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Abstract

By the time they are two-years old, children typically have a productive vocabulary of at least 200
words, only one year after having spoken their first word. Despite this impressive achievement,
children’s speech only roughly approximates adult speech. Intriguingly, their errors show a sys-
tematic pattern which we may not dismiss as merely a matter of poor performance. Their error
patterns demonstrate an evolving competence, a developing phonological system.

Longitudinal linguistic studies which have characterized many properties of early childhood pho-
nological development observe development as a sequence of changes in linguistic structure. We
wish to explain the structure of linguistic change, integrating a learning component capable of
accounting for the evolution of linguistic knowledge. Connectionist methods are the obvious can-
didate, but most models in this area focus on morphological aspects of phonology which occur
late in development. A relatively complete sensorimotor model (Laboissiere 1992) learns basic
articulatory skills of speech. But it does not demonstrate the foundation of phonology: the ability
to recombine basic sounds.

We face two dilemmas. Phonological competence may not be acquired without articulatory skill,
and articulatory skills may only be acquired in the context of larger, more abstract phonological
patterns. But should we choose a hierarchical system of cognitive and motor control, we face the
problem of how to control a system which operates at multiple time scales when stimuli which
seem to drive the system are continuously changing.

Our solution is to enlist the perceptual system to segment and categorize auditory feedback such
that discrete perceptual events regulate the timing of the more abstract level of phonological con-
trol. We distribute articulatory skill among many experts, each specialized to produce a basic
sound. The role of phonological control is two-fold: (1) to ensure that the distribution of sounds
made by articulatory specialists matches the distribution of sounds in the linguistic environment,
and (2) to activate them in a sequence to compose a more elaborate sound.

We propose solutions to several other computational dilemmas, and we propose a methodology to
test the model’s ability to demonstrate the phenomena of early childhood phonological develop-
ment. Results are summarized for portions of the model which have been implemented.

For abstracts or reprints of more recent reports on this research, contact the author via email:
markey@cs.colorado.edu.
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1. Motivation

Within their first six months of life, children start to recognize prosodic patterns and vowels
unique to their native language (Jusczyk 1992, Kuhl et al. 1992), and their babbling starts to show
characteristics of adult speech (Oller & Lynch 1992). A mere two months later, they recognize
consonant-vowel syllables unique to their linguistic environment (Werker et al. 1981, Werker
1992). By the end of their first year, children can recognize about fifty words (Benedict, 1979),
their babbling now approximates many of the sounds in their native tongue (Vihman et al. 1986,
de Boysson-Bardies et al. 1989), and they are speaking their first real words (Benedict, 1979). In
the second year, their productive vocabulary mushrooms to several hundred words. Despite this
impressive achievement, children will not have accurately mastered all sounds. Their speech is
filled with errors of commission and omission, only roughly approximating adult speech (see
Menn 1978, Ingram 1989). For example, many children transform adult fricatives like [f] and [s]
into stops like [b] and [t]; others will substitute approximants [w] and [j] for liquids [1] and [r].
Sounds will often be dropped from consonant clusters like [spr] and [skw]. They might assimilate
a sound in one part of a word with a similar sound in another part such that “dog” becomes [gOg].
Even more intriguing, such errors show a systematic pattern which we may not dismiss as simply
a matter of poor performance (Smith 1973, Menn 1971). Instead, the error patterns demonstrate
an underlying competence which slowly evolves.

Longitudinal linguistic studies reveal the changing compositional structure of children’s speech,
children’s systematic errors relative to adult speech and how their errors change over time (e.g.,
Smith 1973, Menn 1971), phonetic trends evident in babble (e.g., Vihman et al. 1986), and unruly
behavior which resists a clean analysis (Menn & Matthei 1992). In addition, comparative anat-
omy identifies constraints on the developmental course of certain motor skills (Kent & Murray
1982) and psycholinguistic experiments reveal children’s emerging perceptual categorization of
speech sounds (e.g., Jusczyk 1992, Werker & Pegg 1992, Kuhl et al. 1992, Grieser & Kuhl 1989).

Traditionally (Saussure 1916/1966), these longitudinal accounts would be viewed as diachronic
— a description of how linguistic structure changes historically or developmentally (McNeill
1987) — and not synchronic — a description of linguistic structure at an instant in time. But at its
heart, this traditional view of change as a series of instantaneous snapshots is synchronic. Rather
than viewing language acquisition as merely a sequence of changes in linguistic structure, we
wish to characterize the structure of linguistic change. Such an account of phonological develop-
ment must integrate a learning component and must provide a principled explanation of how pho-
nological competence evolves. Connectionist computation is an obvious candidate for this task.

Several connectionist models which learn phonological phenomena have been proposed. Most are
limited in scope, such as those intended to explain children’s acquisition of the English past tense
(Rumelhart & McClelland 1986, MacWhinney & Leinbach 1991, Daugherty & Seidenberg 1992)
or article declension in German (MacWhinney et al. 1989). Some are not intended as develop-
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mental accounts; they use connectionist methods to discover internal representations which
explain strictly adult data (e.g., Touretzky & Wheeler 1990, Hare 1990). These models typically
start with a perceptual representation which corresponds to the abstract distinctive features attrib-
uted to adult phonological competence (Shillcock et al. 1992). This assumption may be justified
to the extent that the phenomena studied are an abstract elaboration of a largely pre-existing cog-
nitive subsystem. But it is too strong an assumption if one’s goal is to explain the development of
that subsystem.

Our goal is to build and explore a developmental model of the phonetic and articulatory founda-
tions of phonology which explains the phenomena of early childhood speech perception and pro-
duction. We model a relatively complete sensorimotor system, intending to capture the interaction
of perception and production as the system evolves.

A relatively complete sensorimotor and connectionist model of vocal tract control has been built
(Laboissiere et al. 1990, Laboissiere 1992). It learns jaw, tongue, and lip motions necessary to
pronounce a sequence of vowels. It makes no assumptions about phonetic features. The teaching
signal is a trajectory of formant frequencies corresponding to the target vowel sequence. Errors in
formant frequencies are inverted into articulatory errors by a forward model trained during a
period of synthetic babbling (Jordan & Rumelhart 1992). Once trained, the model simulates
skilled human behavior in classic bite-block and coarticulatory experiments. Were the model
intended as a story of phonological development — which it is not — its principal weakness
would be its inability to compose previously learned sound segments in new combinations, pre-
cisely the shortcoming of any model of articulatory competence which limits itself to motor skill.

We are caught on the horns of a dilemma. Phonological competence may not be acquired or dem-
onstrated without articulatory skill, and articulatory skills are acquired in the context of larger,
more abstract phonological patterns. Articulatory skill and phonological competence engage in a
contrapuntal dance. Without acknowledging both, we cannot account for the basic facts of phono-
logical development, neither the relative articulatory difficulty of some sounds nor the recombina-
tion of sounds in unique utterances.

We view speech as a two-level problem of motor and cognitive control, as a hierarchy of sequen-
tial decision tasks. But, once we admit to multiple levels of cognitive or motor control, we buy
ourselves another dilemma — how it is possible to control a system which operates at multiple
time scales when internal and external stimuli which seem to drive the system are continuously
changing. Our solution is to enlist the perceptual system to segment and categorize auditory feed-
back such that discrete perceptual events regulate the timing of the more abstract level of phono-
logical control. Furthermore, we enforce a fairly strict separation between the two control levels.
This is not due to a fundamental commitment to modularity but rather because of the computa-
tional requirements of the problem.

We thus propose a sensorimotor model of early childhood phonological development. Its princi-
pal contribution is a hierarchical model of control in which the upper, more abstract level of con-
trol depends on the segmentation of time and acoustic feedback by a categorical perceptual
system and on a heuristic to ensure the correct credit assignment between control levels. We also
introduce an exploration strategy to pace the complexity of sounds being learned and thus
increase the likelihood that the two control levels converge to a solution. Unlike Laboissiere’s
model, learning is not supervised by a teacher; rather, it is guided by internally generated rein-
forcement signals (see also Montague et al. 1993). We assume that all behavior is goal-directed,
and unlike other theories, we make no qualitative distinction between babble and speech.
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There is no phonetic-feature system of representation built into our model’s auditory perception.
Instead, auditory perception must discover the important categories of speech sounds in the lin-
guistic environment by a simple competitive learning process. This process is assisted by a lin-
guistically relevant segmentation algorithm, but segmentation criteria are strictly acoustic.

Control takes advantage of the degrees of freedom and constraints built into the vocal tract’s anat-
omy. Articulatory motions are organized as gestures which resemble the dynamics of a critically
damped spring system (Browman & Goldstein 1989). But articulatory gestures are chosen by an
articulatory controller with a parallel architecture (Markey 1994). Without this innovation, learn-
ing articulatory control would be computationally impractical.

In the next section, we describe the proposed model in detail. Section 3 establishes the experimen-
tal methodology, including the selection of data for training, what behaviors we hope to observe,
how the model explains them, and how we will measure them. Section 4 briefly explains short-
comings in the model and opportunities for future research to correct them. Section 5 summarizes
the results we have thus far obtained in implementing about sixty percent of the proposed model
and presents my plan to complete the work and dissertation.

2. The Model

2.1. Overall Architecture

The model’s input (see figure 1) is a synthetic acoustic signal representing the parent’s speech or
the child’s own vocalizations. This acoustic input is segmented and converted into a categorical
phonetic representation by the auditory perception module. A cumulative record of a complete
utterance is maintained in such a way as to uniquely represent any one-syllable (or simple two-
syllable) morpheme. Phonetic representations are stored in short-term memory or the lexicon from
which they may be retrieved by goal selection to become a target utterance. The phonetic repre-
sentation of the child’s acoustic feedback also serves to report the model’s progress during the
course of an utterance and to determine the accuracy of the final result.

