Formal Specification and Analysis of Software Architectures
Using the Chemical Abstract Machine Model

Paola Inverardi Alexander L. Wolf
Istituto di Elab. dell Informazione Department of Computer Science
Cousiglio Nazionale dell Ricerche University of Colorado
[-56126 Pisa, Italy Boulder, CO 80309 USA
(inverard@iei.pi.cnr.it) (alw@cs.colorado.edu)

University of Colorado
Department of Computer Science
Technical Report CU-CS-709-94 March 1994
(Revised September 1994)

A version of this report to appear in
The IEEE Transactions on Software Engineering

© 1994 Paola Inverardi and Alexander L. Wolf

ABSTRACT

We are exploring a novel approach to formally specifying and analyzing software ar-
chitectures that is based on viewing software systems as chemicals whose reactions are
controlled by explicitly stated rules. This powerful metaphor was devised in the domain
of theoretical computer science by Bandtre and Le Métayer and then reformulated as
the Chemical Abstract Machine, or CHAM, by Berry and Boudol. The CHAM formal-
ism provides a framework for developing operational specifications that does not bias
the described system toward any particular computational model and that encourages
the construction and use of modular specifications at different levels of detail. We illus-
trate the use of the CHAM for architectural description and analysis by applying it to
two different architectures for a simple, but familiar, software system, the multi-phase
compiler.

This work was supported in part by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo.

1 Introduction

Researchers and practitioners have begun to recognize the importance of studying the architec-
tures of large and complex software systems. There is a wide variety of reasons for concentrating
effort on this particular area of software engineering, including improved education, increased reuse,
reduced development cost, and enhanced quality. Yet before we can begin to attack even one of
these goals, software architectures must become describable in some way. And while it is generally
agreed that this is a critical element in the study of software architectures, it is still not clear how
they can best be consistently and rigorously specified.

A complete specification of a software architecture will draw simultaneously upon many dif-
ferent descriptive techniques, from pictures to text to mathematical formulae, each addressing a
specific aspect of the problem. In this paper we develop a novel approach to the formal specification
of software architectures. The motivations for using a formal framework here are the same as those
for any use of a formal technique, namely semantic precision, uniform description, common basis
for formal comparison, susceptibility to formal analysis, and the like. But in choosing a suitable
semantic framework for software architecture specification, we are faced with some especially diffi-
cult challenges. On the one hand, we need a general and flexible formalism in which it is possible to
describe very different kinds of architectures within the same application domain, since we will want
to compare the properties of those architectures as part of the process of selecting among them.
On the other hand, the description has to be understandable to the widely varying consumers of
a specification, who range from implementors to maintainers to purchasers to perhaps even users
of the software. This is a quite different and more difficult task than is the task of defining a
specification formalism that can be more narrowly targeted or for which we can make simplifying
assumptions about the background and training of consumers of the specification.

This aspect of software architecture specification suggests to us that an operational semantic
formalism is the most appropriate choice [11, 15], in the belief that operational semantics can be
more easily understood by a broader range of practitioners than other, abstract mathematical for-
malisms. Operational semantics reflects the familiar idea of specifying the computational behavior
of a system in terms of the behavior of a more abstract and precisely defined system.

The use of operational semantics in software architecture specification, however, can have a
major drawback. Since the behavior of the system is described in terms of the behavior of another
system, it can easily happen that the semantic description, and hence the reasoning conducted
on that description, can become biased by the operational framework. Consider, for example,
the case of an operational description given in terms of an abstract sequential machine. In this
case, the description of a sequential architecture can be straightforward, but the description of a
parallel architecture will amount to defining an implementation of parallelism in the limiting terms
of sequential behavior. The same is true the other way around if we choose an abstract parallel
machine as our semantic basis. As another example, consider the choice between a functional and
a state-based abstract machine. The ideal approach is to use an operational semantic formalism
that is based on a more flexible, relatively neutral computational model.

To that end, we are exploring the suitability of the so-called Chemical Abstract Machine

(CHAM) model for architectural description and analysis. This recent model was proposed by
Berry and Boudol in the domain of theoretical computer science [5]. Under the CHAM approach,
the abstract machine is fashioned after chemicals and chemical reactions [3]. Metaphorically, the
states of the machine are chemical solutions, where floating molecules can only interact according to
a stated set of reaction rules. The CHAM formalism is very powerful, having already been used to
describe several different and important computational paradigms. It encourages the construction
of modular specifications that can be given at various levels of detail. This is particularly impor-
tant in the area of software architecture, where the interesting architectures will tend to be large,
complex, and assembled from existing components. Finally, the CHAM model is based on, and can
profitably make use of, the well-established theoretic foundation of term rewriting systems [10].

The remainder of this paper is organized as follows. In the next section we review a model of
software architecture description introduced by Perry and Wolf [14]. Following that, we review the
general CHAM approach to formal specification. We then illustrate how the CHAM approach can
be used in architectural specification by formalizing the description of certain critical aspects of
two different architectures for a simple, but familiar, software system, the multi-phase compiler. In
Section 5 we demonstrate the utility of CHAM-based descriptions in analyzing software architec-
tures. We provide some concluding thoughts about the CHAM model and a discussion of related
work in Section 6.

2 A Model of Architectural Description

Motivated by the need to find ways of describing software architectures, Perry and Wolf de-
veloped what amounts to a model of architectural description [14]. The purpose of the model is
to create a framework within which the designs of proposed specification techniques can be both
driven and evaluated. This section reviews the model and provides an example based on one first
introduced by Perry and Wolf [14]; we use that example, a multi-phase compiler, in sections 4 and 5
to illustrate our use of the CHAM approach in formally specifying analyzing software architectures.

By analogy to civil architecture, a description of a software architecture is a triple consisting of
the sets elements, form, and rationale. Elements are the discrete components, or building blocks, of
architectures together with intrinsic constraints on their use. Form is the complex of relationships
among the elements, and constraints on those relationships, that dictate how the elements are put
together. Rationale is the justification for the particular choices of elements and form.

The model identifies three basic kinds of architectural elements: processing elements, data
elements, and connecting elements. The processing elements are those components that perform
the transformations on the data elements, while the data elements are those that contain the
information that is used and transformed. The connecting elements are the “glue” that holds
the different pieces of the architecture together. For example, the elements involved in effecting
communication among components are considered connecting elements, as are the elements that
support the overall execution model of the system being described.

Consider now the multi-phase compiler. The processing elements are the lexer (i.e., lexical
analyzer), the parser, the semantor (i.e., semantic analyzer), and the code generator. An optional

LEXER PARSER SEMANTOR

cor. phrases

TEXT
CODE GEN. OPTIMIZER
(a)
LEXER PARSER SEMANTOR
TEXT

CODE GEN. OPTIMIZER

(b)

Figure 1: Sequential (a) and Concurrent, Shared Repository (b) Multi-
Phase Compiler Architectures.

processing element is the optimizer. The data elements are characters, tokens, phrases, correlated
phrases (i.e., phrases signifying name uses related to phrases signifying name declarations), and
object code.

The “classical” multi-phase compiler architecture (Figure 1a) fits the processing elements to-
gether sequentially in the obvious way, with each processing element running its phase to comple-
tion before passing data elements on to the next processing element. A rather different architecture
(Figure 1b) fits the processing elements together via concurrent access to a shared repository. The
processing elements run their phases opportunistically and in parallel so that, for example, the
semantor can correlate phrases at the same time as the lexer is creating new tokens.

