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Abstract

In this paper, we develop a new technique, and a corresponding theory, for
Schwarz type overlapping domain decomposition methods for solving large sparse
linear systems which arise from finite element discretization of elliptic partial dif-
ferential equations. The theory provides an optimal convergence of an additive
Schwarz algorithm that is constructed with a non-nested coarse space, and a not
necessarily shape regular subdomain partitioning. It allows the use of subdomains
with non-uniform aspect ratio and non-smooth boundaries. The theory is also
applicable to the overlapping graph partitioning algorithms recently developed by
Cai and Saad [5], and to the non-nested coarse space method, such as these has
been used by Cai, Gropp, Keyes and Tidriri [4] successfully for solving a nonlinear
equation of aerodynamics.

1 Introduction

Considerable interest has developed in Schwarz type overlapping domain decomposition
methods for the numerical solution of partial differential equations, see for examples
(3,6, 7,11, 12,16, 21, 22] and the references therein. This class of methods offers a great
deal of parallelism and is very promising for modern parallel computers. The success
of the methods depends heavily on the existence of an uniformly, or nearly uniformly,
bounded decomposition of the function space in which the problem is defined. In this
paper, we further enrich the Schwarz theory by providing a new technique of constructing
an uniformly bounded decomposition of the problem space, which is more flexible and
convenient for large, geometrically complicated, practical problems. It has a convergence
rate that is similar to that of the regular Dryja-Widlund type decomposition [12], and



does not require the coarse space to be a subspace of the original finite element space,
in which the partial differential equation is discretized. Nor does it require that the
collection of the un-extended subdomains forms a regular finite element subdivision.

We shall only discuss a two-level additive Schwarz algorithm, with a coarse and a fine
grid. It is well known that the fine grid determines the accuracy of the discrete problem
and that the only role of the coarse grid is to accelerate the convergence of the iterative
method. In this paper, we try to minimize the inter-connection between the two grids by
using a not necessarily nested coarse grid. As a result, the same coarse grid can be used
even if the fine grid is locally refined, or re-meshed, to deal with the local singularity
of the underlining problem. There are a number of ways to handle the communication
between the two grids, in this paper, we insist on the computationally simplest one,
i.e., pointwise interpolation. We show that this, sometimes troublesome, interpolation
operator behaves well in both two- and three-dimensional space in our applications under
certain reasonable assumptions on the two grids. For technical reasons, we assume that
the coarse mesh is quasi-uniform, however, no such an assumption is needed for the
fine mesh. Experiments with the pointwise interpolation in the context of non-nested
multigrid methods can be found in [8, 17, 18].

In [13], Dryja and Widlund developed a general theory for Schwarz type algorithms
which has a convergence rate characterized by the quantity (1+ H/§), where H measures
the diameters of the subdomains (as well as the coarse mesh size) and § the overlap
between neighboring subdomains. This quantity indicates that subdomains with uniform
aspect ratio is desired. In this paper, we develop a result involving

min{l + H2/6, 1+ H/§ + H./é - H./H}, (1)

where H. is size of the coarse grid, which generally has nothing to do with the subdomain
diameters H. The first quantity in (1) is independent of H. This allows us to use
subdomains with arbitrary shape. As a consequence, our theory applies to the type of
unstructured mesh problems decomposed by some graph-based partitioning techniques
discussed by Cai and Saad in [5]. The second quantity in (1) reduces to that of Dryja
and Widlund when H ~ H., and comes into play in the case of small overlap.

When solving system of equations arising from the discretization of non-selfadjoint,
or indefinite, or nonlinear elliptic problems by Schwarz type algorithm, a fine enough
coarse mesh space is usually necessary in order to make the convergence rate optimal,
see e.g., [6, 7]. In such a case, using Dryja-Widlund construction [12] would normally
result in a large number of subdomains that have to be combined later in order for the
number of subproblems to fit into the number of processors of a parallel computer. With
our new construction, the size of coarse mesh is totally independent of the number of
subdomains.

