PARALLEL FACTORIZATION ON THE iPSC/860
OF STRUCTURED MATRICES
ARISING IN STOCHASTIC PROGRAMMING

E.R. Jessup
Department of Computer Science
University of Colorado, Boulder 80309-0430

Dafeng Yang and Stavros A. Zenios

Operations & Information Management Department
The Wharton School, University of Pennsylvania

CU-CS-701-94 January 1994

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

Parallel Factorization on the iPSC/860
of Structured Matrices
Arising in Stochastic Programming

E.R. Jessup
Department of Computer Science
University of Colorado, Boulder 80309-0430

Dafeng Yang and Stavros A. Zenios
Operations & Information Management Department
The Wharton School, University of Pennsylvania

CU-CS-701-94 January 1994

&

University of Colorado at Boulder
Technical Report CU-CS-701-94

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Parallel Factorization on the iPSC/860
of Structured Matrices
Arising in Stochastic Programming

E.R. Jessup
Department of Computer Science
University of Colorado, Boulder 80309-0430

Dafeng Yang and Stavros A. Zenios
Operations & Information Management Department
The Wharton School, University of Pennsylvania
Philadelphia, PA 19104.

January 1994

Abstract
Solving the deterministic equivalent formulation of two-stage stochastic programs using
interior point algorithms requires the solution of linear systems of the form

(AD*AT)dy = b.

The constraint matrix A has a dual, block-angular structure. This system of equations is
dense and difficult to solve. We develop a parallel matrix factorization procedure using
the Sherman-Morrison-Woodbury formula, based on the work of Birge and Qi [4]. This
procedure requires the solution of smaller, independent systems of equations. With the
use of optimal communication algorithms and careful attention to data layout we obtain a
parallel implementation that achieves near perfect speedup Intel iPSC/860 hypercube for a
variety of problems on a wide range of machine dimensions. An analysis of the computational
and communication steps of the algorithm along with the timing data reveals the problem
structures for which almost linear speedups can be achieved. Results are reported with
the solution of linear systems arising when solving stochastic programs with up to 2048
scenarios. The largest deterministic equivalent linear program solved has 89,601 constraints
and 407,130 variables.

1 Introduction

Stochastic programming is used to model a wide range of practical applications with uncertain
input data. When the input data are discretely distributed — represented, for example, by
a set of scenarios — the stochastic program can be formulated as a deterministic equivalent
linear program with a dual, block-angular constraint matrix. For large number of scenarios
these linear programs could be extremely large and computationally intractable.

The literature on stochastic programming is extensive, dating back to the 1950’s with the
works of G.B. Dantzig and M. Beale, and we do not stop to review it here. Significant progress
has been made over the last decade. Developments in interior point algorithms hold great

promise for the solution of large-scale programs of this form. Substantial improvements are also
expected with the use of parallel computers. For an introduction to stochastic programming
and the deterministic equivalent formulation see Wets [21]. Applications are found in recent
papers by Birge and Holmes [5], Mulvey and Vladimirou [15], Zenios [22] and their references.
Algorithmic approaches for solving stochastic programs are found in Rockafellar and Wets [18],
Birge and Holmes [5], Mulvey and Ruszczynski [14], Nielsen and Zenios [17] and their references.
Parallel algorithms are also discussed in [5, 14, 17].

One strand of research [14, 17, 18] develops decomposition algorithms that solve the stochas-
tic program by solving a sequence of smaller subproblems — one for each scenario — and
combining the results through a master program or an aggregation step. A second strand of
research [4, 5, 13] — which is followed by this paper as well — attacks the linear programming
formulation of a stochastic program using interior point algorithms, and seeks matrix factoriza-
tion techniques that exploit the special structure of the constraint matrix. Efficient techniques
are sought for the computation of the dual step dy by solving the symmetric, positive definite

system
(AD?AT)dy = b,

where the constraint matrix A has a dual, block-angular structure. Birge and Holmes [5] review
different methods that have been proposed to solve this system. In particular they find that a
factorization technique proposed in Birge and Qi [4] (abbreviated: BQ) that uses the Sherman-
Morrison-Woodbury updating formula is more efficient, stable and accurate than alternative
methods based on problem reformulations suggested by Lustig et al. [13] or on methods using
Schur complements. This conclusion is supported by numerical experiments: BQ is up to 20
times faster than methods based on problem reformulation. Worst case complexity analysis
agrees with the empirical findings.

Birge and Holmes also suggest that BQ is suitable for parallel computation. However, their
experiments — on a distributed network of DECstations — show only modest speedups. The
best speedup was approximately 3.0 on 4 workstations. Adding more workstations worsened
performance. The authors therefore conclude that “speedups are not linear with the number
of processors since the communication requirements quickly overtake the benefits provided by
the distribution of computational work” [5]. We demonstrate that this need not necessarily
be the case. It was true for the distributed, networked environment they used because the
communication was too expensive for the small-sized problems they could solve. Using a “true”
parallel machine (an iPSC/860 hypercube multiprocessor with 128 processors), we show that
the BQ method can be implemented in a way that achieves almost linear speedups for a wide
range of problem orders and machine dimensions. We develop a model of the performance of
the algorithm that, together with the experimental data, relates the execution time — both in
computation and communication — to the aspect ratio of the blocks of the constraint matrix.
In the process, we solve test problems with 2048 scenarios. The deterministic equivalent linear
programs have 89,601 constraints and 407,130 variables.

Factorization procedures similar to BQ were proposed by Choi and Goldfarb [6] for mul-
ticommodity network flow problems. Their worst case analysis shows substantial savings in
computations, but they ignore the cost of communication and report no empirical results. The
techniques developed here are applicable to multicommodity network flow problems as well.

Section 2 establishes notation and reviews the BQ matrix factorization procedure. Section 3
identifies the basic parallelism of the factorization procedure and its communication require-
ments. Section 4 develops appropriate communication schemes on the targe machine, the Intel

iPSC/860 hypercube. Section 5 discusses the implementation and develops a model for the per-
formance of the computation and communication steps of the algorithm. Section 6 interprets
the model and presents the results of the computational experiments, and Section 7 concludes
the paper. ‘

2 The matrix factorization procedure

2.1 Problem formulation

The two-stage stochastic program determines an optimal first-stage decision vector zg € R"
with cost vector ¢g € R™ before some random coefficients are observed, and then it makes an
optimal corrective (or recourse) action after the random coefficients become known. We assume
l = 1,2,...,N scenarios of the random coefficients: ¢; € R™, T; € R™X™ W, € R™M*™
by € ™. We also use (A);. and (A).,; to denote the ith row and column of the matrix A
respectively. With this notation the program is written as

Minimize ¢§zo + 2N,] v

Subject to:
Aozo = bo
T zo+ Wiy =b, forl=1,2,...,N
Zg, Ui > 0.