Thus, we can see that what distinguishes these two variants of the multi-phase compiler are the
connecting elements used in their respective architectures. Our goal is to be able to capture and
highlight these sorts of differences within a formal framework.

3 The Chemical Abstract Machine Model

The CHAM model is a rich, multi-faceted formulation that contains many interesting and useful
new concepts. It is built upon the chemical metaphor first proposed by Banatre and Le Métayer to
illustrate their Gamma (T") formalism for parallel programming, in which programs can be seen as
multiset transformers [3, 4]. Intuitively, a I' computation is a set of transformations, or reactions,
that consume elements of the multiset and produce new ones according to the rules that constitute
the program. Since reactions on disjoint subsets can take place in any order or even simultaneously,
the model is inherently parallel. It has been pointed out [5, 6] that Petri nets are a well-known
example of the multiset transformation style of programming, where markings are multisets of
places and each transition of the net can be seen as a reaction rule to transform the markings.
Hence, there is already a large body of experience with this kind of modeling and it has been
shown to be a powerful and useful approach.

The CHAM formalism extends the I' language by specifying a syntax for molecules and by
providing a classification scheme for reaction rules. It also introduces the membrane construct,
described below, which extends the use of multisets in such a way that they can form parts of
molecules. As shown by Berry and Boudol [5], this gives the CHAM formalism the power of
classical process calculi and the behavior of concurrent generalizations of the lambda calculus.

In this section we briefly review the CHAM model, limiting ourselves to only those concepts
directly required for this paper. The interested reader is referred elsewhere [5] for a complete
description of the model and examples of its use in formally capturing the semantics of older, more
familiar models, such as the CCS process calculus [12]. Boudol [6] mentions that the CHAM has
also been demonstrated as a modeling tool in other areas, from graph reduction to concurrent-
language definition and implementation. In sections 4 and 5, we introduce the CHAM into the
domain of software architecture specification and analysis.

Basics. A Chemical Abstract Machine is specified by defining molecules m,m/,... and solutions
S,S’,... of molecules. Molecules constitute the basic elements of a CHAM, while solutions are

multisets of molecules interpreted as defining the states of a CHAM. A CHAM specification also
contains transformation rules T,T’,... that define a transformation relation S — S’ dictating
the way solutions can evolve (i.e., states can change) in the CHAM.

The transformation rules can be of two kinds: general laws that are valid for all CHAMs and
specific rules that depend on the particular CHAM being specified. The specific rules must be
elementary rewriting rules that do not involve any premises. In contrast, the general laws are
permitted such premises.

Any solution can be considered as a single molecule with respect to other solutions by means of
an encapsulation construct called a membrane. More importantly, a membrane allows the effects
of a transformation to be localized to within that membrane. In other words, the solutions inside
a membrane can freely evolve independently of other solutions. A reversible operator called an
airlock is used to selectively extract molecules from a solution and place the rest of that solution
within a membrane. In a sense, the airlock is acting as a membrane constructor. The reversibility
of the airlock allows molecules to be “reabsorbed” into the original solution. Finally, membranes
are semi-permeable, allowing certain molecules to enter and leave the membrane.

Molecules, Solutions, and Membranes. Molecules are defined as terms of a syntactic algebra
that derive from a set of constants and a set of operations specific to a CHAM. Solutions S, §’, ...
are finite multisets of molecules, each denoted as a comma-separated list of molecules

my,mz,...,Mn

Solutions can be built from other solutions by combining them through the multiset union operator.
For example, given solutions S = my,...,mpand S’ =mf,...,m}, SWS" =m,...,my,m},...,m}
is another solution.

A solution enclosed in {| - [} denotes a membrane. The reversible airlock operator applied to
solution S = mq,...,m, to extract m; from S is denoted

S:miqﬂml,"',mn'}

The CHAM model provides a context abstraction, denoted as C[-], derived from the A-calculus.
The purpose of this construct is to allow implicit reference to an arbitrary set of molecules C within
which a given molecule can be placed. Examples of its use appear below.

General Laws. CHAMs obey four general laws.

The Reaction Law. An instance of the right-hand side of a rule can replace the corresponding
instance of its left-hand side. Thus, given the rule

M, M, ..., My —)M{,Mé,...,MZI

if mi,mo,...,mg, mi, mh,..., m; are instances of the M;_j and M _; by a common substi-
tution, then we can apply the rule and obtain the following solution transformation.

! !]
mi1, M2, ..., Mg —> M1, Mo, ...,M,

The Chemical Law. Reactions can be performed freely within any solution, as follows.
S— 5
SyS"— Sy S

In words, when a subsolution evolves, the supersolution in which it is contained is also con-
sidered to have evolved.

The Membrane Law. A subsolution can evolve freely within any context.

S — 9
{cisiy — {cls"1p

The Airlock Law. A molecule can always be extracted from, and reabsorbed into, a solution
at the same time that its identity as an individual molecule is preserved.

my S «— ma{S[}

Rules. At any given point, a CHAM can apply as many rules as possible to a solution, provided
that their premises do not conflict—that is, no molecule is involved in more than one rule. In this
way it is possible to model parallel behaviors by performing parallel transformations. When more
than one rule can apply to the same molecule or set of molecules then we have nondeterminism, in
which case the CHAM makes a nondeterministic choice as to which transformation to perform.

Berry and Boudol discuss three kinds of rules that appeal to our intuition about chemical
reactions and that serve informally to help structure the conception of rules: heating rules, cooling
rules, and reaction rules. A rule is a heating if it decomposes a molecule into its constituents.
Conversely, a rule is a cooling if it composes a compound molecule. Finally, a rule is a reaction if
it actually changes the nature of the solutions. Following the intuition further, a solution is said to
be hot (frozen) if no heating (cooling) rule is applicable. Similarly, a solution is said to be inert if
no reaction rule is applicable to it or to a structurally equivalent solution.

It turns out that we find it useful to define a somewhat more liberal definition of heating that,
while still structural, is not strictly bound to a notion of structural decomposition of a molecule. In
the example given in Section 4, we consider heating rules to be those that change the structure of
a molecule so that it can become reactive. Our heating rules are not, therefore, strictly classifiable
as decomposing a molecule into its constituents.

It is interesting to note that, given the right set of rules, a possibly infinite amount of effort can
be spent by a CHAM unproductively looping between heating molecules and then cooling them back
down. This is apparently a drawback of the CHAM approach to behavior specification. As observed
by Berry and Boudol [5], however, it is a direct consequence of the abstract machine approach, since
a machine not only performs transformations but searches for them as well. Moreover, it is possible
to suitably constrain the behavior of a particular CHAM, and so there is no need to do this at the
level of the basic mechanisms of the CHAM. In fact, leaving the basic mechanisms unconstrained
is important to us because we want to introduce a constraint only if it is useful in the description
of a particular software architecture.

4 Specifying Architectures Using CHAMs

In this section we demonstrate how CHAMSs can be effectively used to formally specify soft-
ware architectures. In essence, our approach is to express the structure of processing, data, and
connecting elements through definitions of molecules, solutions, membranes, and transformation
rules. Below, we give specifications for the multi-phase compiler architectures described in Sec-
tion 2. The example is purposefully kept simple and focused to highlight the important aspects
of our approach. Thus, the formalization concentrates on the distinguishing features of the archi-
tectures, namely their different connecting elements. Note that in keeping the example simple, we
are specifying the architectures at a rather high, although informative, level. It would certainly be
appropriate within the CHAM model to incorporate additional detail into those descriptions.

