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COMPUTER SUPPORT FOR
SITUATED, PERSPECTIVAL, LINGUISTIC
INTERPRETATION IN NON-ROUTINE DESIGN

Abstract

This is a drastically abridged version of a dissertation that analyzes the central
role of interpretation in non-routine design. Based on this analysis, the dissertation
constructs a theory of computer support for interpretation in cooperative design. The
theory is grounded in studies of design and interpretation. It suggests three
mechanisms of a software substrate for computer-based design environments,
illustrated by application to a sample task of lunar habitat design.

This abridged version includes only an overview chapter, the three chapters
that describe the implementation of the computer support mechanisms, and a brief
concluding chapter. The motivation for the mechanisms has been left out of this
version so that the practical suggestions for computer scientists will not be obscured
by lengthy empirical, theoretical, and philosophical investigations. It is hoped that
readers will be inspired to turn to the dissertation for the complete discussion. For this
reason, consistency has been maintained with the dissertation by retaining the original
chapter numbers.

The process by which designers transform their tacit preunderstanding into
explicit knowledge is termed “interpretation” in the dissertation. Interpretation is
necessary for solving design problems and for collaborating with other designers.
Considerable explicit knowledge is thereby generated in the natural course of
designing. Often this knowledge includes the most valuable information that can be
presented to designers who revisit these design projects or who undertake similar
projects in the future. If representations of this knowledge have been defined using
computer-based design support systems, then the representations can be captured by
these systems for the support of subsequent design work.

The disseratation presents a theory of computer support for interpretation in
design in three stages: First, the role of interpretation in design is explored by
reviewing descriptions of design by Alexander, Rittel, and Schén; by conducting a
protocol analysis of lunar habitat design; and by applying Heidegger’s philosophy of
situated interpretation. Second, this analysis of interpretation is extended to define a
theory of computer support. The features of this theory—support for the situated,
perspectival, and linguistic characteristics of interpretation—are used to evaluate
previous work on software design rationale systems. Third, design principles are
discussed for HERMES, a prototype hypermedia substrate for building computer-based
design environments to support interpretation in tasks like lunar habitat design. The
hypermedia integrates a perspectives mechanism and an end-user language to capture
and modify representations of the design situation, alternative perspectives on design
tasks, and terminology for conceptualizing design issues. It is the third section—the
discussion of the hypermedia substrate, perspectives mechanism, and end-user
language—which 1s featured in the present abridged version.
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CHAPTER 1. OVERVIEW

The following chapters present a theory of computer support for innovative
(non-routine), cooperative design based on an analysis of interpretation in design.
They will argue that the central impediment to computer support of innovative design
is that designers make extensive use of situated tacit understanding while computers
can only store and display explicit representations of information.

The process by which designers transform their tacit preunderstanding into
explicit knowledge is termed interpretation. (See Part 1 for an analysis of
interpretation in design.) Interpretation is central to the process of solving design
problems and is part of the process of collaborating with other designers; the explicit
knowledge that is generated by this interpretation is therefore a natural by-product of
innovative, cooperative design. (See Part II for a theory of computer support based
on this generated knowledge.) Representations of this knowledge defined using
computer-based design support systems can be captured by these systems for the
support of subsequent design work, including the maintenance and modification of the
designed artifacts. (See Part III for details of a computer system for supporting
interpretation in design.)

Chapter 1 provides a chapter-by-chapter overview of the dissertation. It
discusses the claims, arguments, and themes that arise in each of the subsequent
chapters, without going into the detail necessary to defend the claims, support the
arguments, or work out the themes. Its purpose is to provide a readers’ guide to the
flow of the dissertation, motivating how one discussion leads into or provides the
background for another. Section 1.1 offers a preliminary presentation of the central
concept of interpretation, anticipating the analysis of this concept from various
approaches in the dissertation. Each of the other sections provides an overview of a
specific chapter.

1.1. UNDERSTANDING INTERPRETATION

To say that interpretation is central to innovative design is to stress that in
order to design the designer must to some degree understand and be able to articulate
the significance of the artifact being designed. This may include, for instance,
understanding what is desired in a task specification, how possible composite parts of
the artifact will function and interact, or how people can use the designed artifact.
According to the analysis presented below, such understanding is possible for people
but not for computers. People understand things because they are actively involved
with them in the world. The significance of artifacts for a person is determined by the
artifacts’ relationships to other artifacts, activities, and people whose significance is
already understood as part of the person’s situation. Understanding combines



personal and socially shared perspectives on the world. All of this takes place
primarily in tacit ways, i.e., unverbalized. However, one’s tacit understanding of
something can be partially articulated or expressed explicitly in spoken, written, or
graphical language—either to deepen one’s own understanding or to communicate
wiih oihers.

Two aspects of the process of interpretation can be distinguished.

(1) There is a tacit preunderstanding based on previous background knowledge;
items from this preunderstanding can be articulated explicitly.

(2) There is the possibility of revising that preunderstanding based on discoveries
that are opened up by it.
That is, one can interpret something as something that one already knows about, or
as a variation that differs from that in ways that are discovered as a result of the
breaking of one’s tacit expectations. Accordingly, interpretation in innovative design
involves both human understanding of extensive background and a creative ability to
revise one’s understandings iteratively.

The analysis of interpretation developed below distinguishes three
characteristics of interpretation: being situated, having a perspective, and using
language.!

(a) Being situated means that what is to be interpreted is tacitly understood by
virtue of its associations within an open-ended network of related artifacts,
people, human purposes, and other concerns. All of these associations are
themselves understood as part of one’s background understanding of one’s
involvements.

(b) Having a perspective means that there is a focus on a certain aspect or that a
specific approach is taken in interpreting something.

(c) Using language means that a particular vocabulary is available as part of a
tradition that provides a conceptual framework for the interpretive task.
Each of these characteristics of interpretation is grounded in a form of
preunderstanding that can be transformed through a corresponding phase of
discovery. This two-dimensional structure is presented in Table 1-1.

1 Note that the numbering scheme of 1, 2 and a, b, ¢ is used consistently in this chapter as
an organizing structure for the dissertation. It indicates correspondences among items listed; in
particular, it indexes the way in which computer support features correspond to the characteristics of
interpretation. Subsequent chapters are also organized around discussions of these characteristics
and features, as emphasized in this Overview. Frequently, the numbering system is dropped and key
terms are italicized as reminders that the discussion is focusing on (1) preunderstanding and (2)
discovery, or on the (a) situated, (b) perspectival, and (c) linguistic character of understanding.



(a) situated (b) perspectival (c) linguistic
(Dpreunderstanding expectations focus - conceptualization
(2) discovery surprises deliberations refinements

In articulating tacit understanding, interpretation both discloses inherent
implications and discovers unanticipated consequences in the situation. Through
interpretation, designers might (a) try to externalize their expectations about a design
situation by drawing a sketch and then discover surprises when they explore the
sketch. Similarly, they might need to revise their understanding as a result of (b)
shifting their focus on a problem and deliberating from alternative perspectives or (c)
changing the way they conceptualize an issue and refining the definitions of terms in
their language.

The structure of human interpretation carries over to design. The design
process is a cycle or spiral of interpretation: (1) some item of the initial
preunderstanding—the grasp of the design situation, the perspective for viewing, the
language for conceptualizing—is made explicit, reflected upon, and further articulated
in new design decisions. (2) This leads to the discovery of unanticipated consequences
or contingencies and a new understanding that requires revisions to the understanding
of the design problem, its viewpoint, or terminology. (1) The new understanding then
becomes re-submerged into a modified tacit understanding that forms the starting-
point for the next iteration of interpretation and design.

The analysis of interpretation in design motivates a theory of computer
support. According to this theory, computer support for interpretation in innovative
design differs from autonomous software systems for routine design by focusing on
supporting or augmenting human activities rather than automating them, because only
people have the understanding and creativity required for interpretation. This
computer support takes two general forms in order to support the two phases of
interpretation:

1. It provides access to a wealth of information that might be useful as a basis for
interpreting new design tasks. This information for reuse is culled primarily
from previous design experience, and includes (a) partial representations? of
design situations, (b) alternative ways of considering tasks, and (c)
terminology helpful for conceptualizing problems.

2 Note that the computer manipulates symbolic representations of things in the situation,
whereas the designer has a situated understanding of the things. According to Heidegger’s
philosophy, representations are explicit forms of information that only arise under certain conditions
and on the basis of people’s normally tacit understanding of things within the context of meaningful
involvements. In Chapter 4, the situation is defined as this context of meaningful involvements,
which provides a precondition for meaningful representations.



2. It facilitates the revision of stored information so designers can tailor existing
representations to novel problems and can capture innovative designs to
extend the computerized knowledge-base and to communicate ideas to
collaborators. This plasticity of representation—the ability to mold, form,
adapt, alter, or modify the representations—applies to all design knowledge,
including (a), (b), and (c) of point (1).

The proposed theory of computer support suggests an approach to building
software systems that has been prototyped in a system named HERMES. HERMES is a
substrate for building design environments to support interpretation in innovative
design. Motivated by the analysis of interpretation, HERMES provides the following
features to support reuse and plasticity of representations of each of the three
characteristics of interpretation, being situated, having perspectives, and using
language (see Table 1-2):

a-1. A persistent hypermedia network for storing partial representations of design
situations and for browsing among them.

a-2. Efficient mechanisms for revising the representations (multimedia nodes) and
modifying their associations (links).

b-1. A perspectives mechanism that organizes specialized or personal ways of
filtering out information of interest

b-2. Procedures for switching perspectives or for creating new ones by merging
existing perspectives and modifying their inherited contents in the new one.

c-1. An end-user language that provides useful domain terms, rules for critiquing
designs, and queries for displaying stored information.

c-2. The ability to modify or generate new terms, critic rules, and queries or to
use the language for defining computations.

Table 1-2. Computer-based mechanisms 10 support interpretation in design.

(a) situated (b) perspectival (c) linguistic
(1) reuse hypermedia network perspectives mechanism end-user language
(2) plasticity revising representations | merging multiple defining new
perspectives expressions

Although computers cannot understand things the way people do, they can
serve as a computational medium to support people’s interpretive processes. The
computer support mechanisms listed in Table 1-2 can augment cooperative design in a
number of ways, including:

a-1 As a long-term memory or repository for information that was created in past
designing and is now available to be shared by designers using the repository.



a-2 As an external memory for representing and revising designs to see how
alternative variations appear.

b-1 As a retrieval mechanism for organizing and managing design knowledge and
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b-2 As a display mechanism to define new personal and shared views of designs.

c-1 As a linguistic medium for expressing knowledge in a canonical form that can
be used for computations by the software.

c-2 As a communication medium to generate new knowledge to be shared with
others.

A comparison of Table 1-1 and Table 1-2 shows that the mechanisms of
computer support are based on the structure of unaided human interpretation. The
computer support is intended to extend the power of designers to operate under
conditions of “information overload,” in which it is becoming increasingly difficult to
work effectively without the use of computers.

Computer support will inevitably change the practices of collaborative design.
This need not be considered harmful—particularly in cases where traditional
procedures have become inadequate—if important factors like the characteristics of
interpretation are preserved and adequately supported. Computational media have the
potential for changing the activities of professionals even more than the media of
written language did in the past, because of significant opportunities for the computer
to play a computationally active role in organizing, analyzing, displaying, and
communicating the information. The ways in which design tasks are accomplished will
change dramatically as the computer augments and supports designers to do many of
the same tasks they have done unaided in the past, like designing and modifying
artifacts.

The proposed theory of computer support for interpretation in design goes to
the root of the problem of tacit and explicit understanding. Designers approach their
task with a background of skills, know-how, and experience that they are generally
not aware of as they design but that is a necessary precondition of their work as
trained professionals. For instance, architects have the ability to understand the
situations people might face in the buildings they design, they know how to sketch
and visualize relationships from the perspectives of different concerns, and they move
freely between various frameworks or traditions that provide meaningful languages or
metaphors for expressing their insights. Computers have no such tacit
preunderstanding; they can only retrieve and manipulate what people have already
formulated in explicit propositions or drawings. People and computers are not
analogous processors of information. If computers are to support human cognition
effectively, then these differences must be understood and taken into account.

By describing the transformation of tacit to explicit human understanding, the
analysis of interpretation not only clarifies how human cognition differs from
computer information processing, but also suggests how computers can support the



way people think. Philosophically, the analysis of interpretation provides the key to a
theory of people-centered computer support. Technically, the analysis enumerates the
functionality needed for computer support of interpretation in design. Practically, it
points out that the process of innovative design and the requirements of collaboration
generate boih ihe need for computer support and the sources of explicit knowiedge
that make it possible. For instance, large, multi-person design projects often confront
the problem of information overload, where computers are required to manage
volumes of technical knowledge. At the same time, these cooperative design
processes naturally articulate much explicit knowledge that could prove useful in
subsequent computer-supported design work.

The theory of computer support for interpretation in design is presented in
three Parts: in Part I, Chapters 2, 3, and 4 develop the analysis of interpretation in
design. In Part II, Chapters 5, 6, and 7 draw the consequences of the problem of tacit
and explicit understanding for computer support. In Part III, Chapters 8, 9, and 10
describe how the technical features of the HERMES substrate support interpretation in
collaborative design.

The analysis of interpretation is developed by reviewing insightful descriptions
of design by design methodologists Alexander, Rittel, and Schon (Chapter 2).
Characteristics of design enumerated in that review are then used to guide a study of
transcripts of a design session involving a task of lunar habitat design (Chapter 3).
The design process—as characterized by design methodology and as illustrated with
lunar habitat design—is then conceptualized as a process of interpretation by using
Heidegger’s philosophy of interpretation (Chapter 4).

The consequences for computer-based design systems are drawn by further
developing the analysis of tacit and explicit understanding in design (Chapter 5), and
extending it to include a theory of the computer support of interpretation (Chapter 6).
This theory is applied to evaluate traditions of software design environments and
design rationale systems; useful techniques in these previous systems are explored and
their limitations noted (Chapter 7).

The technical description of computer support for cooperative design
describes the central functionality of HERMES. It has a hypermedia knowledge-base to
support (a) the representation of design situations (Chapter 8). A virtual copying
mechanism provides (b) perspectives on design knowledge (Chapter 9). An end-user
language is used for (c) articulating formerly tacit understandings in explicit language
(Chapter 10)

The order of presentation in the dissertation corresponds to the process of
interpretation. First, in the Introduction and Part I a preunderstanding is sketched to
provide a starting point for interpreting the problem of computer support for
innovative design. A review of design methodology provides a perspective from
which to understand design, formed by merging the perspectives of the three design
methodologists. A lunar habitat design project provides a concrete design situation
for grounding the developing understanding of design. Heidegger’s philosophy
provides a language and conceptual framework for talking about interpretation in



design. Second, in Part II this preunderstanding is used to explore possibilities for
computer support that are opened up by the preunderstanding. This is accomplished
partially by drawing out the theoretical consequences in order to extend the analysis
of interpretation in design to include a theory of its computer support. It is further
accomplished by discovering the achievements and the limitations of previous
software systems in providing the kind of support for design that is called for. Third,
in Part III the arrived at understanding allows for a discussion of the HERMES system
as an explicit illustration of possible responses to the problem of supporting
interpretation in design .

Predecessor systems to HERMES (principally JANUS and PHIDIAS) were
already headed in the direction that HERMES adopts. Discussions of these earlier
design environments made frequent reference to Alexander, Rittel, and Schon, for
instance, and insisted on supporting rather than automating design. The theory of
computer support for interpretation in design presented in this dissertation extends
this approach theoretically and practically. Its focus on interpretation situates its
people-centered approach unambiguously in an analysis of human understanding. By
providing a coherent perspective for viewing systems to support design, the theory
suggests principled extensions to the functionality of design environments, such as
those incorporated in the HERMES substrate. It provides an explicit language as a
basis for a coherent conceptual framework.

Each section in the remainder of Chapter 1 provides an overview of a chapter
of the dissertation. The first three sections each provide an argument for interpreting
design as a process of interpretation. The other sections draw the implications of this
argument for the computer support of design. The three characteristics of
interpretation run through all the chapters. Table 1-3 shows the correspondences
between the central themes in the different chapters. These correspondences link the
theoretical analysis of interpretation to the operational mechanisms that provide
computer support for these characteristics. For the sake of simplicity, the table does
not indicate that each of the entries involves both reuse of past information and
creative modification, however this is true both for the three characteristics of
interpretation and for their corresponding software mechanisms, as already shown in
Tables 1-1 and 1-2.
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Note that the three mechanisms of HERMES in Chapters 8, 9, and 10 correspond to the three
characteristics of interpretation that permeate and structure the dissertation.

Chapier Theimne {a) {b) {©

1 interpretation situated perspectival linguistic

2 methodology Alexander Rittel Schon

3 lunar habitat privacy conflict privacy concern privacy gradient

4 preunderstanding prepossession preview preconception

5,6 computer support represent have perspectives | make use of

sitnation language

7 previous systems JANUS PIE PHIDIAS

8,9,10 HERMES software hypermedia perspectives end-user
substrate network mechanism language

1.2, THE METHODOLOGY OF DESIGN

A central claim of this dissertation is that design can be viewed as
fundamentally a process of interpretation. In this interpretive process, elements of the
designer’s tacit background preunderstanding are made explicit. The first evidence in
support of this claim is a review of the writings of three influential design
methodologists. It is argued that their diverse but complementary descriptions of the
design process highlight characteristics of what is here called interpretation. They
recognize the importance of both tacit understanding and explicit representations, as
well as the iterative movement between them. Among the three writers, the
dimensions of (a) the situation, (b) perspectives, and (c) language are all stressed.
Furthermore, each of these dimensions is recognized to entail both (1) traditions of
past knowledge to start from and (2) an ability to revise that knowledge to promote
and grasp innovation.