This problem has n = ng + Zf\il n; variables and m = mg + E{il my constraints. Ag and W,

are assumed to have full row rank, with m; < n; forall [=0,1,2,..., N, and ng < Zfil n;.
The application of a primal-dual, path-following interior point algorithm to this linear pro-

gram requires the repeated solution of symmetric, positive definite linear systems of the form

(AD?*A™)dy = b. (1)
A is the constraint matrix of the two stage stochastic program
Ap
A= ?’11 Wy
'TN ‘ Wn

The matrix D? € 7" is positive definite and diagonal.

This system of equations calculates the dual step dy. Its solution accounts for more than
90% of the computation in practical applications of the algorithm. The derivation of this system
can be found in most references on interior-point algorithms, see, e.g., Birge and Holmes [5].

2.2 The Birge-Qi matrix factorization procedure
The procedure for solving (1) is based on the following result:

Theorem 1 Let M = AD?*AT, S = diag{So, S1,...,Sn} where S; = W DIWT € R™*™ | =
1,...N, Sg = I, € R™*™ gnd D; € R™M*™ is the (diagonal) submatriz of D corresponding to

the I-th block. Also, let
N
Gy = (Do)_2 + AP)—AO + ZTITSI—ITI,

=1
Ao I Ao —1Ip

T Ty 0 T 0

Gz[i;o %0]’“ SR ER S

Tnv 0 v 0
If Ag and Wy, 1 = 1,...N, have full row rank then M and Gy = —AoGT'AJ are invertible and
M1=g"1_g5-lyGg-tyTs-1 (2)
Proof : See Birge and Holmes [5, pp. 257-258]. 0

It is easy to verify that, using equation (2), the solution of Mdy = b is given by dy = p—r,
where p is given by Sp = b, and r is given by solving

Gq=VTp, and Sr = Uq. (3)

The vector p can be computed component-wise by solving S;p; = b, [=1,...N.
In order to solve for ¢ we exploit the block structure of G :

Gi1 Ag a1 P1 P1 T
Gq= =15 |,wh . | =VTp. 4
1 [-Ao 0 g2 D2 where D2 P (4)
Hence, we get
@ = —G7'(P2+ AoGI"P1) (5)
@ = GT'(h—AJq) : (6)

The system of equations (1) is therefore solved according to the folowing procedure from
[5):
Procedure 2.1 (Finddy(S, Ao, T1,...,TnN,b,dy))

1. (Solve Sp =1b). Solve Sip; = b; forp;, 1 =0,...,N.
2. (Solve Gg =V Tp). ;
(a) Form Gy by solving Si(w); = (T1)i for (w)i, 1 =1,...,N,i=1,...,n9 and setting
(G1)i = (Do)i? + TIy Ty ()i + (AF Ao)i-
(b) Form py and py using equation (4).
(c) Solve Giu = py for u and set v = py + Agu.
(d) Form Gq by solving (Gh)w; = (A§)i for w;, for i = 1,...,mp and setting Gy =
—Ao[’wl, ey wmo].
(e) Solve Goqa = —v for g2, and solve Giq1 = p1 — AJ g2 for qy.

3. (Solve Sr = Ugq). Set ro = Aog1 + g2, and solve Syr; = Tiq; forr; € R™,1=1,...,N.
4. (Form dy.) Set (dy); = p; — r; for I = 0,...,N. Return dy = (dyo,...,dyn).

3 The Parallel Matrix Factorization Procedure

Procedure 2.1 (Finddy) is well-suited for parallel implementation because the operations in-
volving separate submatrices of the matrix A can be carried out independently of one another.
If the computation begins with the submatrices 7741, Wiy1 and D;yq and the vector segment
bi+1 located on node [, for I = 0,...,N — 1, node ! can compute S;41 and proceed indepen-
dently with all computations involving only these data. Interprocessor data communication is
necessary at only three points in the algorithm. In particular, in steps 2a and 2b, the nodes
must communicate to form the matrix Gy and the vectors p; and po. If steps 2c, 2d, and 2e
proceed serially in node 0, nodes must then communicate to broadcast the computed vector ¢;.
Steps 3 and 4 require only the distributed data Siy1, Ti41, ¢i41, and pryq on node [and so may
be carried out with full parallelism. A final communication step accumulates all the partial
vectors (dy);+1 in node 0 for use in subsequent iterations. Thus, all of the communication steps
require either broadcasting of data from one node to all others (one-to-all communication) or
gathering of data distributed among processors. The data gathers can be either all-to-all or
all-to-one depending on intended use of the data and speed of the gather routines.

In this paper we demonstrate the parallel efficiency of the Finddy procedure on a distributed-
memory MIMD multiprocessor. In section 4, we introduce the iPSC/860 hypercube multipro-
cessor used for our implementation and experiments. We also describe the optimal one-to-all
and all-to-all communication routines that are the basis for the communication routines used in
our parallel implementation. In section 5, we present the details of our parallel implementation.
We explain both how the computations are divided between the processors and how the generic
communication routines presented in Section 4 are adapted for use in our implementation.

4 The Communication Schemes on the Target Machine

We performed our experiments on an Intel iPSC/860 hypercube multiprocessor. For more
information on portability of our code, see Section 5.4.

A hypercube is a distributed-memory MIMD message-passing parallel computer in which
processors are connected according to a hypercube graph. A single processor together with its
associated local memory is referred to as a node. The size of a hypercube is defined by its
dimension d, and a hypercube graph of dimension d and the multiprocessor based on it are
called d-cubes. A d-cube graph has p = 2% nodes, and the nodes of the hypercube computer
are located at the nodes of the graph.

Nodes in a d-cube are assigned d-bit binary identifiers (from 0 through p — 1) such that the
d nodes connected to node j all have identifiers differing from j in exactly one bit. A d-cube
can be constructed by connecting corresponding nodes of two (d — 1)-cubes in any of d ways.
For example, the familiar 3-cube can be made by linking corresponding processors of the two
squares or 2-cubes forming its top and bottom, left and right, or front and back faces. In a
d-cube, the d neighbors of node j define the d nodes corresponding to node j in the d different
(d — 1)-cubes.

The special properties of the hypercube graph are the basis for the efficient interproces-
sor data communication routines on the hypercube multiprocessor. While modern hypercube
multiprocessors support wormhole routing by which messages may be sent efficiently between
any pair of nodes, the most efficient codes are still those in which messages do not cross on
communication wires. One way to ensure contention free routing of messages is to ensure that

only neighboring nodes in the cube communicate with one another. We have used that rule in
our code design.

The first communication scheme broadcasts data from node 0 to all others via the links of a
spanning tree of the hypercube graph rooted at node 0. Al communication takes place between
nearest neighbors. This procedure is termed a spanning tree broadcast (STB). The spanning
tree of height d is embedded into a d-cube by simple bit manipulation of the node identifiers.
Node 0 is at the root of the tree. The broadcast proceeds for a total of d communication steps
where at step [, for [= 1,...,d, each node with identifier j < 2' pairs with the node with
identifier different from j in bit ! only. For each pair, the node with the smaller identifier is the
parent node and sends its data to its child. Thus, at step [of the algorithm, 2'~ nodes receive
the data. When a k-byte message is broadcast from node 0 to all others, the communication
cost is

d(B + k),

where [is the startup time for a message passed between two processors, and 7 is the time for
one byte of data to pass between two neighboring processors. We use an STB to broadcast the
vector ¢; in the parallel implementation of step 2e of Procedure 2.1 (Finddy). (See section 5
for more details on all steps.)