4.1 Sequential Multi-Phase Compiler

We begin with the sequential architecture. As discussed above, a chemical abstract machine is
specified by defining molecules, solutions, and transformation rules. In order to define molecules,
we must define an algebra of molecules or, in other words, a syntax by which molecules can be
built. For the multi-phase compiler architecture, we start with a set of constants P representing
the processing elements, a set of constants D representing the data elements, and an infix operator
“o” that we use to express the status of a processing element. The connecting elements for the
sequential architecture are given by a third set C consisting of two operations, ¢ and o, that act on
the data elements. The syntax Y., of molecules M in the sequential architecture is then

M= P|C|MoM

P = text | lexer | parser | semantor | optimizer | generator
D ::= char | tok | phr | cophr | obj

C == i(D)]o(D)

As usual, we take as the set of syntactic elements the initial algebra in the class of all the ¥4
algebras.

Let us provide some intuition behind this syntax. Each element of D denotes one or more
instances of the represented data. Thus, for example, “char” denotes one or more characters and
“tok” denotes one or more tokens. We use the two operations 7 and o to represent data-element
communication ports, where ¢ is for input and o is for output. Finally, the infix operator “o” is
used to express the state of a processing element with respect to its input/output behavior.

Consider, for example, the parser molecule i(tok) ¢ o(phr) ¢ parser. It says that the parser con-
sumes tokens as input and produces phrases as output. The state of the parser is understood by
“reading” the molecule from left to right. In this example, the parser is in the state of consuming
tokens and must wait to produce phrases until after it has stopped consuming tokens. We are
treating the left-most position (i.e., the left operand of the left-most “¢” operator) in the molecule

as special; if this position is occupied by a communication port, then the kind of communication
represented by that port can take place. So, for example, the molecule o(phr) ¢ parser ¢ i(tok) repre-
sents the parser in the state of making phrases available to the environment as output after having
consumed all input tokens. The molecule parser ¢ i(tok) ¢ o(phr) represents the parser in the state
of having consumed all input tokens and produced all output phrases; in this state, the parser is
unable to communicate with other processing elements. As discussed below, the transformation
rules syntactically rearrange the molecules to reflect changes in state.

The next step in specifying the sequential compiler architecture is to define an initial solution S;.
This solution is a subset of all possible molecules that can be constructed under ¥, and corresponds
to the initial, static configuration of a system conforming to the architecture. Transformation rules
applied to the solution define how the system dynamically evolves from its initial configuration.

S1 = o(char) ¢ text, i(char) ¢ o(tok) ¢ lexer, i(tok) ¢ o(phr) ¢ parser,
i(phr) ¢ o(cophr) o semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) © generator

Notice that S; contains the molecule o(char) ¢ text to represent the existence of an initial source
text.
The final step is to define two simple transformation rules.

T = i(d) om, o(d) om1 — moi(d), mi ¢ o(d)

Ty

o(obj) ¢ generator ¢ i(cophr) —
o(char) ¢ text, i(char) ¢ o(tok) ¢ lexer, i(tok) ¢ o(phr) © parser,
i(phr) ¢ o(cophr) ¢ semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) ¢ generator

where m,m1 € M and d € D. The first rule is a reaction rule that generically describes pairwise
input/output communication between processing elements. In particular, communication occurs if
there is a processing element m that consumes input d produced as output by some other processing
element m1. Recall that the ability of a processing element to communicate data is syntactically
indicated by the appearance of a data port in the left-most position of the molecule. Completion
of the communication—that is, the result of the transformation—is indicated by a rewriting of the
molecule such that the data port is moved to the right-most position of the molecule. The second
transformation rule restores the processing elements to their initial states after the code generator
has completed its task and offered object code as output. This allows the system to begin processing
a new source text. T is therefore a heating rule by our definition in Section 3, since it restructures
molecules in such a way that they become reactive; this is illustrated below.

Let us trace through applications of the transformation rules to see how our formulation captures
the essence of the architecture. It is easy to see that the only possible reactions on S; are the
ones that reflect the sequentiality in the processing intended for the architecture. Thus, the only

reaction that can occur at this point is within the subsolution consisting of molecules o(char) ¢ text
and i(char) ¢ o(tok) ¢ lexer.

o(char) ¢ text, i(char) ¢ o(tok) © lexer Ty texto o(char), o(tok) ¢ lexer ¢ i(char)

This represents the initial processing performed by the compiler, namely the consumption of char-
acters by the lexer. We use the Chemical Law given in the previous section to say that the whole
solution S; has evolved by T} due to the evolution of a subsolution.

T:
S1 = S5, where

Sy = text ¢ o(char), o(tok) ¢ lexer ¢ i(char), i(tok) ¢ o(phr) ¢ parser,
i(phr) ¢ o(cophr) o semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) ¢ generator

Notice that the molecule text ¢ o(char) in Sy is rendered inert by this reaction, since there is no
transformation rule that can be applied to it. This represents the fact that all the text has been
consumed by the lexer. The next reaction that can occur is on the subsolution consisting of
molecules o(tok) ¢ lexer ¢ i(char) and i(tok) ¢ o(phr) ¢ parser, which represents the parser’s consump-
tion of tokens produced by the lexer.

o(tok) ¢ lexer ¢ i(char), i(tok) o o(phr) ¢ parser EiN

lexer © i(char) ¢ o(tok), o(phr) ¢ parser ¢ i(tok)

The reaction causes the molecule lexer ¢ i(char) ¢ o(tok) to become inert, which represents the
fact that the lexer has completed its processing. The subsolution consisting of molecules
o(phr) ¢ parser ¢ i(tok) and i(phr) ¢ o(cophr) ¢ semantor is the next to react in a manner analogous
to the previous reactions.

o(phr) ¢ parser ¢ i(tok), i(phr) ¢ o(cophr) ¢ semantor A,

parser ¢ i(tok) ¢ o(phr), o(cophr) ¢ semantor ¢ i(phr)

The original solution S7 has now evolved several times, resulting in the following solution, Sy.
S1 i) E) 54, where

S4 = text ¢ o(char), lexer ¢ i(char) ¢ o(tok), parser ¢ i(tok) ¢ o(phr),
o(cophr) o semantor ¢ i(phr), i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) © generator

We have constrained each processing element in this architecture to react only upon the existence
in the environment of some other element that produces the appropriate data element. Moreover,

we have caused each processing element to consume and produce its entire input and output in a
non-incremental fashion. Of course, this is exactly what we want to express for the concept of a
sequential multi-phase architecture.

At this point we can have two different evolutions of the solution Sy. The first possible evolution
involves a reaction between the semantor and the optimizer, followed by a reaction between the
optimizer and the code generator.

o(cophr) ¢ semantor ¢ i(phr), i(cophr) ¢ o(cophr) ¢ optimizer, i(cophr) ¢ o(obj) ¢ generator EiN
semantor ¢ i(phr) ¢ o(cophr), o(cophr) ¢ optimizer ¢ i(cophr), i(cophr) ¢ o(obj) © generator I
semantor ¢ i(phr) ¢ o(cophr), optimizer ¢ i(cophr) ¢ o(cophr), o(obj) ¢ generator ¢ i(cophr)

The second possible evolution from S simply involves a reaction between the semantor and the
code generator.

o(cophr) o semantor ¢ i(phr), i(cophr) ¢ o(cophr) ¢ optimizer, i(cophr) ¢ o(obj) ¢ generator A,
semantor ¢ i(phr) ¢ o(cophr), i(cophr) ¢ o(cophr) ¢ optimizer, o(obj) ¢ generator ¢ i(cophr)
This reflects, through nondeterminism, the fact that an optimizer is an optional processing element
in the architecture. Either one of these two possible evolutions of the system will end with a solution

containing the molecule o(obj) ¢ generator ¢ i(cophr), thus representing the fact that the compiler
system has reached the final state of producing the object code from the initial source text.