Alexander (1964) pioneered the use of computers for designing. He used them
to compute diagrams or patterns that decomposed the structural dependencies of a
given problem into relatively independent substructures. In this way, he developed
understandings of the design situation for solving a task based on an analysis of the
unique design situation.

Later, Alexander (1977) assembled 253 patterns that he considered useful for
architectural design, based on an extensive study of successtul past designs. These
patterns were to be reused and modified to form personal pattern languages for
expressing the individual perspectives of different designers. They were schematic
enough to be adapted to a broad range of specific design situations.

Alexander felt that the design profession necessarily made explicit the
understanding that was “unselfconscious” in traditional cultures in which everyone



designed their own artifacts. His structures and patterns were meant to be tools for
explicitly representing design situations for “self-conscious” design. However, he
always also recognized the need for tacit or intuitive understanding as a basis for
good design.

For Rittel (1973), the heart of design was the deliberation of issues from
multiple perspectives. In a collaborative effort, each participant may bring different
personal interests, value systems, and political commitments to the task. Also, people
with different technical specialties or professional skills may contribute to a design.
These are actually different kinds of “perspectives.” The theory of computer support
in Chapter 6 distinguishes three classes of perspectives that need to be supported:

*  personal or group perspectives
*  technical specialties (e.g., plumbing)

*  domain traditions (e.g., residential kitchens)
However, they all provide the same function of determining what issues will be
addressed, what alternatives will be considered, and what criteria will be applied.
Because they all determine the organization or relevance of information in a similar
way, they can be discussed as one kind of determinant of interpretation and can be
operationalized and supported with one software mechanism (a perspectives
mechanism).

The important thing for Rittel was not the subjective character of
interpretation deriving from its basis in personal perspectives, but the way in which
deliberation among perspectives can lead to innovative solutions that would not have
arisen without such interaction. Deliberation is an interpretive process in which
understanding of the problem situation and of the design solution emerges gradually
as a product of iterative revisions subject to critical argument from the various
perspectives. This can take place for an individual designer as well if the designer
consecutively adopts different perspectives on the issues. Rittel foresaw computer
support for this. His idea of using computers to keep track of the various issues at
stake and alternative positions on those issues led to the creation of issue-based
information systems.

Schon (1983) argued that designers constantly shift perspectives on a problem
by bringing various professionally trained tacit skills to bear, such as visual
perception, graphical sketching, and vicarious simulation. The designer’s intuitive
appreciations shape the problem by forming a subsidiary background awareness of the
design task’s patterns, materials, and relationships. By then experimenting with
tentative design moves within this tacitly understood situation, the designer discovers
consequences and makes aspects of the problem explicit. As this is done, certain
features of the situation come into focus and can be named or characterized in a
language. When focus subsequently shifts, what has been made explicit may slip back
into an understanding that is again tacit, but is now more developed.

Schon (1992) provided empirical evidence for the roles of the situation,
perspectives for viewing, and conceptual frameworks in the iterative process of
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interpretation in design. His experiments showed how the designer uses tacit skills
and preunderstandings to uncover unanticipated discoveries, to reflect upon them, and
to develop new understandings, new perspectives, and new articulations of the
evolving design situation.

1.3. THE EXAMPLE OF LUNAR HABITAT DESIGN

A second argument for understanding design as a process of interpretation is
presented in Chapter 3. Here, a protocol analysis of designers collaborating shows
that most of what went on was interpretation.

As part of the research for this dissertation, a study was undertaken of lunar
habitat design. Lunar habitat design is a task that is not well understood compared to
many other, more mundane design tasks. It is not a routine matter that can be done
according to well-formulated rules or by applying available template solutions.
Furthermore, it is representative of a broad range of high-tech design tasks. Such
tasks typically involve extensive technical knowledge. They seem to call for computer
support.

The volume of information available to people is increasing rapidly. For many
professionals this “information overload” means that the execution of their jobs
requires taking into account far more information than they can possibly keep in mind.
The lunar habitat designers here provide a prime illustration of such professionals. In
working on their high-tech design tasks, they must take into account architectural
knowledge, ergonomics, space science, NASA regulations, and lessons learned in past
lunar missions. These designers turn to computers for help with their complex,
technical problems. That is why a group of lunar habitat designers initiated the
software development effort that led to this dissertation.

Providing the computer support needed by lunar habitat designers is not
straight-forward. Designers need to be able to consider wide varieties of experience,
professional know-how, technical concerns, and previous solutions that are relevant
to their current tasks. However, the problem is not so much one of storing large
amounts of information as one of deciding what information to retain that might be
relevant to novel future tasks and how to present it to designers in formats that
support their mode of work. It is a problem of how to manage the information and
present it so that it can usefully serve the design process. The necessary decisions
must be made by the designers who are involved with these tasks. Computer
techniques for capture and display of information must be under the control of people
engaged in the interpretation of the information.

As part of the effort at developing computer support for lunar habitat
designers, thirty hours of design sessions were videotaped and analyzed. The
designers were asked to design a 23 foot long by 14 foot wide cylindrical habitat to
accommodate four astronauts for 45 days on the moon. A protocol analysis of
segments of the video recording was conducted.
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The analysis of the videotape of the designers’ activities shows that design
time is dominated by processes of interpretation, i.e., the explication of previously
tacit knowledge in response to discoveries of surprises. As part of the interpreting by
the designers, graphical representations were developed for describing pivotal
features of the design situation that had not been included in the original specification;
perspectives were created for looking at the task in different ways; and language
terminology was defined for explicitly naming, describing, and communicating
formerly tacit understandings. The definitions of the situated understanding,
perspectives, and language continually evolved as part of the design process in an
effort to achieve an adequate understanding of the design task and the evolving
artifact.

The nature of interpretation and the three dimensions of preunderstanding are
illustrated in Chapter 3 with an example from the lunar habitat design sessions. This
designing primarily consisted of sketching and discussion that explicated visual and
conceptual expressions used for understanding, explaining, and guiding the emerging
design. The example analyzed has to do with the tacit notion of privacy and a default
perspective on bathroom design related to this notion. The following paragraph
briefly summarizes the example.

The designers felt that a careful balance of public and private space would be
essential given the long-term isolation in the habitat. This is an important concern that
receives limited treatment in official NASA design guidelines. An early design
decision proposed that there be private crew compartments for each astronaut. An
initial sketch revealed problems with adjacencies of public and private areas, leading
to an interpretation of privacy as determining a “gradient” along the habitat from
quiet sleep quarters to a public activity area. In the process, the conventional
American idea of a bathroom was subjected to critical reflection when it was realized
that the placement of the toilet and that of the shower were subject to different sets of
constraints based on life in the habitat. The tacit American assumption of the location
of the toilet and shower together was made explicit by comparing it to alternative
European perspectives. The revised conception permitting a separation of the toilet
from the shower facilitated a major design reorganization.

In this way, a traditional conception of “private space” as a place for one
person to get away was made explicit and explored within graphical representations
of the design situation. As part of the designing process, this concept was revised into
a notion of “degrees of privacy”, which facilitated the design process. The failure of
the NASA guidelines to provide significant guidance despite a clear recognition by
NASA of the importance of habitability and privacy considerations raises the problem
of how to represent effectively notions like privacy that are ordinarily tacit. This
problem provides the central test case for this dissertation. In Chapter 9, a scenario
shows how designers using HERMES can define interpretive critics to evaluate the
distribution of public and private spaces in a lunar habitat. A detailed analysis of how
these critics are defined in the HERMES language is then presented in Chapter 10.
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In this and other examples, the designers needed to revise their representations
to enhance their understanding of the problem situation. They went from looking at
privacy as a matter of individual space to reconceptualizing the whole interior space
as a continuum of private to public areas. The conventional American notion of a
bathroom was compared with other cultural models and broken down into separable
functions that related differently to habitat usage patterns. The new views resulted
from argumentative discussions motivated by design constraints—primarily spatial
limitations and psychological factors of confinement. In these discussions, various
perspectives were applied to the problem, suggesting new possibilities and
considerations. Through discussion, the individual perspectives merged and novel
solutions emerged. In the process, previously tacit features of the design became
explicit by being named and described in the language that developed. For instance,
the fact that quiet activities were being grouped toward one end of the habitat design
and interactive ones at the other became a topic of conversation at one point and the
terminology of a “privacy gradient” was proposed to clarify this emergent pattern.

1.4. THE ANALYSIS OF SITUATED INTERPRETATION

Chapter 4 presents a third argument for focusing on interpretation in design:
computer support of innovative design should be based primarily on an analysis of
human understanding. As Norman (1993) puts it, “Without someone to interpret
them, cognitive artifacts [like computer support systems] have no function. That
means that if they are to work properly, they must be designed with consideration of
the workings of human cognition.” The philosophy of interpretation provides just
such a consideration.

This contrasts with many previous approaches to computerization of design
and to artificial intelligence, which lean toward theories on the natural science model
(e.g., mathematical physics), like information theory and predicate logic formalisms.
Human sciences (e.g., cultural anthropology or non-behaviorist psychology),
however, necessarily center on human interpretation because their subject matter is
defined by what people consider to be important and by how people construe things.
As one moves from routine design to highly innovative tasks, the distribution of roles
in the human-computer relationship shifts more onto the people involved, and it
becomes increasingly important to take into account their cognitive functioning.

An initial framework for clarifying the respective roles for computers and
people in tasks like lunar habitat design is suggested by theories of situated cognition.
Several influential recent books?® argue that human cognition is very different from
computer manipulations of formal symbol systems. The differences imply that people

3 A series of publications in the last decade has, in effect, defined an approach to cognitive
science and to the theory of computer support for design that goes by the name “situated cognition.”
These include Schon (1983), Winograd & Flores (1986), Suchman (1987), Ehn (1988), and Dreyfus
(1991).



13

need to retain control of the processes of non-routine design because these processes
rely heavily upon what might be called situated interpretation. Computers can provide
valuable computational, visualization, and external memory aids for the designers by
supporting such interpretation in design.

Situated interpretation, as used here, refers to a view of human understanding
as taking place within tacit contexts of background skills, human concerns, and
linguistic traditions that provide its grounding. Interpretation is not just a function of
a disinterested rational mind, but relies on the interpreting person or people being
actively involved with the situation, which includes the artifact being interpreted and
supplies the basis for that artifact’s significance. (See Heldegger s fuller definition of
situation below and in Chapter 4.)

Situated cognition theory disputes the prevalent view based on the natural
sciences model that all human cognition is based on explicit mental representations
such as goals and plans. Winograd and Flores (1986) hold that “experts do not need
to have formalized representations in order to act” (p.99). Although manipulation of
such representations is often useful, there is a background of preunderstanding that
cannot be fully formalized as explicit symbolic representations subject to rule-
governed manipulation. This tacit preunderstanding even underlies people’s ability to
understand representations when they do make use of them. Suchman (1987) concurs
that goals and plans are secondary phenomena in human behavior, usually arising only
after action has been initiated: “When situated action becomes in some way
problematic, rules and procedures are explicated for purposes of deliberation and the
action, which is otherwise neither rule-based nor procedural, is then made
accountable to them” (p.54).

This is not to denigrate conceptual reasoning and rational planning. Rather, it
is to point out that the manipulation of formal representations alone cannot provide a
complete model of human understanding. Rational thought is an advanced form of
cognition that distinguishes humans from other life forms. Accordingly, an
evolutionary theorist of consciousness like Donald (1991) traces the development of
symbolic thought from earlier developmental stages of tacit knowing (e.g., episodic
and mimetic memory-based cognition). He shows how these earlier levels persist in
rational human thought as the necessary foundation for advanced developments,
including language, writing, and computer usage.

Philosophers like Wittgenstein (1953), Polanyi (1962), Searle (1980), and
Dreyfus (1991) suggest a variety of reasons why tacit preunderstanding cannot be
fully formalized as data for computation. It is too vast: background knowledge
includes bodily skills and social practices that result from immense histories of life
experience. We are unaware of much of it: these skills and practices are generally
transparent to us. It must be tacit to function: the examples of biking, swimming or
playing a musical instrument suggest that procedural knowledge at least gets in the
way of skilled action if it is explicit. More generally, tacit knowledge is a precondition
for explicit knowing: we cannot formulate, understand, or use explicit knowledge
except on the basis of necessarily tacit preunderstandings.
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The philosophical foundations of situated cognition theory were laid out by
Heidegger (1927), the first to point out the role of tacit preunderstanding and to
elaborate its implications. For Heidegger, we are always knowledgeably embedded in
our world; things of concern in our situations are already meaningful before we
engage in explicit cognitive activity. We know how to behave without having to think
about it. For instance, an architect designing a lunar habitat knows how to lift a pencil
and sketch a line or how to look at a drawing and see the rough relationships of
various spaces pictured there. The architect understands what it is to be a designer, to
critique a drawing, to imagine being a person walking through the spaces of a floor
plan. Such tacit, background skills or preunderstandings of the design situation are
necessary prerequisites for being able to design an artifact.

Heidegger defines the situation as a person’s interpretive context—including
the physical surroundings, the available tools, the circumstances surrounding the task
at hand, the person’s own personal or professional aims, and social or cultural
relations. The situation constitutes a network of significance in terms of which each
part of the situation is already meaningful. That is, the person has tacit knowledge of
the situation as a whole; if something becomes a focus, it is perceived as already
understood and its meaning is defined by its relations within the situation. Everything
is tacitly understood in its relations to other things and to the whole.

According to situated cognition in contrast to rationalist views, to an architect
a rectangular arrangement of lines on a piece of paper is not first perceived as
meaningless lines that need defining attributes (to be determined by subsequent
rational thought). Rather, given the design situation, it is already understood as (say)
a sleep compartment for astronauts. The sleep compartment is implicitly defined as
such by the design task, the shared intentions of the design team, the other elements
of the design, the availability of tools for revising the drawing, the sense of space
conveyed by the design, the prevailing NASA terminology. This network of
significance is background knowledge that allows the architect to think about features
of the design, to make plans for changes, and to discover problems or opportunities in
the evolving design. At any given moment, the background is already tacitly
understood and does not need to be an object of rational thought manipulating
symbolic representations.

At some point the architect might realize that the sleep compartment is too
close to some source of potential noise, like the flushing of the toilet. This physical
adjacency would come into focus as an explicit concern against the background of
relationships of the preunderstood situation. Whereas a common sense view might
claim that the sleep compartment and toilet were already immediately and objectively
present, and that therefore their adjacency was always there by logical implication,
Heidegger proposes a more complex reality in which things are ordinarily hidden from
explicit concern. In various ways, they can become uncovered and discovered, only to
re-submerge soon into the background as our focus moves on.

In this way, our knowledge of the world primarily consists neither in mental
models that represent reality nor in an unmediated and objective access to objects.
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Rather, our understanding of things presupposes a tacit preunderstanding of our
situation. This is analogous to the view of Kuhn (1962), who argues that scientists’
experimental observations presuppose their tacit ability to use their experimental
equipment and to apply their frameworks of hypotheses and theory. Only by being
already situated in our world can we discover things and construct meaningful
representations of them by building upon, explicating, and exploring our tacit
preunderstanding. Situated cognition is not a simplistic theory that claims our
knowledge lies in our physical environment like words on a sign post: it is a

sophisticated philosophy of interpretation.

According to the philosophy of situated interpretation, human understanding
develops through interpretive explication involving both (1) preunderstanding and (2)
explorative discovery of the situation. In Heidegger’s analysis, interpretation provides
the path from tacit, uncritical preunderstandings to reflection, refinement, and
creativity. The structure of this process of interpretation reflects the inextricable
coupling of the interpreter with the situation, i.e., of people with their worlds. One’s
situation is not reducible to one’s preunderstanding of it; it offers untold surprises,
which may call for reflection, but which can only be discovered and comprehended
thanks to one’s preunderstanding. Often, these surprise occasions signal breakdowns
in a person’s skillful, transparent behavior, although one can also make unexpected
discoveries in the situation through conversation, exploration, or external events.

A discovery breaks out of the preunderstood situation because it violates or
goes beyond the network of tacit meanings that make up the preunderstanding of the
situation. To understand what one has discovered, one must explicitly interpret it as
something, as having a certain significance, as somehow fitting into an understood
background. Then it can merge into one’s comprehension of the meaningful situation
and become part of the new background. Interpretation of “something as something”
requires a reinterpretation of the situated context if the discovery does not fit into the
previously understood situation.

For instance, the lunar habitat designers discovered problems in their early
sketches (their representations of the design situation) that they interpreted as issues
of privacy. Although they had created the sketches themselves, they were completely
surprised to discover certain conflicts among the functions of adjacent components,
like the sleep compartments and the toilet. The discoveries could only occur because
of their situated understanding represented in the drawings. The designers paused in
their sketching to discuss the new issues. First they debated the matter from various
perspectives: experiences of previous space missions, cultural variations in bathroom
designs, technical acoustical considerations. Then they considered alternative
conceptions of privacy, gradually developing a shared vocabulary that guided their
revisions and became part of their interpretation of their task. They reinterpreted their
understanding of privacy and articulated their new view using the terminology of a
privacy gradient.

