COMPUTER SCIENCE ASPECTS OF GRAND
CHALLENGE COMPUTING

C.F. Baillie and O.A.McBryan

CU-CS-702-94 January 1994

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

COMPUTER SCIENCE ASPECTS OF GRAND
CHALLENGE COMPUTING

CU-CS-702-94 January, 1994

C.F. Baillie and O.A. McBryan

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

COMPUTER SCIENCE ASPECTS OF GRAND
CHALLENGE COMPUTING

C.F. Baillie and O.A. McBryan
Department of Computer Science

University of Colorado
Boulder, CO 80309, USA

ABSTRACT

We describe computer science and computational
science aspects of three major interdisciplinary
grand challenge efforts currently underway at the
University of Colorado. These challenges involve
both fluid and structure mechanics and a mix of
both regular and highly irregular grids. Computer
science challenges include performance monitoring,
better runtime support, automatic code generation
for various MPP, protocols for high-speed network-
ing, and optimization of communication and T/O to
mass storage.

INTRODUCTION

The University of Colorado is involved in three major
interdisciplinary grand challenge efforts covering both
CFD and Structural Mechanics. NSF HPCC Grand
Challenge funding is supporting work in Coupled Fields
and in Geophysical/Astrophysical Turbulence, while a
NASA HPCC award is supporting work on Rotation-
ally Constrained Turbulence. We will focus here on the
computational science aspects of these grand challenges.

The Coupled Fields Grand Challenge is oriented to-
ward the solution of problems involving interacting
“fields” using heterogeneous approaches - including het-
erogeneity in the algorithms, computational methods
and hardware utilized. For example, researchers in
Aerospace Science, led by Charbel Farhat, are devel-
oping full aeroelastic simulations. These simulations
model both a structure and the fluid in which it is im-
mersed, and incorporate interactions between these sys-
tems. Computationally it has been shown that the fluid
part of the simulation is readily amenable to massively

parallel processing, whereas the structure part, which
involves highly irregular grids, is more suited to a vec-
tor supercomputer or a shared-memory machine. The
strategy then is to use heterogeneous parallel comput-
ing with the fluid simulation running on one machine
and the structure on another.

The Geophysical/Astrophysical Turbulence and Ro-
tationally Constrained Turbulence Grand Challenge ef-
forts involve simulations of both rotating and non-
rotating convective turbulence, such as are found in the
earth’s oceans, in the fast zonal jets of the giant plan-
ets and in the convective zone of the sun. This work in-
volves researchers from the Dept of Astrophysical, Plan-
etary and Atmospheric Sciences, and from NCAR, Uni-
versity of Minnesota and University of Chicago. The
codes here tend to be of the pseudo-spectral type.

COUPLED FIELDS

The full aeroelastic problem involves a strong cou-
pling of the fluid and structure codes in a time-
dependent computation. The idea is to ”fly” an aircraft
structure for a significant time, rather than simply de-
termine the airflow of a fixed aircraft profile. The criti-
cal point is that an aircraft frame is a flexible structure,
not a rigid body. This fact is familiar to anyone who
has looked out of the window during a flight - the wings
obviously oscillate up and down. Understanding and
simulating these perturbations of shape is an essential
part of a full numerical wind-tunnel simulation. Indeed
it is perfectly possible that a plane could appear to fly
well based on a single rigid body simulation, but yet
when flexibility is included, the wing oscillations would
be sufficiently strong to destroy the structure.

The fluid and structure parts of the aeroelastic prob-

Table 1: Times to solve a typical fluid problem in sec-
onds and speedups on the KSR1 for a fluid grid with
131,035 vertices.

Number of KSR1

Processors | Time | Speedup
1 70.230 1.0
8 8.200 8.6
12 5.085 13.8
20 3.290 21.3
32 2.185 32.1
48 1.585 44.3

lem are fairly conventional algorithms. Each has been
developed by the aerospace researchers in our team
and both have been parallelized for several architec-
tures, including CRAY YMP-8 and C-90, Intel iPSC
and Paragon, and Thinking Machines CM-200 and CM-
5 (Lanteri and Farhat 1993).

The fluid code involves an explicit time step which
is therefore very fast. Furthermore fairly regular grid
structures can be utilized here, so that the problems
of parallelizing this code are relatively straightforward.
Over several years this code has been ported to a
range of scalar, vector and MPP machines. Results of
these studies show that this code runs well on various
distributed memory systems such as the KSR1, Intel
Paragon and CM-5. Table 1 shows typical fluid code re-
sults from a KSR1 computer. These performance num-
bers show a substantial loss of potential performance
relative to peak rate. Primarily this is due to the irreg-
ular nature of the grids used. For regular grids, much
higher performance can be attained - for example we
have demonstrated performance as high as 25 Gflops
on the 1024 node CM-5 computer for Shallow Water
type equations (McBryan 1993).