Control is hierarchical and is separated into three domains — phonetic, articulatory, and gestural.
The phonological controller attempts to follow a phonetic trajectory which achieves the phonetic
goal. It does so by activating a sequence of articulatory controllers. It does not attempt to control
the articulatory configuration directly; it has no direct knowledge of the articulatory or proprio-
ceptive state; it selects articulatory controllers which can be expected (in some statistical sense) to
achieve the phonetic state it desires; it rewards the articulatory controllers which do its bidding.

An articulatory controller attempts to traverse an articulatory and proprioceptive trajectory which
optimally meets the needs of its phonological client. It does so by initiating a sequence of articula-
tory gestures. It has no direct knowledge of the phonetic state and no direct knowledge of certain
gestural details. It only observes the articulatory, tactile, and proprioceptive state of the articula-
tory system and reinforcement signals from its client. There are several articulatory controllers.
Each is a specialist capable of generating all or part of a recognizable sound. Each articulatory
controller has a parallel architecture with one subagent per articulatory degree of freedom.

Gestures chosen by the articulatory controller are executed by the gesture controllers. There is

one gesture controller per articulatory degree of freedom. Each is a fixed procedure which moves
an articulator from its current state to a target equilibrium state in a trajectory resembling that of a
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Figure 1: Control Architecture
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critically damped spring of a given stiffness. The outputs of all gesture controllers together define
the vocal tract’s configuration. The articulatory synthesizer — an adaptation of Haskins Laborato-
ries” ASY (Rubin et al. 1981) — converts the vocal tract configuration into a synthetic acoustic
signal, which is then processed by the model’s auditory perception to complete the feedback loop.
Proprioceptive state, input for the articulatory controller, is a compilation of outputs from the
active articulatory controller, gesture controllers, and the articulatory synthesizer which are ana-
lyzed by the proprioceptive analysis module.

Plastic components of the model are phonetic categorization processes, phonological and articula-
tory controllers. Reinforcement learning shapes production of speech. Categories of sound pat-
terns recognized by auditory perception are discovered by a simple competitive learning process.

2.2. Critical Properties of the Model

Event-driven timing of phonological control is the key to phonological compositionality. If con-
trol decisions must be made continuously or at each tick of a discrete clock, there is no way to
achieve true compositionality. Introducing segmented categorical auditory perception is the pre-
requisite. However, some level of control cannot help but occur in continuous or finely-grained
discrete time. The articulatory gymnastics necessary to achieve recognizable acoustic events
require exquisite timing. This is the role of the lower-level articulatory controllers, which learn
the requisite fine-grained temporal timing of articulatory gestures.

This is an efficient division of labor. A longer utterance, while within the realm of possibility, is
more difficult to learn or plan as a low-level motor skill simply because of its greater combinato-
rial complexity. By breaking up a long utterance into smaller segments, each of which may be
learned individually or in other contexts, we simplify the learning task. The articulatory controller
design allows several to be chained together to complete an articulatory puzzle under certain cir-
cumstances, even if they were initially trained to accomplish more specific tasks in other contexts.

Computationally, the job of the articulatory controller is to approximate elemental sound seg-
ments in the model’s environment. The phonological controller’s job is to approximate longer
utterances by activating a sequence of articulatory controllers, once the latter have mastered some
simple sounds. Before then, however, the phonological controller’s job is to build a model which
estimates the probability with which each articulatory controller generates some sound in the
environment and which matches the statistical distribution of sounds in the linguistic environ-
ment. Thus does the phonological controller enforce a diversity of articulatory capabilities and
learns which articulatory controllers are best suited to generate various target sounds.

This scheme — combining low-level skill acquisition with skill composition — is not guaranteed
to converge. Indeed, too complex a target may lead to a deadlock between articulatory search and
phonological search such that neither converges. An exploration strategy is introduced to avoid
such deadlocks. Phonological complexity is paced by the gradual increase in the complexity of
sounds recognized by auditory perception. Systematic goal selection, sound preference, and other
strategies more efficiently stage articulatory exploration in ways resembling children’s sound
exploration strategies. All are subject to experimental manipulation.

There is another critical computational issue. Articulatory control has so many degrees of free-
dom that a traditional central control architecture is computationally impractical. Thus, we intro-
duce a parallel control architecture in which each articulatory subcontroller is dedicated to each
degree of freedom in articulatory control space, but where all subcontrollers share the same prop-
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rioceptive state data and global reinforcement signal. The subcontrollers cooperatively solve the
articulatory control problem.

Grounding the model is a one-to-one correspondence between the model’s fundamental articula-
tory and perceptual building blocks — articulatory gestures and phonetic segments. This is based
on the observation that static phonetic segments correspond to the beginnings or ends of gestures
and that peak spectral transitions correspond approximately to the zenith of articulatory gestures.

2.2.1. Explaining basic phenomena

A more concrete example will help explain some of the features and properties of the model. We
consider the common substitution of stop consonants for fricatives. Similar stories can be told for
other phenomena (see section 3.3., p. 25).

The relative difficulty of pronouncing various sounds is related to their relative combinatorial
complexity and the proprioceptive cues available to guide articulatory control. For example, stop
consonants require less complex motion, less precise control, and fewer proprioceptive cues than
fricatives. Fricatives will simply take longer to learn than stops, and until they are mastered, the
likelihood of accurately rendering a fricative will be considerably lower than that of a phoneti-
cally similar stop consonant. Despite the possibly greater accuracy achieved by choosing an artic-
ulatory controller specialized in fricative sounds, the phonological controller will instead activate
the articulatory controller specialized in stop consonant motions because it is more likely to gen-
erate a nearby sound, and thus it predicts a higher reward.

2.3. Auditory Perception

Auditory perception processes incoming acoustic data at four levels in three domains (see figure
2). The first level extracts static and transition spectra, plus voice and noise amplitudes. The sec-
ond level segments the signal by first evaluating the magnitude of spectral transitions and inspect-
ing periods of voice, noise, and silence. It then samples spectral, transition, and prosodic features
at each appropriate segment. The third level clusters these features into statistically relevant cate-
gories, activating prototype representations closest to the stimulus. Cumulative prosodic catego-
ries correspond to morpheme shape and voicing pattern detected thus far during the utterance.
Static spectrum categories correspond to vowel, sonorant, or fricative types. Transition spectrum
categories correspond to demi-syllable types. The fourth level accumulates a trace of prototype
activations over the entire course of the utterance, representing its complete phonetic trajectory.
The module’s output, the phonetic state, remains unchanged until the next segment is detected.
The representation should uniquely represent any one-syllable utterance except those which
diverge too far from the norm.

2.3.1. Spectral Analysis

Spectral analysis starts with a 256-frequency power spectrum sampled once every 8 msec and
performs the following analyses. An illustration of the resulting analysis appears in figure 3.

¢ Static Bark spectrum: The input power spectrum is sampled evenly over the frequency
domain. To better approximate the frequency response of the human ear and to reduce the size
of the parameter space, we convert frequencies to bark (Zwicker 1961) and divide the input
spectrum among 44 coarsely coded 1.0-bark wide detectors, b, for 1 <i <44, evenly spaced
one per 0.5 bark between 0.5 and 22.0 bark.
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Figure 2: Auditory Perception Module

Input Sound
Spectral analysis Voice & Noise
Detection
Continuous Continuous Vocalic & Fricative Amplitudes
Static Spectra Transition Spectra
|| Segment detection ———> Prosodic
Segment analysis
type
¢ . Cumulative
[0 Gatlng prosodic pattern
Segmented static Segmented transi- '
spectrum ' l tion spectrum '
S Static Transition Prosodic
pectrum Categorization Categorization
Categorization
Static spectrum Transition spectrum Prosodifc pattel:n cateﬁory
category (sonorant category (demi-sylla- (type of morpheme shape
or fricative type) ble type) and voicing pattern)

Cumulative phonetic buffer

Phonetic state

Smoothed static spectrum: To filter short-term noise, we apply a Gaussian filter with a stan-
dard deviation of 2 frames (16 msec) in the temporal dimension (Bradshaw & Bell 1991).

Static difference spectrum: To measure detector amplitudes on a relative, not absolute, scale,
we generate a “difference” spectrum D, as the difference in amplitude between neighboring
bark detectors, D; = b;—b;_, fori>1.

Transition spectrum: To approximate the first time derivative of each difference detector’s
amplitude, we compute the difference between detector amplitudes at times ¢ and #-1. The
resulting transition spectrum T is simply Ty(f) = D) =Dt 1).
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Figure 3: Spectra and Onset Transition for ‘“duck”
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Transition magnitude vs. time (lower left) shows L, norms of transition spectra T and difference spectra D
for the entire audible portion of “duck.” Other plots each show 4 spectra sampled at 184, 192, 200 and 208
msec. The 10-bark detector is highlighted. The peak near 10 bark is the 2nd formant. Its frequency is
decreasing. This is captured in the transition spectra (lower right) by a positive value in the direction of the
formant’s motion (to the left) and a negative value behind its motion (to the right).

2.3.2. Segment Detection

The model segments the acoustic input during periods of voicing and frication by observing
changes in the transition magnitude, an adjusted L, norm of the transition spectrum. It samples
static spectra when the transition magnitude is minimal or transition spectra when transition mag-
nitude is maximal. When the model cannot detect the spectrum of the acoustic input (during
silence or when speech sounds are barely audible), it identifies each continuous period of silence,
noise, or barely audible voicing as a segment. For each detected segment, the submodule trans-
mits the type of segment to the prosodic analysis submodule. It transmits either the sampled static
or sampled transition spectrum, depending on the segment type. (See figure 3 for a graph of tran-
sition magnitude over a CVC syllable plus samples of transition spectra near the peak transition.)
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¢ Transition magnitude: The L, norm of transition spectrum minus the L, norm of the differ-
ence spectrum is the transition magmtude The former captures temporal changes in both total
amplitude and spectral shape, the latter captures only changes in amplitude. To detect each
extreme transition we wish to detect only when change in spectral shape is at an extremum.
The result is averaged over three 8-msec frames.