These themes of being situated, having perspectives, and using explicit
language correspond to the three-fold structure of preunderstanding in Heidegger’s
philosophy. He articulates the pre-conditions of interpretation as: (a) pre-possession
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of the situation as a network of preunderstood significance; (b) pre-view or
expectations that things in the world are structured in certain ways; and (c) pre-
conception, a preliminary language for expressing and communicating. In other
words, interpretation never starts from scratch or from an arbitrary assignment of
representations, but is an evolving of tentative prejudices and anticipations. (i) One
necessarily starts with a preunderstanding that has been handed down from one’s past
experiences and inherited traditions. (2) The interpretive process allows one to reflect
upon this preunderstanding methodically and to refine new meanings, viewpoints, and
terminologies for understanding things more appropriately.

The analysis of interpretation based on Heidegger’s philosophy stresses the
role of tacit preunderstanding as the basis for all understanding. Preunderstanding
consists primarily of the characteristics of prepossession, preview, and preconception.
It also implicitly incorporates the structure of “something as something.” Through
interpretation, this preunderstanding is articulated. The resultant explicit
understanding can be externalized in discourse. This can be taken further through the
methodologies of science to codify knowledge. Each stage in this process preserves
the original structure of the preunderstanding. It is because of this structure that
metaphors, speech acts, and scientific propositions have the structure they do of
something as something, something is some predicate, or something has some
attribute.

The process of explication through interpretation forms the basis for computer
support by transforming tacit understanding into increasingly explicit forms that can
eventually be captured in computer-based systems.

1.5. TACIT AND EXPLICIT KNOWLEDGE IN DESIGN

Heidegger’s analysis of interpretation must be applied to the realm of design
before it can be used as the basis for a theory of computer support of design. Three
general problems must be considered:

*  First, although his philosophy is presented in a very general way, Heidegger’s
examples come primarily from people’s relations to physical things in the
world, rather than to imagined artifacts that they are designing.

* Second, he stresses that things are always understood on the basis of
preunderstandings we already have, which makes it hard to say how
innovative design ideas are understood.

*  Third, of course, Heidegger (writing in the mid-1920’s) did not address the
issue of computer representations as a form of explicit knowledge.
Chapter 5 accomplishes the application of Heidegger’s analysis to design in three
steps.

* First, it shows that Heidegger’s philosophy can be extended naturally to
design.
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*  Second, it discusses the problem of application, which addresses the issue of
how previously captured knowledge can be adapted to innovative new
designs.

*
@)
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Heidegger’s concept of the situation transters well to design. As the network
of relationships in the understood world, the situation corresponds closely to the set
of constraints and adjacencies that are of concern in design and that are sometimes
even represented explicitly in design documents. Heidegger’s definition of
interpretation as the explication of tacit understanding, involving discoveries, is also
applicable to the process of design, in which relationships are explored and
discoveries made. Consideration of interpretation in the design context clarifies how
breakdowns in action require repair to the tacit underlying understanding of the
situation. Although Heidegger’s examples focus on the individual, his recognition of
the social dimension and the importance of shared understanding allows his analysis to
be extended to design, which is largely collaborative.

Heidegger’s philosophy occupies an important position in the twentieth
century recognition that reality is socially constructed. People have access to their
world (intentionality) because the world is in many ways a human, social creation. Of
course, reality also has an immanence which can contradict our expectations and
present surprises, just as we can make discoveries in designs of our own creating. The
point is that an understanding of the world or of innovative designs requires the
situated interpretation of a person: it cannot be reduced to a set of rules or a
computer algorithm. The same goes for knowledge, which encapsulates
understanding. To apply knowledge from past cases to a new design, one must apply
it within a situated, perspectival, linguistic understanding. That means that computer
software for designing should be people-centered and should support the situated,
perspectival, linguistic character of human understanding.

Chapter 5 defines tacit as being expressed without words or speech, and
explicit as being fully revealed or verbally expressed. It defines a taxonomy of forms
of information along the continuum between these extremes and describes the
transformations from one form to the next based on Heidegger’s analysis. These
transformations are summarized in Figure 1-1. Each transformation involves a
reinterpretation of the informational content in a new medium. With that comes a gain
in precision balanced by a loss of grounding. As a result of the increased clarity and
the change of form, new discoveries are made about the content of the information.
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Figure 1-1, Tra rmations Cl xplicit informa,
The left-hand column lists consecutive forms of information. The right-hand column names
the transformation processes from one form to another.

Heidegger uses the term discourse for the fundamental shift to putting one’s
understanding into words, even if the words are not yet asserted in speech to be
shared with someone. After tacit preunderstanding is articulated in discourse as
explicit understanding, this understanding can then be asserted and externalized in
spoken or written language (such as documented design rationale). Such knowledge
can be further codified in accordance with formal procedures (e.g., scientific
methods). These are important transformations for creating widely shared knowledge.
The movement from externalized to codified information can go from informal to
formal (i.e., capable of being processed by computer). Shipman (1993) discusses this
stage of formalization and methods for supporting it within computer-based design
environments. This is relevant to the further stages of articulation, which involve
computers: capture of the information in computer representations and modification
of these representations to adapt them to new requirements. The theory of computer
support for design proposed in Chapter 6 suggests that all stages of information
articulation can take advantage of computer support. If designing takes place within a
computer-based design environment, then designers can use and modify computer
representations to support the design process from the start. As Reeves (1993)
recommends, the design environment can serve as a medium of communication to
support collaboration. In the process, design information can be captured
automatically without becoming a burdensome task to be done in retrospect.

1.6. CONSEQUENCES FOR A THEORY OF COMPUTER SUPPORT

The ideas of situated cognition and Heidegger’s philosophy of interpretation
stress how different human understanding is from computer manipulations of symbols.
These analyses suggest a people-centered approach of augmenting, rather than
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automating, human intelligence. According to this view, software can at best provide
computer representations for people to interpret based on their tacit understanding of
what is being represented. Representations used in computer programs must be
carefully structured by people who understand the task being handled thoroughly,
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symbols, with no notion of what they represent. People (e.g., software designers or
software users) who understand the domain must codify their knowledge into
software rules sufficiently to make the computer algorithms generate results that,
when interpreted by people, will be the desired results. Only if a domain can be
strictly delimited and its associated knowledge exhaustively reduced to rules, can it be
completely represented in advance (by the software designers) so that tasks in the
domain can be automated.

Many tasks like lunar habitat design that call for computer support do not
belong to well-defined domains with fully catalogued and formalized knowledge
bases. These tasks may require (a) exploration of possibilities never before
considered, (b) assumption of creative viewpoints, or (c) formulation of innovative
concepts. Software to support designers in such tasks should provide facilities for the
designers themselves (as the software users) to create new representations and to
flexibly modify old representations. As the discussion of Alexander emphasizes, the
ability to develop appropriate understandings of the situation dynamically is critical
to innovative design. Because they capture understandings that evolve through
processes of interpretation, representations need to be modifiable during the design
process itself and cannot adequately be anticipated in advance or provided once and
for all. Lunar habitat design is an example of an exploratory domain in two senses: (1)
it is a new domain with relatively little in the way of accepted conventional
knowledge, and (2) it involves continual innovation to meet novel, over-constrained,
politically sensitive mission specifications.

The assumption of the existence (even in principle) of an objective, coherent
body of domain knowledge that can be used without being reinterpreted in new
situations and from different perspectives is misleading. As Rittel says, non-routine
design is an argumentative process involving the interplay of unlimited perspectives,
reflecting differing and potentially conflicting technical concerns, personal
idiosyncrasies, and political interests. Rather than trying to supply all knowledge in
advance, software to support this type of design should capture alternative
deliberations on important issues as they arise and document specific solutions. Then,
these can be available to support interpretive deliberations. Furthermore, because all
design knowledge is relative to perspectives, the computer should be used to define a
network of over-lapping perspectives with which to organize issues, rationale,
sketches, component parts, and terminology to reflect the different viewpoints
designers adopt. That will facilitate the retrieval of information relevant to a particular
interpretive stance.

As Schon emphasizes, design relies on moving from tacit skills to explicit
conceptualizations, and on the ability to reformulate the implications in linguistic
expressions. Additionally, design work is inherently communicative and increasingly
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collaborative, with high-tech designs requiring successive teams of designers,
implementors, and maintainers. Software to support collaborative design should
provide a language facility for designers to develop a sharable vocabulary for
expressing their ideas, for communicating them to future collaborators, and for
formaily representing them within computer-executable sofiware. An end-user
language that provides an extensible domain vocabulary, is usable by non-
programmers, and encourages reuse and modification could help provide support for
designers trying to express their interpretations..

Heidegger’s analysis of interpretation says that new interpretations are based
on preunderstandings developed in the past or handed down by tradition. In this
sense, it is likely that the information designers need most when they reflect on
problems may have previously been made explicit at some moment of interpretation
during past designing. Accordingly, one promising strategy for accumulating a useful
knowledge base is to have the software capture knowledge that becomes explicit
while the software is being used. As successive lunar habitats are designed on a
system, issues and alternative deliberations can accumulate in its repository of design
rationale; new perspectives can be defined with their own modified representations,
terminology, and critic rules; and the language can be expanded to include more
domain vocabulary, conditional expressions, and query formulations.

This is an evolutionary, bootstrap approach, where the software can not only
support individual design projects, but simultancously facilitate the accumulation of
expertise and viewpoints in open-ended, exploratory domains. This means that the
software should support designers in formalizing their knowledge when it becomes
explicit. The software should reward its users for increasing the computer knowledge
base by performing useful tasks with the new information, like providing
documentation, communicating rationale, and facilitating reuse and modification of

relevant knowledge.

The theory suggested by the analysis of interpretation in design is diagrammed
in Figure 1-2. As the cycle of interpretation proceeds, driven by the needs of
designing and collaboration, explicit knowledge that is generated can be captured by
the computer support system. The computer system relies on a combination of stored
representations (for representing situations, defining perspectives, and articulating
language expressions) and plasticity (for tailoring the existing representations to the
requirements of the specific design process). This combination makes support of
interpretation in design possible and simultaneously drives an evolution of the stored
knowledge base.

The theory proposed in Chapter 6 views the computer as a design medium. It
is a multimedia device capable of representing the diverse forms of information used
in design: text, graphics, pictures, pen sketches, numbers, voice, animation, and even
video. It can use all these media to externalize design concepts and to store them for
future use, serving as a medium of externalization and long-term memory. This means
it can be used as a medium of communication among team members and a medium for
embedding an artifact’s design history within the design of the artifact itself—Reeves
(1993) argues for the role of such a medium in supporting collaborative work.
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Fioure 1-2. The theory of computer support for interpretation in design.

The cycle of human interpretation (illustrated on the top) is mirrored by a cycle of
evolution of the computer knowledge base (below), that uses captured explicit knowledge to
support future interpretation.

The uses of the computer as designing medium mentioned in the preceding
paragraph are primarily passive uses. The impact of written language on civilization
shows that even passive media can be powerful. However, the computational power
of the computer suggests using it as an active medium as well. Certainly, numerical
computations can be left to the computer: calculate square footage of designs or total
their costs. But information can also be made dynamic, with representations modified
on the basis of the state of other parts of a design. Furthermore, the information
stored in the computer can be managed by it, perhaps organizing and displaying
information based on a structure of defined perspectives. A language can make the
system programmable by designers, so they can adjust displays to their changing
needs. Part III will show how HERMES accomplishes this by means of a
computationally active form of hypermedia, that integrates a perspectives mechanism
and an end-user programming language.

One of the most powerful consequences of designing in a computational
medium is the possibility of integrating all the relevant information. An example of
this is the mechanism of interpretive critics (see Fischer, et al., 1993a). It is an
extension of specific critics (Nakakoji, 1993). Specific critics are critiquing rules that
analyze the representation of a design situation and optionally display a message
depending on the results of the analysis. For instance, if two appliances are closer than
they should be in the design of a habitat, a critic might display a warning, suggest
looking at related design rationale issues, and show similar stored designs that avoid
the problem. The specific critics are dynamically computed based on the design
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specification that has been entered into the design rationale. The critic thus integrates
information about the graphical design, the textual rationale, the computational critic
rules, and other designs. It does this in a way that supports the needs of the designer
without providing overwhelming amounts of information. Interpretive critics are even
further embedded in the contexts of design because they can be defined differenily in
different interpretive perspectives. Their active behavior depends on the current
perspective and the way in which terms in the language are defined in that
perspective. They use the language that is being used for the particular design, they
are tied to the currently active perspective, and they analyze the represented situation.

The view of computer support systems as computationally active
communication media is consonant with a liberatory view of the role of computers in
society. Feenberg (1991) argues that the expert system approach based on technical
rationality philosophy is profoundly anti-democratic and that an alternative approach
to computers as communicative media is needed to give people control over their
lives:

Systems designed for hierarchical control are congruent with rationalistic
assumptions that treat the computer as an automaton intended to command or
replace workers in decision-making roles. Democratically designed systems must
instead respond to the communicative dimension of the computer through which it
facilitates the self-organization of human communities, including those technical
communities the control of which founds modern hegemonies. (p.108)

The theory of computer support presented in this dissertation pursues the democratic

alternative, founding it on a respect for the irreducible nature of human interpretation.

The key is control. Computer systems are sophisticated tools for exerting
control of information. As powerful as they are, computers have no understanding of
the information they manipulate. Even in autonomous Al systems, all the
interpretation is done by people—typically by the programmers who set up the system
and the users who view the output. Innovative design is an arena in which the
interpretation cannot be done in advance because this design requires understanding
and interpretation at every step. Therefore, the role of computers in non-routine
design must be to support designers. Human designers must retain control over (a)
how things are represented, (b) which things are stored together, and (c) what terms
are used to articulate ideas. Unless this control is vested in people who can use their
interpretive skills, questions concerning what information might be relevant in a given
context or in the future remain intractable for all but carefully delimited, well-
understood, completely codified domains. The only heuristics proposed for the
management of design knowledge are those tacitly followed by traditional design
practice: (1) that knowledge represented, organized, and articulated in the past may
be useful in the future, and (2) that designers will need to use their powers of
interpretation to modify and apply reused knowledge in unique situations. (The
problem of application addresses the fact that every situated, perspectival, linguistic
understanding is unique and yet must be interpreted as similar to other cases; it is
discussed in Chapter 5.)
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The theory of computer support provides a principled basis for designing a
computer system to support innovative design in such tasks as lunar habitat design.
Before exploring the ideas suggested for such a system, the existing tradition of
design environments is considered. This is a tradition of computer systems supporting
the augmentation of human design efforts. It provides a basis upon which new ideas
can be developed through extensions that are guided by the theory.

1.7. PREVIOUS SOFTWARE SYSTEMS FOR DESIGN

For thirty years now, at least since Alexander (1964), efforts have been
underway to use computers to support design. Much work in the area of computer
support for design has concentrated on two approaches that will not be explored here:

*  Providing stand-alone tools for drafting and modeling, where the computer
system has little or no representation of the semantics of what is being
designed—e.g., so-called “computer aided design” (CAD).

*  Automating the design process, where the computer is given a specification of
a problem and is expected to produce a design with minimal interaction with a
human user—e.g., an expert system for design.
Although these approaches have proven useful for certain tasks or within restricted
domains, in general they have been shown to be quite limited. Winograd & Flores
(1986) and Dreyfus & Dreyfus (1986), for instance, have argued that expert systems
are in principle essentially limited when it comes to tasks like creative design. They
have based their arguments largely on Heidegger’s philosophy and other ideas that are
discussed in this dissertation. Rather than duplicating their line of criticism, Chapter 7
will draw their positive implications for building software systems that can support
innovative design.

There have always been some researchers who sought ways to use technology
to augment human problem solving (e.g., Bush, 1945; Engelbart, 1963), rather than
to model, simulate, or replace it. More specifically, there is a tradition in design
methodology and design rationale capture efforts, going back to Rittel and his
associates (Rittel & Webber, 1973; Kunz & Rittel, 1984) that advocates the use of
computer-based design systems as cognitive aids for human designers.

Recent work in this tradition is reviewed in Chapter 7 and used as a starting
point for designing a system to support interpretation in design. In particular, the
design environments that will be reviewed (JANUS, MODIFIER, PHIDIAS) are domain-
oriented in the sense that they try to embody generally accepted knowledge of their
specialized design domains. In contrast, the domain-independent design rationale
capture systems (KRL, PIE, DRL) focus on capturing and displaying potentially
opposing perspectives on design issues. By synthesizing ideas from these different
systems, the new approach will extend the notion of domain-orientation to support
multiple interpretations of the domain as well.
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The consequences of the theory of computer support for interpretation in
design developed in Chapter 6 motivate and guide the survey of previous software
systems. Established techniques implemented in the computer-based design assistants
are reviewed and their limitations are critiqued on the basis of the theory. While
mechanisms for representing situations, defining perspectives, and using language are
found in some of these systems, the plasticity and integration of these mechanisms are
quite limited. In many ways, these systems retain principles from expert system theory
and are not oriented toward supporting interpretation in design even when they
happen to provide some mechanisms that could be used for that.