T T T
Sy —» -+ — S5 or Sy — S%, where

S5 = text ¢ o(char), lexer o i(char) ¢ o(tok), parser ¢ i(tok) ¢ o(phr),
semantor ¢ i(phr) ¢ o(cophr), optimizer ¢ i(cophr) ¢ o(cophr),

o(obj) ¢ generator ¢ i(cophr)

St = text o o(char), lexer o i(char) ¢ o(tok), parser ¢ i(tok) ¢ o(phr),
semantor ¢ i(phr) ¢ o(cophr), i(cophr) ¢ o(cophr) ¢ optimizer,

o(obj) ¢ generator ¢ i(cophr)

Notice that Si contains the molecule corresponding to the initial state of the optimizer—that is,
i(cophr) ¢ o(cophr) ¢ optimizer—which shows that the optimizer has not been used.

It is now possible to apply the transformation 75 to the solution, either in its S5 or Si form,
due to the presence of the molecule o(obj) ¢ generator ¢ i(cophr). As we mention above, this trans-
formation rule can be considered a heating rule; it allows the solution to reach a state from which
other reactions can start. In practice it corresponds to the iterative behavior of a compiler system,
which when terminated after a compilation can actually start again compiling a completely new

10

source text. Let us apply rule T to Si.
y T2
S5 — Se, where

Se = o(char) ¢ text, i(char) ¢ o(tok) ¢ lexer, i(tok) ¢ o(phr) ¢ parser,
i(phr) © o(cophr) ¢ semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) ¢ generator, i(cophr) ¢ o(cophr) © optimizer,
text ¢ o(char), lexer ¢ i(char) ¢ o(tok), parser ¢ i(tok) ¢ o(phr),

semantor ¢ i(phr) © o(cophr)

Notice that the solution now contains a certain amount of “junk”. One bit of junk is the unused
optimizer molecule left over from the previous reactions, which results in a duplication of the
reactive optimizer molecule. The reactions we are modeling are strictly sequential and, therefore,
the existence of two identical molecules does not increase the reactive potential of the system.
This is not in general true and is why solutions are defined as multisets, not simply sets. For
this example, however, it would be useful to remove the redundant molecule through a rule that
“cleans” the solution. For this purpose we introduce 73.

T3 = i(cophr) ¢ o(cophr) ¢ optimizer, i(cophr) ¢ o(cophr) ¢ optimizer —
i(cophr) ¢ o(cophr) ¢ optimizer

With this rule, the redundant molecule can be eliminated from consideration. The other bits of
junk in the solution are the inert molecules representing the “spent” processing elements. These,
too, are unnecessary and could be removed with the introduction of one or more additional cleaning
rules that, for brevity, we do not show.

Of course, we could have chosen to fold all cleaning into the definition of T5; we chose to use
separate cleaning rules for expository purposes. For brevity, we do not make use of cleaning rules in
the remainder of this paper, since their effect is merely to keep the solution minimal with respect to
its reactive capabilities and have no material impact on the modeling of the architectures. Indeed,
from a formal perspective, the Chemical Law allows us to restrict our attention to just the relevant
(non-junk) molecules.

Finally, it is worth noting that we have overspecified the sequential compiler architecture. In
order to describe the way processing and data elements are connected and behave in this archi-
tecture, there is really no need to model the iterative behavior nor, consequently, the cleaning of
solutions. In fact, rule T, together with the molecule syntax ¥, and the initial solution Si, are
enough by themselves. We have performed this extra degree of specification simply to demonstrate
more of the modeling power of CHAMs.

To summarize, the specification of the sequential multi-phase compiler architecture is composed
of molecular syntax X4, initial solution S1, and transformation rules 71 and T5. We do not include
T3 in the specification because, as explained above, it is a cleaning rule that does not affect the
reactive capability of the CHAM.

11

4.2 Concurrent, Shared Repository Multi-Phase Compiler

Let us turn to the second multi-phase compiler architecture and see what changes are necessary
in the CHAM model we developed for the first architecture. The primary difference that we must
account for in the second architecture is that the processing elements can act incrementally on their
data and in parallel. This is made possible by the shared repository (see Figure 1). Intuitively,
we know that a token is derived from one or more characters, that a phrase is derived from one or
more tokens, and so on. Moreover, we would like a given processing element to work on as much or
as little of its available input data as it would like, and to do so independently of other processing
elements. In essence, then, the repository should behave as an infinite capacity buffer with respect
to the input/output behavior of each processing element.

To begin the specification, we must introduce new elements to represent the use of the repository.
In particular, we add a repository element and two new operations, ¢r and or, whose roles are
analogous to the ¢ and o operations already introduced, but apply to the repository rather than to
the processing elements. In addition, we enrich the structure of the molecules by introducing an
infix operator “||” to syntactically represent a complexly composed molecule that can be broken
down into parallel subcomponents, thus allowing multiple reactions to occur simultaneously. In
more familiar terms, “||” can be intuitively interpreted as a parallel operator.

Again, we need a syntax of molecules for the architecture. We can formulate it by simply
augmenting ¥ ... Let us call the new syntax X.,, and define it as follows.

M:=P|C|MoM|M|M

P = text | lexer | parser | semantor | optimizer | generator
D := char | tok | phr | cophr | obj

C == i(D)|o(D) |ir(D) | or(D) | repository

Comparing ¥.4 and X.,, we see that only the terms associated with the connecting elements C
and the highest-level molecule syntax generator M are different.
Next, we need a solution to represent the initial configuration. Let us call it S].
S| = o(char) o text, i(char) ¢ o(tok) ¢ lexer, i(tok) ¢ o(phr) ¢ parser,
i(phr) ¢ o(cophr) o semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) ¢ generator,
ir(tok) ¢ repository || ir(phr) o repository || ir(cophr) ¢ repository

The solution contains a molecule that represents concurrent access to the repository at the granu-
larity of the three kinds of data elements stored in the repository.

12

To complete the specification, we define a new set of transformation rules.!

T, = i(char) ¢ o(tok) ¢ lexer, o(char) o text — o(tok) ¢ lexer ¢ i(char), text ¢ o(char)

Ts = ir(d) < repository, o(d) ¢ m — ir(d) o repository, m ¢ o(d), or(d) © repository

Ts = i(d) o m, or(d) o repository — m ¢ i(d), or(d) o repository
T; = i(d) o m, or(d) o repository — m ¢ i(d)
Ts = m || mg | - | mp — my1, ma,...,my

Ty = poi(d)oo(di) — i(d)oo(di)op
Tio = moi(d) — i(d)om
T11 = text o o(char) — o(char) o text

Tio = text o o(char) — text

where m,m1,...,m, € M, d,dy € D, and p € P. Ty is a specialization of the generic reaction
rule 77 from the sequential compiler architecture that describes the input of text to the lexer.
Ts through T are reaction rules that generically describe the communication of data elements
between the repository and the processing elements; flow of data from a processing element into
the repository is described by 75, while Ty and 77 describe the reverse. Tg through 771 are all
heating rules: Ty breaks apart a complex molecule into its (parallel) components, which can then
participate in (parallel) reactions;? Ty reactivates an inert processing element; T} reactivates the
input port for a processing element before that processing element performs output; and 77, makes
more of the source text available for compilation, thereby continuing the whole compilation process
for a given source text. Finally, T} is a reaction rule that terminates character input, indicating
that the source text has been exhausted. The effect of T15 is to eventually cause all processing of a
particular source text to stop; the proof of this appears in Section 5. A rule that is missing is one
analogous to rule T; of the sequential architecture, namely a heating rule that serves to “reset” the
compiler for operation on a new source text; such a rule is easily constructed.