The STB moves data from one node to all others. Suppose, in contrast, that each of the p
nodes begins with k bytes of data but that the full pk bytes of data need to be accumulated in
node 0. The distributed data can be gathered by traversing the spanning tree from its leaves
to its roots. Again, the gather proceeds for d steps, but every node receiving data from its
child appends that data to its own data and forwards the accumulated data to its parent in the
next communication step. Upon completion, node 0 holds all pk bytes of data. The cost of this
spanning tree gather (STG) is

(B+kT)+ (B4 2kT) + -+ + (8 + 2% 2kr)
=dB+ (p—1)kr.

We use a global sum routine based on an STG in the parallel implementation of steps 2a and
2b of Finddy.

The second communication routine is based on an alternate direction exchange (ADE) as
described in [19]. An ADE can be used, for example, to accumulate in all p = 2¢ nodes pk
bytes of data initially distributed with & bytes per node. In each of d communication steps, the
d-cube splits into a different pair of (d — 1)-cubes. The 2¢~1 pairs of corresponding nodes from
the two cubes exchange and accumulate their data sets. Thus, as in the STG, the size of the
data set received by any processor at communication step [is 2"1k bytes, I = 1,...,d.

All communication takes place between neighboring nodes. Thus, the time to perform this
ADE on a d-cube is :

a[(B+kr)+ (B+2kT)+ -+ (B+ 24 k)]
= a[dB + (p — 1)k7],

where the parameter a lies between 1 and 2, inclusive. It is 2 when the exchange between (d—1)-
cubes is accomplished by a send-receive-send-receive pattern of communication commands. By
synchronizing all nodes, a can be made closer to 1 on the iPSC/860 [20] when k is large. We
do not synchronize the nodes and so use the approximation « = 2 in the models we develop in
Section 5.

STB, STG, and ADE are optimal broadcast and gather routines in the sense that they take
only the minimum number of communication steps — d steps on a d-cube [19]. Minimizing the
number of communication steps is important on present-day distributed-memory computers as
the cost of communication is typically high in comparison to the cost of computation. In partic-
ular, the cost of communicating an m-byte message from one hypercube node to a neighboring
one is # + m 7, where the communication startup latency § is generally large in comparison
to the transmission time per byte 7. (On the iPSC/860, 8/7 ~ 340 for messages of more than
100 byte [10].)

5 The Parallel Implementation

In this section, we step through the parallel implementation of Procedure 2.1 (Finddy) pre-
senting first the communication requirements and then the computation requirements. In the
process, we develop a model of the communication and computation costs of the parallel al-
gorithm. We summarize the parallel algorithm as Procedure 5.1 (Parallel Finddy) in Section
5.

5.1 The communication steps

Each of the three communication steps in Parallel Finddy is based either on a spanning tree
broadcast/gather (STB or STG) or on an alternate direction exchange (ADE). In what follows,
we detail how each communication step proceeds and estimate its cost.

Steps 2a and 2b. In step 2a,nodel,! = 0,..., N—1 solves the system Si41(ui41)i = (Ti41); for
(ui41)i, 2 = 1,...,ng, then determines the matrix Tl_,_vlm: (T 1 (wg1)1, - o> T 1 (W41)ng). (Note
that Siy1 need be factored only once to solve the ng systems.) Then, using a communication
routine based on an STG rooted at node 0, nodes communicate to accumulate the matrix sum
G1. In this routine, each node at a leaf of the spanning tree initializes a partial sum with its
own matrix Tl+1 and sends that partial sum to its parent node. As the gather proceeds, a node
receives partial sums from all of its children, adds them to its own partial sum, then sends the
result to its parent. We call this variation of an STG a spanning tree global sum. After the root
node 0 receives the partial sums of its children, it sums them with (Dg)~2 + AJ Ao to form the
matrix Gy.

Step 2b has similar communication requirements. For [= 0,...,N — 1, node [forms
f1+1 = T 111p1+1. All nodes then determine a global sum of all terms f1+1 by means of a
spanning tree global sum rooted at node 0. The final sums py = AJpo + z{il f; and Py = —po
are found in node 0.

The Intel communication routine GDSUM performs a global sum of distributed scalar vari-
ables only and so is not appropriate for steps 2a and 2b. Thus, we have used our own spanning
tree global sum routine GpGATHER for Steps 2a and 2b. This routine packs the matrix par-
tial sums (from step 2a) and the vector partial sums (from step 2b) into one common block
of size ng X (no + 1) and sends them together to save on message startups. Communication
proceeds according to the spanning tree gather just described with both matrix and vector
sums performed together at each step.

The time for a GpGATHER of double precision (8-byte) quantities is

tap = d[(nd+mno)lw + d[B +8(nf + no)]

— comp comm
- TGp + TGp s

where w is the time for a floating point operation.

Step 2e. Step 2e produces the vector ¢; in node 0. For step 3 to proceed, node 0 broadcasts
this vector to all others. For this broadcast, we use our own spanning tree broadcast routine
STB. For double precision vector elements, the time for the STB is

tsrp = df + Sd%r.

Our timing tests have shown that our own routine STB takes time identical to that needed by
the Intel communication routine csend to effect a one-to-all broadcast. The STB is also faster
than our ADE routine for broadcasting ¢;.

Step 4. The final step in FINDDY is to gather the pieces of the computed vector dy together

in order in node 0. While our STB and Intel’s GCOLX provide equivalent ways to do this

gather, our timings have shown that an ADE is in fact the fastest way of gathering the ordered

vector. Our ADE routine that orders the vector properly in node 0 is called dyGATHER.
The time to perform a dyGATHER is

8Nmy 16 N'm,

2[6 +

2[dp + 8(27 — 1)-1-“,--;317].

T+ 6+

tay T+...+ﬂ+8*2d“1————~N;nlr]

The total time for communication in the parallel Finddy procedure is thus

le

Teomm = 4dB + [8d(n + no) + 8df;3 416024 — DA, M

5.2 The computation steps

In this section, we describe the distribution of computation in the parallel implementation and
derive a model of the computational costs. To begin, we assume that for [= 0,...,N — 1,
node [starts with the submatrices Si4; and Tj4; and the vector segment 4. (That is, the
number of processors p equals the number of submatrices N.) Node 0 also holds Ay, So, Do,
and bg. We conclude this section by generalizing our model to the case of N/p submatrices
and vector segments per node. Recall that Ag € R0 Tj1y € RM+1X70 Gy g € R+ XM,
Dy € RM+1X™m41 s and by € R™#+1. In this section, we count all of the floating point
operations performed by the parallel Finddy algorithm. We then present an estimate of the
total time required by the algorithm by charging a time of w to each operation. As we will
show in Section 6.2, however, the proper value of omega is strongly dependent not only on the
basic operation cost but also on the related memory access costs and the language used for the
code (e.g., assembler or Fortran.) For more information on general matrix operation costs, see
[11].