The structure code is a complex finite element code.
The code is either implicit or at least locally implicit,
and grids are highly irregular. Furthermore different
types of elements are needed in different areas of the
structure. All of this makes for a code that is quite dif-
ficult to parallelize on an MPP. This code has also been
ported to a range of systems over several years. Results

Table 2: Times to solve structure problem in seconds
and speedups for structure with approximately 50,000
equations on various numbers of processors of the C-90
and KSR1.

Number of C-90 KSR1
Processors | Time | Speedup | Time | Speedup
1 44.1 1.0 3272 1.0
2 23.6 1.9 1601 2.0
4 12.3 3.6 935 3.5
8 7.8 5.6 573 5.7
16 - - 358 9.1
32 - - 262 12.5

of these experiments indicate that the structure code
behaves much better on the conventional vector super-
computers such as CRAY C-90 than on message passing
MPP systems. Among MPP machines, the structure
code runs best on the Kendall Square Research KSR1.
Table 2 shows typical results for parallel versions of the
structure code on the C-90 and KSR1 supercomputers.

The full aeroelastic simulation requires a coupled so-
lution over a large number of timesteps. Starting with a
suitable initial frame, and an initial velocity, the initial
airflow is computed and determines the pressure on all
parts of the plane body. These forces produce a defor-
mation of the structure, which is calculated using the
structure code. This results in a new shape for the air-
craft, which is used to compute a new flow, and in turn
a new deformation and soon. Thus the computation
reduces to a large number of timesteps, each involving
separate fluid and structure components. The only flow
of information between these two phases occurs on the
boundary of the aircraft and consists of exchange of the
shape and pressure data. Computationally there is ac-
tually a third factor: the numerical grids used for the
fluid and structure need to match at the shared surface.
This means that these grids are all time-dependent and
in a sense there are then three coupled quantities - fluid,
structure and grid. However we will ignore that issue
here.

Because the fluid codes are solved explicitly, it is
necessary to take a very short timestep. The struc-

ture codes however can accommodate a much longer
timestep because they are solved implicitly. Further-
more the changes in pressure forces on the aircraft re-
sulting from single fluid timesteps are so small that their
effect on aircraft shape is not significant. Experiment
has shown that one gets good results by performing a
structure timestep once every 100 fluid timesteps. Fur-
thermore, with realistic grid sizes, the structure com-
putation takes about 100 times as long as a fluid step.
Consequently there is the possibility for a very well bal-
anced computation in which the fluid steps are run on
one machine and the structure computations are over-
lapped in time on a different machine.

The exchange of data between the phases occurs only
on the boundary. If there are O(N3) grid points in the
fluid, where N is a spatial resolution parameter, the
boundary will have an area of O(N?), and consequently
for high resolution computations the data exchange be-
tween the two phases will take much less time than even
the explicit fluid timestep. Of course the value of N
above for which this statement is true depends strongly
on the characteristics of the communication network -
specifically on the latency and bandwidth available. In-
troducing practical values for the various computational
parameters involved indicates that bandwidths in the
range of hundreds of Mbits/sec will be needed.

Our Grand Challenges Group has now developed an
heterogeneous version of the aeroelastic code, based on
PVM to provide the underlying communication. We
are testing this program using three machines that are
located in Boulder - a 208-node Intel Paragon, 64-node
KSR1 and a 32-node CM-5. Both the fluid and struc-
ture codes run on all three machines, and we have de-
veloped and tested a matcher code that provides the
required communication of boundary information be-
tween the two phases. We have tested all of the phases
running on all combinations of pairs of parallel ma-
chines and are currently measuring time spent commu-
nicating the aircraft boundary data.

Current experiments are based on 1.5 Mbit T1 lines
that interconnect the three supercomputer locations
in Boulder. This lines are adequate for testing the
software, but are far too slow to provide an effective
rate of interface data exchange. Spurred by this chal-
lenging computation we have recently developed plans
with USWest, the local telephone franchise, to inter-
connect our three supercomputers with a dedicated 150

Mbit/sec ATM network. The network will become op-
erational in February 1994, and we will report initial
measurements in the conference presentation at the SCS
meeting in La Jolla in April.