¢+ Extreme transition detection: Each local maximum in transition magnitude above a fixed
threshold and each local minimum below a fixed threshold is identified. Local extrema less
than 35 msec apart are presumed to be part of the same segment whose location we assume to
lie halfway between.

¢ Average static and transition spectrum: We average the transition spectra over the 50 msec
period centered at the point of extreme transition.

The representation, although linguistically motivated, is based on strictly acoustic criteria. The
result is not a traditional phonetic or phonological segment like a “phoneme.” To be sure, the
stored prototypes are based on the statistical properties of parental speech, but they are not “dis-
tinctive” in the phonemic sense. The approach is suggested by the observation that spectral transi-
tions provide the most salient portion of the speech signal for consonants or syllable recognition
(Furui 1986). Maximum transitions correspond to demi-syllables or diphthongs. Minimum transi-
tions correspond to relatively steady-state portions of vowels, nasals, approximants, and frica-
tives. Barely audible noise is aspiration or a stop release. Barely audible voicing is the voice-bar
accompanying a voiced oral stop consonant. And silence represents either the closure of a voice-
less stop consonant or morpheme boundaries.

2.3.3. Prosodic analysis

The prosodic analysis submodule performs a very simple analysis of morpheme shape and voic-
ing pattern by concatenating segment types identified by the segment detection submodule. The
model does not detect pitch or stress. We use the term “prosodic” in the sense of suprasegmental
phonetic patterns (e.g., Waterson 1971) rather than the more usual sense of phrase prosody.

2.3.4. Categorization

A set of “prototypes” is stored in long term memory representing those transition spectra, static
spectra, and prosodic patterns recognized as relatively distinct according to an appropriate dis-
tance measure and statistically important according to their relative frequency in parental and
child speech. For each token speech segment in each perceptual domain, we measure its distance
from existing prototypes. Each prototype is activated by an amount inversely related to its dis-
tance from the token segment. If the token’s distance from every prototype is too great, we may
add a new prototype. To measure the distance between token and prototype segment for static or
transition spectra, we use the inverse correlation distance (Pomerleau 1993). To compare the
token prosodic string with prosodic prototypes we use dynamic time warping and a cosine dis-
tance metric for each segment type vector. This three-part categorization avoids the conflation of
spectral and prosodic differences.

2.3.4.1. Prototype acquisition and loss

If a token is too distant from existing prototypes, a new prototype is added probabilistically, using
the current token as the prototype. Such probability is proportional to the token’s distance to its
nearest neighbor, but is low enough to discourage a proliferation of gratuitous categories. A proto-
type is lost with a probability (1) inversely related to its frequency of detection, (2) inversely
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related to its distance from neighboring prototypes, and possibly (3) inversely related to its rele-
vance for phonological control. Because phonetic state is encoded as prototype activation, phono-
logical control cannot be reliable until prototype competition stabilizes.

2.3.4.2. Stipulated and emergent properties of staged categorization

We expect that phonetic categories will be learned in order of increasing complexity, a function of
their frequency of occurrence and mutual phonetic distances. This is one factor which paces the
complexity of sounds that the model may attempt to reproduce, helping to bootstrap motor learn-
ing by phonological and articulatory controllers. However, in experimental manipulations of the
model, we plan to introduce additional constraints, including (1) explicit manipulations of paren-
tal sounds, and (2) constraints on the number or type of phonetic categories which may be stored
as prototypes at some given stage of development (see sections 2.8.2 and 3.3.3).

2.3.5. Phonetic buffer and utterance representation

The activation of phonetic prototypes represents only the momentary phonetic state. The cumula-
tive phonetic buffer maintains a trace vector of all prototype activations accumulated during the
course of an utterance. It is this cumulative record which becomes the output of auditory percep-
tion — the “phonetic state”. For example, the sound [pIg] would be represented by activation of
the prototype onset transition for [bl] (the transitions for [pI] and [bl] are not distinguished), the
coda transition for [Ig], the prototype for the steady-state spectrum corresponding to [I], and a
prosodic string for silence, aspiration, onset transition, vocalic steady-state, coda transition, a
barely audible voicebar, and the burst of noise representing the consonant release. “Big” [blg] is
distinguished from [plg] only by a voicebar which replaces [pIg]’s initial silence and aspiration.

2.3.5.1. Uniqueness of representation for syllable and morpheme recognition

It is possible to uniquely represent any single syllable with this representation. The relative order
of spectral features is implicit in transition spectra because they represent overlapping demi-sylla-
bles (as above). By adding static spectral prototypes to the representation, we capture nasal, frica-
tive, and stand-alone vocalic data missing from a strictly dynamic spectral analysis. Their order
relative to other features is usually encoded in spectral transitions. The prosodic representation
can disambiguate most remaining questions of feature order, but is primarily necessary to distin-
guish voiced, voiceless, and fricative sounds. It is also possible to distinguish some polysyllabic
utterances, especially reduplicated syllables like /mama/. However, the proposed representation is
primarily aimed at a solution for single-syllable utterances and syllable reduplication.

2.3.5.2. A structured phonetic state which uniquely represents any morpheme.

A more elaborate phonetic state which resembles a tensor-product binding (Smolensky 1990) of
prosodic (or syllable frame) roles and spectral feature fillers is able to uniquely represent any mor-
pheme. Instead of a simple vector, we form a matrix by taking the cross-product of all possible
spectral features and prosodic categories. After each phonetic segment is detected, we activate the
unit corresponding to its spectral category and the prosodic pattern observed thus far in the utter-
ance. Unfortunately, such a representation could become huge. It would also be cumbersome to
modify as phonetic and prosodic categories are added or lost. At present, implementation of a
structured phonetic state is beyond the scope of this project, not being crucial for testing its central
hypotheses.
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2.3.5.3. Characteristics of code

Though the recognition code is linguistically motivated, its phonetic features are learned, not
assumed. Prototype matching yields a coarse coding scheme which retains some distributed prop-
erties but emphasizes segmental and categorical properties of speech perception. It is computa-
tionally simple and amenable to parallel implementation.

However, the combinatorial complexity of syllable and/or morpheme structure is large, requiring
substantial memory resources for prototype storage and large computational costs for sequential
implementation of prototype matching. Limiting ourselves to only 11 English vowel types and
only 3 basic places-of-articulation, there are 66 demi-syllable types, not including diphthongs,
vowel-glide, or glide-vowel types or additional variations caused by introducting nasality. Add to
this a large number of syllable types. This concern may be ameliorated by artificially limiting the
adult corpus of sounds or the model’s capacity, forcing it to ignore less frequent sound patterns.

The code does not decompose phonetic segments into distinctive features, nor demi-syllables into
consonant and vowel. Feature decomposition and other strategies may be necessary for a more
compact, less complex representation, but are beyond the scope of this project.

I have already implemented the spectral analysis, segmentation detection, and spectral distance
algorithms. Simulations were able to discriminate and classify synthetic CV syllables much like
those we will use for the adult corpus (Markey & Bell 1993).

2.4. Memory

The model has three varieties of memory. Short-term memory stores only the most recent utter-
ance until the start of a new utterance is detected. Long-term memory is more permanent and
more selective. It is implemented as a table in which a new utterance is stored if not already
present, but only to the extent that its phonetic components are recognized as well-formed by seg-
ment categorization; that is, an utterance is added with a probability roughly proportional to its
prototype activations.

The lexicon is a form of long-term memory in which “meaning” is also stored. Here “meaning” is
limited to a few semantic and pragmatic features useful for guiding goal selection (e.g., animacy,
people, personal relationships, food, names, etc.). Lexicon entries are added in a way which simu-
lates the natural acquisition of receptive vocabulary. We shall implement the lexicon as a simple
elaboration of long-term memory. A more complete model might introduce a more complete
semantic component or a learning component which adds lexical items to the extent that their
phonetic representation reliably predicts some cognitive event. These are beyond the scope of this
project. The lexicon is important only as a criterion in goal selection and as a small contribution to
reinforcement in some circumstances.

2.5. Goal Selection

There are two basic goal strategies which the model can pursue.

& Imitate a speech sound in the environment (parent’s or one’s own most recent utterance).
¢ Reproduce the utterance type stored in long-term or lexical memory.

The goal selection module will copy a phonetic representation from the appropriate memory to
the phonological controller. Goal and phonetic target probabilities will be a function of the mod-
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el’s developmental stage or some experimental manipulation. During the babbling stage, imitation
of self or parents will be emphasized. As long-term and lexical memory expand, they will provide
a greater proportion of targets. Preferences for various sounds or lexical items may be weighted
by phonetic or semantic factors, according to experimental manipulation or systematic explora-
tion strategy. Such preferences are a key component of motor learning bootstrapping strategies
intended to overcome deadlocks between phonological and articulatory controller searches.

2.6. Phonological control

The phonological controller’s task is to choose a sequence of articulatory controllers such that the
actual phonetic state comes to match the target phonetic state. It has two inputs, the current pho-
netic state and the target phonetic state. Its only output is the activation of some articulatory con-
trol specialist, and it guides articulation only indirectly, by its choices of articulatory controller.

2.6.1. Q-learning

The phonological controller is a Q-learning agent (Watkins 1989). Q-learning is a reinforcement
algorithm for discovering an extended plan of action which maximizes the cumulative net long-
term reward received by an agent as result of its actions. In general, the Q-agent incrementally
learns a function, Q (x, a) , which for every environmental state x evaluates the expected utility of
performing each possible action a. Optimally, the Q-agent chooses the most highly valued action.
As it learns the Q-function, however, the agent experiments with possibly suboptimal actions. As
an optimal plan is learned, Q (x, a) (or the Q-value, as it is sometimes called) comes to equal the
expected value of the cumulative net reward which would be gained by performing action a in
state x and by following the optimal plan of action in subsequent steps.

Q-learning has been shown to converge to an optimal plan for a finite Markov sequential decision
task under a number of specific conditions (Watkins & Dayan 1992). Our implementation is
adapted from Lin (1992), using a multi-layer network to estimate expected utility for each state
and action. Despite evidence that convergence is not guaranteed when Q-values are estimated by
such function approximators (Watkins 1989, Thrun & Schwartz 1994), the practice is widespread
in order to take advantage of their generalization properties, especially for large state spaces.