In this paper, we shall focus only on a simple self-adjoint model problem, namely the
homogeneous Dirichlet boundary value problem: Find u € V = H}(Q) such that

a(v,v) = (f,v), WweV, (2)



where the bilinear form a(u, v) is defined by a(u,v) = [ VuVvdz, f(z) € L*(Q) is given,
and Q is an open bounded polygon in R? (d = 2 or 3), with boundary 9. We shall use
a(+,-) and || - || to denote the inner product and norm of H}(f).

To introduce the finite element discretization, we let Q = {k;} be a standard fi-
nite element triangulation of Q that satisfies the minimal angle condition, i.e., in two
dimensional case

Ye 2 Yo >0, VkeQy,

where -, is the minimal interior angle of k£ € 0 and 7o is a constant. We do not assume
that the triangulation is quasi-uniform (see, e.g. [15]), i.e., that all elements are of nearly
the same size. We allow the use of highly refined unstructured meshes. We define the
corresponding finite element space Vj, C Hy () as the regular piecewise linear continuous
triangular finite element space on Q. Let us denote by A as the maximum diameter of
this finite element mesh which will be used later to restrict the size of the coarse grid.

The paper is organized as follows. In §2, we present a bounded decomposition of V}
constructed with a non-nested coarse mesh space. The boundedness is also established.
The small overlap case is addressed separately in §3. An additive Schwarz algorithm is
studied in §4. We also prove that its convergence rate is optimal. In §5 we provide a brief
discussion of certain computational issues. An Appendix is devoted entirely to the issue
of boundedness of the interpolation operator. In this paper, except in the Appendix, ¢
and C, with or without subscripts, denote generic, strictly positive constants mdependent
of any mesh parameters which will be introduced later.

2 A non-nested coarse mesh space

In this section, we describe a way of decomposing the domain 2 into a set of non-
- overlapping subdomains such that @ = |J; {;, and then into a set of overlapping sub-
domains, with which the Schwarz type algorithms is defined. In contrast to the Dryja-
Widlund construction [12], we do not require that {;} forms a regular finite element
subdivision of Q. By adding a not-necessarily-nested coarse mesh space, we prove that
uniformly bounded decomposition of V}, can be obtained. The use of non-nested spaces
in multigrid methods has been studied in [2] and in domain decomposition methods in
[9]. Other Schwarz algorithms that use nonconforming elements can be found in [20].

We begin by introducing several notations. Let Qy, = {n;} be a quasi-uniform tri-
angulation of {2 and 7; one of the triangles whose diameter is of order H.. Qp, will be
referred to as the coarse grid. Here H, is the maximum diameter of this coarse triangu-
lation. We assume, throughout this paper, that

h < const. H,, (3)

and that
‘ area(k;) < const.area(r;), if ki( )75 # 0. (4)

Here area(-) means area in R? and volume in R3.
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Figure 1: The left figure shows the partition of 2 into non-overlapping subdomains,
which need not to form a regular finite element subdivision of 2. The dotted line shows
an extended subdomain. The right figure shows a coarse mesh, which is not necessarily
nested with the fine mesh(not shown in the picture).

Let Vg, C H(Q2) be a shape-regular finite element space over {2 consisting of piecewise
linear continuous functions (cf. [10]). Note that, in general, Vi, ¢ Vi, and it is not
necessary for Vg, to have the same type of elements as Vj. For example, our theory
holds if quadratic elements are used in Vj, and linear triangular elements in V;. Let
I, : CO(Q)) — V; be the usual piecewise linear continuous interpolation operator, which
uses values only at the nodal points of the fine mesh triangulation. We need the facts
that I, satisfy the estimates provided in the following lemma.

Lemma 2.1 There exists a positive constant C, independent of h and H., such that the
following estimates hold in both two- and three-dimensional spaces.