Challenging issues related to the ATM network will
include the effectiveness of various communication pro-
tocols both at the low level (for example IP, raw ATM,
...) and at the high level (for example PVM, MPI, ...).
We intend to develop software that will allow heteroge-
neous computations of this scale to be monitored while
running. Other challenges are related to I/O - for ex-
ample there are not large mass storage facilities at all
of these supercomputer locations. Addressing the prob-
lems of getting 1/0 from the supercomputers to remote
storage facilities will become critical once the network
communication is optimized. Obviously the ATM net-
work will again play a critical role here. In the longer
term we would like to generate heterogeneous code au-
tomatically using some of the same tools currently in
use for the turbulence project discussed below. Ulti-
mately we would like to maintain a single source ver-
sion of the aeroelastic code, and generate automatically
versions for individual MPP systems, as well as hetero-
geneous versions for various configurations.

TURBULENCE

All of the pseudo-spectral turbulence codes were orig-
inally running on Cray’s. They contained a few direc-
tives to help the compiler multitask them. We paral-
lelized them for the KSR1 cache-only shared-memory
machine using program transformation tools based on
Sage++ (Gannon et al 1993) to optimize single pro-
cessor performance and help generate parallel “tiling”
directives. We shall describe one such code in detail,
giving performances for the original Cray version on
the C-90 and the parallel KSR1 version.

The code simulates turbulent compressible convec-
tion in a three-dimensional rectilinear geometry em-
ploying a hybrid pseudo-spectral/finite-difference spa-
tial discretization and a mixture of implicit Crank-
Nicolson and explicit 2-level Adams-Bashforth schemes
for time-stepping the linear and non-linear terms of
the underlying equations respectively (Cattaneo et al
1990). The pseudo-spectral nature of the code means
that Fourier transforms (FFTs) are performed in the
two horizontal spatial directions and finite-differences
in the third vertical direction. Since FFTs incur long-

range communications whereas finite-differences have
only short-range, the data is decomposed for parallel
processing by splitting up the domain into horizontal
planes, assigning a number of planes to each processor
so as to keep the FF'T communications local in proces-
sor memory. This is done both for the C-90 and the
KSR1.

There are two main steps in parallelizing code for a
machine like the KSR1: optimizing single processor per-
formance and adding parallel “tiling” directives (Bail-
lie, Macdonald and Sun 1993). Single processor perfor-
mance optimization is necessary because as is common
in all mirco-processors today, the KSR1 custom proces-
sor chip contains a cache, called the “subcache” in order
to distinguish it from the 32 MByte local cache. This
subcache is physically 2-way associative. This means
that addresses separated by certain “magic numbers”
get mapped into the same area of the subcache which
can hold at most only two of them. Thus if several of
these addresses are accessed by the program one after
another, it gives rise to the problem known as “subcache
thrashing” which seriously degrades performance. This
pattern of address reference is in fact exactly what oc-
curs in a Fortran program stepping through the second
(or higher) dimension of an array (since Fortran arrays
are stored in column-major order). The trivial fix for
this problem is, of course, not to have arrays whose
first dimension size leads to a magic number. This is
most easily done by picking odd numbers which are not
a power of two. Coincidentally this is precisely what
is done in codes designed for vector computers like the
Cray but for a different reason, namely in order to avoid
memory bank conflicts. Therefore the turbulence codes
we are working with already avoid this problem.

The second step is to add parallel “tiling” directives.
Tiling on the KSR1 is just splitting up nested loops
into blocks. This is similar to “domain decomposition”
for distributed memory machines, except that there the
data must be explicitly decomposed among the proces-
sors’ local memory, whereas on the KSR1 the data is
simply put in the global memory initially and becomes
decomposed automatically as the code runs by the on-
demand caching strategy. This causes the first iteration
of the algorithm to be slower than the subsequent ones,
but since many thousands of iterations are required this
is a negligible overhead. Of the four possible methods of
tiling (slice, mod, grab and wavefront), the slice method

was utilized, as previously mentioned by sending multi-
ple horizontal planes to each processor. Thus the tiled
code for Fourier transforming a variable a(nz, ny, nz)
in real space to b(ny, na, nz) in phase space looks like:

ck¥ksr* tile(k,tilesize=(k:ksize))
do k = 1,nz

c £it first dimension: a -> temxy
call fft(a(1,1,k), temxy, nx, ny)

c swap dimensions: temxy -> temyx
do i = 1,nx
do j = 1,ny
temyx(j,i) =
end do
end do

temxy(i,j)

c fft second dimension: temyx -> b
call fft(temyx, b{i,1,k), ny, nx)

end do
cxksr* end tile

We see that the horizontal 2d Fourier transform is done
as two 1d FFTs which entails a swap of the first and
second array dimensions inbetween. Note that the tile
statement specifies the number of horizontal planes per
processor as tilesize = (k : ksize). For maximum effi-
ciency the tiled loop should be the outermost and the
variable which is tiled should be the last dimension of
the arrays.