There are several important things to notice about this specification, particularly in regard to
the interaction of the processing elements and the repository. First, the repository molecule in the
initial solution S does not contain any output ports for data elements. Instead, the output ports
become available through T5 once some input to the repository has occurred. Second, for a given
kind of data element, there are separate repository molecules for input and for output to reflect the
independence of those operations. This is not true of the processing elements, where we assume that
a processing element always performs some sequence of inputs, followed by a single output, followed

! Although we continue the sequential numbering of transformation rules, T; through T do not apply to this
second CHAM.

Why provide a special parallel operator if the components simply become “ordinary” molecules in the solution
anyway? Because the operator serves to indicate in a syntactically convenient way the fact that they are indeed
related components of a larger molecule that can act in parallel.

13

by another sequence of inputs, and so on. In essence, we are modeling the input/output behavior of
processing elements as [ITO]* and that of the repository as [ITO™]*. Third, because input to the
repository is incremental, 75 maintains the viability of an input port after a reaction; Ty similarly
maintains the viability of an output port. 717, on the other hand, indicates the exhaustion of a given
kind of data element in the repository by eliminating the output port from a solution. Only an
appropriate T5 reaction can create the possibility of further output activity. Finally, T7¢ describes
the incremental nature of input to a processing element, by allowing multiple inputs before an
output, where the potential for multiple inputs arises from multiple 77¢ reactions.

Again, let us trace through some applications of the transformation rules to see how our for-
mulation captures the behavioral aspects of the architecture. The initial solution S| admits to two
possible reactions and, since they do not conflict, they can occur in parallel. One reaction is Ty,
the input of text by the lexer. The other is Ty, the decomposition of the repository into parallel
reactants. Let us assume that both reactions occur and result in solution Sj.

Ty,
Si — S, where

SY = text ¢ o(char), o(tok) ¢ lexer ¢ i(char), i(tok) © o(phr) ¢ parser,
i(phr) ¢ o(cophr) ¢ semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) © generator,
ir(tok) o repository, ir(phr) © repository, ir(cophr) ¢ repository
Given solution S}, we can start applying rule T5, which expresses the synchronization between the
repository and a processing element inserting data of a particular kind into the repository. But we

could apply rule 717 as well, thus modeling the fact that new characters are available for input.
Let us assume that both reactions occur and result in solution S:'),.

Ts5,11
Sy — S5, where

S5 = o(char) o text, lexer ¢ i(char) ¢ o(tok), i(tok) o o(phr) © parser,
i(phr) © o(cophr) © semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) © generator,
ir(tok) ¢ repository, ir(phr) ¢ repository, ir(cophr) ¢ repository,
or(tok) ¢ repository

The solution now contains molecules that can react according to rule Ty and rules Ty or 17. Ty
heats the lexer molecule, while either of Ty and T~ provides tokens from the repository to the parser.
The more interesting of the three at this point is the subsolution reaction of Ty, which, unlike T7,
does not exhaust the available data elements.

i(tok) ¢ o(phr) ¢ parser, or(tok) ¢ repository LN o(phr) ¢ parser ¢ i(tok), or(tok) ¢ repository

14

From this state, rule T7¢ can be applied to reactivate the input port of the parser and, thus, allow
the parser to extract more tokens from the repository. In fact, this 75/T1p cycle can continue
unabated until a reaction involving 77, instead of Tg, occurs or until a reaction involving T5 occurs
to indicate that the parser has placed one or more phrases into the repository. This would still give
rise to numerous potential reactions all starting from the same solution. As an extreme example,
let us take solution S;.

S! = o(char) o text, i(char) o o(tok) o lexer, i(tok) o o(phr) < parser,

i(phr) © o(cophr) ¢ semantor, i(cophr) ¢ o(cophr) ¢ optimizer,
i(cophr) ¢ o(obj) ¢ generator,
ir(tok) o repository, ir(phr) ¢ repository, ir(cophr) ¢ repository,

or(tok) o repository, or(phr) ¢ repository, or(cophr) ¢ repository

Many different rules can be applied simultaneously to S; involving all the processing elements in
parallel.

To summarize, the specification of the concurrent, shared repository multi-phase compiler ar-
chitecture is composed of molecular syntax X, initial solution S}, and transformation rules T}
through T7s.

4.3 Adding Modularity to an Architecture

The previous descriptions of the two compiler architectures give a simple, flat structure to the
elements. Realistically, architectures of any serious complexity will require organization into a
richer structure. We now demonstrate the power of the CHAM model in describing a modular
structure for an architecture. In particular, we make use of the membrane and airlock constructs
discussed in Section 3 to define modules and interfaces [13] for the sequential architecture. The
use of the membrane construct for this purpose is rather natural, since it is the construct expressly
provided by the CHAM to abstractly treat solutions as single molecules.

Figure 2 depicts a reconfiguration of the sequential architecture to include two modules, a front
end and a back end. The front end of a compiler is responsible for language-dependent lexical,
syntactic, and semantic analyses, while the back end is responsible for machine-dependent code
generation optionally preceded by optimization. In practice, this is a very common structure for
compilers, since it encourages both the reuse of front-end modules for different target machines and
the reuse of back-end modules for different languages.

Notice in Figure 2 that the front- and back-end modules are acting as individual, yet complex,
entities whose external behavior is simply a sequential interaction through the exchange of corre-
lated phrases. The internal behavior of one module is hidden from the other, which allows the
elements inside the modules to evolve independently. Of course, in this architecture, that evolution
is also sequential.

To formalize this structure, we use membranes to encapsulate molecules into solutions that,
in turn, can be considered single molecules. Note that it is not necessary to alter 3.4, since

15

LEXER PARSER SEMANTOR
characters

TEXT

@: CODE GEN. OPTIMIZER

Figure 2: Sequential Multi-Phase Compiler Architecture of Figure 1a Re-
configured with Front- and Back-end Modules.

membranes (and airlocks) are part of the basic CHAM definitions. Let S7 be the initial solution
for the modular version of the sequential compiler architecture, defined as follows.

SY = o(char) o text, S1°, S
where S{e is the initial solution for the front-end and Sf¢ is the initial solution for the back-end.
S{e = {|i(char) ¢ o(tok) ¢ lexer, i(tok) ¢ o(phr) ¢ parser, i(phr) ¢ o(cophr) ¢ semantor[}

S% = {i(cophr) ¢ o(cophr) ¢ optimizer, i(cophr) ¢ o(obj) ¢ generatorl}

In this simple way we have expressed the encapsulation of the processing elements into modules.