(1) Mavla < Cllvlla, Vv € Vi

(ZZ) “U — Hhv”LQ(Q) < CthHa, Yv € VHC-

We note that estimates (i) and (ii) normally do not hold if v is an arbitrary function
in L*(R2) and Q € R®. However, we need the bounds only for functions in the subspace
V.. A proof of Lemma 2.1 will be given in the Appendix. Let

Vo = OpVu, = {v] € Vi, there exists w € Vy,, such that v = Tyw},

which is a subspace of V,. We shall use the L? projection operator Qg, : H}(Q)) — Vg,
~ defined by
(Qr.u,v) = (v,v), Yu € HY} ), Yv € Vy,.

We now partition § into non-overlapping subdomains {{;}, such that each 9€); does
not cut through any elements in the finite element triangulation, and

N
Q=Uﬂgandﬂ.~ﬂﬂj=(0.

=1



An example of such a partitioning is given in the left figure of Fig 1. Note that we
do not assume that {Q;} forms a regular finite element subdivision of Q, nor that the
diameters of (; are of the same order. In practice, a graph based partitioning technique,
such as these introduced in [5, 14], can often be used to obtain §;, especially if ), is an
unstructured grid. To obtain an overlapping decomposition of {2, we extend each ; to
a larger subdomain Q; D ;, which is also assumed not cutting any fine mesh triangles,
such that
distance(9%; N Q, 00, N Q) > ¢b, Vi,

for a constant ¢ > 0. Here § > 0 will be referred to as the overlapping size. Associated
with each (), we define a finite element space V; = V4 N H2 (). In the next lemma, we
prove that the decomposition

Vi=Vo+Vi+ -+ Wy (5)
exists, and is uniformly bounded.
Lemma 2.2 For anyv € V,, there exist v; € V;, 1 =1,---,N and v:) € Vy, such that

v =y +vi 4 + oy, (6)

and in addition, there exists a constant Cy > 0 independent of the mesh parameters, such

that '
ey 2 He 2

o2+ Il < Co (14 52 ) 1wl o € @
Proof. For any v € V4, we denote v(') = Quv € Vg, vo = Hhvz, ceVandw=v—1vy €
Vi. Because of the boundedness of Q. in H} norm, we clearly have ||vg|la < C||v]|o. Let
{6:(z)} be a partition of unity of { corresponding to {€;}, such that |V, < C/§ (|- |2
is the usual Euclidean norm in R? or R%) and Y 0;(z) = 1. Of course, 6; are smooth

=1

and 0 < 6; < 1. We define v; = II,(6;w) € V. It is easy to see that

; N
vo + Y v =,
1=1
therefore (6) is proved.
Let k be a single triangular element in Q; with diameter . We assume that the
average of 8; over k is 0; . It can be seen that

oty < 2106 T8w|3 (gy + 2/ ((9i = 0:)w) 315y (8)

Because Ilyw = w, the first term on the right-hand side of the above inequality (8)
presents no problems. We next estimate the second term. With the help of the element-
wise inverse inequality, we have

|IIx ((ﬁe - éi,k)w) gy < C;ll- [[TTx ((Gs - 5i,k)'w) lz2@x)

1h 1 ®)
< C‘E 5 ”me(k) =C 3 “w”Lz(k)’



where the constant C' > 0 depends only on the finite element subdivision of 0. The fact
|0; — 6; x| < C h/6 is also used. By taking the sum over all elements k € Q; we arrive at
the estimate

Bty < © (Rl + g5lelaqan) (10)

which implies that

> oy < € (Il + ol (1)

1=1
Here the fact that each point in € is covered by only a finite number of overlapping
subdomains is assumed. To bound the first term on the right-hand side of (11) in terms
of ||v||a, we use the boundedness of the operators Il and Qp, in H} norm, i.e.,

wlla = Jlv—T:Qn.vla

e (12)
< Clvlls +1Qnvlle) < Cllvlla-

To estimate the second term on the right-hand side of (11) in terms of ||v||,, we need the
L? regularity estimates of II,( (ii) of Lemma 2.1) and Qpg,, which give us

”wHL2(Q) = |lv— HhQHc'U“L?(Q)
< v - Qucvle + 1Qny — ThQavllre) (13)
< C(Hellolle + B [Qa0lle) < CH: [lo]a

