A B|C|E|E
A B D E|E|E

Figure 2: Two Event Streams and One Possible Correspondence of Events.

Stream 2 Al B C

The basic Levenshtein distance between two strings is measured by counting the minimal number
of token insertions, deletions, and substitutions needed to transform one string into the other. This
metric is called a distance measure because it obeys the properties of distances: given three strings
t, u, and v, and defining d(u, v) to be the distance between u and v,

e d(u,v) > 0 (distance is non-negative)
e d(u,v) =0iffu=v
e d(t,u) +d(u,v) > d(t,v) (triangle inequality)

These properties give an assurance that the measurements will be both consistent and accurate,
in the sense that a larger distance does in fact mean that the differences between the strings are
greater.

Figure 2 shows two event streams, represented as strings, and one possible correspondence
between their events. To transform stream 1 into stream 2, we could delete a C, substitute a D
for a C, and insert an E, a D, and another E, resulting in a distance of 5. This happens to be the
minimal transformation required.

To strengthen the metric, weights can be assigned to each of the operation types (insertion,
deletion, and substitution), giving a relative cost to each operation. Then, instead of minimizing
the number of operations to calculate the distance, the goal would be to minimize the total cost
of the operations. Given two strings, one of length n and the other of length m, the minimal total
cost of operations can be computed in O(nm) time using a well-known dynamic program [16].

In some applications of this method, such as RNA sequencing or text recognition, token sub-
stitution in the string distance metric makes sense. For process validation, however, it is not clear
that a substituted event should contribute in any way to the goodness of the correspondence. To
account for this, we can set the weight of substitution to be greater than the sum of the insertion
and deletion weights, so that substitution is never applied, since it would then be less costly to apply
a deletion and insertion pair at the potential substitution point. We will not consider substitution
further in this paper.

The simple string distance (SSD) metric is then formulated as the following equation

~ WiNr+WpNp

D
Wmaz LE

where Wi and Wp are the weights for the insertion and deletion operations, Ny and Np are the
number of insertion and deletion operations performed on the execution event stream, Wiy,,, is the
maximum of Wy and Wp, and Lg is the length of the execution event stream. The divisor in the
equation normalizes the value to the size of the input and the maximum weight used.

The weights W and Wp act as tuning parameters for the metric and can be used to highlight
different properties of the process. For example, one could argue that insertions into the execution
event stream' are more costly than deletions, since they inherently represent missed activities in the
process execution. Conversely, deletions from the execution event stream in some sense represent
extra work that was performed (from the perspective of what is predicted by the formal model)
and extra work probably does not affect the correctness of the process execution. Thus, we can
set Wi > Wp to reflect this property. Of course, it would also be useful to highlight the relative
importance of different types of events. This can be easily done by varying the weights according
to the type of event involved in an operation, although we do not demonstrate that in this paper.

The values of the metric are, for all intents and purposes, bounded between 0 and 1.0; although
technically a value greater than 1.0 could appear (e.g., if all events are deleted and some others are
inserted), this is highly unlikely. Thus, one might pick the standard statistical correlation rules of
thumb [10] and say that any measurement less than 0.2 is a strong correspondence, less than 0.5
is a moderate correspondence, and greater than 0.5 is a weak correspondence. (Actually, these are
inversions of the standard statistical rules of thumb, but their effect is the same.)

3.3 Non-linear String Distance Metric

A characteristic of the SSD metric is that it is focused narrowly on the cost of individual
operations. The non-linear string distance (NSD) metric is an enhancement of the SSD metric
based on the notion of a sequence of insertions or a sequence of deletions. Such sequences can
represent a more significant discrepancy between the model and the execution than can be indicated
by a simple count of insertions and deletions.

A sequence of insertions or a sequence of deletions is called a block. By sequence we mean
an unbroken series of like transformation operations. In Figure 2, for example, the consecutive D
and E insertions required at the end of the streams is an insertion block of length 2. All other
blocks in the figure are of length 1.