The one problem per node distribution means that the N sparse system solutions carried
out in steps 1 and 2a can be carried out in parallel. Each 94, is a sparse, symmetric positive
definite my X my matrix. We compute the factors of each matrix by the (serial) supernodal
Cholesky factorization algorithm of Ng and Peyton [16]. The cost of this algorithm is very

highly problem dependent and is impossible to write as a general analytic expression. However,
we know that the total cost is bounded above by

3
Tfactor < 6’77_;1“’3
where 6 is the fraction of nonzero elements in the Cholesky factor of sparse matrix Siy;. (In
determining a cost over all [, we take § to be the largest value for any Cholesky factor.) Solving
the system Siy1piy1 = biy1 in step 1 and each of the ng systems Sipy(uwig1)i = (Ti41)i,% =
1,... no, in step 2a is also done by the algorithm of [16] so that the time for one solve is very
roughly bounded above by
Tsolve < 52171%&).

~The operations performed in step 2b are also fully parallel. Forming the matrix Tj4; =
(Tzzrl(ulﬂ)la B T;:q(uzﬂ)no) costs
Qn%mlw,

and constructing the vector t}.,,l = T1:_1P1+1 costs
2ngmqw.

The computation cost of the GpGATHER introduced in section 5.1 is TE ™. After Gp-
GATHER completes, node 0 takes another (2ng + 2ngmg -+ no + mo)w to form Gy and p,. Thus,
the total computation costs of steps 1, 2a, and 2b are (retaining quadratic and higher order
terms)

T1 20,26 = [Ttactor + (70 + 1)Tsotve + (22m1 + 20 + 2nomo + 2nomy)|w + T, .

While steps 1, 2a, and 2b are fully parallel, the same does not hold for the rest of step 2.
In particular, once node 0 has formed the ng X ng matrix Gy via the call to GpGATHER, it
is more efficient for node 0 to carry out the computations involving G (e.g., steps 2¢, 2d, and
2e) serially than to distribute them among all nodes. The following deliberations illustrate that
step 2d should not be implemented in parallel.

The time needed to run step 2d serially is

Toa = 2(ndmo + mino)w, (8)
where the first term is the cost of solving Gyw; = (Ag)i,i =1,...mo, with G; factored in step
2¢, and the second term is the cost of forming G = —Agwy, ... W)

A parallel implementation of step 2d would proceed as follows (with mq divisible by p):

o Processor 0 sends a copy of matrix G; to every node. Doing this by a spanning tree
broadcast takes time d[3 + 8n37].

¢ Processor [solves ﬂpﬂ of the systems needed to form G and multiplies the solution vectors
by —Ap in parallel on processors ! = 0,...,p—1. The cost of this step is Q(ngmo-l-ngmg)%.

e Processor 0 gathers back all the columns (—Aow);,7 = 1,... mg, to form G,. As we did
for dyGATHER, we use an ADE, and the total time is 2[d8 + 8(2¢ — 1)memer].

The total time needed to run the parallel implementation of step 2d is then
TP = 3dp + 8[dnd + 2(2% - 1)_"0pﬂ]r +2(nZmg + nomg)%. (9)

For the problems of interest, ng and mg are small — usually less than 100. Small matrix
orders mean that the communication time can quickly overwhelm the small computation time
in the parallel algorithm. For example, suppose that mg = 50 and ng = 100. On the iPSC/860,
B = 75 usec for small messages, 7 =~ 0.4 usec, and w =~ 0.1 psec (ignoring memory access costs)
[10]. Therefore, the serial algorithm would take at least 150 msec, while the parallel algorithm
would take at least 143 msec when d = 3, 168 msec when d = 4, 196 msec when d = 5, and even
greater times for larger machine sizes as the cost of the ADE increases with increasing machine
dimension. When ng or myg is smaller, the efficiency of the parallel algorithm is even poorer.
Thus, the parallel implementation of step 2d is never faster than the serial implementation for
practical problems on reasonably sized machines. For instance, the test problems we examine
in Section 6.4 have mg = 10 and ng = 70 or mg = 1 and ng = 90 .

Similar arguments show that steps 2c and 2e, which involve only small order matrix compu-
tations, cannot be distributed efficiently. The total cost for step 2c¢ is %ngw to factor the dense,
symmetric, positive definite matrix G, 2n3w to solve the system Gyu = p1, and (2mong +mo)w
to form v. The computation cost for step 2e is (2mf + 2m)w to factor and solve the system
G2q2, and 2ng(no + mo + —%)w to form the righthand side of and solve the second system. The
computation time for steps 2¢ through 2e is then

Toc2d,2¢ = (%ng + %mg + 2mng + 2n2mo + 4m2 + 3nd + 4mgne)w.
Steps 3 and 4 are again completely parallel. Node 0 determines 7 in time mg(2n + 1)w.
All nodes find the matrix vector product Ti41¢141 in time mynow, and all nodes solve their
sparse systems in time bounded by 26m?w. (Remember that the factors of S;;; were computed
in step 1.) In the final step, all nodes take time myw to determine (dy);. Steps 3 and 4 thus
run in time
T3,4 = 2[772071,0 + ml(no + 6m1)]w.

Totalling the contributions of all steps gives a total computation time of

N=
Tcomg = T1,2a,2b + T2c,2d,2e + T3,4

1 2
= TfaCtO"' + (nO + 1)Tsolve + n%ml + §n8 + gmg

+ m%no + n%mo + 2m(2) + 4n§ + 3mgng + 2m1no]w + ch;c;mp.

When each processor holds not just one submatrix but rather —];1 of them, the costs of the
steps increase to

N
Ti2420 = [Tfactor + (no + 1)Tsolue + 2n(2]m1]—z—)—w + Té;mp

1 2
Tocpd2e = (gng + §m8 + 2mdno + 2ndmo + 4md + 3nk + 4mong)w
N
T34 = 2[mono + mi(ng + 5m1)};w.

10

This means that the total computational cost for the parallel algorithm is (to cubic order)

N
Tcomp = {[Tfactor + Tsol'ue + 2n0m% + Qn(z)ml]'; (10)
1 2 com
+(§ng + gmg + 2mdng + 2ndmo) }w + Te,™”

5.3 The parallel algorithm

For simplicity of presentation, we assume that the number of processors p equals the number
of subproblems N so that the parallel algorithm proceeds as follows. (Our code does handle
arbitrary problem sizes by spreading leftover tasks evenly among the processors.)

Procedure 5.1 (Parallel Finddy(S, 4¢,T1,...,Tn,b,dy))
Begin with the following data distribution:

Node | holds Si41, Ti41, and bj41, 1 =0,...,N — 1.
Node 0 also holds Ag, So, Do, and bg.

1. (In parallel, solve Sp = b). On node zero, solve Sopo = bo. In parallel (on nodes | =
0,...,N —1), solve Siy1pi+1 = biy1 for prys.