Recall that 2 < H, by assumption. The proof of the lemma thus follows immediately by
combining the estimates (11), (12) and (13). O

We here make a few remarks about the bound (7) in Lemma 2.2. The bound in (7)
depends only on the size of coarse grid and the overlapping size, and has nothing to do
with the sizes, or diameters, of the subdomains. These un-extended subdomains {Q;}
need not to form a finite element subdivision of {2, and can be chosen to have any shape
that best fit into a particular application. The estimate (7) is useful when the overlap
between subdomains is generous, or roughly the size of the coarse mesh. If small overlap
is preferred, a different estimate is given in the next section.

3 An estimate for the small overlap case

The decomposition bound (7) provided in the previous section grows at a rate propor-
tional to 1/62, which is rather large when small overlap is used. In this section, we
discuss an alternative estimate of the bound, for the same decomposition (5) described
in Lemma 2.2, and prove that it is in fact proportional only to 1/8. Most of the tech-
niques are borrowed from the recent paper of Dryja and Widlund [13]. As in the previous
section, we do not assume that {;} forms a shape regular finite element triangulation of



Q, however, for the small overlap case, we do need to assume that these Q;s have roughly
the same size, i.e., if H; is the diameter of Q;, then there exists a constant #, such that

min{H,'}

~ max{H;} 2 5

Lemma 3.1 (Dryja and Widlund[13]) LetT's; C Q; be the set of points that is within
a distance of § of 0Q0; N}, then

elagey,) < 08 (U4 S boltgy + prllolliagy ) Vo € HYQ), ¥ (14)

where H is the mazimum diameter of these Q.s. The constant C may depend on (.

Lemma 3.2 The same decomposition (6), described in Lemma 2.2, exists and is bounded
in the sense that there exists a constant Cy > 0 independent of the mesh parameters, such

that

, N H H?
llvollz + > lluillz < Co ( 5 5H) 0], Yo € Vi (15)
1=1 .

Proof. The proof is nearly the same as that for Lemma 2.2, except that we make use
of the fact that §; — 0, = 0 if k C Q; \ T's;. This implies that

by < C (Mol + o) (16)

By replacing the last term of (16) with the bound stated in Lemma 3.1, and summing
over all subdomains, we obtain

al 2 H 2 1 2 !
5 iy < € (14 S + s ol (7)
i=1

The proof is thus accomplished by using the inequalities (12) and (13). O

We note that the aspect ratio, or diameter, of the subdomains, H, appears in the the
estimate in the case when small overlap is being used. The factor H is introduced into
the estimate by Lemma 3.1. We do not know whether it can be removed, or replaced by
certain quantity that is independent of the subdomain aspect ratio. We also comment
that if the coarse mesh size H, is the same as the diameter of the subdomains, then the
result of Lemma 3.2 coincides with that of [13]. k

4 An additive Schwarz method based on a non-
‘nested coarse space

In this section, we define and analyze an additive Schwarz algorithm for solving the finite
element problem: Find u} € V} such that

a(u’,‘;, ’Uh) = (fa ’Uh), V’Uh € Vha (18)



by using the subspace decomposition introduced in the previous sections. Let V} =
Vo + Vi + -+ 4+ Vi be the decomposition discussed previously. For 1 < i < N, we define
the operator P;: V), — V; by

a(Pu, ¢) = a(u,¢), Yu €V, and V¢ € V.. (19)

The definition of the space V5 = II,Vy, implies that if {1;} are the basis functions of
Vi, i.e., Vi, = span{t;}, then Vo = span{Ily;}. We define P, : Vi — Vg, by

a(Pyu, ¢) = a(u,I1,4), Yu € V, and V¢ € Vg, (20)

and denote
Py =1L P,: Vi, — Va. (21)

Similar operators were used in the context of non-nested subspaces based multigrid meth-
ods, see for examples [1, 2]. In (20), if we choose ¢ = Pyv € Vg, for an arbitrary v € Vj,
then the following identity holds

a(u, Pow) = a(Pyu, Byv), Yu,v € Vi,

which shows that the operator Fy is symmetric with respect to the inner product a(-,-).
Let P be defined by
P=PFP+P +---+ Py. (22)

It can be seen easily that P is also symmetric in the inner product a(-,-). Let ¢ =
Mhgo + XN, g; and g; be the solutions of the following subspace finite element problems:
Find go € Vi, and g; € V; for 1 # 0, such that

a(gi,9) = (f,¢), VéeViandi>1

and
a(go, ¢) = (f,Ung), Vo€ Vg..