2.6.2. Phonological controller action selection and error correction

The neural network implementing the phonological controller has sufficient inputs to accommo-
date the current phonetic state x, target phonetic state p, and one output unit for each articulatory
controller. Hidden units are sigmoidal; output units are linear. The target phonetic state p is cho-
sen by the goal selection module at the start of each trial and remains constant throughout the trial.
The controller considers and chooses its next action once at the start of each new trial and after-
wards only when a change in the phonetic state x is detected, which is a function of auditory per-
ception. Its i-th output is the estimated utility Q (p, X, a;) of choosing articulatory controller a;
given the current and target phonetic states. Action a is chosen and articulatory controller a is
activated according to a Boltzmann distribution p (a i| X, p) across all possible actions A. Temper-
ature T determines the randomness of the action selection and is varied during learning according
to some annealing schedule, the chosen goal strategy, and a bootstrapping strategy.

n
eQ(p,x,ai)/T/ y L2 (Bxa) /T )

a, €A

p(a|x,p) =
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If the phonological controller is optimally trained, this may be interpreted as the probability that
articulator a; will generate the next phonetic segment in a sequence which culminates with the
current and target phonetic states equal. If constrained such that the phonological controller may
choose one and only one articulator during the course of a trial, then this may be interpreted as the
probability that articulator a; will generate a sound represented by the target phonetic state.

The Q-function is next evaluated only when auditory perception next detects a phonetic segment
and the phonological controller observes a new phonetic state y. At this time, the controller will
also observe the scalar cost C incurred by the previous action and scalar reinforcement R. Before
the next action is chosen, we compute the temporal difference error E (Sutton 1988) in our predic-
tion of action a’s utility and use it to update the controller’s parameters. Our new predicted utility
is the sum of cost C, reinforcement R, and the maximum utility among all actions in our new state
y. The error is the difference of this sum and Q (p, X, a) , the utility of the chosen action.

E=R+C+max, . ,{Q(p.¥,a9)} -Q(p,x, a) 2)

The network is adjusted by back propagating the square of the error for that output unit corre-
sponding to action a. No error is back propagated through other output units. The calculation uses
activations stored at the time the action was taken.

2.6.3. Reinforcement of the phonological controller

During the course of an utterance, we compare the current phonetic state with the target phonetic
state. A trial ends when the goal state is satisfied, after some time-out period determined by a sim-
ple respiratory model, if some impossible articulatory configuration is encountered, or (option-
ally) if a mismatch occurs, that is, if the utterance is recognized as one of the same class of sounds
as the target but not of the same type. Various reinforcement schedules are possible and require
some experimentation. They range from a positive reinforcement for achieving the goal and nega-
tive reinforcement for mismatches or time-outs, to a graded signal which peaks for an exact match
and falls away exponentially with the token’s distance from the target. The phonological control-
ler receives a reward only to the extent that the whole utterance matches the target utterance.

2.7. Articulatory control

There are several articulatory controllers. Each learns to become a specialist in producing all or
part of some recognizable sound. To produce a sound, the active articulatory controller governs
the motions of jaw, tongue, lips, velum, lungs, and glottis to adjust the shape of the vocal tract and
generate air turbulence or vibration. To produce some desired sound pattern, the controller
observes and traverses a proprioceptive trajectory without any direct knowledge of sound. At this
level of control, the length of time necessary to observe and analyze auditory feedback is too great
to be of any use. Its only knowledge of sound is via the reinforcement signals it receives for the
sounds it produces.

2.7.1. Parallel architecture of articulatory controller and its relationship to gesture controllers

Motions of the six articulators occur along 12 degrees of freedom (see 2.10) organized as a set of
articulatory gestures. Each gesture is the motion of one articulator in one dimension from its cur-
rent position to a chosen equilibrium position along a trajectory conforming to the motion of a
critically damped spring (Browman & Goldstein 1989; see 2.9). The articulatory controller does
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not choose each point through which a vocal tract articulator will pass during a gesture, only the
equilibrium position. The gesture controller realizes the actual motion (see sections 2.6.2, 2.9).

Each articulatory controller resembles a parallel computer. Rather than a single agent controlling
all twelve articulatory dimensions, twelve agents each control a single dimension. Each subagent
is assigned permanently to a single dimension (e.g., jaw angle, tongue tip displacement, lip pro-
trusion) and its corresponding gesture controller. And each subagent chooses among a range of
gestural target values spaced evenly (or roughly so) along the entire range of motion of its articu-
latory dimension plus a “null” action which has no effect on the current trajectory.

The articulatory controller employs the parallel quasi-independent Q-agent architecture intro-
duced by Markey (1994). We do so because the standard method would be impractical, requiring
at least 50 million outputs to specify all possible vocal tract configurations with sufficient resolu-
tion (one for each combination of gesture targets across all 12 degrees of freedom; see figure 4).

Figure 4: Standard and Parallel Q-Agent Architectures Compared

We portray the explicit representation of Q-values for all possible action combinations in a standard Q-agent
on the left (for a small 4x3 action space). On the right we portray the sparse representation of Q-values in the
quasi-independent architecture for the same action space. Subagents make action choices by comparing Q-
values within only a single articulatory dimension. The controller’s action is composed from each compo-
nent choice.

a a
1 2
a a
, Subagent 1 Subagent 2
Action Selection Action Action
T Selection Selection
Q(X’ al]) Q(xaa13) Ql (X, all)
Outputs 0’ (X—, ')
Outputs
Q (x, ay) Q (%, ayy) 0' (x,a'y) 0’ (x, a’3)
Hiddens Hiddens
State x State x
Quasi-independent

Standard Q-Agent Architecture Parallel Q-Agent Architecture
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In the parallel-Q architecture, one subagent is dedicated to each articulatory dimension. The col-
lective behavior of all subagents replaces the behavior of a single agent. All subagents share the
same input — the proprioceptive state — which describes the recent and current state of the vocal
tract. The algorithm is presented in greater detail below.

2.7.2. Time granularity of articulatory control

At each time step (corresponding to 8 msec of real world time) and for each degree-of-freedom,
the gesture controller updates the current gesture’s trajectory, and the corresponding subagent
chooses the next gesture. A gesture which matches the previously chosen gesture has no effect. If
a new gesture is chosen during a refractory period immediately following the start of the previous
gesture, it replaces the old gesture with a probability quadratically proportional to the progress of
the old gesture.

2.7.3. Articulatory controller action selection and error correction

Details of the parallel, quasi-independent Q-agent architecture used for articulatory controllers
appear in Markey (1994). We summarize the algorithm here.

The action space G from which the articulatory controller chooses action (gesture target) g has n
degrees of freedom, each defining a separate subspace, G, j=l.n,where G = G X ... X G". The
actions in each subspace represent the range of articulatory gestures in one articulatory dimen-
sion. The method for each subagent is similar to that used by a single Q-agent (Watkins 1989);
however, instead of learning a complete Q-function, each subagent explores only those actions in
its own subspace and learns only the corresponding portion of the Q-function. There is no explicit
representation of the entire Q-function; together subagents must cooperatively explore the entire
action space.

+ There is one network whose input is proprioceptive state . It has X, led outputs, organized
into n groups, each group representing a subagent, one for each degree of freedom j. Subagent
group j has onjly TGE outputs. At time ¢, each computes the estimated value ¢’ (u, g’) of some

action g’e G’.

¢ Each subagent selects an action g’ in its subspace accorging to the Boltzmann distribution.
The action seen by the environment is the n-tuple g = (g, ..., g") constructed of the actions
chosen independently by each network. Action selection by each subagent is independent of
selections by other subagents. The Boltzmann distribution is computed only over actions in
G’ and only over outputs in group j.

j ghr ] &) /T
p (g = L [ 5 Lo 3)
gie G

¢ Execution of action g results in new state v, and all subagents observe the same cost ¢, and
reinforcement r. The temporal difference error E’ is computed for each subagent group j.

E'=rtctmx; {0'(v.gh)}-0/(ng) “)

& For each subagent group j the square of this error is back propagated through the output unit
corresponding to the action g’ selected by group j at time .
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Experiments with this architecture have demonstrated its ability to learn primitive CV syllables in
as little as 2 to 8 hours of experimentation (in the simulated time frame of the child), starting with
a completely naive controller.

Figure 5: Articulatory controller learning velar contact and release

Contact of velum and release by tongue body learned within 13,800 trials.

Trial 200 Trial 8800 Trial 13800

2.7.4. Reinforcement of articulatory controller

An articulatory controller receives rewards and penalties only for those phonetic events detected
while it is active. Reinforcement is accumulated over this period but does not accrue until control
is transferred to a different articulatory controller or until the trial times out; cost is accrued at
each time step. A reward is received if the distance between the current phonetic state and the tar-
get phonetic state is narrowed. No reward results if the distance increases. A penalty results if a
phonetic segment is generated which is not activated in the target phonetic state representation.
For example, if our goal is to pronounce the word “big” and the onset demi-syllable [bI] has
already been detected, the active articulatory controller receives a reward if the demi-syllable [Ig],
receives no reward if a second [bI] demi-syllable token is detected, and receives a penalty if the
demi-syllable [ga] is detected.

2.8. Relationships between phonological and articulatory controllers

In this section we discuss in greater detail the computational roles of phonological and articula-
tory controllers. Though the specialization of the latter yields certain efficiencies, joint training on
complex utterances need not converge without some exploration strategy to bias their joint search
of articulatory space. We evaluate such exploration strategies. We also compare the model’s con-
trol architecture with related models. Finally, we explain under what circumstances articulatory
controllers may be chained together by the phonological controller. The relationship of the articu-
latory and phonological controllers outlined thus far is summarized in table 1.