The task now is to define the interaction between the modules and their external environment.
First, however, notice that we can build upon the specification for the flat sequential architecture
given in Section 4.1, since the processing, data, and connecting elements remain the same, as does
the basic sequential behavior of the architecture defined by the transformation rule 77. The problem
we face is that some of the molecules that freely interact in the flat architecture are now isolated
from one another in the modular architecture. For example, processing cannot begin until there is
a reaction between o(char) o text and i(char) ¢ o(tok) ¢ lexer, but the membrane blocks this reaction.
What we need to do is to make the membranes semi-permeable to allow the appropriate reactions
to take place. In other words, we need to define an interface for the modules.

Consider the front-end module, which uses characters as input from the environment and pro-
duces correlated phrases as output. Stated in terms of Y., the front-end module should offer

16

i(char), which is the input port associated with the lexer molecule, and o(cophr), which is the out-
put port associated with the semantor molecule. This requires a two step process. The first step
makes use of the Airlock Law to extract a molecule of interest out of the membrane. The second
step associates the communication capability of that molecule with the module as a whole. We take
the lexer as our example. Applying the Airlock Law to S{e we can obtain the following solution.

SJ¢ = {li(char) o o(tok) o lexer
< {i(tok) ¢ o(phr) ¢ parser, i(phr) ¢ o(cophr) ¢ semantor|} [}

Unfortunately, the solution still does not permit interaction between the lexer and the text. For
that, we must introduce a new transformation rule 773.

T3 = {momy < {{ma,...,mg}[} «— mo{momy < {ma,...,mglt}
Applying Ti3 to Sge, we obtain the following.

sl KALY S%¢. where

ST¢ = i(char) o {Ji(char) © o(tok) © lexer
a {i(tok) ¢ o(phr) ¢ parser, i(phr) ¢ o(cophr) ¢ semantor |} |}

The solution representing the front-end module has now reached a state where the appropriate
communication is possible.

We can continue our trace to see what happens during and after the communication between the
lexer and the text. In particular, Sge can react with the text molecule using the familiar reaction
rule 77, resulting in the following solution.

o(char) otext, S¥¢ T4, text o o(char), $%, where
5% — {li(char) o o(tok) o lexer
< {i(tok) ¢ o(phr) < parser, i(phr) ¢ o(cophr) ¢ semantor[} [} ¢ i(char)

At this point the appropriate reaction has taken place, but that fact is not reflected in the internal
state of the membrane. We introduce one more transformation rule for this purpose.

Ty = {{ m.my < {me,...,mgftlf om — {miom < {me,..., mylt]t
Applying Ti4 to S{e, we obtain the following.
Sf:e RATY Si¢, where

$1¢ = {o(tok) ¢ lexer o i(char)
a {i(tok) ¢ o(phr) ¢ parser, i(phr) ¢ o(cophr) ¢ semantor[} [}

17

Finally, the Airlock Law is used to reabsorb the lexer back into the main solution so that the
processing can continue.

Sge = {lo(tok) ¢ lexer ¢ i(char), i(tok) ¢ o(phr) © parser, i(phr) © o(cophr) ¢ semantor|}

As in the flat sequential architecture, rule 77 continues that processing until the semantor is in the
state where it is ready to offer correlated phrases to the environment. Exactly as we did for the
lexer and its input, we can do for the semantor and its output. For brevity, that derivation is not
shown.

We should point out that there is one important difference between the standard notion of
module interface and the one embodied in this example. In particular, we use generic rules that
allow all molecules within a membrane to be offered to the environment, not just a select few.
This works here because the reaction rule T together with the initial solution S7 fix the actual
interactions that can legally take place. Moreover, as mentioned in Section 3, a CHAM searches
for reactions to apply and, in the case of the reversible Airlock Law, can cause a molecule to be
reabsorbed into the membrane if no reaction is possible.

Despite the correctness of this overly liberal view of interface, in general it might be desirable
to express precisely the interface of a module. This can easily be done in our formalism through
specialization of the rules to the interface requirements of a given module. The idiom for this is
to define a set to contain the exact subset of elements that should be visible through the interface
and then define rules derived from the generic rules that are restricted to operate on this set.

Summarizing our addition of modularity to the sequential compiler architecture, we simply
begin with the specification of the flat sequential architecture, alter the initial solution to reflect
the presence of membranes, and add two rules to reflect the need to move information across
interfaces. In fact, the new rules are concerned only with the static structure of the system and
not with its dynamic behavior, which remains unchanged.

Finally, to conclude our discussion of modularity, we consider how the various formulations
we have presented might be combined and recombined in interesting new ways. This is a natural
consequence of using modules, since we should be able to replace the internal behavior of a module
without disturbing that module’s users. Moreover, we should be able to reuse the results of previous
specification activities.

As an example, consider how we might introduce a degree of concurrency into the front end of
the sequential compiler architecture. To do this, we simply add a suitable molecule to the initial
solution for the front-end membrane S{e.

ST = §f¢ W ir(tok) o repository || ir(phr) o repository

The additional molecule is trivially derived from the one developed for the concurrent, shared
repository compiler CHAM and represents an internal repository for the tokens and phrases shared
by the lexer, parser, and semantor. To make use of this new molecule, we also need to add the
appropriate rules from that CHAM, namely Ty through T79. With these simple additions borrowed
from a previously established specification, we have easily introduced a small degree of concurrency

18

into the architecture that is bounded only by the capacity of the back-end module to process
correlated phrases.

Another, possibly simpler, way to introduce concurrency into the sequential compiler architec-
ture that also takes advantage of the module structure and previously developed specifications is
to allow greater independence in the behaviors of the front- and back-ends. In particular, we can
simply add two laws from the concurrent, shared repository CHAM, namely Ty and 711, and change
the behavior into more of a pipeline software architecture [1]. Concurrency arises at the granularity
of the modules, since these two heating rules allow the front end to begin processing a new source
text at the same time as the back end is still processing the correlated phrases associated with
the previous source text. Thus, the rules permit the iterative behavior of the modules to become
evident in the architecture.

5 Analyzing CHAM-specified Architectures

In this section we demonstrate the suitability of our approach in the analysis of software archi-
tectures. Basically, we can carry out two kinds of useful analysis. The first is a common technique
in which a semi-formal, yet rigorous, analysis is performed on specifications by simply reflecting
upon them and upon the process that led to their formulation. A second kind of analysis is a truly
formal one in which we prove properties by strict mathematical reasoning.

The first kind of analysis is possible under our approach due to the high level of abstraction and
conciseness of CHAM descriptions. For example, the CHAM descriptions of the previous section
consist of a syntax definition, a set of transformation rules, and an initial solution that occupies less
than a page each of text. On the other hand, when a formal analysis is required, the mathematical
foundation of CHAM specifications becomes evident. In particular, molecules are defined in terms
of an algebraic initial structure that fosters structural inductive proofs. Furthermore, the transfor-
mation rules are defined as standard rewriting rules, thus allowing for the application of well-known
results and techniques from the field of term rewriting systems [7, 10]. Below, we illustrate both
kinds of analysis applied to the specifications of the multi-phase compiler architecture given in the
previous section.

Let us begin by performing a semi-formal comparison between the specifications of the two
flat multi-phase compiler architectures given in sections 4.1 and 4.2 to see what similarities and
differences in the architectures can be found. The first thing we can see is that our specifications
make use of exactly the same set of processing and data elements. Where they differ is in the way
those elements are connected, which is clearly reflected in the addition of connecting elements and
an alteration to the set of transformation rules found in the second CHAM.

Another observation is that in the second architecture we must model the iterative behavior of
the individual processing elements in order to obtain the desired concurrent behavior of the whole
system. This is in contrast to the first architecture, where the iterative behavior is of the global
system (see rule T5) and not strictly necessary for the specification of the sequential architecture.
This is quite interesting, since it shows that a functionality of the processing elements that could
be kept hidden by those elements in the first architecture had to be made explicit in the second

19

architecture as part of its correct description.