JANUS (Fischer, et al., 1989) is a design environment combining graphical and
textual representations of the design situation. It introduces a multi-faceted
architecture that includes a palette of design components for building graphical
representations of kitchen layouts, a catalog of stored design cases, an issue-base of
design rationale, and a daemon mechanism for active critics. This system provides an
important model of a design environment. Its lack of support for users to create new
representations is recognized and addressed by a successor system named MODIFIER.

MODIFIER (Girgensohn, 1992) defines all the knowledge representations with
parameterized property sheets. Then it provides a user interface to these system
internals. While it offers extensive support for the user to modify representations, this
still involves the user in modifying LISP expressions, altering hierarchical inheritance
trees, and generally having to be concerned with system internals. Thus, it supports
the user (with extensive help text, examples, checklists, and even critic rules
concerning modifications) to engage in tasks of maintaining a sophisticated software
system rather than supporting the user in interpretive tasks of design. Another
problem with MODIFIER is that it provides no mechanism for organizing modifications
into alternative versions to support personal and shared versions.

Several systems for knowledge representation and design rationale capture
propose the use of multiple perspectives, a mechanism that this dissertation
recommends. KRL (Boborow & Winograd, 1977) presents a sophisticated formal
language for knowledge representation that incorporates a mechanism for
perspectives. PIE (Boborow & Goldstein, 1980; Goldstein & Boborow, 1980a,
1980b) develops the ideas of KRL further as the basis for a design environment for
software development. DRL (Lee, 1990; Lee & Lai, 1991) explores issues in design
rationale capture using languages based on Rittel’s IBIS as well as KRL and PIE. These
systems provide invaluable experience in designing languages for knowledge
representation and design rationale, and in using perspectives mechanisms. However,
their implementations lack the generality called for in certain ways. Furthermore, they
are not particularly appropriate to the kind of hypermedia structure that seems useful
for representing a broad diversity of design information. They provide important
examples and recommend useful principles for the kinds of languages and
perspectives mechanisms useful in supporting design. The lessons from these systems
are combined in Chapter 8 with two design criteria: (1) the implementations should be
appropriate to a hypermedia structure of knowledge representation and (2) end-users
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should be able to revise and extend the vocabulary of the language and the structure
of the system of perspectives.

PHIDIAS (McCall, et al., 1990) is another design environment like JANUS. It
does not include as many components or a critiquing mechanism, but it does
demonstrate the utility of a query language for users to define displays of design
rationale. The PHIDIAS language has a number of important features: it is designed for
navigation of hypertext and it is based on several syntactic characteristics of English.
Vocabulary in the language can all be defined by users, so it supports adaptability.
PHIDIAS uses a form of hypertext that has a fine granularity; thus textual displays of
design rationale, for instance, may be computed dynamically through the use of
queries defined in the language. The PHIDIAS language provides a good starting point
for the design of a computationally powerful language that is appropriate to
hypermedia and that can support interpretation.

In response to the shortcomings of previous systems, an integrated software
prototype named HERMES is proposed. HERMES is a persistent hypermedia substrate
for building design environments to support interpretation in design. Its mechanisms
operationalize the positive design principles of the analysis of interpretation and the
theory of computer support for interpretation in design.

i.8. HYPERMEDIA IN THE HERMES SYSTEM

In Greek mythology, Hermes supported human interpretation by providing the
gift of spoken and written language and by delivering the messages of the gods. As
part of the research for this dissertation, a prototype software system named HERMES
has been designed to support the preconditions of interpretation (a) by representing
the design construction situation to support prepossession, (b) by providing
alternative perspectives to support preview, and (c¢) by including a language to
support preconception.

HERMES supports tacit knowing by encapsulating mechanisms corresponding
to each of the preconditions:

* Interpretive critics (Fischer, et al., 1993b) are used for analyzing the design
situation, which is represented in arbitrarily complex hypermedia data
structures. These critics are expressions in the HERMES language that perform
an analysis of the current state of some representations and then optionally
display a message. The evaluation of the critic expressions or rules is
dependent upon the currently active interpretive perspective, which
determines the versions of the expression, of its constituent terms, and of the
representations being analyzed.

*  Named perspectives (Stahl, 1993b) organize and manage alternative sets of
information relevant to different purposes. By switching to a new perspective
by selecting its name from a list, a designer can change how the representation
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of the situation appears, what interpretive critics are active, and in general
what contents of the hypermedia network are “visible” from the viewpoint.

Language terms (Stahl, et al, 1992) define computations across the
knowledge base. While these expressions can be arbitrarily complex if viewed
in complete detail, they are typically constructed in a series of stages. At every
stage, the components of the term’s definition can themselves be given names.
With each of these mechanisms, complexities are hidden from the user by being
encapsulated in named objects. These complexities can gradually be made explicit
upon demand so the designer can reflect upon the information and modify it.
Together, these and other mechanisms make HERMES a computationally active
medium in which designers can do their work.

HERMES is a knowledge-representation substrate for building computer-based
design assistants like the Lunar Habitat Design Environment (LHDE) shown in Figure
1-3. It provides a hypermedia structure for designers to build representations of
design knowledge.

Hermes Design Environment

iew Controls Options
Critique
The private areas are not separated fram
the public areas.

Window

What are the design considerations
for bunks?

operation

@ Navigate out-going lip
O Navigate in-coming |
O Edit the text

O Author or Annatate
O Cancet

Out-going Links
1lissue

_.What are the design considerations for bunks?

Beiz: e Privacy Perspective
WYWhat should be the size of the bunks?
¥hat should be the access o the bunks?
What should be the arrangement of the

subissue_tree

bunks?
The bunks should be lined along the outer
Predicates walls.
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issue_tree from the central corridor.

This arrangement keeps the central

carridar open.
This arrangement allows bunks and crew
statiens W be aligned vertcally,
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a selection from the design rationale issue-base, a critic rule’s message, a graphical
sketching area, and a button for changing interpretive perspectives.

The network of knowledge corresponds to the design situation. Multi-media
nodes of the knowledge representation can, for instance, be textual statements for the
issue-base, CAD graphics for sketches, bitmap images to illustrate ideas, or language
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expressions for critics and queries. The inter-linked hypermedia structure facilitates
browsing by designers. It can also be used to support associative memory (Hinton &
Anderson, 1989) or case-based dynamic memory (Schank, 1982; Kolodner, 1984).
All displays are defined by queries that dynamically assemble arbitrary collections of

i ltimmadia itn ) BN tha MNagion Dan F, 1.2 chnawvea tha
muiuimcaia llkzlllb Cor lllbtall\/\/, Lll\/ L)\./lell l\aLlUll(LlL/ V‘VlllUUW Lll lbuxb 1-3 SAOWS uil

textual issues, answers, and arguments that resulted from a query that was executed
by a user’s request to see the “discussion” of a previously viewed issue.

The hypermedia knowledge representation structure of HERMES is designed to
facilitate the representation of design situations and to encourage their tailorability. Its
generalized node and link structure models the network character of the situation as a
network of inter-related, pre-understood significances and their associations. Its
object-oriented implementation allows for the integration of information in different
media—reflecting the need to bring together many forms of information in design. It
provides graphics for sketching, text for issue-bases or design rationale, and other
media for annotations to support the exploration of represented situations. All the
media and mechanisms are designed to maximize plasticity of representation. The
HERMES hypermedia structure incorporates a perspectives mechanism for managing
and viewing all information and an end-user language for defining queries for displays,
as discussed below.

Special emphasis is placed on the synergistic integration of the hypermedia,
perspectives, and language mechanisms in the HERMES substrate. Definitions of
perspective hierarchies and language expressions are stored in the hypermedia
network so they can be browsed and modified like all other information. By using
nodes of the hypermedia network to define the names of perspectives and links to
determine the inheritance relationships among perspectives, the HERMES system can
support annotation of these nodes to store information related to the purpose or
origination of the perspectives. Similarly, the nodes that define terminology and
expressions in the HERMES language can be linked like a semantic network (Quillian,
1967).

In turn, the definition of the hypermedia structure itself incorporates both
perspectives and language expressions. Instead of having a fixed content in some
medium, nodes can have their content defined by the evaluation of an expression in
the language. Nodes and links can be conditional upon some computation defined in
the language and involving other nodes and links. Furthermore, hypermedia
information to be displayed is always dynamically computed in the currently active
perspective—even language expressions can have different effects in different
perspectives. In these ways, node contents can be dependent upon the state of other
data in the hypermedia network. The interactions of the integrated hypermedia,
perspectives, and language provide significant control and malleability for the
designer. Design environments built on this substrate can have many features that
support interpretation in design with consistent abilities to represent knowledge and
to tailor the representations.
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1.9. PERSPECTIVES IN HERMES

HERMES includes a perspectives mcchanism for organizing all knowledge
represented in the system. This mechanism is general and can be used to define a
variety of different kinds of “perspectives” for categorizing information and for
organizing inheritance of information among perspectives. For instance, hierarchies of
perspectives can be defined for technical specialties (e.g., plumbing, ergonomics),
knowledge domains (kitchen design, partial gravity design), worldviews (Bauhaus,
austere missions), specific designs (i.e., cases), individual preferences, shared team
decisions, and experimental ‘“what-if” versions. New perspectives can merge
information from multiple existing perspectives and then modify the information as
seen through the new perspective without affecting it in the original perspectives. This
can facilitate periodic, non-disruptive reorganizations of the knowledge base as it

evolves.

The perspectives mechanism of HERMES helps to support the collaborative
nature of design by multiple teams. Drawings, definitions of domain terms in the
language, computations for critic rules, and annotations in the issue-base can be
grouped together in a perspective for a project, a technical specialty, an individual, or
a team. A new perspective can be defined to archive a version of a design for
historical purposes so it will not change as team members continue to work on new
versions. Every action in HERMES takes place within some defined perspective, which
determines what versions of information are currently being accessed. Perspectives
can collect knowledge according to various categories. For example, there can be
perspectives for individual designers or design teams; for technical or professional
specialties; for traditional or cultural domains; for specific projects; or for historical
versions of projects.

Since information in HERMES is always viewed through a perspective,
switching perspectives can support the deliberation of alternative approaches. By
redefining in different perspectives the same graphic objects or linguistic terms used in
conditionals, queries, and critics, one determines how things will be displayed
(interpreted) differently in different perspectives. Thus, as shown by a scenario in
Chapter 9, critics in a “privacy perspective” might analyze habitat layouts using a
concept of privacy gradient defined in that perspective, whereas the same critics
would in effect have different definitions in other perspectives and would therefore
produce different results. The interpretive critics for privacy that are used in the
scenario are analyzed and explained in detail in Chapter 10 as a case study in use of
the language.

The approach of HERMES supports communication among designers. The
representations of the design situation may include documentation of design rationale
by specifying resolutions of issues in an issue-base. For lunar habitat design, such
documentation is contractually required by NASA. Requirements traceability and
clear communication of rationale are necessary for a design to move from the original
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design team to subsequent groups for approval, technical elaboration, mock-up, and
eventual construction. Documentation is notoriously difficult to produce. Design
rationale is most effectively captured when it is an explicit concern. Formulations
developed in the HERMES language by designers in the midst of designing can
supplement the situation represcntations, stating for the benefit of future designers
looking at their work what aspects were originally considered important and what
rules of thumb were developed then. Viewing the design from the original team’s
perspective preserves their interpretation, while subsequent groups can define their
own modified perspectives. Individuals in work teams can share ideas, viewpoints,
and definitions by using group perspectives that inherit from and modify the contents
of their different personal perspectives.

1.10. THE HeErmEs LANGUAGE

HERMES features a language for designers to use. The language is defined as a
series of subset languages to facilitate learning by new users. First it should be noted
that previously defined terms and expressions are used most of the time. These are
simply selected from lists of relevant terms. Then there is a beginner’s version of the
language that is very similar to the PHIDIAS language, which proved easy to use for
non-programmer novice users. This level of the language suffices for defining or
modifying most common terms and queries. An intermediate level provides access to
virtually all features of the language except those related to graphics. Finally, an
advanced level can be used for graphics-related tasks, like defining interpretive critics.
Most system displays and component interfaces are defined in the language, so they
can be moditied through use of the language.

The HERMES language defines domain vocabulary for referring to represented
objects and their associations (the nodes and links of the hypermedia). It also provides
expressions for stating queries to define displays and for stating rules to critique
designs. The expressions fall into three major syntax categories: (a) definitions of lists
of nodes, (b) expressions for filtering out nodes not meeting stated criteria, and (c)
operations to traverse various kinds of associations. These support the situated,
perspectival, and linguistic character of interpretation by naming representations of
things in the design situation, filtering out objects for display based on viewing
criteria, and providing expressions for exploring associations. Objects in each of these
categories can be either (1) reused or (2) refined by combining expressions in useful
ways. This defines the six primary syntactic classes in the language; four other classes
provide auxiliary terms and features. The syntactic classes are listed with brief
descriptions in Table 1-4.

The language provides a tacit form of language usage for non-programmers.
Most of the sequential processing is kept implicit, due partially to the declarative form
of the language structure. Also, expressions that were originally figured out explicitly
are given names in domain terminology. In Figure 1-3, for example, the user clicked
on an issue about sleep compartment bunks and then chose the “Predicate”
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(Computed Association), discussion. This predicate was already defined to
produce a hierarchy of issues with their answers and arguments. The user did not
have to be concerned with the recursive structure of this hierarchy or its iterations
through multiple links. All of those computational matters were implicit in the
definition of the predicate. The user could simply select the predicate by name. This
example of choosing “discussion” from a list of predicate names in Figure 1-3 is
typical of how the language is used in HERMES. Even when one is creating a new
expression, one selects syntax options in dialogue boxes and selects predefined terms
from lists. This minimizes the need to remember syntax and terms, prevents many
kinds of errors, and avoids the impression that one can simply use free-form English
to define expressions.

I 1-4 [ sse the HERMES langu
syntactic class description

a-1 Datalists options for identifying hypermedia nodes.

a-2 Computed Datalists permitted combinations of language elements that
determine sets of nodes

b-1 Filters predicates characterizing nodes for selection

b-2 Computed Filters permitted combinations of language elements that define
filter conditions

c-1 Associations links and other associations of nodes

c2 Computed Associations permitted combinations of language elements that

determine sets of Associations

d-1 Media Elements nodes of various media: text, numbers, booleans, graphics,
sound, video, etc.

d-2 Computed Media Elements permitted combinations of media elements, e.g., arithmetic
and boolean computations

e-1 Pre-defined Terminology connective terms, measurement primitives, fixed values for
attributes and types

e-2 Computed Terminology namable quantifiers and numerical comparisons

The HERMES language pervades the system, defining mechanisms for
browsing, displaying, and critiquing all information. This means that designers can use
the language to modify and refine the representations, views, and evaluations of all
forms of domain knowledge in the system. All vocabulary in the language is
modifiable by the designers. Every language expression (and every component of a
larger expression) can be encapsulated by a name, so that many statements in the
language can be defined with common terms from particular design domains.
Considerable effort was put into the design of the language to make the appearance of
expressions as easily interpretable as possible. Chapter 10 presents many examples
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and discusses the techniques used to achieve a readily interpretable appearance. This
is just one way in which the language is designed to support tacit usage. Much of the
knowledge that people must explicitly use in writing programs in conventional
programming languages (assignment, variables, functions, quantification, etc.) has
heen hidden from the user in the HERMES language (see Chapter 10 for a detailed
description of this). The power of these mechanisms is available through the language,
but designers need not think in terms of the computational mechanisms. However,
when it is necessary for a designer to explore the definition of a user-defined

expression in the language in order to understand it more explicitly, this can be done.

Combined with the perspectives mechanism, the language permits designers to
define and refine their own interpretations. This allows the HERMES substrate to
extend systems beyond the domain-oriented approach of the knowledge-based design
environments that HERMES grew out of, by supporting multiple situated
interpretations of the domain. That is, the previous systems pre-defined most domain
knowledge in a single, generic knowledge base. However, all representations are
relative to human interpretation and interpretation is perspectival. HERMES lets
designers reinterpret linguistic expressions of knowledge already in the system and
store them in appropriate perspectives. This retains the relationship of design
knowledge to interpretive perspectives. It also replaces the notion of a single body of
domain knowledge (whether fixed or evolving) with a system of multiple perspectives
on the domain. Furthermore, this extension encourages inter-related or relevant
knowledge from diverse domains to be brought together in specific perspectives.

1.11. CONCLUSION

The analysis of situated interpretation argues that only people’s tacit
preunderstanding can make information meaningful in context. Neither people nor
computers alone can take advantage of the huge stores of data required for many
design tasks; such information is valueless unless designers can use it in their
interpretations of design situations. The data handling capabilities of computers
should be used to support the uniquely human ability to understand. The theory of
computer support for interpretation in design suggests that several characteristics of
human understanding and collaboration can be supported with mechanisms like those
in HERMES for refining representations of the design situation, alternative
perspectives, and linguistic expressions. The theory provides a coherent framework
for a principled approach to computer support for designers’ situated interpretation in
the age of information overload.

In elaborating the argument of the previous paragraph, this dissertation seeks
to make three kinds of contributions: to a philosophy of interpretation, to a theory of
computer support, and to a system for innovative design.