2.8.1. Computational roles and relationships between control levels

Phonological and articulatory controllers face several computational tasks. First, there is the prob-
lem of approximating elemental sound patterns which recur in the environment. This is the role of
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Table 1: Articulatory and phonological controllers compared

Dimension
Quantity
State

Source of state
information

Action

Granularity

Learning and con-
trol algorithm

Articulatory controller
Many
Proprioceptive state

Vocal tract configuration, tac-
tile and proprioceptive feed-
back, proprioceptive events
detected and stored by propri-
oceptive analysis

Parallel gesture choice and
activation

New state computed, action
chosen every 8 msec; but
action choice is event-driven.

Parallel Q-learning

Phonological controller
1
Current & target phonetic states

Segmented, categorical auditory
perception of current utterance
and stored representation of tar-
get utterance.

Articulatory controller choice
and activation

Event-driven. When each new
phonetic segment is detected
and phonetic state changes.

Q-learning

Architecture Quasi-independent Q agents Single parameterized Q agent
Computational Server Client
analogy

the articulatory controllers. Second, the problem of recombining these simple sounds to approxi-
mate more complex, possibly unique sound patterns falls to the phonological controller. Once the
articulatory controllers have mastered some simple sounds of appropriate diversity, recombining
them is a relatively simple task. Until then, each has a much more difficult task.

It is crucial to ensure an appropriate diversity of sounds, to ensure that the distribution of sounds
generated by the articulatory controllers comes to match the distribution of sounds which occur in
the environment. This is the phonological controller’s task. It builds a model which estimates the
probability with which each articulatory controller generates some sound in the environment. Fol-
lowing this model, it probabilistically activates one of articulatory controllers closest to each tar-
get sound. The chosen articulatory controller is shaped by reinforcement learning to better
approximate the target sound. Finally, the phonological controller updates its own model based on
the performance of the chosen articulatory specialist. The model that the phonological controller
uses is simply its Q-function, which together with the Boltzmann distribution (1) defines the rela-
tive likelihood that each articulatory controller will generate the sound pattern represented by the
target phonetic state. Its Q-function is adjusted by reinforcement learning as the phonological
controller attempts various matches.

This is illustrated (figure 6) with a comparison to the Gaussian mixture model. Given some distri-
bution of speech sounds (scattergram in figure), we assume that a collection of articulatory con-
trollers generates them (mass density curves in figure), not unlike assuming that some mixture of
Gaussians generates a set of arbitrary observations (Nowlan 1991). Given an observation, the
Gaussian mixture model would ask “which Gaussian generated it?” That is, it would calculate the
conditional probabilities that each Gaussian generated the observation and then incrementally
update the means and variances of the Gaussians to more closely model the data. Given some
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Figure 6: Building a model of articulatory controllers to match linguistic environment

Probability of ‘
. Change articulatory controller 2’s parameters
generating sound to move its expected sound closer to target

Estimates by phonological controller
for each articulatory controller

|
Sounds produced by articulatory controllers

A
\/
Target phonetic pattern 4 Sounds observed in environment

sound sample from the distribution (e.g., the bold “X”), the phonological controller asks which
articulatory controller is most likely to have generated it. It calculates the conditional probabilities
of the articulatory controllers per its Q-function and the Boltzmann distribution. It activates an
articulatory controller per this distribution (e.g., controller 2 in figure). Though we know in
advance how to directly adjust means and variances of Gaussians, we can only indirectly update
the parameters of each articulatory controller by reinforcement learning. When we do so, the cho-
sen articulatory controller’s “mean” sound stochastically and incremently moves closer to the tar-
get sound. The phonological controller adjusts its model of articulatory controller behavior by
adjusting its own Q-function as a function of how well the chosen articulatory controller gener-

ated the target sound, adjusting curve 2 (adjustment not shown in figure).

2.8.2. An exploration strategy to bootstrap the architecture

One can imagine the circumstances under which this learning scheme will fail to converge. The
model may prematurely attempt a complex phonetic target without having first mastered the com-
ponent sounds. Human children encounter the same problems. Before mastering its component
sounds, Jacob experiments with an untold number of variations in “thankyou” for six months
before finally giving up, never once accurately rendering the complex utterance (Menn data
1976). The model could also pursue an unselective goal strategy, only exacerbating the already
undifferentiated articulatory controllers when, early in development, Boltzmann temperatures are
high and distributions are broad and flat.

One solution is an exploration or “bootstrapping” strategy which stages the complexity of utter-
ances attempted by the child or otherwise limits the complexity of search. We propose two
approaches. One is a simple experimental manipulation by which we break the model’s training
into two phases. First we limit training to the simplest demi-syllables. Only then do we expose the
model to more complex utterances. The second bootstrapping strategy is more complete, recruit-
ing several existing facilities already proposed for the model, but adding several new constraints.
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¢ Auditory perception learns to categorize simpler patterns first. This should already be an
emergent property of phonetic categorization, but we may experimentally control how fast
new categories are added or what types of categories are added.

¢ We adjust temperature annealing to constrain search. We set initial Boltzmann temperatures
such that phonetic distributions of articulatory controllers show some modest differentiation
yet are still plastic. Then, we “freeze” articulatory controllers once they become reliable,
allowing others to experiment freely. Reliability may be measured as some threshold Q-value.
Alternatively, we anneal articulatory controllers with a speed proportional to their Q-values
when activated.

& Strategies and preferences for goal selection may take bootstrapping needs into account. Cer-
tainly, we may introduce some lexical preferences as a function of semantic and pragmatic
features (section 2.4). We may experimentally introduce intrinsic sound preferences. More
generally, we base goal selection in part on relative Q-values as estimated by the phonological
controller at the start of each competing utterance. (Such estimates may be recorded as part of
the lexicon or long-term memory.)

Bootstrapping strategies are expected to be idiosyncratic, a function of model history, stipulated
preferences, and experimental manipulations.

2.8.3. Related models of hierarchical control

Our architecture bears some resemblance to several models of hierarchical learning or control.
Feudal reinforcement learning (Dayan & Hinton 1993) is a true modular control hierarchy in
which controllers are responsible for actions by subcontrollers and labor is delegated according to
a non-adaptive, a priori territorial division. Composite Q-learning (Singh 1992) is an adaptation
of the competing experts model (Nowlan 1990) which decomposes a complex sequential decision
task into its elemental subtasks. Owing to the constraints of the domain, our architecture falls
somewhere between feudal and CQ reinforcement learning in the space of possible models of
hierarchical control.

A key distinction which drives other choices is whether to view the overall problem to be solved
as a single sequential decision task or as a hierarchy of separate sequential decision tasks. Even if
viewed as a single task, state information for a complex task must be organized at several levels.
In choosing how to structure the task, one must ask whether the states of different levels differ in
temporal (or spatial) granularity and/or in domain. For example, in feudal learning the states of
each level describe the same domain (maze location), but differ in their territorial granularity. In
our model, states of each level differ in domain (phonetic vs. proprioceptive state) and granularity.
By granularity, we mean the time scale of inputs and actions, not the time scale of landmark
events which occur sporadically in the course of continuous observations and behavior. The CQ-L
algorithm observes its progress in accomplishing subgoals after each time step; its gating module
must choose an expert Q module each time step. In contrast, our phonological controller chooses
a new articulatory controller only with it observes a new phonetic state.

Division of labor may be territorial, temporal, or more generally, according to substates parti-
tioned by some criterion. It may be adaptive or non-adaptive. Criterial state may alternatively be a
categorical observation made in another domain, a learned criterion, or an a priori criterion. The
phonological controller depends on its observation of the phonetic domain to divide articulatory
responsibilities. The feudal maze criteria are non-adaptive, a priori territorial divisions.
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One next chooses a method of distributing credit among experts or levels of control. The method
depends in part on the structure chosen. Dayan and Hinton enforce reward hiding and inform each
task manager what its conditions of satisfaction are. Singh credits temporal difference error
according the posterior probability that an expert is chosen given the current state’s value. Finally,
one may apply various exploration strategies to constrain or guide search among levels of the

hierarchy, or one may rely on the emergent properties of credit assignment to guide the search.

Table 2: Models of Hierarchical Reinforcement Learning Compared

Phonological/Articulatory
Model

Interpreted as hierarchy of
sequential decision tasks.

States at two levels differ in
granularity and domain.

Temporal division of sub-
tasks by recognition of crite-
rial phonetic state.

Adaptive division and
assignment of articulatory
controller.

Articulatory controller is a
specialist on one task.

Each articulatory controller
sees the same undivided
state.

Phonological controller
must decide how long to
delegate subtask.

Phonological controller acti-
vates articulatory controller
with highest expected value.

Reward credited to active
articulatory controller
based on movement toward
phonetic goal state during
its activation.

Various heuristics for boot-
strapping specialization of
articulatory controller.

Feudal Reinforcement
Learning with Maze Task

Interpreted as hierarchy of
sequential decision tasks.

States at various levels dif-
fer in granularity only.

A-priori territorial division
of state.

Non-adaptive division and
assignment of submanager
or worker.

No specialization of work-
ers to tasks. Worker is gen-
eralist.

Each worker sees subset of
state.

Subtask delegated until
complete. Complete when
manager’s state changes.

Manager assigns task to
preassigned worker.

Reward credited to chosen
worker based on worker’s
success relative to task’s
known conditions of satis-
faction.

No bootstrapping neces-
sary because of non-adap-
tive division of state space.
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Composite Q-Learning
with Maze Task

Interpreted as single SDT
to be decomposed.

States at various levels
differ in domain only.

Temporal division of sub-
tasks by recognition of
subtask completion.

Adaptive division and
assignment of expert.

Expert is a specialist on
one task. Bias added to
guide composite tasks.

Each expert sees the same
undivided state. Bias net-
work sees only task bits.

Duration of delegation by
gating module depends
on detected progress in
composite task.

Gating agent chooses
expert with maximum
likelihood of generating
target Q-value.

Q-value TD error distrib-
uted between bias module
& experts based on maxi-
mum likelihood of pre-
dicting target Q-value.