The NSD metric uses block lengths to calculate values. The distance equation then becomes

_ Z;V:’Bl Wif(b;) + Y00 W f (b)

D
Wmaz LE

'Recall that we chose the execution event stream to be the base for comparison and transformation. The same
arguments would apply if we had chosen the model event stream, but insertions and deletions would be interchanged.

where NB and NE are the numbers of insert and deletion blocks, b is a particular block length,
f(b) is a cost function applied to a block length b, and all other terms are the same as in the SSD
metric. Note that the weights W; and Wp could be pulled into the cost function f, but we have
left them outside to more easily compare the NSD and SSD metric equations.

The definition of the cost function f is an additional tuning parameter in the NSD metric. A
rather natural function to use would be an exponential one, such as

f(0) = e* "V

where k is a constant and the actual tuning parameter. This equation yields 1.0 for a block length
of 1, so if all blocks are kept to a length of 1, then the NSD equation reduces to the SSD equation,
as expected. The cost function yields exponentially increasing values for blocks greater than 1.
Notice that for ¥ < 0.7 and a block length of 2, the function would cause the distance value to be
less than the corresponding value given by the SSD metric, which is not what we want. For this
reason, we only consider & > 0.7 so that the value produced by the NSD metric is always greater
than the value produced by the SSD metric for blocks of length greater than 1.

An important question to ask about an NSD measure is whether it results from many short
blocks or a few long blocks. We could interpret many short blocks as meaning that there are
mostly localized discrepancies between the model and the execution, whereas a few long blocks
means that there are some major differences. To answer this question, we make two calculations,
one with the tuning parameter k£ small and the other with k large, and view the ratio between
the results as a measure of the relative number of longer or shorter blocks contributing to the
distance measurement. This works because if most of the blocks are small, the difference between
the measurements with the two values of & would also be small.

Unlike the SSD metric, the NSD metric is unbounded on the high end, although bounded by 0
at the low end. Thus, it is harder for us to say what value might represent a good correspondence
between model and execution and what might represent a bad correspondence. We can, however,
derive some values from the rules of thumb we used for the SSD metric (i.e., the 0.2 cutoff for
good correspondence and 0.5 for moderate correspondence). What is needed for the NSD rules of
thumb is a notion of the average block length that could be expected in an event stream with good
correspondence to the model. With this defined as Bg,y, our derived cutoff for good correspondence
for the NSD metric is

0.2¢k(Bavg 1)
Bavg

This takes the SSD good correspondence cutoff of 0.2 and weights it according to the exponential
weight of the average expected block length, taking into account the tuning parameter k. For
example, if one sets Bgyy = 2.5 and k = 1.5, then the cutoff value for good correspondence would
be C = 0.76. This value nicely reduces to the SSD cutoff value for By, = 1. For the moderate
cutoff value, we would use 0.5 in place of 0.2.

3.4 Producing a Process Model Event Stream

A potential difficulty with our validation metrics is that they assume the existence of two event
streams, whereas we really only have one stream (the process execution stream) and a formal model.
Thus, we must derive an event stream from the formal model. However, a formal model of anything
but the most trivial process likely leads to a large, if not infinite, number of such event streams.
Moreover, because we are measuring correspondence, we need to derive a model event stream that
most closely approximates the execution event stream in order to get as accurate a measure as
possible. Of course, this is known to be a hard problem. It requires a search of the state space of a
model, and the state space is in general an exponential explosion of the model size. Therefore, we
may need to use techniques that can reduce this search.