* It makes a philosophic contribution by clarifying the foundations of situated
cognition theory in Heidegger’s philosophy of interpretation and extending
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that philosophy through an analysis of interpretation in design and through a
theory of computer support for interpretation in design.

* Tt makes a contribution to computer science by arguing that systems to
augment human skills in innovative design should be oriented toward
providing support for the processes of interpretation.

* Tt makes a practical contribution by prototyping three crucial mechanisms for
design environments: a hypermedia substrate that integrates a perspectives
mechanism and an end-user language.

These contributions reflect a belief that our age calls for alternatives to a technical
rationality philosophy, an expért system approach to computerization, and a view of
the designer as an isolated and unaided subject.



PART lll. COMPUTER SUPPORT OF NON-ROUTINE DESIGN

The following chapters discuss the three major features of HERMES: the
hypermedia knowledge representation, the perspectives mechanism, and the end-user
language. HERMES is an instantiation of the theory of computer support proposed in
Part II. The discussion of these features of HERMES is intended to illustrate how a
system based on the theory might look—a set of mechanisms for supporting the
situated, perspectival, linguistic character of interpretation. While the theory suggests
the usefulness of a language and a perspectives facility, many very different kinds of
languages and perspectives mechanisms are possible. The particular mechanisms in
HERMES that have been prototyped as part of this dissertation, suggest one possible
approach. The discussion of these mechanisms should illustrate the application of the
theoretical framework previously developed to the concrete design of software; these
mechanisms represent an attempt to transform the philosophical interpretations into
practice.

In this Part, Chapter 8 discusses the integrated hypermedia structure. This
provides the medium for representing the design situation using the many media of
design. The perspectives mechanism of Chapter 9 provides for flexible organization of
all knowledge in the system in order to support collaboration. The language
presented in Chapter 10 offers designers increased power for interpreting,
communicating, and capturing their tacit understandings more explicitly.

Each of these chapters is divided into three sections. The first reviews the
needs which must be addressed by the mechanisms discussed in the chapter. The
second describes in some detail the implementation of the mechanisms in the HERMES
prototype. The third illustrates how the explicit mechanisms are actually used by
designers working in HERMES. Generally, the interfaces to these mechanisms
encapsulate their computations so that they normally function behind the scenes of
relatively tacit usage by designers, only becoming more explicit when the designers
must articulate their understanding.

Together, the three mechanisms that are detailed here are intended to support
interpretation in design. Specifically, they support the situated, perspectival, linguistic
character of design. The kind of design they are meant to support is that of
exploratory domains like lunar habitat design, which can be characterized as
innovative in nature and collaborative in structure. The computer support proposed
has been developed particularly to help designers move back and forth along the
spectrum of tacit and explicit understanding. The description of each mechanism will
show how it promotes tacit usage as well as facilitating more explicit understanding
when that becomes temporarily necessary.



CHAPTER 8. REPRESENTING THE DESIGN SITUATION

Many forms of knowledge are required to support design. The lunar habitat
designers in Chapter 3 used sketches of previous designs, graphical representations of
design components, discussions of design rationale, terminology for thinking about
the design, information from experiences of former space missions, drawings from
references, and guidelines from NASA documents. They viewed problems from
alternative perspectives and they deliberated issues using concepts that were redefined
in the process. Rather than simply constructing a solution from these many pieces of
retrieved knowledge, the designers continually modified the knowledge, trying
numerous variations. They continually reinterpreted their task, candidate solutions,
and the knowledge that went into the solutions.

To support what Part I of the dissertation described as the process of
interpretation in design with a computer-based design environment requires a system
that provides many media of representation. Furthermore, the representations of
knowledge in the media must be designed to support incessant modification, tailoring,
customizing, or plasticity by end-users.

According to Part II, a design environment should be people-centered,
supporting the human designer’s ability to interpret and make judgments. It should
support tacit usage as well as allowing designers to make knowledge successively
more explicit to meet their specific interpretive needs. This suggests incorporating an
end-user language for explicating terms and a perspectives structure for organizing
different people’s customized versions of knowledge. To take advantage of the
computational power of the computer, a design environment should provide a
computationally active medium in which the designers can work individually,
communicate with the computer, and collaborate with other designers on team work.

The HERMES system described in Part III attempts to meet these requirements
by providing a substrate of functionality that can be used by all components of a
design environment. It defines a multi-media structure in which all elements of
knowledge can be defined and interconnected. All knowledge is represented as data
that can be retrieved and modified by the end-user. The knowledge representation
structure integrates a perspectives mechanism so that all representations of
knowledge are organized into hierarchies of user-defined contexts. It also integrates a
language that designers can use for defining and modifying representations of
knowledge, including definitions of computer agents such as critics, queries, and
displays.

Section 8.1 describes the characteristics of the HERMES substrate. It discusses
how it meets the requirements from the analysis of design as interpretation presented
in Part I and from the theory of computer support for interpretation in design
proposed in Part II. Section 8.2 shows how the substrate is defined at a more
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technical level. It discusses the knowledge storage, retrieval, modification, and
interconnection mechanisms. Section 8.3 then illustrates how a lunar habitat design
environment with multiple components can be built on top of the HERMES substrate.
In addition to outlining how components for construction, rationale, specification, and
catalogs can be buiit, it highlights the usefuiness of the hypermedia, perspectives, and
language in defining these components.

8.1. A COMPUTATIONALLY ACTIVE MEDIUM FOR DESIGNERS

The HERMES substrate. HERMES is a substrate for building design
environments to support interpretation in innovative design. Many of the previous
design environments discussed in Chapter 7 got along without primary attention being
given to a substrate level. This is because those systems prototyped functionality
specific to individual components. However, recently there has been a proliferation of
efforts related to JANUS to introduce functionality that spans all the components of a
design environment. KID (Nakakoji, 1993) pushes the non-substrate, multi-faceted
approach to its limit, integrating design decisions made in one component with
displays in others by “linking mechanisms” to bridge different knowledge
representations. But even here, the beginnings of an integrating language are
established with the formulations of specification-linking rules, which tie together
several major components (critic rules, specification, catalog, domain distinctions).
MODIFIER’s (Girgensohn, 1992) approach to end-user modifiability of data in all
components was an effort that naturally led to integration. The components whose
knowledge became modifiable (e.g., the palette and its critics) were, in effect,
redesigned to be based on a minimal common substrate of LISP tools for using
property sheets. INDY (Reeves, 1993) proposes history capture mechanisms and
embedded annotation techniques that apply to events in all parts of the system. In
order to implement this, it was necessary to rewrite JANUS to represent all events in
the system uniformly. Similarly, the idea of a “programmable application” (Eisenberg,
1992; Eisenberg & Fischer, 1992) suggests the applicability of an end-user
programming language throughout a system, as noted in Chapter 7.

An explicitly designed substrate is a way to have various special components
implementing multi-faceted functionality while at the same time providing a base of
common functionality that is shared by all these components. Certainly, a construction
component needs to provide some special supports that are not appropriate to a
design rationale component. However, it may be useful to have hypermedia linking,
partitioning of knowledge by perspectives, and definition of expressions in an end-
user language available in many or all the components. An architecture based on an
integrated substrate can support the multi-faceted functionality required for a design
environment.

X-NETWORK (Shipman, 1993), for instance, has hypermedia linking, mult-
user access, and incremental formality mechanisms that must apply to multiple
components; it implements these within a hypermedia object system substrate.
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HERMES is also a substrate that can provide functionality that applies to all parts of a
design environment built on it. Its language supports end-user-programmability of all
components and its perspectives affect all knowledge used in the system. Its critics,
palette, catalog, construction, and argumentation displays are all programmable in the
language and their definitions or conienis are dependeni upon the selecied
perspective.

There are several benefits to creating a design environment substrate. As
shown in Section 8.3, it facilitates creating new components within an integrated,
high-functionality system by exploiting powerful existing data structures. It permits
adding additional trans-component functionality (e.g., for supporting learning,
collaboration, interpretation, evolving formality, or agent mechanisms) by
enhancements at the substrate level. It provides an integration that helps both
developers and end-users because the various components now use standardized
structures, mechanisms, and interfaces, so techniques learned in one component
transfer well to others.

The layered architecture of HERMES has the following structure (see Figure
8.1):

(1) Programming environment. This layer includes commercial object libraries
for list processing, graphics, B+ indexing, windowing user interface, etc., as well as
the PASCAL source code compiler.

5. user definitions of
expressions and user-
defined perspectives

4. seeded domain knowledge

3. design environment
user interfaces

2. Hermes substrate:
hypermedia, perspectives, language

1. Pascal programming environment

(2) HERMES substrate. In addition to the hypermedia structure, the language
definition, and the perspectives mechanism, this substrate level includes an efficient,
scalable object-oriented database management system for persistence of the
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hypermedia data structure. With the language interpreter, this substrate alone consists
of about 200 object classes (roughly 20,000 lines of code). The power and flexibility
of HERMES for empowering users to represent, manipulate, and interpret domain
knowledge comes from the complex interactions of the functionality of the
substrate—much more than from the higher-ievel components of the muit-faceted
user interface built on top of it.

(3) Design environment user interface. Components like adaptive palettes,
design catalogs, and adaptable argumentation are defined as specialized window
objects (graphical user interface features). They use the functionality of the substrate
to retrieve hypermedia nodes in the active perspective using queries in the language.
Some interface components are necessary for user access to the language and
perspectives; others are specific to an application, like lunar habitat design. User
interface components can take advantage of terms defined in the language, so that
end-users can modify the behavior by redefining the terms.

(4) Seeded domain knowledge. The system is initially seeded with knowledge
specific to the domain for which the system will be used, such as lunar habitat design.
This includes definitions of useful terms and queries in the language and an initial
hierarchy of perspectives for organizing knowledge. This seeded information is
represented using mechanisms defined in the substrate and is stored in the database.

(5) User definitions and perspectives. Users can read, modify, and add to any
of the domain knowledge. They can organize alternative versions of text, graphics,
and language definitions (e.g., domain distinctions, critics, and queries in the
language) by perspectives. The substrate is designed to empower users of various skill
levels to reuse, modify, and extend all forms of information stored in the knowledge
base and to reorganize it into meaningful perspectives.

A hypermedia system. The HERMES system is built on an extended form of
hypermedia. Hypermedia can be understood as a system of nodes having content of
various kinds connected together by links to form a network or graph structure.
Alternatively, if one focuses on the language elements and their interconnections, the
HERMES hypermedia can be viewed as an extended form of semantic network
(Woods, 1975). In HERMES, the content of nodes can take the form of various media,
such as text (e.g., for the issue-base), graphics (for the construction area), or
expressions in the HERMES language (like critic rules). In this way, everything that
needs to be represented in the computer to support design can be represented in an
appropriate data structure that is still part of an integrated system. Each element of
information can be interconnected with other elements as needed.

The media requirements for a system to support design are extensive. As
mentioned in the introduction to this chapter, the lunar habitat designers in the
transcripts used the following: sketches of previous designs, graphical representations
of design components, discussions of design rationale, terminology for thinking about
the design, information from experiences of former space missions, drawings {rom
references, and guidelines from NASA documents. In order to represent these in the
HERMES system, the hypermedia substrate defines the following media for the content
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of nodes: character (text), number (reals), conditions (boolean-valued expressions),
graphics (vector graphics), images (bitmaps), pen-based sketches, sound (recorded
voice), and video recordings.

Because HERMES needs to display information in accordance with
interpretations that are not pre-defined but are defined by the user, all displays must
be computed dynamically. This is done with dynamic displays, in contrast with the
page-based approach of most hypertext systems. In a program like HYPERCARD, a
presentation of design rationale might contain a pre-formatted page of issues.
Embedded with an issue might be a button for its justification. Clicking on that button
brings up another page of text presenting the justification. Similarly, in JANUS a page
of design rationale contains highlighted terms; clicking on one of them displays
information about that term, allowing one to browse through pages of related textual
information. In HERMES, however, the justification must be recomputed based on the
current interpretation. This is done by executing a query specifying the information
desired (e.g., justifications of answers of a certain issue) and
based on the currently active interpretive perspective. The results of the query are
then displayed, in place of a pre-formatted page. This approach was adopted from the
PHIDIAS design environment, which featured a limited query language for allowing the
user to structure textual displays (McCall, 1989). Because in this approach design
rationale is generally stored at the relatively fine granularity of sentences rather than
pages, it can be modified either by changing or adding short sentences, or by
modifying the definition of the query.

The HERMES language provides the means of navigating the links of the
HERMES hypermedia. Links between nodes have fypes, like an answer link to
connect an issue with its answers. In addition, as described in Chapter 10, the
language defines processes of information retrieval, analysis, filtering, display, and
critique, which make link traversal more dynamic than just following static link types.
Expressions in the language can be incorporated in computational agents or in
interface features of a design environment. All terms and expressions defined in the
language are stored as nodes of the hypermedia. The language can also be embedded
in the hypermedia structure in various ways. For instance, nodes and links can be
made conditional on an arbitrary expression in the language that evaluates (at run-
time) to true or false. The content of a node can also be defined by the result of an
expression in the language that evaluates to a list of other nodes. These two uses of
the language to make the content of nodes dependent upon the run-time evaluation of
expressions are known as conditional nodes and virtual structures, respectively. (See

Halasz, 1988, and McCall, et al., 1990a.)

The hypermedia system also defines and incorporates HERMES’ perspective
mechanism. The links between nodes maintain lists of which perspectives can or
cannot view the connected nodes. When the link is traversed during the evaluation of
an expression in the language (which is, at an implementation level, the only way that
the node the link leads to can be retrieved or displayed), the currently active
perspective is compared with this list.
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Active media. The HERMES hypermedia provides a computationally active
medium for designers to work in. All information retrieval, display, analysis, and
critique is performed by navigating the hypermedia network of nodes and links. The
content of the nodes may be dynamically dependent upon other content in the
network, as in conditional nodes and virtual structures. Whether or not such nodes
are involved, the retrieval of information depends upon an expression in the language,
which may in turn be composed of many other terms, whose definitions can be
changed. Furthermore, information retrieval and display is always dependent upon the
current perspective and the list of perspectives from which it inherits. All of these
dependencies are under the control of the person using the system. However, the
synergy of the various dependencies (definition of the retrieval expression, content of
nodes, definition of language terms, choice and structure of perspectives) quickly
exceeds the ability of people to foresee the results in detail. Rather, users of the
system proceed with a largely tacit understanding and the computer works out the
details. In this way, people can concentrate on the interpretive tasks while the
computer takes care of the detailed but routine bookkeeping. This exploits the
advantage of a computational medium over passive external media like paper.

People-centered system. The language provides a central control mechanism
over computational processes in the HERMES system. As such, it makes the control
over all computations ultimately available to designers using the system. The language
is a means of communication between the computer and its users, through which end-
users can specify in as much detail as they wish how information is to be stored,
retrieved, analyzed, displayed, and critiqued. At the same time, the system is seeded
with default definitions so that designers do not have to be concerned with these
matters in any more detail then they need to be as a result of their design tasks.

Because HERMES is designed for exploratory domains like lunar habitat
design, however, a seeded knowledge base is only a starting point and source of
reusable definitions. Design requires incessant modification and tailoring of definitions
of all relevant knowledge based on the particular design situation, the active
perspective, and the linguistic frameworks and terminology in use. This means that all
information in the system must be flexibly modifiable.

It is not only that there are no longer any experts in the traditional sense
because systems of knowledge have become too extensive and too rapidly changing
for individuals to master (Fischer & Nakakoji, 1992). Beyond this, in exploratory
design tasks like lunar habitat design, there is no such thing as an objective body of
domain knowledge that could even in principle be defined once and for all. So-called
domain knowledge arises through processes of interpretation that are situated,
perspectival, and linguistic. This certainly does not mean that such knowledge is
arbitrary or that it cannot be justified. On the contrary, it is grounded precisely in the
situations, viewpoints, and traditions that provide its background knowledge and in
the deliberations that importantly accompany it. But, the point is that alternative
versions of the knowledge are applicable under ditferent conditions and only designers
can determine relevance.
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Evolving knowledge base. The plasticity of HERMES’ language and other
media takes off from the ideas of PHIDIAS. In PHIDIAS, node and link types were user-
defined. This was a simple matter of allowing users to define new names for types of
nodes and links. Then, new nodes and the links between them could be labeled with
any one of these types. The importance of this came in its effect upon the PHIDIAS
query language (discussed in Chapter 7). This language consisted largely of options
for combining node and link types. So by careful choice of type names, query
expressions could be made to read descriptively and the language could be extended
to include new terms. The HERMES language is far more complex, but it retains the
principle that all semantic elements should be user-definable and namable. In fact, this
principle is extended to the various media as well, so that everything in the knowledge
base can be named and modified.

All representations of knowledge in the HERMES system are maintained as
data in the hypermedia information base on disk. This makes it easy for the system
builders who define components for design environments built upon the HERMES
substrate, for knowledge engineers who seed or reseed the knowledge base, as well as
for end-users who tailor the information to their own needs. Standard interfaces are
available for browsing, editing, and extending knowledge in all media.