Following the Schwarz theory of Dryja and Widlund [12], it can be shown that, if the
operator P is nonsingular, then the linear operator equation

Puj =g (23)

has the same solution as that of (18). We show in the next theorem that P is not only
nonsingular but also uniformly bounded from both above and below.

Theorem 4.1 The following estimate holds,
o < ||Pll. <O, (24)

where ¢g s the mazimum of the following two constants

1
Co(1+ Hz/6)’




which is defined in Lemma 2.2 and

1
Co(1+ H/6 + H2/SH)’

which is defined in Lemma 8.2. C7 > 0 is a constant independent of the parameters h,
H., 6 and N.

Proof. The upper bound for P can be obtained trivially, we therefore omit its proof,
see e.g., [12]. To estimate the lower bound, we look at only one of the cases corresponding
to the constant Co(1 + HZ2/6?). The other case is nearly identical. Let u € V;, we first
note that

N
a(u, Pu) = a(u,IIhPou) + > a(u, Pu)

i=1

N
= a(Pyu, Pyu) + Y a(Pu, Pu) (25)

i=1

, N
= |[[Poull? + 2l Pull;.

i=1

. . ’
By using Lemma 2.2, we can write u as u = Il uy + SN, u;, therefore,

N
a(u,u) = a(u,Hhu0)+Za(u,U;)

=1

N
= a(P(;ua u;)) + Za(Piuv ui) (26)

1==1

N |
< Psullalluolla + Dl Prellal sl

i=1

With the Cauchy-Schwarz inequality, the boundedness estimate in Lemma 2.2 and (25)
we have

N N
a(u,u) < \} 1Powll + Dl Pl \J lluoll2 + };leli

=1

(27)

< yalu, Pu) /Co(1 + ) Jlull?

The lower bound of P can be obtained immediately by cancelling the common terms,
||#]|a, and squaring both sides of the above inequality. O

The bounds stated in Theorem 4.1 show that the condition number of the operator
P is independent of the mesh parameters. Thus, if an iterative method, such as the
Conjugate Gradient method for the symmetric case and GMRES [19] for the nonsym-
metric and indefinite case, is used to solve equation (23) then the number of iterations
is independent of the mesh parameters.



5 Computational issues and final remarks

We now make a few remarks related to the computation of the coarse grid problem.
Equation (23) is usually solved by an iterative method, which requires the computation
of a matrix-vector multiply Pu = Y%, Piu for some u in V}, at each iteration. The terms
Piu, t # 0, can be obtained with techniques described in several papers, see for example
[12, 22]. Here we only briefly discuss how Pyu can be computed, i.e., how to setup and
solve the coarse problem at each iteration. A complete discussion of the implementation
issues can be found in a forthcoming book of Smith, Bjgrstad and Gropp [22].

Let n and m be the dimensions of V};, and Vy,, respectively, A and Ay be the stiffness
matrices of the fine and coarse spaces, respectively. If we let {z;,¢ = 1,---,n} be the
nodal points of the fine mesh with certain proper ordering, and {;(z),;j = 1,---,m}
the basis functions of Vj,, we can define an n x m interpolation matrix, F = (e;;), where
ei; = ¥j(z;). Let u and Pou be the vector representations of u and Fyu in terms of the
fine mesh basis functions, respectively, then Pyu can be computed with the formula

Pou = EAG'ET Au,

which is simply a discretized version of (20) and (21).