Fortunately, the problem is not quite so bad as it seems. We can use the execution event stream
to guide derivation of the model event stream, thus significantly cutting down on the required search.
In particular, we can traverse the execution event stream and incrementally derive events for the
model event stream by consulting the model. There are elegant methods that, given a model, a
current simulation state of that model, and a desired event, can answer the question “Can this event
be produced in the future?’. One such method is Constrained Expressions [1]. If the answer is “yes”,
then, in the case of Constrained Expressions, heuristics are used to produce a plausible behavior
that leads to the event. This behavior constitutes the next sequence of model events. Constrained
Expressions is just one example of the kinds of techniques available to generate a complete model
event stream.

4 Example Use of the Metrics

To illustrate the various metrics introduced above, we use the Test Unit task from the ISPW 6/7
process problem [15]. This is a very simple and small process fragment, but it should give the reader
a feeling for how the metrics are applied to a process. In this task, a developer and a tester are
involved in testing a module that has undergone some change. They are to retrieve the test suite
from configuration control, build the test executable, run all the specified tests, and make sure that
at least a 95% code coverage has been achieved by the tests. If a failure occurs, either because
the new module has an error or the test suite needs updating, then they are to notify the module
developers or test developers, as appropriate. On a successful completion of the tests, they are to
store the test results under configuration control and alert the manager to the new status of the
module.

Figure 3 shows a formal Petri net model of this process. Circles denote places and rectangles
denote transitions. Thick rectangles correspond to event sites in the model and are labeled with
the event that is produced at that site. Thin rectangles correspond to (internal) transitions used to
control the model but that are not themselves event sites. To keep the figure simple, we collapse the
begin/end event pairs of an activity into one (pseudo) event type; each event site can be thought
of as a two-transition sequence with the first producing the begin event and the second producing

begin
test-unit

make test
binary

fetch test
package >

ek o

test case

=

exec <mod>-test <n>

test binary
ready

tests done

tcov <mod>-test

coverage
percentage

module

problem test problem al done & ok
mail <developers> | mail <testers> | | mail <manager> |

Figure 3: Petri Net Model of the ISPW 6/7 Test Module Task.

10

Stream # | E1 E» E; E, Es Es E; Es Eq E1o E1 Erz

l-execution | co make exec dif exec diff tcov c¢i mail-m

1-model co make exec diff exec diff tcov ci mail-m

2-execution | co make exec dif exec diff exec tcov mail-t

2-model co make exec diff exec diff exec diff tcov mail-t

3-execution | co make make make exec diff exec diff tcov mail-m

3-model co make exec diff exec diff tcov ci mail-m

4-execution | co make exec diff exec diff exec diff tcov mail-d

4-model co make exec diff exec diff exec diff tcov ci mail-m
H-execution | co make exec diff diff exec diff exec diff mail-m
5-model co make exec diff exec diff exec diff exec diff tcov ci mail-m

Table 1: Example Event Streams.

REC [SSD NSD NSD SSD NSD NSD
Wi=1| Wr=1|Wi=1| Wy=4 | Wi=4 | Wy =4
Wp=1|Wp=1|Wp=1|Wp=1|Wp=1| Wp=1
Stream # | # Ins | # Del k=15 k=3 k=15 k=3
1 0 0 Yes - - - - - -
2 1 0 No 0.11 0.11 0.11 0.11 0.11 0.11
3 1 2 No 0.30 0.55 2.11 0.15 0.21 0.60
4 2 1 No 0.30 0.55 2.11 0.23 0.47 2.03
5 3 0 No 030 0.55 2.11 030 0.55 2.11
| Good Cutoff Values | 020 | 045 | 201 [020 [045 [201 |

Table 2: Example Event Stream Measurements.

the end event. We use familiar Unix command names as the names of event types.?

Table 1 shows five possible pairs of execution and model event streams. Recall that we arbitrarily
chose the execution stream as the base stream for comparison. A blank space in an execution event
stream is a point at which we need to apply an insert operation to that stream in order to transform
it into the model event stream. Similarly, a blank space in the model event stream is a point at
which we need to apply a deletion operation to the execution event stream.