The HERMES substrate is designed to support constant tailoring of all
information in the knowledge base. All nodes in the hypermedia can be browsed,
modified, annotated, or deleted within the current perspective. Much knowledge is
defined by language expressions, which can likewise be edited. The terms used in
expressions can also be edited, and so on recursively. Knowledge is organized by
perspectives. Together, the hypermedia, perspectives, and language provide
considerable control over all knowledge in the system by designers using it. The
following chapters will detail how this works.

8.2. KNOWLEDGE REPRESENTATION IN THE HERMES SUBSTRATE

Figure 8-2 below shows how the functionality of the most important objects in
the HERMES substrate is built up. Starting at the top is the generic HERMES named
object. Any object descended from this can optionally have a name and can be stored
on the object stream (file) that functions as the database for HERMES. The objects
below it in the hierarchy successively accumulate data slots (indicated in parentheses)
and methods.

The Active object adds two features that provide considerable power for the
advanced user: conditionals and procedures. Any object that inherits these (for
instance, all varieties of nodes and links and language elements) can be made
conditional upon a language expression or can incorporate an arbitrary procedure. A
conditional can be any boolean expression defined in the HERMES language. When an
object with this conditional is encountered in traversing the hypermedia, the
conditional is evaluated. If it evaluates to true, then the link can be traversed or the
node evaluated and displayed, otherwise, the object is ignored. A procedure is a user-
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defined procedure written in any commercial programming language that supports
WINDOWS dynamic link libraries (DLLs), e.g., PASCAL or C++. HERMES includes a
DLL with ten procedure identifiers, so that users can define and compile up to ten
procedures. The procedure identifiers can then be attached to HERMES objects. When
the object 1s encountered during hypermedia traversal, the procedure is run. This
mechanism of procedural attachment has also been used internally to implement one
of the procedures for the HERMES perspectives mechanism (see the implementation of
“lazy virtual copying” in Chapter 9). With these mechanisms, procedures written in
either the HERMES language or in a general purpose programming language can be
embedded anywhere in the hypermedia database.

Hermes Substrate Object Hierarchy

Hermes named object (name)

Active object (conditional, procedure)

Persistent object (object id, language type)

Sublink  (perspectives list, display
attributes, spatial transforms)

VCopy object
Polyline Link object (node to, node from)  Stamped object (creator, creation date, last mod date)
{list of points) |
Multi link (sublinks) Node object (in links, out links)

Content link Context link Link Content node Context Nodekind Node Link type

(IIV \ (content links

nodi kind)

Graphic link Language Element Media element Terminology Element Graphic

RS

Boolean\ Charactex Numbe Count Measure Quantifier

Association Filter

Predicate Image Pen Sound Video Animation Computed view

Persistent objects can be retrieved from the HERMES database. They have a
unique object id, which is used internally for direct random access to the stream on
disk. A set of methods for persistent objects defines an efficient database management
system that performs buffered reads from disk. Once accessed, objects are cached in
memory by these methods since they are likely to be traversed again. For objects that
have user-defined names, a B+ index is used to retrieve the internal object id for
object retrieval. This means that even when the database is scaled up to millions of



42

objects, any object can be retrieved from disk either by user-defined name or by
internal id with no appreciable increase in the number of disk accesses. The index to
the stream maintains the node kind of each stored node, so lists of nodes of a given
kind can be generated. Similarly, the index of named objects maintains the object type,
so lists of named objects of a given language type can be displayed quickly for pick
lists in the interface.

VCopy objects can participate in the virtual copying mechanisms that
implement perspectives in HERMES. A set of ten object methods (defined in Section
9.2) are used for the virtual copying of nodes, links, hypermedia networks, and
subnetworks.

Stamped objects are time-stamped with the name of the person who was
logged in when the object was created, the date and time of creation, and the date and
time of the last modification. This information is useful for browsing the knowledge
base with queries in the language. It can also be used for security systems built on top
of HERMES.

Node objects are the “first class objects” of the HERMES hypermedia system.
They can all be interconnected in the hypermedia, referred to by the language, and
organized into perspectives. This is the basis for the interlinked hypermedia structure.
Any node objects can, for instance, have annotations or arbitrary features attached to
them. A node object maintains a tree of links coming in to it and a tree of links going
out. The trees of links consist of lists of link lists, where each link list contains links of
a given link type. This list of lists is sorted by link type. The link lists contain the
object ids of the individual links. This structure makes for efficient access of a node’s
links for traversal and language expression evaluation.

Links are stored independently of the nodes that they connect, because they
may contain considerable data and may be accessed, traversed, or modified without
needing to read in their attached nodes (which may be very large for bitmaps, video,
etc.). A link consists of a list of sublinks, which maintain information about
perspectives, display attributes (e.g., color, font), and spatial transforms (e.g., scaling
or rotation for 3-D graphics). By combining a list of sublinks between a given two
nodes into one link rather than having multiple links between the same two nodes, the
number of links that need to be read in from memory is minimized. Combining all
links between two nodes is important because there may be very bushy trees of
sublinks due to the perspectives mechanism’s implementation. For many functions,
one needs to look at all or many of the sublinks. Also, often one only wants to cross
one sublink of a link (the first one), otherwise one would get multiple copies; this is
efficiently done with a for-each or for-first method on a list of sublinks.

Contexts, node kinds, and link types are very simple node objects. They just
have user-defined names. Contexts are linked in a hierarchy that defines the
perspectives and their inheritance relations (see Chapter 9). Node kinds and link types
can have synonyms defined. When they are created, the HERMES interface suggests a
plural form to be defined as a synonym. This is useful for making language
expressions smoothly readable.
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Nodes have no content themselves. Rather, they have content links that
connect them to content nodes that contain the content (e.g., characters, numbers,
language elements). This separation of the named nodes from their content is useful
and efficient in a number of ways. It allows a given node to have multiple contents. It
may have a different content in different perspectives; it may have several contents of
the same or different media; or it may be part of a hierarchy of graphical objects, from
a complex lunar habitat, through its components and subcomponents, down to its
ultimate polylines of points in 3-D space. The separation of nodes and contents allows
perspectives information (as well as display attributes and spatial transforms) to be
stored in the intervening links. There are also accessing efficiencies that result from
the separation.

Content nodes provide the knowledge representation media. The language
elements and terminology elements are explained in Chapter 10 and in Appendix C.
The media elements provide the various media required for supporting design. These
media elements are traditional objects of hypermedia systems. However, as part of the
HERMES substrate their retrieval, modification, display, and analysis take place
through mechanisms that are standardized across components, allow integration, are
fine-grained, are organized in perspectives, provide for plasticity, and are computed
dynamically.

8.3. LUNAR HABITAT DESIGN ENVIRONMENTS

This section will indicate how design environments built on top of HERMES
can achieve goals that have long been set for JANUS and PHIDIAS but not previously
achieved. In particular, it will argue that the combination of a powerful, integrated
hypermedia substrate, a perspectives mechanism, and an end-user language facilitate
the desired functionality.

Figure 8-3 shows a screen view of five open windows that are typical of the
HERMES interface. This screen view is taken from a prototype Lunar Habitat Design
Environment (LHDE) built on top of HERMES. From left to right, the windows are:

1. A control dialog for navigating hypermedia. It shows the selection of the
discussion predicate for navigating the out-going links from an issue,
“What are the design considerations for bunks?” Discussion is an
expression in the HERMES end-user programming language, defined as an
indented hierarchy of issues, subissues, answers, and arguments. The results of
the query, discussion of the selected issue, is displayed in the next
window.

2. The Design Rationale window shows the results of the query evaluated in the
privacy perspective. The query was defined in the previous control dialog
window by choosing a predicate relevant to the issue link type going out of
the selected issue.



3. The Critique window displays the result of the critics analyzing the construction
of a lunar habitat. The critics were evaluated as defined within the privacy
perspective. The user initiated critiquing with a button (not shown) in the next
window.

4. The Drawing window or construction area displays the current design. This
window has buttons (not shown in the Figure) to change perspective, save the
drawing in the current context, navigate links connected to the drawing (its
rationale), and critique the construction.

5. The Context selection window (partially shown) allows the user to change to a
new interpretive perspective in the context hierarchy. This affects contents of
textual nodes, definitions of elements of the language used for expressing
queries and critics, and contents of drawings.

Hermes Design Envirenment
s [Drawing Tools VYiew Contrels Options Window
Critique
The private areas are not separated from
the public areas.

R roperation
@ Navigate out-going §i
O Navigate in-coming !
O Edit the text

O Auther or Annotate
O cancel

Cri

Outgoing Links discussion of Issue;
issue _.What are the design considerations for bunky

SElect Context Privacy Porspoctive

What sheuld be the size of the buaks?
What should be the access s the bunks?
What should be the arrangement of the
bunks?
The bunks should be lined along the outer
walils.

Predicates
N . O 2 3 > 5 COR0S

discussion This atrang@mm pn.widt.s BUBY QLCESS

issue_tree from the central corridar.

subissue_tree Thig arrangemernt keeps the central

corgidor spen,

This srrangement altows buuks wnd crew
stativns to be aligned verically,
The bunks should be oriented one way on

In this interface to LHDE, one can see a 2-D graphical construction area
similar to that of JANUS and PHIDIAS. Subsequently, a version of PHIDIAS II has been
built on top of the HERMES substrate by researchers in the College of Environmental
Design’s CAD lab. It features a very general 3-D construction area, which can be
viewed from any angle and distance. It allow a designer to move through the design
space and view things at greater or less distance. The LHDE interface shown in Figure
8-3 has a palette of simple geometric shapes along the left edge of the drawing
window. The PHIDIAS II interface has palettes of chairs, tables, etc. specifically for
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lunar habitat designs. In both cases, the palettes are “hard-wired” and cannot be
modified by end-users. However, this is not necessary when using the HERMES
substrate. Instead, one could define an expression in the language to display a palette.
This has not been done because PHIDIAS II's 3-D graphics system is not yet fully
integrated with the HERMES substrate. The advantages of an integrated approach will
be discussed below.

The LHDE interface shows a view of design rationale. This is dynamically
displayed based on the results of the language expression, discussion of the
issue selected (“What are the design considerations for bunks?”). Note that the system
user did not have to worry about “programming” in the language. Everything was
done by direct manipulation, and the language implemented things behind the scenes.
The user selected an issue with the mouse in a previous Design Rationale window.
The Navigation dialog appeared, with the “Navigate out-going links” option already
chosen as the default and with the names of types of links coming out of the selected
issue (namely, issue, i.e., subissues) listed in the Out-going Links box and the
names of predicates “relevant” to those types (i.e., language expressions that begin by
traversing links of those types) listed in the Predicates box. When the user selected
discussion from the list of Predicates, the system automatically applied the
discussion predicate to the previously selected node and evaluated the resulting
language expression within the active perspective. The result is displayed in the new
Design Rationale window. That window also has buttons so that the user can modify
the display in a number of ways. The display can be replaced by selecting previously
saved results. (A button for saving the current results is located at the bottom of the
window.) Another button allows the user to select a different query to be evaluated; it
displays a list of all defined queries. A third button allows the user to create a new
query. This is the point where something like programming may enter, although the
interface for the language encourages reuse and modification of previously defined
expressions (see Chapter 10). Finally, a last button allows the user to select a different
perspective, thereby changing the display.

The PHIDIAS II interface provides an alternative display mode for design
rationale and similar displays. Rather than showing an entire indented structure, it
displays the top level of the outline form only (the unindented nodes). Every node that
has hidden indented material is indicated with a small icon. Clicking on that icon
displays the next level of indentation under that node. (This is similar to file directory
displays in the Macintosh SYSTEM 7 and WINDOWS 3.1.) What is interesting here is
that this mechanism is implemented with the HERMES language, not in a hard-wired,
programmed-in way. That is, clicking on a node’s icon causes the evaluation of the
expression, all associations of that node in the result list. The availability of
the language made it easy to implement this interface feature, and ensures that the
feature can be flexibly modified by simply modifying the definition of the language
expression (which does not require recompilation) and can be done by an end-user.

The critics in LHDE are passive agents, similar to the triggers in PHIDIAS. That
is, the user must press a button to evaluate the critic rules. In LHDE, the critic rules
are expressions in the language. (See Chapter 10 for the LHDE version of JANUS’
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kitchen critics and for an analysis of privacy critics for lunar habitats.) No additional
mechanisms are necessary because the language is designed to traverse and analyze
the hypermedia representations of the design situation. In PHIDIAS II, the triggers for
displaying design rationale on the selection and location of palette items is
impiemenied using the HERMES language. For instance, the ingger for seleciion of
chairs evaluates the expression, discussion of chair selection issue.
As discussion is defined in the LHDE seed, this goes to the issue named chair
selection issue in the issue base and displays all the related issues,
answers, and arguments.

Of course, one could add additional components to a design environment built
on HERMES. For instance, one could make critics fire automatically when a design
unit they were defined for is moved, as in JANUS. One could define specification
linking mechanisms as in KID, or formalization mechanisms as in X-NETWORK. Even
if these mechanisms were borrowed from other systems, the HERMES substrate would
pay off. Critic rules would still be defined in the HERMES language, without having to
be programmed in LISP, and they could be associated with design units via general-
purpose hypermedia links instead of special mechanisms. The specification linking
would be greatly simplified in LHDE by defining domain distinctions as well as critic
rules in the HERMES language, and then using the language to traverse the
specification hypertext. Even the formalization mechanisms would be aided by using
the HERMES language for formulating queries (as suggested in Chapter 7) and for
providing a medium of formal (computer understandable) expression. The
perspectives feature would also come in handy, allowing different versions of critics
to be organized into perspectives and using these perspectives for making their critics
more specific to the situation corresponding to that perspective (perhaps obviating the
need for a separate specification mechanism).

The most important benefit of the HERMES substrate is the synergy possible
with the hypermedia network, the perspectives organization, and the language
expressivity. For instance, the HERMES substrate provides a useful basis for finally
achieving the goals proposed as “future work” in the classic JANUS paper (Fischer,
McCall, Morch, 1989), as discussed in the following paragraphs:

(1) Within the argumentation system there is a pressing need for authoring to be
integrated with browsing. (2) Allowing ad hoc authoring during browsing would
enable the designer to annotate the issue base, record decisions on issues and
generally personalize the argumentation. (3) This in turn would create the need
for certain basic kinds of inference mechanisms. (4) For example, if the designer
has rejected the answer “dining area” to the issue “What functional areas should
the kitchen contain?” then the system should probably not display any issues,
answers or arguments that presuppose or assume that the kitchen has a dining
area.

(5) Construction and argumentation might usefully be connected in a number of
additional ways. (6) Catalog examples could be used to illustrate argumentation,
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and argumentation could be used to help in selecting examples from the catalog
(p.12; sentence numbering added).

(1) Integrating authoring with browsing. In the LHDE interface, authoring
is integrated with browsing. At every step of hypermedia browsing, the navigation
dialog in Figure 8-3 gives the user a choice of traversing out-going links, traversing
in-coming (inverse) links, editing the current node or authoring or annotating the
node. The editing option brings up an editor appropriate to the medium of the current
node, with its content ready to be edited. (In cases of multiple contents, the contents
are automatically placed in the editor consecutively.) The authoring option allows the
user to create a new node and link it to the current node. Annotation is a typical
application of this, where one links a text node to the current node with a link of type
annotation. Adding the phrase, with their annotations, to a predicate
will then include all the attached annotations in a given display. Of course, all
authoring in LHDE takes place within the current perspective.

(2) Personalizing the argumentation. The authoring option in LHDE is also
used for recording decisions in an issue base. Suppose you are browsing through a
series of issues that correspond to the issues in KID’s specification component. Then
when you come to an answer that you wish to accept as a specification for your
design, you can author a node that you attach to the answer with a resolution
link. You define its content as the boolean value true. (This is easier to do in the
LHDE interface than it sounds when described because the separation of nodes from
their content is never apparent to the user, and the hypermedia linking is generally
transparent.) In favoring the personalizing of the argumentation in the preceding
quotation, the developers of JANUS did not consider carefully the implications of
having many users “personalizing” the same homogeneous issue base. It is one thing
for Rittel to have advocated including the deliberations of half a dozen opposing
positions in a single issue base; quite another to accumulate the exploratory thoughts
of arbitrarily many users, over long periods of time, following diverse and unrelated
interests. This may not be a problem for a single-user system; however, LHDE is
intended as a repository for extensive exploration. The perspectives mechanism is an
important tool that allows “personalization” to scale up in LHDE and to function in a
collaborative setting.

(3) Inference mechanisms. In HERMES, the inference mechanism is not some
add-on function, but the embedded language itself. While the language does not allow
fully general inference across large sets of production rules, it does allow people to
encode dependencies. Conditionals, for instance, are used in a number of ways in
LHDE. The evaluation of any object in the database can be made conditional upon an
arbitrary expression in the HERMES language that evaluates to true or false.
Queries incorporating such conditional expressions can also be defined as the content
of nodes. Another approach is used in LHDE to preface display expressions with
conditional expressions, as illustrated in point (4).

(4) Adaptive argumentation. In LHDE one can build up a dining area
conditional as follows:
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if resolutions of answers of the functional areas issue
that contain “dining area” are true.