Several numerical examples obtained by using this algorithm can be found in the
paper of Cai and Saad [5], and the paper of Cai, Gropp, Keyes and Tidriri [4], and
therefore are not included in this paper. The multiplicative version of the algorithm was
also discussed and tested there. The extension of the theory to nonsymmetric and/or
indefinite elliptic problems can be obtained easily with the techniques developed in [6, 7].

6 Appendix: The boundedness of II,

If the interpolation operator IIj is considered as a map from the space Hj(f) to Vj, then
it generally does not satisfy the bounds stated in Lemma 2.1, because of the failure of
some Sobolev imbedding theorems [10]. In this Appendix, we prove that IIj, restricted to
a subspace Vg, C H}(§), is indeed bounded if the two grids satisfy certain assumptions
discussed below as we move along in the proof. The case where Vy, is replaced by
a subspace consisting of piecewise continuous quadratic functions has been studied by
Dryja and Widlund [13]. In a trivial case, when Vg, C V} then (i) of Lemma 2.1 holds
as an equality with C = 1, and (ii) holds with C' = 0. Our basic philosophy for the proof
of Lemma 2.1 is based on the observation that if the coarse grid is not too fine, then
most fine triangles are not cut into smaller pieces by the coarse grid. And only a small
number of fine triangles are cut into a small number of smaller pieces. For these un-cut
fine triangles, Lemma 2.1 holds at the element level.

We now provide a proof for Lemma 2.1. Recall that Qg, = {r} and Q, = {k:}
are the coarse and fine triangulations, respectively, and both satisfy the minimal angle
assumption. As mentioned earlier, both Vg, and Vj contain piecewise linear continuous
functions. In the reminder of this section, we shall use const., instead of the usual c or
C, as a generic constant which is positive and independent of any mesh parameters.

10
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Figure 2: 7; and 7, belong to the coarse triangulation Qp, and k£ € Qj, the fine triangu-
lation. A, B and C are vertices of k. D and E are the intersection points as indicated.

We begin with part (i) of Lemma 2.1. The proof for the one dimensional case is
trivial. We focus only on the two dimensional case in this paper. Slight modification is
needed for the three dimensional, tetrahedra case. The essential step is to establish the
estimate

Mhulingy < const. (3 |Vul.l3) area(k), Yu € Va, (28)

where k£ € ;, and the summation is taken over all coarse triangles 7 € Q. that have
non-empty intersection with k. As mentioned earlier, area(k) denotes either the area or
~ the volume of k. We note that Vu|, is a constant vector(since u is linear in 7) and | - |,
is the usual Euclidean norm in RZ.

If k£ belongs completely to a single 7, then (28) is obviously true. Without loss of
generality, we assume that k intersects with only two coarse triangles 7; and 73, as shown
in Fig 2. Let A, B, and C be the three vertices of k, and D, E be the intersection points
as shown also in Fig 2. We shall use AB, etc, to denote the distance between points A
and B. We shall also use the elementary fact that

(AB)? + (AC)? + (BC)* < const. area(k), (29)

where const. depends only on the minimal angle of k.
Since we are considering linear elements, it is not difficult to show that

Mhulfng < const. ((u(A) — u(B))? + (u(A) — u(C))? + (w(B) — u(C))?)
< const. [(u(A) — u(E))* + (u(A) — uw(D))’]+ (30)

const. [(u(D) — w(C))* + (u(E) — u(B))* + (u(B) — u(C))7].

11



We note that points A, D and £ are in 7y, and B,C,D,FE are in 75. By restricting
ourselves to 7, we have

(u(A) = u(D))* + (u(A) ~ w(E))* < |Vuly,|;(AD) + [Vul, |; (AE)?

< |Vul.l3 (AB)? + (AC)* + (BC)*) (31

< const.|Vul, |3 area(k),
where the fact (29) is used in the last inequality. Similarly, we have, in 72, that

(w(B) = u(C))? + (u(B) — u(E))* + (u(C) — u(D))? 52
< const. |Vuln,|> area(k).

Therefore, estimate (28) is proved by combining the inequalities (30), (31) and (32).