No explicit bootstrapping.



2.8.4. Marketplace heuristic for distribution of rewards

Our task, which adaptively assigns jobs to workers, demands a mechanism for distribution of
rewards which more closely resembles a marketplace than a feudal fiefdom. A labor marketplace
retains a largely hierarchical organization, but rewards labor which meets needs determined by
management. We require a reward distribution heuristic which assures a balance between “sup-
ply” and “demand” for articulatory services. We wish to reward those articulatory actions which
fulfill a client need; we do not wish to reward excess services; but, we do not wish to penalize
articulatory actions which exceed the demands of the task only because the manager (the phono-
logical controller) purchased excess services. The phonological controller is rewarded on the
basis of its success in reproducing a whole utterance (section 2.6.3., p. 13). The articulatory con-
troller is rewarded on the basis of phonetic progress toward the target utterance only while it is
active (section 2.7.4., p. 15).

2.8.5. Seamless transfer of control among articulatory controllers

Phonological compositionality requires the seamless integration of control as responsibility for
motor control is transferred from one articulatory controller to the next. Moreover, learning the
pronunciation of complex morphemes could be more efficient if we may freely piece together
parts of previously learned articulatory puzzles to solve a new puzzle. For example, it would be
advantageous if we could generate “mad” [m&d] out of previously learned articulatory patterns
for “bad” [b&d] and “man” [m&n].

It is a fact of the articulatory system and a consequence of our model’s design that the propriocep-
tive state is similar for steady-state phonetic segments shared across different utterances. The
proprioceptive state corresponding to the articulation of the vowel [&] held in common by “mad”
“bad”, and “man” enables the seamless transfer of control between articulatory controllers which
have previously mastered “man” and “bad”. Likewise, multi-syllabic utterances joined by a con-
sonant share not just the phonetic segment, but the proprioceptive state corresponding to the con-
sonant. More generally, it is only necessary that corresponding proprioceptive states are in the
same neighborhood, as determined by the generalization properties of the articulatory controller.

These properties are key to building the control architecture we have proposed, and they impose
certain constraints on the model’s design. The articulatory control domain must conform to the
Markov property — the probability of moving to state v from state u given some action g is
strictly a function of the current state u and action g, not of any previous states. This is ensured by
the design of gesture controllers, by information hiding between phonological and articulatory
levels, and by the representation of proprioceptive state. Each articulatory controller must receive
the same proprioceptive state information, which they do. Furthermore, an articulatory controller
may not generate a representation of proprioceptive history which is not shared with other con-
trollers. History must be compiled externally and must be shared equally among all controllers. In
our model, history is compiled externally by the proprioceptive analysis module, and it is shared
alike by all articulatory controllers. Their feedforward architecture avoids any private representa-
tion of history. A recurrent architecture here would create misleading internal representations of
the proprioceptive state. '

2.9. Gesture controllers

There is one gesture controller per articulatory dimension. Each gesture controller’s input is the
output of the articulatory controller’s corresponding subagent — a target equilibrium position of
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the corresponding articulatory synthesizer control parameter. Its purpose is to generate a smooth
trajectory which conforms to the motion of a critically damped spring from the articulator’s cur-
rent position to the chosen equilibrium position (Browman & Goldstein 1989). The speed of this
motion is specified by a spring constant such that the motion approximates a range of speeds of
the human vocal tract. The outputs of all gesture controllers together define a sequence of static
vocal tract configurations which are interpreted by the articulatory synthesizer.

Gesture trajectories are updated at each discrete articulatory controller time step (corresponding
to 8 msec of real world time). Once initiated, a gesture with a particular equilibrium position con-
tinues to its asymptotic conclusion unless interrupted by the articulatory controller with a new tar-
get equilibrium position. During the course of each gesture, the gesture controller tracks progress
along its trajectory with a measure which roughly corresponds to “phase” in state space. By this
and other means, timing of articulatory control is intrinsic. There is no clock, other than the intrin-
sic dynamics of each vocal tract articulator as implemented by gesture controllers.

2.10. Articulatory synthesizer

The articulatory synthesizer is an adaptation of Haskins Laboratories’ ASY synthesizer (Rubin et
al. 1981, Mermelstein 1973). At each discrete articulatory controller time step, it converts the
static vocal tract configuration into a synthetic acoustic signal. The stream of such acoustic signals
acts as the model’s auditory output and feedback.

The vocal tract configuration is defined by control parameters for six articulators plus voicing and
frication which vary over 12 degrees of freedom: jaw (joint angle), tongue body (distance and
angle relative to the jaw hinge), tongue tip (length and angle relative to a point on the tongue
body), lips (protrusion and separation), hyoid (anterior and superior distance relative to a fixed
point), velum (degree of nasal opening), voicing amplitude (decibels), and frication amplitude
(decibels). Voicing and frication control are unrealistically primitive. We add a simple sound
source model which better approximates the indirect control of voicing and frication by replacing
voicing and frication parameters with control parameters for lung expansion (arbitrary units) and
glottal approximation (angle). From these input parameters, ASY computes the coordinates of
each articulator, a mid-sagittal outline of the vocal tract and a frontal outline of the lips, the vocal
tract’s area function (its cross-sectional area from larynx to lips), the vocal tract’s transfer func-
tion, and the components of the model’s synthetic acoustic output: the power spectrum, voice and
frication amplitudes (all functions of source characteristics and transfer function). Synthesized
sound and graphics of the vocal tract are available for experimental observation of the model’s
behavior. Based on articulator coordinates, mid-sagittal outline, and cross-sectional areas we also
compute signals which simulate tactile sensation.

Even with our extensions, ASY has weaknesses which limit the phenomena it can model. Its fri-
cation model is extremely primitive; modeled fricative sounds do not match corresponding human
aspiration or fricatives. Accurately producing liquids [l] and [r] requires a three-dimensional
vocal tract model; but ASY is two-dimensional. Thus, parameters for the liquids are not fully inte-
grated. Jaw and lip motion are highly constrained, making it difficult to simulate labiodental [v]
-and [f] sounds. Finally, the synthesizer can not be configured to simulate vocal tract anatomies of
different lengths and maturities. Thus, this model does not address the difficult problem of vocal
tract normalization. : :
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2.11. Proprioceptive analysis

Proprioceptive analysis recognizes certain proprioceptive events, and compiles the state and his-
tory of vocal tract motions from a number of sources. The resulting cumulative analysis becomes
the proprioceptive state, common input for each articulatory controller and each subagent therein.
It compiles:

¢ Current vocal tract configuration: a real vector of articulator positions, the outputs of gestural
controllers, each scaled between 0 and 1.

& Target vocal tract configuration: a real vector of target articulator equilibrium positions, the
outputs of articulatory controllers, each scaled between 0 and 1.

¢ Gesture phase: A representation of the current progress of each articulator through its current
gesture, a measure roughly corresponding to phase in state space. Phase has a cyclic 6-unit
representation starting with “at rest” and proceeding through “launch”, “post-launch”,
“zenith”, a sequence of “relaxation” phases, ending once again with “at rest”.

¢ Touch detectors: Detectors for glottal vibration, airflow, vocal tract constriction, and touch at
various regions in the vocal tract roughly corresponding to places of articulation.

+ Touch and release event traces: We also detect and record a decaying trace memory of loca-
tions in the vocal tract which correspond to touch then release of contact.

3. Simulation and Experimental Methodology

An experimental test of the proposed model shares many of the methodological difficulties which
face a linguist who observes and tries to characterize the phonological behavior of a child. Testing
the real or model child is not a simple matter of passive training on some training corpus followed
by a test of the child’s generalization ability on a test set. The model was built as a whole sen-
sorimotor system. It was also built to approximate the human child’s exploratory behavior. Chil-
dren are active explorers and learners, generating their own data. Not even the natural linguistic
environment is passive; it consists of adult utterances responsive to the needs, interests, and
speech of the child. Two human children or two models exposed to the same linguistic environ-
ment will demonstrate differences if only because of their divergent native endowments and their
divergent histories.

Each individual child’s behavior is remarkably idiosyncratic. We expect the same of model
instances, even without modeling the full richness of the child-parent interaction. The only com-
mon denominator among individual children or model instances are general types of learned or
innate behavior, types of errors, and general properties common to all phonological behavior. Our
aim in testing the model’s explanatory power will be to use linguistic and other methodologies to
examine the model’s behavior and compare it with known human behavior. This process and an
analytic examination of the model and its properties may also reveal new questions about human
behavior.

Analysis of the model’s behavior could be an entire research project, given the richness of ana-

lytic methodologies available. We will choose among the techniques and measurements presented
here as time and resources permit.

3.1. Available observational and experimental methodologies

Several methodologies have been used to observe and analyze human phonological development.

— Page 23 -



¢ Basic tools are naturalistic observation and detailed phonetic transcription (e.g., Smith 1973,
Menn 1976), usually as part of a longitudinal study of one or more children.

+ Phonetic transcriptions are supplemented by various linguistic structural analyses. These
include rewrite rules which encode the systematic relationship of parent and child forms
(Menn 1971, Smith 1973), prosodic structures or canonical forms which describe systematic
gestalt patterns of sounds (Waterson 1971, Menn 1976, Macken 1979), phone trees (Ferguson
& Farwell 1975, Ingram 1979), and various approaches to characterize irregular phenomena
(Menn 1976, Menn & Matthei 1992). Phonological progress is reported as a sequence of
stages, each described by its own structural analysis. A finer grained analysis is sometimes
used to evaluate short-term changes in the pronunciation of a word or a class of words.

+ Statistical studies of longitudinal or cross-linguistic trends and individual differences are used
primarily to characterize babble and very early speech (de Boysson-Bardies et al. 1989, de
Boysson-Bardies and Vihman 1991, Vihman et al. 1986).

¢ Experimental manipulations are usually fortuitous (Menn 1971) or applicable to only a few
types of phenomena (e.g., Berko 1958).