The resulting parallel tiled code beats a single Cray
Y-MP processor, and is a little slower than a single C-
90 processor, using 32 processors of the KSR1. In Table
3 we give times per iteration and speedups for the code
running on various numbers of processors of the Cray
C-90 and KSR, for problem size 96 x 96 x 65. The
Cray C-90 speedups are not very impressive but this
is mainly due to the fact that the runs were not done
in “dedicated mode”. On the KSR1 we see superlinear
speedups due to the fact that the data does not fit in
one processor’s memory. However since the KSRI is
a shared memory machine the code still runs with the
data being swapped to the memory of other processors.

To better understand what is going on we calculate
the “incremental speedups”: in going from 4 to 8 pro-

Table 3: Times per iteration in seconds and speedups
for 96 x 96 x 65 problem on various numbers of processors
of the C-90 and KSRI1.

Number of C-90 KSR1

Processors | Time | Speedup | Time | Speedup
1 1.96 1.00 124.8 1.00
2 1.09 1.85 58.2 2.14
4 0.74 2.80 20.0 6.24
8 0.62 3.39 9.37 13.3
16 0.48 4.56 4.96 25.2
32 - - 2.94 42.4

cessors this is 2.13, from 8 to 16 it 1s 1.89 and from 16
to 32 1.69. Thus for larger numbers of processors the
speedup falls off. We have attributed this fact to the
amount of time spent in “barriers”. Barriers are those
events which synchronize the processors at the end of
parallel loops before entering a serial section or another
parallel loop. If the load balance across processors is
not perfect then some processors will have to wait in the
barrier for others to finish. On examining the barrier
performance of the KSR1, it appears as though the bar-
rier can wait even though all processors have completed
their individual tasks, and that this extraneous wait
time can increase linearly with the number of proces-
sors used. Eventually, the time spent in barriers starts
to be a significant percentage of the calculation time,
for example about 20% for 32 processors. Therefore our
computer science department colleagues have developed
more efficient barriers for the KSR1 (and other shared-
memory machines), which we hope will be incorporated
into the KSR1 compiler in the near future (Grunwald
and Vajracharya 1993).

ACKNOWLEDGMENTS

The work reported here was supported by NSF Grand
Challenge Applications Group Grant ASC-9217394 and
by NASA HPCC Group Grant NAGH-2218.

REFERENCES

Baillie, C.F., A. E. Macdonald and S. Sun. 1993. “Port-
ing the Quasi-Nonhydrostatic Meteorological Model to

the Kendall Square Research KSR1.” In Proc. High
Performance Computing in the Geosciences, F.-X. Le
Dimet, ed. Kluwer Academic, Amsterdam.

Cattaneo, F., N.H. Brummell, J. Toomre, A. Malagoli
and N.E. Hurlburt. 1990. “Turbulent compressible con-
vection.” Astrophys. J. 370 (March): 282-294.

Gannon, D.; F. Bodin, S. Srinivas, N. Sundaresan, S.
Narayana and J. Gotwals. 1993. “Sage++, An Object
Oriented Toolkit for Program Transformations.” Tech-
nical Report. Dept of Computer Science, Indiana Uni-
versity, Indiana (Dec).

Grunwald, D. and S. Vajracharya. 1993. “Efficient
Barriers for Distributed Shared Memory Computers.”
Technical Report. Dept of Computer Science, Univer-
sity of Colorado, Colorado (Nov).

Lanteri, S. and C. Farhat. 1993. “Viscous Flow Com-
putations on MPP Systems: Implementations and Per-
formance Results for Unstructured Grids.” Siam JSC,
to appear.

MecBryan, O. 1993. “Performance of the Shallow Water
Equations on the CM-200 and CM-5 Parallal Supercom-
puters.” Proceedings of the Fifth ECMWF Workshop
on the use of Parallel Processors in Meteorology: Paral-
lel Supercomputing in Atmospheric Science, eds. G.-R
Hoffman and T. Kauranne, World Scientific, London.