As would be clear when building this expression in the language interface (shown in
Chapter 10), the phrase, that contain “dining area”, is applied to the
answers of the functional areas issue prior to checking if the
resolutions of the answers that pass through that filtering condition have the
boolean content, t rue. Once this conditional expression has been defined, it can be
used in the variety of ways suggested in point (3). For instance, if the design rationale
included the display expression, discussion of dining area issues,
then that expression could be modified to be: if dining area conditional
then discussion of dining area issues. This would display the
issues, answers, and arguments concerning dining areas if and only if the
dining area answer of the functional areas issue had been
resolved in the positive.

(5) Connecting construction and argumentation. Because the HERMES
hypermedia substrate integrates the construction graphics and the design rationale
text, graphical examples from the catalog can be linked to entries in the issue base.
Assume that a particular kitchen layout is linked to an issue about dining areas with
an examples link. Then you can amend the display expression above to include
dining area issues with their examples. Depending on whether the
LHDE or PHIDIAS II interface was being used, either the text and graphics would be
inter-mixed in the outline indented form, or the graphic examples would be
represented by an icon and clicking on that icon would display the graphic in situ or in
another window.

(6) Connecting catalog and argumentation. In LHDE, catalogs are not fixed
displays. They are defined by language expressions. These expressions can, of course,
be modified with conditionals and other inferencing computations. Following are
some sample catalog definitions illustrating a filtering of the content of the displayed
catalog based on decisions in the argumentation (i.e., the issue base is treated as a
specification component):

if dining area conditional then kitchens that contain
dining areas

if safety is important then kitchens that are safe

if privacy 1s important then habitats that have parts
that have privacy ratings

if privacy 1s important then privacy gradient catalog

The first of these evaluates the conditional that was defined earlier. If it is true, then
kitchens are displayed if they contain subparts that are of node kind dining
areas. The second makes use of an expression named safety is important,
that checks the resolution of some issue related to safety. It then evaluates an
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expression that performs an analysis of kitchen layouts similar to the safety-related
subset of JANUS’ critics. The third again begins with a specification conditional. It
then accesses all habitats in the database. For each habitat, it goes through its subparts
to see if any of them have a link of type privacy rating. Assoon as such a link
1s found, the habitat is added to the list of items to be displayed. The last expression
takes the idea of the third one further, critiquing the separation of parts of a lunar
habitat based on the privacy ratings attached to its parts (see Chapter 10 for a detailed
analysis of this last expression).

These examples of the synergy possible with the HERMES substrate have
emphasized the use of hypermedia linking made possible by an integrated substrate.
That is, all the objects inherit common functionality, including the ability to be linked
together. The role of the language as a tool for traversing the hypermedia has also
been emphasized. Expressions in the language can be defined to relate information
from different components of a design environment. The utility of the perspectives
mechanism has not been stressed as much. However, it can play a powerful role in
personalizing the information, in coordinating sets of specifications, and in promoting
collaboration. That theme will be taken up in the next chapter.



CHAPTER 9. INTERPRETIVE PERSPECTIVES FOR
COLLABORATION

The HERMES substrate includes a mechanism for organizing knowledge in a
design environment into a network of perspectives. These perspectives provide
support for design as a process of interpretation and deliberation. They allow
designers to interpret the design situation according to their individual and group
interests. Perspectives provide a mechanism for creating, managing, and selectively
activating different sets of design knowledge, such as critics, spatial relations, domain
distinctions, palette items, and argumentation, so that alternative ideas can be
deliberated and either adopted, rejected, or modified.

The perspectives mechanism organizes all the design information in the
knowledge base. A designer always works within a particular perspective. At any
time, the designer can select a different perspective by name. When a given
perspective is selected (“active”) then only information indexed for that perspective
(or for a perspective inherited by that perspective) can be accessed, traversed, or
displayed.

A new perspective can be created by assigning a name to it and selecting
existing perspectives for it to inherit. Perspectives are connected in an inheritance
network; a perspective can modify knowledge inherited from its parents or it can add
new knowledge. Designers switch perspectives to examine a design from different
viewpoints. Switching perspectives changes the currently effective definitions of
critics, the terms used in these definitions, and other domain knowledge. For example,
imagine that Archie was collaborating with Desi using the HERMES computer system.
Then he could create archie’s habitat perspective and select desi’s
habitat perspective to inherit from. This would allow him to build upon and
critique Desi’s work, without altering what is viewed by Desi in his perspective.

The organization of information by perspectives encourages users to view
knowledge in terms of structured, meaningful categories that they can create and
modify. It provides an extensible structure of knowledge contexts that can correspond
to categories meaningful in the design domain. This eases the cognitive burden of
manipulating potentially large numbers of alternative versions of critics, rationale,
graphics, language expression definitions, and other design knowledge.

The perspectives mechanism allows items of knowledge to be bundled in
various ways, which can overlap orthogonally or inter-connect. Common types of
perspectives are:

*  personal and group viewpoints of individual designers and teams

*  topical groupings by content traditions (e.g., kitchen design)
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* technical aspects by specialties (e.g., plumbing)

* historical versions (e.g., Archie’s Monday morning habitat design)

For instance, archie’s habitat perspective might include considerations
specific to Archie’s desigi, as well as incorporating many ideas from Desi’s. If Desi
and Archie are part of a larger team, then the team’s perspective could display
concepts and rationale from all its members, or it could select from and modify the
knowledge inherited from multiple sources. Archie would also want to inherit
knowledge from lunar habitat design traditions and related technical specialties. Then,
as his design evolved, Archie could define perspectives for archiving versions of his
work.

Lunar habitat design takes advantage of information from many technical
disciplines and domain traditions: kitchen and bathroom design, low-gravity and
vacuum considerations, electrical and lighting expertise, submarine and Antarctic
isolation experiences. It can borrow selectively from both space station and Mars
habitat prior designs. Each of these bodies of knowledge can be defined within a
network of domains and subdomains that inherit, share, and modify knowledge from
each other. Perspectives can also be used to save networks of historical versions of
developing designs. The HERMES perspectives mechanism is a general—but
hypermedia specific—implementation of contexts* that can be used to supply a variety
of functionality to a design environment.

This chapter will present the HERMES perspectives mechanism in three
sections. First, Section 9.1 offers a scenario to show how a design team using
HERMES might approach the task documented in the protocol analysis of Section 3.2,
“Perspectives on Privacy.” Second, Section 9.2 describes the techniques used to
implement the perspectives mechanism in HERMES. This will detail the hypermedia
character of the implementation. Third, Section 9.3 discusses how the perspectives
mechanism can provide computer support for cooperative work. This will include
examples of interface features for displaying, browsing, and sharing knowledge in
multiple perspectives representing different people, interests, or domains.

9.1. A SCENARIO OF COOPERATION

The work of lunar habitat designers was studied in order to learn about the
work process of innovative cooperative design in a complex domain. Lunar habitat
design seems to call for computer support because of the volume of technical
information and governmental requirements, as well as because of the other-worldly
setting in which the designers’ tacit skills may be unreliable. It seemed wise to explore

4 The terms perspective and context will be used interchangeably in this Chapter.
Technically, the functionality of perspectives is implemented by defining contexts. As M. Gross
suggested, perspectives are similar to the notion of “binding contexts” in programming languages: a
definition is bound within the perspective in which it was created.
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how lunar habitat designers work now without substantial computer support in order
to envision new ways to support the old goals and to imagine how computer support
would transform the tasks involved.3

The episode transcribed in Chapter 3 showed an important turning point in a
design process: the application of the concept of privacy to the task at hand. The tacit
notion of privacy was eventually operationalized with the idea of defining a privacy
gradient, according to which public and private areas of a habitat are distributed based
on their privacy ratings. The concept of privacy then provided a paradigmatic example
for investigating the design rationale issue-base provided to lunar habitat designers by
NASA: the Manned Systems Integration Standards (NASA, 1989a). Here it was seen
that this important concept of privacy had largely eluded NASA’s extensive efforts to
provide propositional rules for the design of space-based habitation. Although privacy
was acknowledged to be an important issue, NASA failed to provide support for
designers to take privacy into account.

The present section will build on the discussion in the transcript and the critic
definitions to show how HERMES can respond to the challenge of providing computer
support for considerations of privacy. A scenario will show how lunar habitat
designers could use the HERMES system to define a powerful set of privacy critics
using the hypermedia links, perspectives, and language of HERMES. The detailed
explanation of how the critics are evaluated by the system will be saved for Chapter
10.

Desi’s perspective. Suppose that instead of sitting down together with pencil
and paper, Desi and Archie had been part of a team that worked in a design
environment built on the HERMES substrate. Desi, Archie, and two other team
members (Phyllis and Sophia) are asked to design a lunar habitat for four astronauts
to live in for 45 days. They decide to take turns working on the design in HERMES,
starting with Desi.

Desi begins creating a perspective for his new work, which he names desi’s
habitat perspective. He defines this perspective to include (inherit) the
information collected in a number of specialties and domains that he considers
relevant to the design task. Then he selects two other lunar habitat perspectives and
copies individual items of graphics and design rationale out of them for the lunar
habitat shell, bunk-bed crew compartments, and a wardroom (dining and meeting
room) arrangement. He inserts these into design rationale and graphics in his
perspective. Then he adds some rectangles to represent the bathroom and galley
(kitchen). The resulting layout is shown in Figure 9-1 (reproduced from Figure 3-2 of
Section 3.2).

3 This “dialectic of tradition and transcendence” in work-oriented design of computer
support systems is a central theme of Ehn (1988). The transformation of tasks as a result of computer
support is also emphasized by, for instance, Hutchins (1990) and Norman (1993).
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Science Work Area

Figure 9- A ar habitat design
An initial sketch has been proposed for the design team to work on.

The main functional areas of the habitat have been laid out in this sketch. This
is an initial design concept. Because other team members will be reviewing this design
and wondering why things are arranged the way they are, Desi adds some design
rationale, arguing that the bathroom and galley have all been placed together in a “wet
wall” configuration to minimize plumbing arrangements. Desi feels his design
provides a good start for the team and he goes off to work on other projects.

Archie’s perspective. Archie is interested to see what Desi has designed and
to critique it from his own viewpoint. However, he does not want to destroy Desi’s
version. So Archie defines archie’s habitat perspective as a new
perspective and lists desi’s habitat perspective as its inherited
perspective. This means that Archie will start off with everything that is in Desi’s
perspective, but as he makes changes to it the changes will only be in effect within
Archie’s perspective and not within Desi’s. The inheritance is active in the sense that
if Desi subsequently modifies something in his perspective that Archie has not
changed in his then the modification will show up in Archie’s perspective as well
(unlike if Archie had simply made his own copy of Desi’s design at some given time).

Archie also inherits a number of additional perspectives with useful technical
information. The hierarchy of perspectives incorporated in  Archie’s
perspective—including those he inherits via Desi’s perspective—are pictured in
Figure 9-2 (below).

Archie is concerned with spatial adjacencies. He likes the way the crew
compartments have been separated from the rest of the habitat to provide relief from
the daily activity. However, he dislikes the acoustic proximity of the toilet (which
flushes loudly) to the beds. Even worse, he finds the opening of the bathroom into the
eating and gathering area potentially offensive. Archie is unsure of how to handle the
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bathroom, so he switches to a perspective that he has not inherited, the perspective
for residential (terrestrial) bathrooms and browses the issue-base section on the
design and placement of bathrooms. This perspective inherits from several other
cultural and domain perspectives, including European perspectives. Here he finds the
idea ihai showers and ioilets have rather different location and adjacency
considerations in the European tradition.

Hierarchy of Perspectives Inherited by Archie
kitchens noise vibration dust
plumbing electrical antatrctic residential commercial  habitats
klac/ ubmarine handicapped spade-based
ho|using galleys lunar mars  orbital
desi
archie/

gure 9-2, The hierarchy erspectives inherite Archi
Note that Archie has access via Desi’s perspective to information in the lunar, space-based,
habitats, noise, vibration, and dust perspectives, as well as additional information related
to housing and galleys.

Applying these ideas in his mind to how he projects life in the habitat, Archie
concludes that the shower should be near the sleep areas, but the toilet should be near
the other end of the habitat, by the entrance. Moving the shower gives him the idea of
elaborating the separation of the sleeping and working areas by forming a dressing
area incorporating personal stowage. He redesigns the galley based on other ideas he
finds and feels he has reached a stopping point. (See Figure 9-3.) He copies the
rationale from the bathroom perspective concerning the separate location of the
shower and toilet, revising the rationale to apply to the lunar habitat.
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Science Work Area

Figure 9-3. Archie’ r_habitat desi
The toilet and shower functions have been separated using the European perspective on
bathroom design.

Archie revises the design rationale for the habitat. Within his perspective, he
can modify or add to (annotate or author) anything in the issue bases he has inherited
from Desi or from the other domains. He does this in preparation for the up-coming
team meeting. Before the meeting, the team members each review Archie’s design
and its rationale by displaying it in HERMES. First, they discuss the over-all design.
They like the creation of the dressing area between the shower and the personal
stowage, but argue that it blocks traffic flow. A consensus 1s reached when Phyllis
drags the dressing area to the other side of the crew compartments in the HERMES
construction area.

As a group they deliberate about the issues in Archie’s rationale section and
agree that habitation issues must be the primary focus of their designing on this
project. In particular, privacy is a key concept. In order to make the notion of privacy
operational for evaluation by interpretive critics, they decide to label the parts of the
habitat with privacy ratings. They agree on the following scale with values from 1 to
9:

very public:
guite public:
public:

somewhat public:
neutral:

somewhat private:

private:

o N o U W N

quite private:
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very private: 9

They define a link type, privacy rating, and use this type to link each area of
the habitat to a node with one of the above numeric values (or their equivalent label).
This process is facilitated by the HERMES interface: clicking on an area like the
shower in the habitat brings up the same Navigating the Hypertext dialog seen in
Figure 8-3 (in Section 8.3). Selecting the Author or Annotate option allows them to
define a new numeric node with the value 8 or quite private and to connect it
to the shower with a privacy rating link automatically. Figure 9-4 below shows
the lunar habitat design the team has come up with, labeled with the agreed upon
privacy ratings.

At the end of the meeting, Sophia and Phyllis agree to develop a suite of
privacy critics that can be used for this and future lunar habitat design assignments.

Sophia’s perspective. Sophia sets up her perspective to inherit all of Archie’s
work (and, indirectly, Desi’s). Now Sophia must define the terminology to be used in
her critics. She is interested in determining problem areas in which private areas are
too near to public areas. By “too near”, Sophia decides she means less than five feet.
So she defines a “Measure” in the HERMES language named too near as:

closest distance 1is less than 5 feet

Science Work Area

{3}

Figure 9-4, Archie’s lunar habitat with its privacy ratings.

Then, she defines public and private areas in terms of the ends of the privacy scale:

public area: parts that have privacy ratings that are
less than somewhat public
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private areas: parts that have privacy ratings that are
more than somewhat private

Next she defines the problem areas she is concerned with using these terms:

problem areas: private areas with public areas of that
(last subject) that are too near those items

Then, Sophia defines a message for her critic to display if no problem areas are found:

privacy message: “pPublic and private areas are
separated.”

Finally, she can define her privacy check critic:

name with either name of problem areas or privacy
message

This critic, privacy check, is a predicate that can be applied to any node
or list of nodes in the database. When Sophia applies it to her lunar habitat design, it
lists the name of the design and then lists all the problem areas in the habitat by
their names; if no problem areas are found, it displays the privacy
message. Figure 9-5 shows the output from applying privacy check to the
design of archie’s lunar habitat shown in Figure 9-4:

CRITIQUE OF DESIGN

privacy check of archie’s
Critic ) 1unar habitat

/a.rchie’s Tunar habitat
shower
bunk 1
galley

toilet

galley

science work area
bunk 2

wardroom table

Figure 9-5. Output from the privacy check critic,

Note that all private areas are listed by name. Under each of them are
the public areas that are too near to them. The way this critic is defined it
supports the designer’s review of the information. Sophia gets a complete listing of
private areas from which she can check just what problematic adjacencies
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each has so she can also make sure the critic is doing exactly the computation she
wants it to.

Debugging of critics is an important process, particularly since much of the
computation is implicit in the language expressions. The privacy check is a fairly
complex critic that Sophia has developed and debugged gradually. Once she is sure it
is working, she can use it as a basis for more complicated evaluations. For instance,
the display of the lunar habitat design in HERMES does not actually include the
privacy ratings that were shown in Figure 9-4. So Sophia decides she wants
to print these values out along with the listing of areas. To do this, she defines a new
critic that prints out both the name and the privacy rating of each listed area:

privacy display: name and privacy ratings of problem
areas

The result of applying this critic to archie’s lunar habitat is shown in
Figure 9-6. (The names of the privacy ratings are shown in bold.)