2. (Solve Gg=VTp).
(a) In parallel on nodes ! = 0,...,N — 1, solve Siy1(w41)i = (Tig1): for (wig1)i, & =
1, ...y Q.
(b) In parallel on nodes 1 = 0,...,N —1), multiply T}% ;pi11.
Serially (on node 0), compute po.

Call GpGATHER to form Gy and p; on node 0. Node 0 (serially) combines its data
with that accumulated by GpGATHER to form G = (Do) + (AL Ao)+ I, T (wy);
and py = Al'po + XL, T mi.

(c) Serially (on node 0), solve Giu = Py for u and set v = Py + Agu.

(d) Serially (on node 0), form G by solving (G1)w; = (A§)s for w;, fori=1,...,mg
and setting G = —Ao[wy, . .., Wiy

(e) Serially (on node 0), solve Goqa = —v for gz, and solve G1q1 = p1 — AJgqa for ¢1.
Call STB to distribute g1 to all nodes.

3. (In parallel, solve St = Uq). On node 0, set ro = Agq1 + q2. On nodes 1 =0,...,N —1
solve Sip17mi41 = Tip1qiy1 for iy € R™+1,

)

4. (In parallel, form dy.) On node zero, set dyo = po — 1o. On nodesl = 0,...,N — 1, set
(dy)i+1 = pry1 — r141. Call dyGATHER to gather the vector dy = (dyo, . . .,dyn) on node
0.

11

In steps 1 and 2a of our Fortran code, we use the memory-efficient sparse system solver rou-
tines SUPFCT and SUPSLV developed by Ng and Peyton [16]. We use the LAPACK routines
DPOTRF and DPOTRS to factor and solve the dense linear systems involving the symmetric
positive definite matrix Gy, and we use the LAPACK routines DGETRF and DGETRS to
factor and solve the dense linear systems involving the matrix G [1]. Throughout the code, we
use assembler BLAS routines wherever appropriate [9].

For all tested problems, the solution computed in double precision had a residual error of
no more than 10713,

5.4 Portability of the code

In this paper, we have examined only a version of this code geared expressly toward the hyper-
cube multiprocessor. However, the modular structure of the code makes it straightforward to
port to any other machine suitable for medium- to large-grained parallel tasks. For example,
the nearest neighbor communication schemes used in this code translate easily into contention
free broadcast or gather routines for a two-dimensional mesh. (See, for example, [2, 7].)

6 Timing and Speedup Analysis

In this section, we examine the efficiency of our parallel algorithm and its implementation.
For this purpose, we employ the expressions for the theoretical communication and computa-
tion costs summarized in equations (7) and (11) as well as data from experiments on random
matrices. We begin with a desciption of the test problems in Section 6.1. In Section 6.2, we
examine the validity of the communication and computation models. While the communication
is easy to model nearly exactly, it is very difficult to devise an accurate computation model of
an optimized code. Thus, we show how the analytic model and the experimental results can
be combined to produce a combination analytical and empirical model that accurately reflects
the behavior of our algorithm for our test problems on the target machine. In Section 6.3, we
present and interpret our experimental results. In Section 6.4, we apply our implementation to
solve very large real-world problems.

6.1 The random test problems

The test matrices used in this section were generated with the stochastic programming test
problem generator GENSLP of Kall and Keller [12]. The precise dimensions of each test problem
are reported below together with the computational results. The entries of the matrices Ay
and W, are uniformly distributed in the range [-112.0, 128.0]. Two percent of the entries of
these matrices are non-zero while the matrices 7; are dense. Details of the procedure used to
generate the test problems, once the user parameters are specified, are given in [12]. Since
the test problems are randomly generated we expected some variation in solution time when
solving two problems with identical parameters. To eliminate any noise from our observations
we generated 5 test problems for each experiment and report the average solution time. The
variation in solution time over each set of five problems was never greater than 1%.

We used a total of 44 random test matrices. The matrix orders are provided in Section 6.3.

12

6.2 Validation of the models

The total communication cost of the parallel algorithm was modelled in Section 5.1. To validate
this communication model, we computed the relative error in the model values using the given
matrix dimensions and the machine parameters § = 136 (long message startup time) and
7 = 0.4 (byte transfer time) from [10]. This error is defined by

E = (T2 = Teomm)/ T2

where Teomm is defined in equation (7) and T(?obrfzm is the measured communication time on the
hypercube. For all matrices tested, the magnitude of the relative error £ was no greater than
4.5%.

Validating the computation model is more difficult. The time to perform a single floating
point operation is w;geo = 0.1 usec in a test program written in a high-level programming
language and incurring no cache misses [10]. This value is reduced when operations can be
pipelined. The minimum pipelined operation time is about 3 cycles or 0.06 usec on the 50 Mz
i860 processor [8]. Our code, however, includes assembler routines (the BLAS), and our test
problems are large enough that they do not always fit into cache. Furthermore, the times for the
sparse matrix routines SUPFCT and SUPSLV are strongly problem dependent [16]. Thus, the
proper value of w to use for the floating point operation time must be adjusted throughout the
algorithm to account for language used, problem size, and the context in which the operation
is performed. We now adapt the total computation cost of equation (11) to more accurately
reflect the true cost of the algorithm.

The major cost of the algorithm is incurred in steps 1, 2a, and 2b which contribute the
first term of equation (11). The first part of this term, (Ttector + noTsozue)%w, represents the

factoring and solving of the ——II\;’- sparse submatrices 57 on each node and then solving ng + 1
systems using those factors. In our test problems, all of the % sparse submatrices are identical,

meaning that this term reduces to about Ty,ci0r + (ngTsolve)—]Z-w, and this term, in turn, is
bounded by

N 1 N
Tfactor + (nOTsolue);w S 6('377’5:13 + 27’&07’)’&%;}-)&0. (11)

The tightness of this bound is strongly dependent on both the matrix order and the number
of nonzero matrix elements. For all of our test matrices, the sparse Cholesky factors of the
sparse submatrices S; have about half of their elements as zeros. In particular, § ~ 0.46 for all
test problems. Thus, we concentrate only on the matrix size to determine a reasonable value for
the time wgperse for floating point operations performed during the sparse matrix operations.
With increased matrix order comes increased memory access time, and increased memory access
time translates into an increased value of wypqrse.

The sizes of our test problems are such that they are contained fully within the 8 Mbytes
of main memory on each node (i.e., we do not use the CFS node I/O disk). Furthermore, a fill
parameter § = 0.46 indicates that sparse systems of order up to about 66 can be solved wholly
within the cache. Our timings of Parallel Finddy roughly corroborate this prediction: the best
value of wspqrse for tested values of m1 < 50 is 0.1 psec while a value of 0.5 usec is better for
ml > 100. That is, the cost per floating point operation is about 5 times greater for systems
requiring main memory access than for those incurring no cache misses.