A third observation we can make is that in the second architecture the connections are point-
to-point communications between each processing element and the shared repository. Further, this
is achieved by defining private communication channels between each processing element and the
repository so that they can be accessed concurrently.

We are also able to see that, among all the possible reactions performable by the second archi-
tecture, there exists one that gives exactly the same sequence of solutions as the first architecture
under a suitable abstraction mechanism. Of course, this is something that one reasonably expects.

This last, semi-formal observation can in fact be quite easily verified formally by proving the
following result.

Proposition. Let S — Sy — --- — S, be a sequence of rule derivations on the sequential
compiler CHAM starting from the initial solution S;. Then there exists a derivation
St — 8y —---— 8! in the concurrent, shared repository CHAM starting from the
initial solution S7, such that S1 C §7,...,8; C S}, Siy1 C Sjyy,---5 S0 C Spye

Proof. The proof is by induction on the length 7 in the rule derivation of the sequential
CHAM.

For n = 1, the proof is immediate from the definitions of S; and Sj. Let us now assume
the proposition is true for n and prove it is true for n + 1. In other words, we have
the sequence S; — So — -+ = S, = S,,+1 and consider only S, — S,+1. The transfor-

mation can be performed either by applying 71 or T5. First consider T7. S, AN Snt1
means that in Sy, there is a pair of molecules that can react. Let i(d) ¢ m and o(d) o my
be the two molecules. By the inductive hypothesis we know that there exists a solution
S/ in the second CHAM such that S,, C S.,. Therefore in S], there exists the same pair
of molecules as in S,,. In order to prove the proposition, we must show that in S/, it is
possible either to apply 74 or to apply 715 and Tg or 17 on the same molecules that are
reacting in S,,. This amounts to showing that from S/, it is possible to reach a solution
in which the molecule ir(d) ¢ repository exists, the application of T} is in fact straight-
forward. We know that in S| there exists a repository molecule and that there are
two possible formats of the repository molecule in S},. The first is that the repository
molecule is still in its initial format, that is, as a parallel molecule my || mo || - - || M.
In this case it is enough to perform a transformation on S], using Tg, which results in
a solution S}, ; in which it is possible to apply T5 and then Ty or T7. The second case
is when S/, is already hot with respect to the repository molecule, which leaves the
solution in the same condition as S}, ;.

The case for S, ELN Snp+1 is analogous and for brevity is not shown. O

We have now proven that the sequential behavior of the first CHAM can be simulated by one of
the possible behaviors of the second CHAM.

20

The previous proposition is concerned with a formal comparison of software architectures. We
can also formally prove properties with regard to a specific architecture.

A property that we may wish to prove about the concurrent, shared repository architecture is
that it allows for infinite derivations from the initial solution if and only if data are infinite, that
is either the input text is itself infinite or the data in the repository are not finitely consumed by
an application of rule 7. The utility of such a property should be obvious. First we introduce a
definition.

Definition. A reaction derivation S; — So — -+ — Sy, is normalizing if S, is inert.

The definition means that a given derivation terminates, since the fact that S, is inert means
that there is no other reaction rule that can be applied to it. Thus, a normalizing derivation is a
derivation that terminates. Now we can state the property that we wish to prove.

Proposition. Let Si be the initial solution of the concurrent, shared repository CHAM
and 6 : S; — Sy — --- — S, be a derivation from S;. Then any derivation §' from S,

is normalizing if and only if there exists in J a solution S; such that S; Tigy Sit+1, Sn
does not contain occurrences of the molecule or(d) ¢ repository for any d € D, and rule
Ts cannot react in S),.

Proof. Let us first consider whether any normalizing derivation §’ from S,, implies the

existence of S; EAEY Si+1 in ¢ and that S,, does not contain, or can create, occurrences
of the molecule or(d) ¢ repository for any d € D. If 4 = 0 (i.e., ¢ is normalizing), then
this means that S,, is inert—that is, no more reactions can take place. Looking at
the rules it is easy to see that the application of the heating rules Ty and 771 can
only be prevented if a data element is no longer available, and that this is achieved by
applying 712, which is the only rule permanently removing data. On the other hand,
the potentially infinite application of T3¢ is prevented by the fact that no occurrence of
the molecule or(d) ¢ repository exists in S, or can be created. If i # 0 then S, is not
inert and some further reactions can be performed. These cannot involve T5, however,
because otherwise a non-terminating derivation can be easily built, thus contradicting
the hypothesis. The same argument applies to T2 because if it can still be applied—that
is, it is not contained in §—then a non-terminating derivation can be built.

We now consider the reverse condition. Let us assume that a step with 779 has been
performed in ¢ and that S,, does not contain any or(d) ¢ repository molecules. We then

have to show that any ¢’ is normalizing. S; EAEY Si+1 means that in S;;; the text
molecule has been rendered inert. Now, this means that in S, the text molecule is
present and no or(d) ¢ repository molecules exist. Depending on the rest of the solution,
there exists a maximum number of reaction steps that can be further performed on S,,.
In fact, rules Ty, Tg, T11, and T2 cannot be applied anymore. Rule T5 and rules Ty and
T7 cannot be applied by hypothesis. Therefore, only rules Ty and T3y can be applied,
but without any further consequent reaction, since no occurrence of or(d) o repository
exists or can be created. O

21

Another interesting and useful property to prove is that the modular version of the sequential
compiler architecture actually contains modules that can communicate. In other words, we would
like to show the correctness of the front- and back-end module interfaces. This can be formally
proven with the following series of propositions.

Proposition. Let S be the initial solution of the modular sequential compiler CHAM.
Then there exists a derivation S — So — -+ = §; = Siy1--- = S, such that

Si = o(d) o {mi < My}, i(d) o {jm; < {|M;[}[}
Sit1 = {mi o o(d) < {Myft[t, {m; o i(d) < {M;[}[}

Proof. We must show that a communication between the front end and back end
is possible. The proof consists of building such a derivation starting from the initial
solution Sy.

From S; we first apply all the possible reactions inside the front end, which amounts
to applying 77 until the molecule o(cophr) ¢ semantor ¢ i(phr) exists in the front end.
We then apply Tis and T4 to both the front and back ends on the molecules
o(cophr) o semantor ¢ i(phr) and %(cophr) ¢ o(obj) ¢ generator, respectively. This leads to
the desired solution. O

While useful, this result can be further strengthened, as follows.

Proposition. Let S; be the initial solution of the modular sequential compiler
CHAM. Then there exists a derivation S; — S9 — --- — S, such that molecule
o(obj) ¢ generator ¢ i(cophr) is in Sy,.

Proof. We must simply show that it is possible to build such a derivation. This is
straightforward using the two rules T13 and Ti4 to reach a solution in which T; can
be applied. This can be repeated until the o(obj) ¢ generator ¢ i(cophr) molecule is pro-
duced. O

We have now shown that text will eventually be processed. But, again, we can prove an even
stronger result that shows that any derivation that terminates will terminate properly by containing
the molecule o(obj) ¢ generator ¢ i(cophr).