Table 2 shows various validation measurements for the event streams in Table 1. Each row
contains measurements for the correspondingly numbered example event stream. The first two
columns give the raw number of insertions and the raw number of deletions needed to transform

[Pl

2For those unfamiliar with the Unix command names appearing in the figure, “co” and “ci” are the check-out and
check-in commands for a configuration management tool, “make” is a build tool, “exec” stands for the running of
an executable (i.e., a test run, in this example), “tcov” is a test coverage tool, “diff” is a text differencing tool, and
“mail” is an electronic mail tool.

11

the execution event stream into the model event stream. The third column gives the results of the
simple REC metric; only the first pair of streams yields “yes”, since they are identical.

The last six columns of Table 2 give the results of the parameterized string distance calculations.
We vary the relative weights of W; and Wp for both the SSD and NSD metrics, and vary the
exponential constant k for the NSD metric. We present cases where the weights are equal (W; =
Wp = 1) and cases where the insertion cost is weighted heavier (W; = 4Wp) to highlight missed
events in the execution. The exponential constant k for the NSD metric is given values 1.5 and 3
to show the magnitude of change and the unboundedness of the metric. The last row of the figure
shows the cutoff values for the “good” correspondence rules of thumb for each metric; values in
a column that are less than the bottom row fall into what we would call a good correspondence
between the model and the execution event streams. For the NSD metric cut offs, the average
expected block length, By, is taken to be 2.

There are several interesting things to see in the measurements presented in Table 2. The first
observation is the similarity of values for the three columns with W; = Wp = 1; for streams 3,
4, and 5, which all have one block of length 1 and one of length 2 (though in different operation
combinations), these measurements do not differentiate between these errors. On the other hand,
if one looks at the measurements with W; = 4 and Wp = 1 (the last three columns) for event
streams 2 and 3, one can see the effect of weighting insertions heavier; for the SSD metric, the
measurement only changes by 0.04 with the addition of the two deletes (in stream 3), and still
remains well within the good correspondence range for the NSD metrics. For stream 3, the SSD
with Wi = 4 also produces a measurement that is in the good correspondence range, whereas the
SSD with W; = 1 is in the moderate range (0.2-0.5). Since stream 3 has just one insertion, like
stream 2, this weighting better reflects the correspondence of the execution streams than does the
Wi =1 weighting.

For event stream 4, where the insertions have a block of length 2 rather than the deletions as
in stream 3, the last three measurements (with W; =4 and Wp = 1) are significantly greater than
for event stream 3. This shows how the metrics can be tuned to place importance on insertions—
that is, on missed events in the process execution. Event stream 5 also shows this in the last
two measurements; it has all insertions, and the difference in the weighting of insertions shows in
comparison to event streams 3 and 4.

Table 3 demonstrates how event visibility (Section 2.1) can affect the validation measures. The
table shows various visibilities for the third event stream pair of Table 2. As visibility decreases, the
validation measurements deviate more and more from the measurements at the ideal, 100% visibility
level. At 66.7% visibility, which at first would seem to be relatively high, the measurements are
already quite different from the ideal. Of course, the very small size of our example prevents us from
deducing the appropriate visibility percentage cutoff. Yet this example still shows that visibility is
a critical issue. Providing guidelines for using visibility measurements will only come with extensive
experimentation on real processes.

The example presented here illustrates how the metrics we have defined in this paper can be
used to quantify the correspondence between the process execution and the process model. We
have also shown how the parameters of the distance metrics can be used to tune the measurements

12

SSD NSD
Wr =4 Wr=4
Wp=1| Wp=1
Collected Events | Visibility k=1.5
All 100% 0.15 0.21
make, exec, diff,
tcov, ci, mail 88.9% 0.17 0.24
co, make, diff,
ci, mail 77.8% 0.19 0.27
make, exec,
ci, mail 66.7% 0.38 0.53

Table 3: Process Visibility Effects for the Third Event Stream Pair of Table 2.

that result.