For 1 € Qp,, we denote by 7;,7 = 1,---,1 all the coarse triangles that share at least
one of the fine triangles with 7 (i.e., this fine triangle intersects with both 7 and 7;). We
assume that [ is a finite number. By summing (28) over all k; € Qp,7 = 1,---,m, whose

intersection with 7 is non-empty, we obtain

IHhuliﬂ('r) S ;IHhul%l(k,’)
| (33)
< const.z ‘Vul,j

2
area(T;).
1=1 2

Here we used that fact that, for each 7;, the sum of the areas of the fine triangles that
intersect with 7; is less than const. area(r;), because of the assumption h < H,. The
proof for part (i) of Lemma 2.1 follows immediately by summing (33) over all 7 in Qg,
(the number of repetitions, for each 7, in the summation is finite). .

We now turn to the proof of part (ii) of Lemma 2.1. It is sufficient to show that

w2y < const. B? (lefqg(n) + 1“[3{3(0)) ; (34)

for w = u — Il u and u € Vy,. We note that w vanishes at all the fine nodal points, i.e.,
vertices of k € Q.

Let ki € Qp and 7; € Qp,, if area(k;N7;) # 0, we define the so-called subelement
ai; as ki 7j, see Fig 3 for example. We note that w is linear in any subelements.
Furthermore, if c;; contains at least one of k;’s vertices, we say «;; is grounded (since w
has a root in «;;), otherwise, we say «;; is un-grounded.

12
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Figure 3: 7; and 7; are coarse elements, k; is a fine element. The subelement o;; = k; N 7;
is not grounded, but subelement a;; = k;(\7; is grounded. Point A is the grounding point
of a; and B is a common point of a; and «;.

We consider one subelement at a time. If «;; is grounded, then there exists a point
A € oy such that w(A) = 0. Therefore,

”w“%ﬁ(a,’j) = fa,,. (w(m)—w(A))zdx

Juiy (V02 J& = Al2)* da (35)

< 7l2 iwﬁﬂ(ag,’)'

If a;; 1s not grounded, such as what is shown in Fig 3, we take another subelement in the
same k;, say a;;, which is grounded, see also Fig 3. For simplicity, we assume that ¢;; and
oy are adjacent to each other. Otherwise, one or maybe more intermediate subelements
may be needed. We next prove that

Ilw”%Q(a,‘j) < const. EZ (lwﬁ{l(a.’j) + Iuliﬁ(n) + thuﬁ{l(ki)) . (36)
Let A be a grounding point of a;; and the point B belongs to both «;; and aj, then we

have ; ,
||w||%2(a,,) = fa“j (w(z) —w(A)) dz
< 2 (fu, (w(z) —w(B)) dz + [, (w(B) — w(A))’ dz) (37)

< 2 (Bz iwﬁ{’(au) + 12 [Vwlo, |3 area(aij)) ’

13



To bound the term |Vw|a,|3 area(a;;), we observe that w = u — IIu, and both u and
[T u are linear in ay. Thus,

[Vwla, |3 area(es;) < 2(|Vulayl} + [VIIaula,[3) area(es;)
< const. (|Vula, |3 area(n) + |VIulq, |2 area(k;)) (38)

< const. (lulip(n) + lnhu‘%l(k;)) :

Here we made use of the facts that u is linear in 7; and II,u is linear in k;, as well as the
assumptions (3) and (4). The proof of (36) can thus be obtained by combining (37) and
(38).

To complete the proof of (34), we take the sum of (35) and (36) over all possible subele-
ments. Noting that for each coarse triangle, the number of neighboring un-grounded
subelements is finite, therefore, we have

”w”%P(Q) < const. b’ (Z lwlzl(ai,.) + Z l“]}zqi(n) + Z |Hhul§ﬂ(k;))
aqy T ki

(39)

< const. h? (legfg(o) + [“]2{3(9)) :

Here part (i) of Lemma 2.1 was used to bound the II; term in (39). The desired proof
of part (ii) of Lemma 2.1 follows immediately.
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