Before we can state and prove the final proposition, however, we must examine the modular
sequential CHAM a bit closer. First, notice that it makes use of two reversible transformation
rules, namely the Airlock Law and rule Ti3. These two rules can cycle infinitely with no real
progress and, moreover, have no real effect on the behavior of the system. Therefore, in order to
reach inert solutions, we must restrict consideration to derivations that do make progress. This
means that we consider those derivations that can partially cycle, but then eventually move to a
new solution by applying a reaction step such as 77. Second, notice that we are not interested in

22

derivations containing reaction steps with 75, because the application condition for 75 is exactly
the subsolution we are trying to show to be reachable from Si, that is, a solution containing the
molecule o(obj) ¢ generator ¢ i(cophr).

Proposition. Let S1 be the initial solution of the modular sequential compiler CHAM.
We restrict consideration to derivations that contain only 77, Ti3, and T14. Then
any normalizing derivation S; — Sy — -+ — S, is a derivation containing molecule
o(obj) o generator ¢ i(cophr) in S,,.

Proof. Let §1 — So — --- — S, be the normalizing derivation. We show that in S,
there exists the molecule o(obj) ¢ generator ¢ i(cophr).

By looking at the reaction rules, we can see that the only rules that can be applied
an infinite number of times are the Airlock Law and Ti3. From the initial solution S
only these two rules can be applied and, since the derivation is normalizing, there are
only a finite number of possible solutions that can be obtained before a step with 17 is
performed. This process ends only when a solution is reached that is inert with respect
to 71 and this can only happen when o(obj) ¢ generator ¢ i(cophr) is generated. After
the last T reaction step, there can be other reaction steps with the Airlock Law and
T14 that do not modify the molecules in the solutions but only modify their membrane
structure. Thus, all of those possible solutions must contain o(obj) ¢ generator ¢ i(cophr).
By our hypothesis, these steps are finite and the proposition follows. O

The result proved here is quite interesting because it tells us that if we consider the modular
sequential CHAM, then the interesting derivations are exactly the ones that modify the solutions
in the same manner as the flat sequential CHAM behavior—that is, from a dynamic point of view,
the modular CHAM behaves exactly like the flat one. While the modular version might spend some
more time in finding the right interfaces to communicate, once the communication takes place, the
behavior is same as in the flat CHAM.

The various analyses that we carry out above demonstrates that, despite its apparent simplicity,
the CHAM model allows us to specify and analyze a number of critical properties at the level of
the system’s software architecture and, moreover, to formally compare corresponding properties in
different architectures.

6 Conclusion

In this paper we have presented an approach to the formal description of software architectures.
It is based on an operational framework, which for some aspects of architectural description seems
to us to be more easily accessible than other frameworks. Our approach is a first attempt at using
an intriguing new model for describing architectures, the Chemical Abstract Machine. The CHAM
is a reasonably simple model, yet very expressive. CHAM descriptions, because of their formality,
lend themselves both to correctness analyses within a single specification as well as to comparative

23

analyses across different specifications. Finally, CHAM descriptions are inherently modular, allow-
ing the refinement of a description to proceed by the addition of molecules and transformation rules.
Similarly, families of architectures, or architectural styles [14] can be handled by simply defining
general molecules and rules that get refined by definitions of additional specialized molecules and
rules. This is essentially what happens in the multi-phase compiler example presented in Section 4.

In addition to our investigation of the CHAM model, research into formal architectural de-
scription is causing an examination of various other semantic models as suitable foundations. A
considerable amount of work has involved the Z specification language [16]. In contrast to the oper-
ational CHAM model, Z is a model-based, set-theoretic formalism. One weakness that we perceive
in using Z for architectural description is that it is not well suited to the specification of dynamic
or behavioral aspects of an architecture, including concurrency and nondeterminism, since it relies
on a variety-based denotational semantics [17]. On the other hand, Z has proven to be quite useful
for the description and analysis of certain static properties of software architectures [1, §].

Another semantic framework that is being used in formal architectural description, one that is
better able to describe dynamic properties of architectures, is CSP [9]. In particular, the Wright
architectural description language uses a subset of CSP to specify connecting elements [2]. Given
a grounding in CSP, analysis of Wright specifications can reveal certain important correctness
properties, such as freedom from deadlock.

What is generally true about all these approaches, however, is that there is not yet enough
experience in using them for architectural description to be able to draw definitive conclusions
about which one is superior. In fact, the question of which is superior is not even appropriate.
A better question seeks to identify those aspects of architectural description for which one or the
other is better suited and to understand how the approaches might be productively combined.

One important consideration in the development or even selection of a descriptive approach
is that it should allow an appropriate level of abstraction in a formal specification. An approach
that forces the inclusion of inconsequential details too early in the development process, that
is not amenable to incremental inclusion of important details, or that requires elaborate formal
machinery to express simple concepts, is in our estimation inappropriate for specification of software
architectures. Of course, judging an approach on these grounds is clearly subjective and not
unrelated to the question of where architecture ends and low-level design begins. Nevertheless, we
believe that as experience is gained in using a variety of approaches on a multiplicity of architectures,
a consensus will emerge. This consensus will serve to define an appropriate place for software
architecture description within the spectrum of system specifications at the same time as it will
encourage the appropriate level of abstraction in the natural expression of architectural descriptions.

We reiterate the point, however, that no one technique will be appropriate for all the varied,
and sometimes conflicting, requirements of software architecture description and analysis. Formal
techniques, such as the one introduced in this paper or developed by others, must be used in
conjunction with other, formal and informal techniques. We take as one simple bit of evidence
the fact that people always use informal pictures to supplement otherwise formal descriptions of
systems. The purpose of this paper is to suggest that the CHAM model might be one useful tool
in the software architect’s chest of useful tools.

24

Acknowledgments

We thank Dewayne Perry for sharing with us his ideas on the principles of software architecture
description. We also thank David Garlan, Dewayne Perry, and the anonymous reviewers for their
helpful comments on earlier drafts of this paper.

25

[1]
[2]

[15]

[16]
[17]

REFERENCES
R. Allen and D. Garlan. A Formal Approach to Software Architectures. In Proceedings of the IFIP
Congress. Elsevier, September 1992.

R. Allen and D. Garlan. Formalizing Architectural Connection. In Proceedings of the 16th International
Conference on Software Engineering, pages 71-80. IEEE Computer Society, May 1994.

J.-P. Banatre and D. Le Métayer. The Gamma Model and its Discipline of Programming. Science of
Computer Programming, 15:55-77, 1990.

J.-P. Banéatre and D. Le Métayer. Programming by Multiset Transformation. Communications of the
ACM, 36(1):98-111, January 1993.

G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer Science, 96:217-248,
1992.

G. Boudol. Some Chemical Abstract Machines. In A Decade of Concurrency, number 803 in Lecture
Notes in Computer Science, pages 92-123. Springer-Verlag, May 1994.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, Vol. B: Formal Models and Semantics, pages 243-320. North Holland, Ams-
terdam, 1990.

D. Garlan and D. Notkin. Formalizing Design Spaces: Implicit Invocation Mechanisms. In Proceedings
of VDM ’91: Formal Software Development Methods, October 1991.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, New Jersey, 1985.
J.W. Klop and R.C. de Vrijer. Term Rewriting Systems. Cambridge University Press, 1993.

P. Landin. The Mechanical Evaluation of Expressions. Computer Journal, 6:308-320, 1964.

R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

D.L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules. Communications of
the ACM, 15(12):1053-1058, December 1972.

D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture. SIGSOFT Software
Engineering Notes, 17(4):40-52, October 1992.

G. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19, Uni-
versity of Aarhus, 1981.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cambridge Uni-
versity Press, 1989.

27