Observation of the model will employ the same methods, indeed must employ these methods to
establish whether its behavior is comparable with human behavior. Our basic methodology will be
longitudinal observation and phonetic transcription of speech samples with appropriate statistical
and structural analyses. We shall directly inspect internal representations and use experimental
manipulations in ways that are not possible with real children.

Experimental manipulations are particularly important. In observing real children, fortuitous nat-
ural experiments occur at all times (e.g., introduction of new toys, people, and words in the child’s
environment), but the investigator rarely has control of such circumstances. We not only have
control of these variables, but the entire social and physical environment in our model is syn-
thetic. Thus, we must evaluate different synthetic environments if for no other reason than to
introduce internal controls into the simulation design.

Some phenomena will naturally emerge without intervention. Other phenomena are not guaran-
teed to emerge as the child or synthetic system unfolds naturally. They may be accidents of the
child’s or model’s history. We wish to test whether such behavior may be predicted from a partic-
ular history. For example, consonant harmony is not guaranteed; it seems to occur at statistically
chance levels, and a systematic pattern of harmony is even less common (Vihman 1978). To
investigate the origins of such behavior, we must hypothesize its cause and manipulate the mod-
el’s history to test the hypothesis.

3.1.1. Automatic phonetic transcription

One advantage of our modeling environment is our ability to automatically transcribe and com-
pile the model’s babble and speech. In order to automatically transcribe the model’s speech, we
directly measure vowel quality from static spectra or formant frequencies. Alternatively, we train
a neural network classifier to recognize parental demi-syllables and vowels or to replicate experi-
menter classification of model demi-syllables and vowels. We also use the model’s own segment
detection algorithm with an appropriate set of rules to analyze syllable and prosodic structure of
utterances. We compile these and other analyses to generate a phonetic transcription and various
structural analyses.

The validity of this automated transcription methodology must be tested against human observers
trained in phonetic transcription. We must adjust or adapt the automated methodology to achieve
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cross-transcription agreement rates comparable to typical studies of child phonology (e.g., Vih-
man et al. 1986, Kent & Bauer 1985, Oller et al. 1975). Whether we can achieve this is an open
question. The hand-crafted adult speech produced by ASY is rather unnatural because of limita-
tions in ASY’s voice and frication source model and other factors. The model’s immature speech
patterns may be even more difficult to transcribe.

3.2. Parental corpus

Two sources of data guide the model’s development of perceptual categories and shape its future
— parental speech and the model’s own utterances. The model’s own utterances are a function of
constraints built into the vocal tract and gesture controller models and basic costs built into the
reinforcement schedule. Parental speech can be subjected to considerable experimental manipula-
tion, which we detail in sections below. Design of the basic corpus of parental speech will use one
of the following two methods:

¢ Vocabulary selection from a synthetically generated corpus. We generate a database of
one-syllable and simple two-syllable sounds which conforms to the phonotactic and syllable
structure rules of English phonology. We select words from this database which (1) are statis-
tically likely to occur in parent-child speech interactions, (2) represent stressed syllables of
common polysyllabic utterances, (3) can be accurately pronounced by the articulatory synthe-
sizer, and/or (4) represent a reasonable distribution of sound patterns from which the composi-
tional structure of one-syllable utterances may be induced.

¢ Vocabulary compilation from a vocabulary from actual samples of Motherese. We com-
pile this vocabulary from the CHILDES database (MacWhinney 1991), but filter out utter-
ances which cannot be accurately pronounced by the articulatory synthesizer, and retain only
the stressed syllable of polysyllabic words.

Once a basic vocabulary is transcribed, we convert each morpheme into a gesture script automati-
cally or by hand. We check and adjust the pronunciation of each script. When realized as individ-
ual tokens of parental speech, gestural parameters will be perturbed randomly to introduce some
statistical variation. The model will be exposed exclusively to parental speech for a period of time
corresponding to the child’s earliest experience.

3.3. Essential phenomena and properties

We hope to observe and wish to test for some subset of the following properties and types of phe-
nomena: (1) specific statistical trends during babbling, (2) specific types of errors such as segment
substitution and cluster reductions, (3) alternations among erroneous and accurate patterns (4)
systematicity of errors, (5) overgeneralization of sound patterns, and (6) inertia of old sound pat-
terns (Menn et al. 1993). We now consider these in greater detail.

3.3.1. Emergent behavior of model observed without experimental manipulations

The following phenomena and properties should emerge from the model’s behavior without the
need for experimental manipulations. However, some tests may require experimental controls or a
population of model instances. We summarize or exemplify the data, explain how it is explained
by the model, and propose an observational or experimental methodology.

¢ Children’s babble increasingly approximates adult phonetics, statistically increasing in unifor-
mity and correlation with the native language.

Cross-linguistically, children’s earliest babble shows a preference for labials, dentals, oral and
nasal stops which does not necessarily match the statistics of adult speech (Oller et al. 1976,
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Kent & Bauer 1985, Vihman et al. 1986, de Boysson-Bardies & Vihman 1991). As time
progresses, these trends give way to preferences more closely resembling parental models,
showing less variance and higher correlations among subjects in the same linguistic commu-
nity (Vihman et al. 1986, de Boysson-Bardies et al. 1992).

This behavior emerges from the model in the following way. The earliest vocalizations are
mainly a function of random high-temperature flailing by articulators. Excess degrees of free-
dom are an advantage to the model at this time, enabling it to easily experiment with crude but
adequate approximations of stop consonants in primitive syllables. The most probable vocal-
izations are precisely those observed in early babbling. However, reinforcement of phonologi-
cal and articulatory controllers is based on the sound categories discovered in the linguistic
environment by auditory perception. Rewards favor a distribution of produced sounds which
resembles the distribution of perceived sounds.

The simplest test of this phenomena is a comparison of phonetic statistics for model and
parental corpus, but it lacks any experimental control. We introduce a control by comparing at
least two model instances, exposed to parental corpora with statistically different phonetic
characteristics (e.g., distribution of vowels, stops, nasals, places of articulation). However, to
reproduce variance and correlation results requires one or more populations of model
instances, all individuals in each population sharing the same general linguistic environment
but not sharing identical adult corpora. We measure vowel quality, vowel inventories, conso-
nant inventories, syllable structure, and canonical syllable rates for both parental speech and
model utterances.

Children substitute one segment for another and delete segments from consonant clusters.

Children substitute stops for fricatives, glides for liquids, voiced consonants for word-initial
voiceless consonants, and one place-of-articulation for another; they delete segments, espe-
cially from consonant clusters (e.g., Menn 1971, Smith 1973, Ingram 1974, reviews by Menn
1978, 1983, Ingram 1989).

The relative difficulty of pronouncing various sounds is not necessarily a function of effort or
other costs. It is more closely related to relative combinatorial complexity and proprioceptive
cues available to guide articulatory control. Stop consonants require the least complex
motions and are aided by discrete cues; they also benefit from the model’s excess degrees of
freedom. Fricatives require more precise control but proprioceptive cues are less informative.
In the early stages of phonological learning, there will be a higher probability of generating a
phonetically similar if somewhat inaccurate syllable using a stop consonant rather than the
target fricative. For example, “thank” [T&NKk] and “tank” [t&Nk] will have target phonetic
state representations which agree in most respects; the correct pronunciation will show a static
fricative segment where the latter shows an aspirated segment; onset spectral transitions will
be very similar. Even if both pronunciations are represented among articulatory controllers,
the phonological controller will choose the more likely, “tank”. Similar arguments may be
extended to other substitutions.

The simplest test of this phenomena requires a statistical compilation of the model’s segmen-
tal substitutions or deletions at various stages of development.

Errors are systematic, appearing regularly in the same phonological context.

Substitutions and deletions occur with rule-like regularity, and they usually occur in some lim-
ited context. As new words are introduced, they show the same error patterns. Examples
include deletion of word-initial fricatives by some children (e.g., “fish” becomes [IS], “shoes”
[uz], “soup” [up]), substitution of fricatives by stops (“soon” [dun], “fly” [baj]), voicing of all
initial consonants, insertion of sounds in related contexts (e.g., insertion of palatal before /s/,
“bus” becomes [bajs]), and many more.
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The systematicity of the model’s behavior derives from a phonetic representation which cap-
tures the similarity of neighboring sounds and the generalization properties of the phonologi-
cal controller. The context sensitivity of its behavior emerges from the whole-syllable
representation of target sounds, the correspondence between demi-syllables, articulatory ges-
tures, and the representation of spectral transitions.

To test the systematicity and context sensitivity of segment substitutions and deletions
requires conditional statistics, a set of rewrite rules which describe the errors and their con-
texts, or a set of canonical forms or prosodic structures which describe the regularities of
utterances. Rewrite rules and canonical forms also reveal the underlying compositionality of
utterances.

Regular patterns of alternation occur between erroneous forms or between accurate and erro-
neous forms.

Regular error patterns change. Sometimes they give way to accurate, adult-like forms. But
they often do so only gradually, following a period of competition between the old and new
patterns. An interesting example is the alternation shown as Daniel’s regressive velar harmony
gave way to consonant contrast (Menn unpublished data, see Table 3). Note the alternation
between the inaccurate /g/ onset and the correct forms with [b], [p], [d], and [t] in words with

a final [g], [k], or [N].

Table 3: Daniel’s Regressive Harmony As It Crumbles (Menn, unpublished data)

32;28 ai mEik A h&ws “I make a house”
gAg “bug” (early in the day)
bAg “bug!” (alarmed by it; many repeats)
32;29 blg “big”
baks “box”
b&g “bag”
tig&kg “teabag”
33;0 gaks / baks “box”
gEigw “bagel”
bEigw “bagel” in response to L.’s model.
uw gaks / uw baks “little box”
33;1 dAn dAks “done with the ducks” (elicited with effort)
dAn gAks “done with the ducks” (relapses)
gAk /dAk “duck” (spontaneous, correctable with
relapses)
ai pINKIN INz “I pinking things” (looking through pink
plastic)
bivi tu glg “Stevie too big”
33;2 gUk /bUk “book” (self-corrected)
33;3 dOg / gOg “dog” (response to picture)
plg “pig”
wat u du*wIN “what you doing?”
334 blwd A glg t&wr “build a big tower”

Is nat tu blg

“this not too big?” (later, about spoonful of
something)

For the simplest alternations, we hypothesize that articulatory controllers exist for each com-
peting form and that the phonological controller is learning to invoke the right one. When
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component sounds compete, we argue that the Q-values associated with two alternative artic-
ulatory controllers are nearly equal and their activation is equiprobable at the point in the
utterance when the phonological controller must choose between them.