5 Conclusion

There has been significant previous work that uses data to characterize processes, but none that
uses the data in a process validation activity. In particular, most previous work has used product
data metrics to guide process changes that refocus effort onto specific problem areas of a project.
Below, we summarize some of this work.

e Chmura et al. [8] and Bhandari et al. [6] try to deduce problems in the process by looking at
defect data in the products.

e Selby et al. [17] take the approach of providing automated support for empirically guided
software development. Their system, Amadeus, can automatically collect measurement data
(currently focused primarily on product data) that can then be used to guide development
efforts.

e Basili and Weiss [4] describe a methodology for selecting metrics and data collection tech-
niques based on the goals that are desired of the measurement activity. Their work also
focuses on using product data, such as code modifications and change classification.

e Kellner [14] shows the usefulness of simulation and “what-if” analyses in forecasting the
schedule and outcome of a specific execution of a process. He uses deterministic and stochas-
tic modeling, along with resource constraints, to derive schedule, work effort, and staffing
estimations. Though there is no attempt to relate this to real data, “what-if” analyses are
powerful tools in their own right.

Some recent efforts have begun to look at process data itself, but still not for the purpose of process
validation.

13

e Bradac et al. [7] describe the beginnings of a process monitoring experiment in which their
goal is to model the process as a queuing network, and use actual data about the time spent
by the actors in specific tasks and states to determine the real parameters (i.e., service times
and probabilities, and branch path probabilities) of the queuing network that can then be
analyzed.

e Wolf and Rosenblum [20] demonstrate how to collect event-based process data and use basic
statistical and visual techniques to find interesting relationships among the data in order to
uncover possible areas of process improvement.

We feel that the work described in this paper effectively complements these other approaches
to process improvement by raising confidence in the correspondence between formal models and
executions of processes.

In using event-based data to compare an execution with a formal model, the most closely
related work to ours is in the area of distributed debugging. Bates [5] uses “event-based behavioral
abstraction” to characterize the behavior of programs. He then attempts to match the event data
to a model based on regular expressions. However, he only marks the points at which the data and
model did not match, not attempting to provide aggregate measures of disparity. Follow-up work
by Cuny et al. [9] attempts to deal with large amounts of event data by providing query mechanisms
for event relationships. They assume that there is some problem somewhere in the event stream
and that one is trying to locate that problem. Our immediate goal is to quantify discrepancies,
with correctness being a separate issue.

In summary, we have proposed and demonstrated several metrics for process validation. These
metrics range from simple exact matching, to a linear distance measure in terms of event insertions
and deletions, and finally to a non-linear distance measure that takes a broader view of event
comparison. We have also developed a notion of event visibility that is intended to inform decisions
about the event data to collect or to ignore, and demonstrated how visibility can affect process
validation metrics.

Our current work is looking at techniques other than string distance for calculating correspon-
dence metrics. We are also exploring the use of event streams for other measurement purposes,
such as efficiency metrics. Besides validation, efficiency metrics are important for determining what
areas of the process might need to be optimized and what areas are not performing up to expected
efficiency levels.

14

1]

[10]

[11]

[12]

REFERENCES

G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, and J.C. Wileden. Automated Analysis of
Concurrent Systems with the Constrained Expression Toolset. IEEE Transactions on Software
Engineering, 17(11):1204-1222, November 1991.

S. Bandinelli, A. Fuggetta, and C. Ghezzi. Software Process Model Evolution in the SPADE
Environement. IEEE Transactions on Software Engineering, 19(12):1128-1144, December
1993.

S. Bandinelli, C. Ghezzi, and A. Morzenti. A Multi-Paradigm Petri Net Based Approach to
Process Description. In Proceedings of the 7th International Software Process Workshop, pages
41-43, October 1991.

V.R. Basili and D.M. Weiss. A Methodology for Collecting Valid Software Engineering Data.
IEEFE Transactions on Software Engineering, SE-10(6):728-738, November 1984.