13

Steps 1, 2a, and 2b actually require that (ng + 1) my X my systems be solved for each of
the % problems on each node. When all systems can fit in cache simultaneously (for example,
when ng = mo = 10, Wsparse drops further to around .05 usec.) The values of wspqrse less than
the basic operation time w;geo can be accounted for by some combination of the roughness of
the bound in equation (11) and by the pipelining of operations. To summarize, for our tests,

0.10 my < 66;
Wsparse = {0.50 my > 66; (12)
0.05 if ngm$ < 1000 regardless of m;.

The version of the triangular solver SUPSLV we used for these experiments allows us to
solve only one system at a time. We are presently working on a variant of the code to handle
multiple righthand sides. Such code would allow more system solves for each cache load and so
would lower the overall cost of the algorithm (and with it the value of wgparse.)

The remaining terms in equation (11) result either from calls to BLAS routines or calls to
LAPACK routines. The latter also do most of their computation via calls to BLAS routines.
For all of our experiments, we linked our codes not with the Fortran BLAS but rather with the
optimized assembler BLAS provided by the manufacturer. As intended, the assembler BLAS
are more efficient than the compiled Fortran BLAS, and the speed advantage of the assembler
BLAS increases with increasing problem size even though the larger problems may incur larger
memory access costs. In particular, we find by studying our timings that when the BLAS are
called with matrix or vector arguments of order mg or ng, the floating point operation time is
well-approximated by

0.50 50 < mg,ng < 100; (13)

0.67 mg,ne < 50;
Wassem = {
0.25 100 < mg,ng < 200.

The total computation time then becomes

3
T = 5(—7%1 + 2n0m§%)wsm”e (14)

comp

N 1 2
+ (Qno‘mf + 2n3m1—; + gng + —émg + Qm%no + 2ngmo)wassem
+ Téz}mp (wassem /wi860)9

and the maximum relative error (obtained by using the approximations for weperse and wossem
from equations 12 and 13, respectively) is

_ obs w obs
Ecomp - (Tcomp - Tcomp)/Tcomp'

The largest value of E,,p for our test problems was about 13%.

Notice, however, that the granularity of the approximations weperse and wgssem reflect the
granularity of the test matrix orders. In particular, they were derived only for the test matrix
orders my = 10, 20, 50,100, 500 and n0, m0 = 20,50, 100, 200. Furthermore, all tested matrices
had fill factor § =~ 0.46. We therefore cannot expect our compuational model to be accurate for
every test problem. We instead employ it and the accurate communication model as a general
framework for interpretting our experimental results.

14

6.3 Experimental results

In this section we study how the aspect ratio of the constraint matrix (i.e., ratio of the row
and column dimensions of the submatrices) affects the performance of Procedure 5.1 (Parallel
Finddy). We do this via three sets of experiments using randomly generated test problems with
user specified dimensions. (We assume throughout that submatrices corresponding to distinct
scenarios, i.e., T7, Wi, have identical sizes and that all submatrices S; are not only identical in
size but also in element values.) For all experiments, the dimension ny = 1000.

In the first experiment we fix the submatrix orders (i.e., fix ng, mo, and m;) and vary
the number of scenarios N. In the second experiment we fix the number of scenarios N and
the submatrix dimensions mg and ng but change the number of second-stage constraints m;.
For the third experiment we fix the number of scenarios N and my, and vary the number of
first-stage variables mg = ng.

For each experiment we report speedup results for hypercubes with 2 to 16 nodes. These
results are evaluated with reference to the theoretical communication and computation costs of
equations (7) and (15). The empirical results are used to draw conclusions about the problem
sizes and aspect ratios for which best efficiencies can be achieved.

6.3.1 Experiment I: Varying the number of scenarios N

For the first group of experiments, we use the fixed parameters mg = 100, no = 100, and
my = 100 and vary the parameter N, the number of scenarios in the second stage.
The total time to run the parallel algorithm on p nodes can be expressed as the equation

Tp = TN/p + Tserial + Tcomm7

where the total time to run the algorithm on one node is

Ty = pTN/p + Tserial-

That is, pTn/p is the time for the fully parallelizable part of the one processor algorithm, and
T'seriai is the time for the part that cannot be implemented in parallel.

With this expression, the speedup can be written S, = T7/T, and the efficiency as E, =
Sp/p = T1/(pTp). Perfect speedup is then p while perfect efficiency is 1.0 or 100%. The
time Toomm Is accurately represented by equation (7). The total computation time on one
node Ty, + Tserial is roughly approximated by equation (15) for some choices of wgpgrse and
Wassem . Lhese equations suggest and our expermental results confirm that Tsepiq is negligible in
comparison to T/, for the parameters used in this experiment. Thus, the attainable speedup
and efficiency is most influenced by the relative values of Tnyp and Teomm.-

We first examine the effects of communication. The large matrix orders used for these
experiments mean that data messages are always long. In particular, data messages always
exceed both the 100 byte cutoff for fast message transfer on the iPSC/860 and the 336 byte
(42 double precision number) point at which the message transfer time (3367) becomes greater
than the message startup time S on that machine. The expression for T..m.m shows that the
transfer time is linearly dependent on the number of scenarios N. In particular, it is linearly
dependent on the number of scenarios per processor N/p.

Table 1 shows how the efficiency attained is related to the percentage of total time spent
in communication (i.e., Teomm/Tp) for all matrices in this test set. Note that a 4% or less

15

N P Tcomm Tcomm/ Tp Ep
16| 2 39 0.8% | 0.97
4 74 2.9% | 0.90

8 110 7.5% | 0.80

16 151 16.0% | 0.61

64| 2 54 0.3% | 0.99
4 98 1.0% | 0.97

8 136 2.8% | 0.93

16 176 6.6% | 0.85

128 | 2 74 0.2% | 1.00
4 128 0.7% | 0.98

8 171 1.8% | 0.96

16 214 4.3% | 0.91

256 | 2 114 0.2% | 1.00
4 189 0.5% | 0.99

8 240 1.3% | 0.98

16 288 3.0% | 0.95

Table 1: Communication times for problems of varying N with n0 = m0 = m1 = 100 (in
msecs).

communication time corresponds to a 90% or better efficiency. The percentage of time spent
in communication grows as more processors are applied to a given matrix. This suggests the
obvious: with all else equal, it is best to maximize N/p, the number of scenarios per processor.
The increase in computation time outweighs the increase in communication time.

6.3.2 Experiment II: Varying the number of second-stage constraints

For the second set of experiments, we fix the parameters N = 128, mg = 100, and ng = 100
and vary my = 100, the number of second-stage constraints.

The communication time Teppy, varies linearly with my. That this linear variation mimics
the linear variation with NV is evident in a comparison of Tables 1 and 2. (Compare, for example,
the percentages of time spent in communication for N = 128 and m; = 100.) The two tables
also show a similar interdependence of the percentage of time spent in communication and the
efficiency. Compare, for example, the two entries showing Tcomm /T, = 4.3% and E, = 91%.