Test methodologies are the same as those immediately above.

3.3.2. Model behavior which requires experimental manipulations or direct inspection to observe.

Testing the following properties and hypotheses requires experimental manipulation or direct
inspection of internal model representations.

¢ Newly learned words show evidence of context sensitive generalization, but the oldest forms
resist generalization to new sound patterns.

A new articulatory pattern is usually revealed in the introduction of a new word to the child’s
vocabulary. The new word might even be pronounced accurately. Whether accurate or not, it
often spreads inappropriately to phonetically similar words. Daniel’s nasal harmony rule
started innocently enough in his pronunciation of “moon” [mun ~ mum], but then inappropri-
ately spread to “broom” [mum], “mug” [NAN], “going” [NowIN], “spoon”, and “prune” (var-
ious forms) (Menn 1971, unpublished data). Eventually, the lexical domain of this new error
became more and more inclusive until even established forms for “down” [d&wn] and
“stone” [don] became infected (e.g., [n&wn], [non]). This is a particularly virulent case of
overgeneralization. It also reveals the relative resistance or “inertia” of older forms. Another
example demonstrates a beneficial case of generalization, as well as inertia. Jacob substituted
/d/ for /b/ in /b/-initial words until a relatively late age. His first accurate /b/-initial words were
new additions to his lexicon. The new skill spread to other new /b/-initial words, but he took
several weeks to correct older words, continuing to substitute /d/ for /b/ for a while.

We claim that overgeneralization is a consequence of the basic generalization properties of the
phonological controller, the built-in generalization behavior of phonetic categorization, and
the coarsely-coded phonetic state representation. We attribute inertia to memorization and
overtraining of old forms. Recall that the phonological controller’s phonetic goal is repre-
sented as a whole-morpheme pattern. Internal network representations are developed and rein-
forced which favor the old pronunciation even when competing, more accurate behavior first
emerges. The model predicts that they may alternate until the old pattern is extinguished.

As a test methodology, we introduce new (natural or artificial) words which are similar to
existing words in the model’s productive vocabulary or which differ from the model’s active
vocabulary in certain dimensions.

¢ We hypothesize that compositional structure evolves from whole syllables to demi-syllables
to segments.

Phonological structure shows a transition from whole-word to segmental organization as
development proceeds (Macken 1979, Vihman & Velleman 1989). We believe that this behav-
ior emerges as the phonological controller discovers that more target sounds may be produced
more efficiently by recomposing parts of sounds previously mastered by articulatory control-
lers. The temporal granularity of the phonetic state and the recombinatorial constraints of
articulatory controllers could allow a segmental phonological organization. (Here we use
“segmental” in its traditional sense of phoneme-sized units of speech.)

Directly inspecting the behavior of the phonological controller should immediately reveal
how it composes complex utterances, and how its behavior evolves.

¢ We hypothesize that consonant harmony depends on model history which biases its behavior.

The model contributes necessary but not sufficient conditions for consonant harmony (see sec-
tion 3.3.2 and Table 3 for harmony examples). One component of the target’s phonetic repre-
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sentation is word shape; its representation of spectral transition category does not explicitly
state where in the word a demisyllable occurs. A “guck” matches many of the phonetic prop-
erties of a “duck”, and likewise other harmonic forms satisfy most criteria for accuracy —
word shape, vowel, and one demi-syllable. The ingredients of the basic model may be suffi-
cient for infrequent occurrences of consonant harmony, but they are not sufficient for the sys-
tematic cases which have been documented (Menn 1971, Smith 1973, cf. Vihman 1976).

Several plausible phonological control tactics can construct a CVC syllable out of two CV or
two VC syllables. If such a tactic is used, a previous preference for reduplicated babble may
result in consonant harmony. Whether it lasts depends on the model’s (or child’s) tolerance for
inaccurate pronunciation (Menn 1983).

To test this hypothesis, we introduce a preference for reduplicated consonants during babble.
This will hopefully generate a bias for repeating consonants in CVC and multi-syllabic utter-
ances in early speech. We control for tolerance by adjusting parameters of phonetic distance
metrics.

3.3.3. Comparing exploration and bootstrapping strategies

In section 2.8.2. we propose two alternative bootstrapping strategies. In one, we artificially stage
the complexity of target utterances. In the other, we allow emergent properties of the model and
individual differences and preferences to pace the complexity of phonetic targets. The latter
approach welcomes experimentation to determine the relative effectiveness of bootstrapping strat-
egies, e.g., avoidance and selection based on predicted success, selection based on semantic and
pragmatic criteria, or intrinsic sound preferences. Children employ all these techniques in very
idiosyncratic ways (Menn 1983). Our experimentation may suggest questions for a more system-
atic investigation of exploration strategies and effectiveness.

3.3.4. Claims of model

The model claims that undisturbed auditory feedback is necessary for executing speech. In fact,
slightly delayed auditory feedback severely disrupts normal speech (Lee 1950, Black 1951, Hug-
gins 1964). The worst disruption occurs for delays equal to about the average length of a syllable.
They cause stuttering, slurring, repeated syllables, and intense frustration. It also claims disrup-
tion of speech if proprioceptive feedback is disturbed. Evidence supporting this claim includes lip
and jaw perturbation experiments (Kelso et al. 1984, Shaiman 1989) which affect the duration of
voicing and studies of proprioceptive deficits (Abbs & Connor 1991).

We may further test these claims by artificially delaying or otherwise disrupting auditory feedback
and by introducing noise, lesions to the proprioceptive state or simulating physical perturbations.

4. Model shortcomings and opportunities for future research.

Though it builds on a long tradition of research, this model is only a start, a crude approximation
of the computational principles which may ground phonological development. There are several
obvious shortcomings which to address is beyond the scope of this research. They do provide
opportunities for future research.

We do not implement a phonological loop (Baddeley 1986, 1992). This precludes studying any

phenomena which may require a phonological working memory, including observations that chil-
dren with working memory deficiencies show deficits in the later stages of phonological develop-
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ment (Gathercole & Baddeley 1990). A phonological loop may be introduced by inserting an
associative memory between the output of gesture controllers and early auditory analysis stages.

Proprioceptive reaction times in adults suggest a variety of mechanisms which short-circuit the
explicit proprioceptive feedback we have built into the model (e.g., Evarts 1971, Taylor & Bir-
mingham 1948, Higgens & Angel 1970). This does not invalidate the basic principles of the
model with regard to the role of proprioception. But a more complete model would probably
introduce various predictive components which anticipate proprioceptive (or phonetic) feedback
and allow planning behavior beyond the scope of the present model.

Adult behavior implies that the organization of phonological representation is based not on pho-
nemic segments but rather on a system of distinctive features (Chomsky & Halle 1968, Durand
1990). Such features are grounded in phonetic differences but signify semantic distinctions. Our
model does not address this. It only addresses the phonetic and articulatory foundations of a more
mature phonology.

The articulatory synthesizer has a number of weaknesses which limit the utterances which the
model may attempt (section 2.10.). Its greatest weakness is its inability to reconfigure the dimen-
sions of the vocal tract to conform to a child’s anatomy (e.g., Goldstein 1980). Thus, our model
cannot address the difficult problem of perceptual vocal tract normalization, which may be an
interesting factor in early phonological development.

We do not grant any role to attentional processes. This may be crucial to bootstrapping. It may be
crucial to many phenomena including consonant harmony. Nor do we acknowledge any commu-
nication between phonological and articulatory controllers other than activation and distribution
of reinforcement. This may not be the most efficient solution, vastly increasing the number of
articulatory controllers which may be needed for some target language. A more efficient solution
may pass certain limited signals between the two levels without violating Markov decision task
constraints.

5. Research Plan

Our work to date has implemented and demonstrated the parallel Q architecture (Markey 1994)
and the successful operation of articulatory controllers operating without the phonological con-
troller to generate some crude CV syllables (see figure 5 and accompanying text, section 2.7.3.).
We have not yet integrated auditory perception with articulation, so the utterances are not quite
natural. But they are sufficient to demonstrate the concepts. We have also implemented most of
the components of the articulatory control loop, including the gesture controllers, proprioceptive
analysis, and articulatory synthesizer.

We have also implemented and tested much of the auditory perception machinery, including spec-
tral analysis and segment detection (Markey & Bell 1993), but most of prosodic analysis and all
categorization modules remain to be built.

Also remaining are short-term, long-term, and lexical memories, the reinforcement function, a
slightly more realistic voice and frication source model for the articulatory synthesizer, and input
representations for the phonological controller. Some additional sensory features, event detectors,
and an improved representation of of proprioceptive state may improve performance of the articu-
latory controllers. Most critically, we must integrate auditory perception with phonological con-
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trol. We must generate or automate production of the parental corpus. Finally, we must implement
automatic phonetic transcription and a record-keeping procedure. I estimate that we have com-
pleted about 60% to 70% of the code necessary for the project.

Initial simulations will be devoted to some small parental corpus of demi-syllables and then adds
target words composed of the mastered sounds. They will also be devoted to model calibration
and parameter tuning. Once the model’s basic behavior is confirmed, we may start more elaborate
simulations and experimental manipulations.

I intend to have sufficient early results in time for Cognitive Science Society and Machine Learn-
ing submissions, with more complete results and analysis in time for a NIPS submission. I intend
to complete my dissertation by the end of Summer 1994.
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