P. Bates. Debugging Heterogenous Systems Using Event-Based Models of Behavior. In Pro-
ceedings of a Workshop on Parallel and Distributed Debugging, pages 11-22. ACM Press, 1989.

I. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, and R. Chillarege. A Case Study
of Software Process Improvement During Development. IEEE Transactions on Software En-
gineering, 19(12):1157-1170, December 1993.

M.G. Bradac, D.E. Perry, and L.G. Votta. Prototyping a Process Monitoring Experiment.
In Proceedings of the 15th International Conference on Software Engineering, pages 155-165.
IEEE Computer Society, May 1993.

L.J. Chmura, A.F. Norcio, and T.J. Wicinski. Evaluating Software Design Processes by Ana-
lyzing Change Data Over Time. IEEE Transactions on Software Engineering, 16(7):729-739,
July 1990.

J. Cuny, G. Forman, A. Hough, J. Kundu, C. Lin, L. Snyder, and D. Stemple. The Adriane
Debugger: Scalable Application of Event-Based Abstraction. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, pages 85—95. ACM Press, 1993.

J.L. Devore. Probability and Statistics for Engineering and the Sciences. Brooks/Cole, Pacific
Grove, California, 3rd edition, 1991.

V. Gruhn and R. Jegelka. An Evaluation of FUNSOFT Nets. In Proceedings of the Second Fu-
ropean Workshop on Software Process Technology, number 635 in Lecture Notes in Computer
Science, pages 196-214. Springer-Verlag, September 1992.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and A. Shtul-Trauring.
STATEMATE: A Working Environment for the Development of Complex Reactive Systems.

15

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

In Proceedings of the 10th International Conference on Software Engineering, pages 396—406.
TEEE Computer Society, April 1988.

M.L. Jaccheri and R. Conradi. Techniques for Process Model Evolution in EPOS. IEEE
Transactions on Software Engineering, 19(12):1145-1156, December 1993.

M.I. Kellner. Software Process Modeling Support for Management Planning and Control. In
Proceedings of the First International Conference on the Software Process, pages 8-28. IEEE
Computer Society, October 1991.

M.I. Kellner, P.H. Feiler, A. Finkelstein, T. Katayama, L.J. Osterweil, M.H. Penedo, and
H.D. Rombach. Software Process Modeling Example Problem. In Proceedings of the 6th
International Software Process Workshop, pages 19-29, October 1990.

J.B. Kruskal. An Overview of Sequence Comparison. In D. Sankoff and J.B. Kruskal, edi-
tors, Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, pages 1-44. Addison-Wesley, Reading, Massachusetts, 1983.

R.W. Selby, A.A. Porter, D.C. Schmidt, and J. Berney. Metric-Driven Analysis and Feedback
Systems for Enabling Empirically Guided Software Development. In Proceedings of the 13th

International Conference on Software Engineering, pages 288-298. IEEE Computer Society,
May 1991.

S.M. Sutton, Jr. Accommodating Manual Activities in Automated Process Programs. In
Proceedings of the 7th International Software Process Workshop, October 1991.

S.M. Sutton, Jr., D. Heimbigner, and L.J. Osterweil. Language Constructs for Managing
Change in Process-Centered Environments. In SIGSOFT ’90: Proceedings of the Fourth Sym-
posium on Software Development Environments, pages 206-217. ACM SIGSOFT, December
1990.

A.L. Wolf and D.S. Rosenblum. A Study in Software Process Data Capture and Analysis. In
Proceedings of the Second International Conference on the Software Process, pages 115-124.
IEEE Computer Society, February 1993.

A.L. Wolf and D.S. Rosenblum. Process-centered Environments (Only) Support Environment-
centered Processes. In Proceedings of the 8th International Software Process Workshop, pages
148-149, March 1993.

16