As my decreases, however, the effect of communication time grows. Consider the two table
entries showing ratios of 2.8%. At the Table 1 entry, mg = ng = 100, eight scenarios are
supplied to each processor, and the efficiency is 91%. At the Table 2 entry, mq = ny = 100, 64
scenarios are supplied to each processor, but the efficiency is only 88%. Because the fraction of
time spent in communication is the same for both entries, the efficiency drop is attributed to
a relative increase in the time for serial computation Tseriq;. Indeed, examination of equation
(11) shows that when m; shrinks in relation to to ng, the relative contribution of Tyeriar (largely
the dense ng X ng system solutions) is greater.

Thus, all else being equal, the second set of experiments shows that the ratio ng/m; should
be kept as small as possible in order to attain best efficiency.

16

my Tcomm Tcomm /Tp E

4 P
10 2 38 2.8% | 0.88
4 73 8.8% | 0.70
8 108 17.8% | 0.49
16 146 28.6% | 0.29
201 2 44 2.0% | 0.93
4 83 6.5% | 0.80
8 119 14.3% | 0.61
16 158 25.1% | 0.41
50 2 54 1.1% | 0.97
4 98 3.7% | 0.90
8 138 8.9% | 0.78
16 176 17.8% | 0.60
100 2 74 0.2% | 1.00
4 127 0.7% | 0.98
8 174 1.8% | 0.96
16 217 4.3% | 0.91
500 | 2 237 0.03% | 1.00
4 377 0.1% | 1.00
8 453 0.2% | 1.00
16 516 0.5% | 0.88

Table 2: Communication times for problems of varying m; with n0 = m0 = 100 and N = 128
(in msecs).

17

ng p Tcomm Tcom'm/ Tp Ep

20 2 81 0.6% | 0.99

4 124 1.7% | 0.98

8 144 3.9% | 0.95

16 156 8.0% | 0.91

50| 2 90 0.3% | 1.00

4 140 0.8% | 0.99

8 168 1.9% | 0.98

16 188 4.1% | 0.95

100 | 2 114 0.2% | 1.00
4 189 0.5% | 0.99

8 240 1.2% | 0.98

16 288 3.0% | 0.95

200 2 209 0.1% | 0.99
4 379 0.5% | 0.98

8 526 1.3% | 0.96

16 667 3.1% | 0.91

Table 3: Communication times for problems varying mgo = ng with m; = 100 and N = 256
(in msecs).

6.3.3 Experiment III: Varying the number of first-stage variables

In this group of experiments, we fix the parameters N = 256 and my = 100 and vary mg =
ng = 100, the number of first-stage constraints.

Table 3 shows the efficiencies attained. These results largely reiterate the results of Exper-
iment II: the smaller ng/m; is, the easier it is to get good efficiency. This is most pronounced
for ng = mp = 20 and p = 16 so that ng/my = 0.2. In this case, a communication percentage
of 8 still allows an efficiency of 91%. When ng is as small as 10, the serial time Tseria; becomes
nearly negligible in comparison to the other time requirements.

While Teomm is linearly dependent on N and my (in fact, on the product Nmy), it is
quadratically dependent on ng. The difference is most evident in the distributions of times
among the different communication tasks. Tables 4 and 5 show how the times for the three
communication routines change with changing n0 and NV, respectively. (A table for changing
my closely resembles Table 5.) The most pronounced change is the increased fraction of time
spent in GpGATHER with increasing ng. This corresponds to the building of a larger serial
problem and, hence, to an increased Tieriq;. Again, the data points to the value of a small
dimension ng.

6.4 Solving large scale problems

As a final step, we applied the Parallel Finddy procedure to solve two sets of test problems
arising in real-world applications. One is the SCSD8 set, a stochastic version of a model to find
the minimal design of a multistage truss [3]. The second is SEN, a telecommunication network
design problem communicated to us by Suvrajeet Sen from University of Arizona. SCSD8 has
dimensions mg = 10,79 = 70, my = 20,1y = 140. SEN has dimensions mg = 1,19 = 90, m; =
175,y = 795.

18

Total
n0 | p | GpGATHER | STB | dyGATHER | Commun.
Time
20| 2 1 0 80 81
4 3 0 121 124
8 5 1 138 144
16 7 1 148 156
50| 2 10 0 80 90
4 19 0 121 140
8 29 1 138 168
16 38 2 148 188
100 | 2 34 0 80 114
4 67 1 121 189
8 100 2 138 240
16 137 3 148 288
200 2 129 0 80 209
4 257 1 121 379
8 386 2 138 526
16 515 4 148 667

Table 4: Communication time breakdown for problems of varying n0 (in msecs.)

Total
n0 p | GpGATHER | STB | dyGATHER | Commun.
Time
16 | 2 34 0 5 39
4 66 1 7 74
8 100 2 8 110
16 137 3 9 151
64| 2 34 0 20 54
4 67 1 30 98
8 100 2 34 136
16 137 3 36 176
128 1 2 34 0 40 74
4 67 1 60 128
8 100 2 69 171
16 137 3 74 214
256 | 2 34 0 80 114
4 67 1 121 189
8 100 2 138 240
16 137 3 148 288

Table 5: Communication time breakdown for problems of varying N (in msecs.)

19

” Problem | Scenarios [Rows of A] Columns of A H

SCSDS.16 16 330 2,310
SCSDS.64 64 1,290 9,030
SCSD8.256 256 5,130 35,910
SCSD8.512 512 10,250 71,750
SCSD8.2048 2048 40,970 286,790
SEN.16 16 2,801 12,810
SEN.64 64 11,201 50,970
SEN.256 256 44,801 203,610
SEN.512 512 89,601 407,130

Table 6: Characteristics of the large-scale, real-world test problems.

| Problem [iPSC/860 nodes | Solution time (sec) ||

SCSD8.16 16 0.144
SCSD8.64 16 0.228
SCSD8.256 16 0.572
SCSD8.512 16 1.031
SCSD8.2048 16 3.820
SEN.16 16 0.970
SEN.64 64 1.043
SEN.256 128 2.077
SEN.512 128 3.929

Table 7: Solution time for the large-scale, real-world test problems.

The problems in each set have a user-specified number of scenarios. Thus it is possible
to generate extremely large test problems by increasing the number of scenarios. Table 6
summarizes the characteristics of the test problems. To put the size of these problems in
perspective we mention that Birge and Holmes [5] solved SCSD8 with only 32 scenarios. To the
best of our knowledge the largest SEN problem solved previous to this paper has 100 scenarios.

Figure 1 illustrates the speedups achieved when solving the SCSD8 set on an iPSC/860 with
up to 128 nodes. Figure 2 illustrates the speedup achieved when solving the SEN set on an
iPSC/860 with up to 128 nodes. Table 7 summarizes the solution times. For cube sizes up to 16
nodes, the speedup curves quickly level off at 5, ~ p. That is, near perfect speedup is achieved
for most matrix orders. For the larger cube sizes, the number of scenarios per processor N/p
in our tests is insufficient to provide better than aobut 70% efficiency for the largest SCSDS
problem and 79% efficiency for the largest SEN problem on 128 nodes. (Note that the better
efficiency does occur for the test problem with the smaller ratio of ng to my.) However, the 128-
node plots do indicate an increasing trend of speedup versus matrix order even for the largest
matrix order tested. Moreover, these largest matrix orders exceed the largest order solved by
other means to date.

20

100.0 ; T " 1 : T : :

—'eo p-_—_—2
//X [e . p=4
~--[+p=8
/// o — A p=16
80.0 | v - Jv p=64
7 * - -1x p=128
60.0 - gl §
o x”
=) / ’/V
© / e
D / -
[/ L
Q. / -
w / T
/ _—"
40.0 /,’ e ~
% ./
/,/
7
1
4
1
20.0 | ¥ .
/‘//-A- ——————————————— —
r'eg
0.0 ° .e l= 1 1 Il s I= N
0 10000 20000 30000 40000 50000

Number of rows

Figure 1: Speedups with the solution of the SCSD8 test problems on an iPSC/860 with up to
128 nodes.

21

140.0 + o—e p=2
[CETRTTEeS - p=4
- — e p_—_8
a——h p=16
120.0 | -3+ p=64
> — —|X p=1 28
1000 F e x
- XTI o
- -
5 800+ | .
5}
ey
Q.
w
60.0 - L —
- ’
40.0 + i
20.0 i
—— ke —— A -A
00 L e —— —— e —— — -
0 20000 40000 60000 80000 100000

Number of rows

Figure 2: Speedups with the solution of the SEN test problems on an iPSC/860 with up to
128 nodes.

22

7 Conclusions

Birge and Holmes have shown that the BQ matrix factorization procedure is a fast and accu-
rate method for solving large-scale stochastic programming problems. We have shown in this
paper that this method can achieve excellent speedups on a distributed-memory multiproces-
sor (like the Intel iPSC/860). These speedups are achieved with the development of efficient
communication schemes that have been adapted to the needs of the BQ algorithm.

With a careful implementation of the algorithm — using memory efficient and fast matrix
factorization routines — we have been able to obtain an implementation that is robust and
modular. We have also shown why the features of this implementation that make it efficient
also stand in the way of a straightforward analytical model of the computation time. However,
by using the approximate model together with the experimental data, we have shown that very
good speedups can be expected for a wide range of problem structures. In particular, good
speedups result when the the number of first-stage constraints (ng) is small in comparison to
the number of second-stage constraints (my) for a sufficiently large number of scenarios (N/p).

The test problems solved in this paper are, to the best of our knowledge, some of the largest
problems reported in the literature. An interesting question that deserves further work is to
investigate the efficiency of a parallel implementation of this algorithm on even larger scale
machines or other architectures, like the mesh of the Paragon machine or the fat-tree of the
Connection Machine CM-5.

Acknowledgements:

The authors wish to thank E. Ng and B. Peyton for providing their codes along with much
helpful information about their use. The experiments described in this paper were performed
on the iPSC/860 machine at Oak Ridge National Laboratory.

The research of Elizabeth R. Jessup was funded by DOE contract DE-FG02-92ER25122
and by an NSF National Young Investigator Award. The research of Dafeng Yang and Stavros
A. Zenios was supported in part by NSF grant CCR-91-04042. This work was completed while
Zenios was visiting the Universities of Urbino and Bergamo, Italy, under a fellowship from the
GNAFA and GNIM groups of Consiglio Nazionale delle Richerche (CNR). He is currently a
visiting Professor of Management Science, Department of Public and Business Administration,
University of Cyprus, Nicosia, Cyprus.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, and
S. Hammarling. LAPACK User’s Guide. SIAM, 1992.

[2] M. Barnett, D.G. Payne, and R. van de Geijn. Optimal broadcasting in mesh-connected
architectures. Technical Report TR-91-38, Dept. of Computer Science, University of Texas
at Austin, 1991.

[3] J.R. Birge. Decomposition and partitioning methods for multistage stochastic linear pro-
grams. Operations Research, 33:989-1007, 1985.

23

[4] J.R. Birge and L. Qi. Computing block-angular Karmarkar projections with applications
to stochastic programming. Management Science, 34(12):1472-1479, Dec. 1988.

[5] J.R. Birge and D.F. Holmes. Efficient solution of two-stage stochastic linear programs
using interior point methods. Computational Optimization and Applications, 1:245— 276,
1992.

[6] I. Choi and D. Goldfarb. Solving multicommodity network flow problems by an interior
point method. In T. Coleman and Y. Li, editors, Large Scale Numerical Optimization,
pages 58-69. SIAM, 1990.

[7] S. Crivelli and E.R. Jessup. Optimal eigenvalue computation on distributed-memory mimd
multiprocessors. To appear in Parallel Computing (pending revision).

[8] R. Dewar and M. Smosna. Microprocessors: A Programmer’s Point of View. McGraw-Hill,
1990.

[9] J.J. Dongarra, J. Du Croz, lain Duff, and Sven Hammarling. A set of level 3 basic linear
algebra subroutines. Preprint no. 2, Argonne National Laboratory, 1988.

[10] T.H. Dunigan. Performance of the Intel iPSC/860 hypercube. Technical Report
ORNL/TM-11491, Oak Ridge National Laboratory, 1990.

[11] G.H. Golub and C.F. Van Loan. Matriz Computations. The Johns Hopkins Press, Balti-
more, MDD, 2nd edition, 1989.

[12] P. Kall, and E. Keller. GENSLP: A program for generating input for stochastic linear
programs with complete fixed recourse. Manuscript, Institute for Operations Research der
University Zurich, Zurich CH-8006, Switzerland, 1985.

(13] LJ. Lustig, J.M. Mulvey, and T.J. Carpenter. Formulating two-stage stochastic programs
for interior point methods. Operations Research, 39:757-770, 1991.

[14] J.M. Mulvey and A. Ruszczynski. A diagonal quadratic approximation method for large
scale linear programs. Operations Research Letters, 12:205-215, 1992.

[15] J.M. Mulvey and H. Vladimirou. Stochastic network programming for financial planning
problems. Management Science, 38:1643-1664, 1992.

[16] E. Ng and B. Peyton. A supernodal Cholesky factorization algortihm for shared-memory
multiprocessors. SIAM J. Sci. Comput., 14:761-769, 1993.

[17] S. Nielsen and S.A. Zenios. A massively parallel algorithm for nonlinear stochastic network
problems. Operations Research, 41(2):319-337, 1993.

[18] R.T. Rockafellar and R.J.-B. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of Operations Research, 16:119-147, 1991.

[19] Y. Saad and M.H. Schultz. Data communication in hypercubes. Research Report 428,
Dept Computer Science, Yale University, 1985.

24

[20] S. Seidel, M.-H. Lee, and S. Fotedar. Concurrent bidirectional communication on the Intel
iPSC/860 and iPSC/2. Technical Report CS-TR 90-06, Dept. Computer Science, Michigan
Technological University, 1990.

[21] R. J. B. Wets. Stochastic programs with fixed resources: the equivalent deterministic
problem. SIAM Review, 16:309-339, 1974.

[22] S.A. Zenios. A model for portfolio management with mortgage-backed securities. Annals
of Operations Research, 43, 1993,

25