CRITIQUE OF DESIGN

privacy display of archie's
Critic lunar habitat
fsha‘)wcr

quite private

bunk 1

private
galley

very public
toilet
very private
galley
very public

Now that Sophia has gotten her critics working the way she wants them to,
she decides to make them general enough to apply to lists of objects. Then, as more
habitats are developed in the HERMES database and are labeled with privacy values,
designers can use Sophia’s privacy critics to display catalogs of interesting habitats.
This is illustrated in Figure 9-7. This way Sophia can quickly find examples of
problem areas in past habitat designs to help her deliberate about when such
adjacencies might in fact be acceptable.
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CRITIQUE OF DESIGN

privacy check of lunar habitats

~
( sandra's lunar habitat
Public and private areas are separated.
sandra's revised lunar habitat
Public and private areas are separated.

archie's lunar habitat
shower
bunk 1
galley
toilet
galley
sclence work area

Figure 9-7. The privacy check critic applied to a list of all lunar habitats

Phyllis’ perspective. Phyllis is a super-user of the HERMES language. To test
its power, she tries to define a critic that involves a complex series of computations.
By using an advanced feature of the language (explained in Section 10.3 below), she
succeeds. Phyllis recalls previous discussions between Desi and Archie (from Chapter
3) that proposed the concept of a privacy gradient. That meant that the arrangement
of the habitat should gradually change from private areas to public areas. To
operationalize this notion, Phyllis introduces a test to see if any two areas of the
habitat that are near each other differ in their privacy values by more than two.

Phyllis defines the following set of definitions to compute problem parts
in her sense:

are incompatible: have privacy ratings that are more
than privacy ratings of that (last subject) + 2 or
are less than privacy ratings of that (last subject)
-2

too near: closest distance is less than 3 feet

other parts: parts of inverse parts that do not equal
that (last subject)

problem parts: name and privacy ratings of other parts
that are too near that (last subject) and that are
incompatible

These definitions illustrate the limits of the HERMES language, calling upon
advanced features of the language that only experienced users of HERMES would feel
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comfortable using to create new expressions. The wording of some of Phyllis’
expressions are no longer intuitive because their computations refer outside of the
expressions used to define them. In fact, the wording in such cases is designed to
interrupt tacit understanding and to stimulate reflection on the explicit computational
rclations. Fortunately, this complexity is generally encapsulated in the names of the
expressions so future users need not always be concerned with it.

Note that Phyllis has defined a measure with the same name (too near) as
one of Sophia’s, but with a different value. This is not a problem since they are

working in independent perspectives (even though they inherit much of the same
information from other perspectives.)

To complete the privacy gradient critique, Phyllis defines a
format for listing problem parts and she specifies a message for the case in which no
problem parts are found in a habitat:

privacy gradient listing: name and privacy ratings with
problem parts

privacy gradient message: “The parts of this design are
arranged along a privacy gradient.”

privacy gradient critique: eilther privacy gradient
listing of parts or privacy gradient message

Like Sophia, Phyllis wants to apply her critique to all habitats in the database.
Note that in the following definition for this procedure Phyllis first filters the list of
habitats to just those for which privacy ratings have been defined. This
produces a list of habitats for which issues of designing for privacy are most likely to
have been thought through and to provide relevant ideas and rationale. For these
habitats, it is indicated which meet the criteria of following a privacy gradient and
where the problem areas are in those that do not. A sample result is shown in Figure
9-8. Here is Phyllis’ final critic rule or display expression, privacy gradient
catalog:

name with privacy gradient critigue of habitats that
have parts that have privacy ratings



61

CRITIQUE OF DESIGN

privacy gradient catalog

sandra’s lunar habitat

The parts of this are wranged along a privacy gradient,

sandra’s revised lunar habitat
The parts of this are arranged along a privacy gradient,
archie's lunar habitat
shower
quite private
bunk 1
private
galley
very public
totlet
very private
galley
very public

seience work ares

public
\ galley

Figure 9-8. Output from the privacy gradient catalog expression.

The team perspective. When the team comes back together, they are
enthusiastic about the power of the privacy critics to automate some complex analysis
of habitats for them. Desi says, “I never tried to define anything in the HERMES
language; I just make little adjustments to the display definitions and critics that I find
already in the system. They usually meet my needs. But these new critics do things I
could never do before. And I think I understand them well enough to use them and
maybe even tweak them.” “Yeah,” chimed in Archie, “I never used the advanced
syntax options for dealing with graphics and distances. Maybe I can learn how to do
that by playing around with these privacy critics. Can you put them all in a
perspective where we can experiment with them?”
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Name of new perspective:

Inherited perspectives:

sophia's perspective
phyllis' perspective

Figure 9-9. Creating a new perspective,

Sophia was happy to oblige: “Sure. The thing we need to be careful about is
the definition of too near, because Phyllis and I disagree on that. Let’s make the
default for that 5 feet, okay?” She created a perspective called lunar habitat
design team that anyone could inherit from to experiment with the critics or to
pursue their design work further. She had the new perspective inherit from both the
sophia perspective and the phyllis perspective, making sure she
listed the sophia perspective first so that its definitions would override in case
of conflicts, as with the definition of the expression too near.

Figure 9-9 shows the dialog box for creating the new perspective. Figure 9-10
shows the new hierarchy of defined perspectives.
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kltchens hoise wbratton dust

plumbmg electrical anta ctlc re\.udentlal co merc:lal habitats

marm handlcapped amerlcan european space-based

housing galleys bathrooms Iu ar mars orbital

prlvacy
deS|

archle

sophla phylhs

(too near < 5 feet) (too near < 3 feet)

lunar habitat design team
(too near < 5 feet)

9.2. A HYPERMEDIA IMPLEMENTATION OF PERSPECTIVES

This section discusses the implementation of the HERMES perspectives
mechanism. The ten methods discussed below are used by the HERMES substrate
internally. The user never needs to know how they work. Even people who build
design environment components on top of the HERMES substrate do not need to be
concerned with the details, but can simply call the methods. The purpose of this
section is to describe some of the computation that takes place behind the scenes
every time a designer retrieves, displays, navigates, modifies, critiques, or analyzes
information in the system. It is an example of the active computation that supports the
user’s tacit design work.

As suggested in Chapter 7, the perspectives (or, equivalently, contexts)
mechanism in HERMES is loosely based on the virtual copying of networks approach
proposed by Mittal, et al. (1986) and the general copy-on-write technique discussed
by Fitzgerald and Rashid (1986). More particularly, it was proposed by McCall
(1991/92) for application to hierarchical networks of domain rationale in PHIDIAS. In
HERMES, the perspectives mechanism has been expanded and generalized so that all
information (e.g., graphics and other media, as well as definitions of language
expressions) is accessible relative to the perspectives.
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There are two parts to the perspectives mechanism. First, there is a hierarchy
of defined perspectives that is maintained as a network of (context) nodes and
(context) links. Second, every link in the hypermedia database contains lists specifying
which perspectives may or may not be active for the link to be traversed. The
question as to what perspective is the “active’” one at any given time is answered by
reference to a value maintained by the HERMES application.

The hierarchy of perspectives is quite simple. It looks much like the nodes and
links pictured in Figure 9-10 above. When a new perspective is defined by a user
through a dialog box like that in Figure 9-9, a new context node is created. It is linked
to the context nodes it inherits from by a simple context link. As discussed in Chapter
8, context nodes and links are like regular nodes and links except that they have no
node kinds or link types. Context nodes have just their names and their links to other
contexts. Like any node in HERMES, they can be time-stamped and they can be linked
to annotations or other attributes. This linking can be used for documentation or to
implement security systems that restrict movement from one perspective to another.
However, in the normal HERMES system all information can be accessed by all users;
it is organized in perspectives to support timely access. Traversal of the context
hierarchy is similar to normal hypermedia traversal, but it has been optimized for
efficiency.

Links in HERMES consist of multiple sublinks between a given pair of nodes.
Each sublink maintains four items related to the perspectives mechanism: (1) the
original context in which the link was created, (2) a list of added contexts in which the
link can also be traversed, (3) a list of deleted contexts in which the link should not be
traversed, and (4) a “switch” context to which the active perspective should be
changed when the link is traversed. This information supports ten methods for the
virtual copying of nodes, links, or hypermedia networks, as discussed in this section.

When the system wants to traverse a link, it tests to see if any of the link’s
sublinks can be traversed. The test proceeds as follows: (a) If the currently active
perspective or any of its inherited ancestors matches a context on the deleted list (3),
then the sublink cannot be traversed. (b) If the currently active perspective or any of
its inherited ancestors matches the original context (1) or a context on the added list
(2), then the sublink can be traversed. If there is a switch context (4), then when the
link is traversed the active perspective must be changed to the switched context. The
inherited ancestors are checked through a breadth-first recursive search with a check
for cycles in the inheritance network. Conflicts from multiple inheritance have no
consequence since there is no content to the context nodes, the first match halts the
search, and alternative paths are equivalent.

Recall from Chapter 8 that named nodes are separated from their contents.
So, links connect pairs of named nodes and they also connect named nodes with their
content. Because the contexts are checked during link traversal, they control both
which named nodes are connected in the active perspective and what contents go with
a given named node in that perspective. This is why it is possible for a given named
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node (e.g., the language expression named “coo neaxr”) to have different contents
(different definitions) in different perspectives.

The following suite of ten methods implement the creation, deletion, and
modification of links, nodes, and contents relative to perspectives. They are defined as
object methods for VCopy nodes (see Section 8.2). They provide the following
functions:

Copy the information from one context (perspective) into another.
Delete one node in a context that descends from another context.
Modify one node in a context that descends from another context.
Delete one link in a context that descends from another context.
Modify one link in a context that descends from another context.
Physically copy one node from one context into another context.
Virtually copy one node from one context into another context.

Reuse a subnetwork from one context in another context.

A S I

Virtual copy a subnetwork from one context into another context.

[u—
=

. Lazy virtual copy a subnetwork from one context into another context.

Method 1: copy an entire context. Given the foregoing apparatus, the ten
virtual copying methods can be explained. The simplest is to just copy all the contents
of one perspective into a new perspective. For instance, Archie wanted to make his
own copy of everything that was visible in Desi’s perspective. This is done by defining
the new perspective and having it inherit from the old one. Then, when the system
checks a link to a node or to a node’s contents when the new context is the active
one, it will start by trying to match the new context and then will try to match its
ancestors. The old context is its ancestor, so a match will be found when the new
context is active if and only if it would have been found when the old context was
active. Therefore, the same nodes and contents will be visible to Archie as to Desi. Of
course, once Archie starts adding, modifying, or deleting nodes or links in his
perspective, sublinks will start being labeled with Archie’s new context and this will
introduce changes between the two perspectives.

This approach is called virtual copying because the effect is to make it seem
that all the information from one perspective has been copied into the other
perspective. However, nothing has in fact been physically copied in the database. In
fact, no nodes or links have been changed at all, except the addition of the new
context node and its links in the perspectives inheritance hierarchy. Physical changes
to the nodes and links only take place when there are changes made to the virtual
copies. That is, if Archie deletes or modifies a node or link that was originally created
by Desi, then changes must be made to ensure that the modifications or deletions
show up in Archie’s perspective but not in Desi’s. On the other hand, if Desi changes
something that has not been altered by Archie, then these changes should show up in
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both perspectives. Under many circumstances, his last point is an advantage of virtual
copying over physical copies—in addition to the great savings of memory and time.

The next four methods are for handling deletions or modifications to virtual
copies in a descendant perspective.

Method 2: delete a node in a descendant context. To delete a node, simply
add the name of the current perspective to the delete list of the sublink. For instance,
to delete in Archie’s perspective a named node or a content node that was virtual
copied from Desi’s perspective, leave its original context (Desi’s) alone and add
Archie’s perspective to the delete list of the sublink of the link leading to the node.
Then when traversal of that link is attempted in Archie’s perspective, the delete list
will prohibit the traversal, although it will still be permitted in Desi’s perspective.

Method 3: modify a node in a descendant context. To modify a node, first
create a physical copy of it in the new perspective and link it with a new link labeled
with the current perspective as its original context. Then delete the old node in the
perspective using method 2. Suppose Desi had defined too near as closest
distance 1is less then 5 feet and Archie modified it to closest
distance is less then 3 feet;the resultis shown in Figure 9-11.

Desi's; not: Archie's

too near

Archie's

Method 4: delete a link in a descendant context. This is identical to method
2. To make it so that a link will not be traversed in the descendent context is to make
the linked node effectively deleted in that context.

Method 5: modify a link in a descendant context. This is similar to method
3, although no changes to nodes are made. Rather a new sublink of the original link is
created. The original sublink and the new sublink are labeled as were the two links in
method 3 (and Figure 9-11). Now there are two routes through the link to the node.
One will be crossed in the ancestor context(s) the other in the descendent context.

Recall that display attributes and spatial transforms are stored in the sublinks,
so which sublink gets traversed can make a significant difference in how the node at
the end of the link is displayed. For instance, the node could be the graphics for a
brick in a wall. If the wall consists of thousands of identical bricks, it could be made
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up of thousands of virtual copies of the one graphic node, each reached by a different
sublink having different spatial transforms to locate that copy in the wall. Such
efficient vector graphics is a major benefit of the virtual copying scheme, although it is
not a central concern of this dissertation.

The remaining methods handle cases in which one does not wish to copy an
entire perspective, but rather just a single node of a linked network of nodes.

Method 6: physical copy one node into another context. One can always
simply make a physical copy of a node from one context to another. The old node is
not changed. The link from the new copy of the named node to the new copy of its
content is labeled with the new perspective. This option can be used in place of virtual
copying in cases where one does not wish the copy to change if its original prototype
is changed in its old perspective.

Method 7: virtual copy one node into another context. This method uses
the list of added contexts in the sublist. To copy a node from, say, Phyllis” perspective
to an independent perspective, like Sophia’s, simply add Sophia’s perspective to the
add list of the link between the node and its content. (The perspective hierarchy in
Figure 9-12 is assumed in this and the following methods.)

DeTi's
/A[C .e's

SOPK / X

team's internal

Figure 9-12. An illustrative perspectives hierarchy.

Method 8: reuse a subnetwork in another context. This method uses the
switch context in the sublist. To virtual copy a network of nodes in, say, Phyllis’
perspective so they can be traversed in an independent perspective like Sophia’s, first
create a new context and have it inherit from Phyllis’ context. This context need not
even have a name; since it is used internally, it can always be referenced directly by its
internal object id. Although the number of such internally-defined contexts may
proliferate with extensive virtual copying, they will never appear to the system users.
Then create a link from where you want to enter this subnetwork in Sophia’s
perspective to the first node you want to traverse to in Phyllis’ perspective. This link
will have Sophia’s perspective as its original context. Define its switch context to be
the new internal context as in Figure 9-13. Then, what happens when you traverse
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this link from Sophia’s perspective is that your currently active perspective changes to
the internal context. Since this context is a descendant of Phyllis’ perspective, you can
now freely traverse the subnetwork.

\{hi?'s

Phyllis’

Sophia -> internal

Figure 9-13. Switching contexts to traverse a subnetwork.

The network of nodes on the left is visible in Sophia’s perspective; that on the right in
Phyllis’. The link between them can be traversed in Sophia’s perspective, but it switches the
active perspective to an internally defined descendent of Phyllis’ perspective so that the
right-hand network will be visible.

Method 9: virtual copy a subnetwork into another context. This method is
an extension of method 7 and an alternative to method 8. The disadvantage of this
method is that it is more computationally intensive to set up. Whereas method 8
involves just adding an internal context to the perspectives hierarchy and creating a
single new link with the switch context, method 9 involves inserting the current
context into the add list of a sublist in every link of the subnetwork. If the subnetwork
has thousands of nodes linked together, this can be an expensive operation, involving
many disk accesses.

Method 10: lazy virtual copy a subnetwork into another context. This is a
variation on method 9. Instead of traversing the entire subnetwork and inserting the
current perspective into all the sublink add lists at once, only the link to the first node
is treated. All links coming out of this node are then marked for future treatment. As
each of these links is traversed in the future during normal operations, those links are
treated and the links further down in the subnetwork coming out of their nodes are
then marked for future treatment. This spreads out the costs and delays them until
they are unavoidable. A further advantage is that prior to virtual copying each of the
nodes as they are encountered, the user can be queried if the node should actually be
included in the new perspective. This allows the user to browse through the network
and selectively include just those nodes that are really desirable in the new
perspective.

Method 10 uses the procedural attachment technique mentioned in Chapter 8.
Every node in the system is capable of having an arbitrary procedure attached to it.
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The nodes to be treated in the future by method 10 are marked by having the lazy
virtual copying procedure attached to them. Then when they are traversed, the
procedure is executed and it treats them and their further links appropriately. This is a
form of delayed recursion.

The ten methods reviewed here (along with the context hierarchy and the
procedure for checking links during attempted traversal) suffice for implementing the
HERMES perspectives mechanism. They provide an efficient means for organizing
information in over-lapping categories, such as hierarchies of personal and group
viewpoints, of technical aspects, and of domain traditions. The virtual copying is also
useful for efficient versioning schemes, CAD graphics, and information security
systems. The following section will touch on some ways this mechanism can be used
to support interpretation in collaborative design.

9.3. EVOLVING PERSPECTIVES

Supporting knowledge evolution. As knowledge in the database grows and
changes, it must often be reorganized. The evolution of knowledge means that
different designers are adding, deleting, and changing information in different
perspectives. In a design environment without perspectives all the growth of
knowledge would take place within a single, homogeneous knowledge base. When
the organization of this knowledge became disorganized and contradictory it might be
necessary for a reseeding process to take place. This could involve specialist
programmers or knowledge engineers (that is, people other than the designers who
normally use the system) to step in and impose order and consistency. They might
extend some of the system functionality as well, but their main task would be to
straighten out the organization of knowledge.

In HERMES, the perspectives mechanism can be used by the designers
themselves to do some of the reseeding process in an on-going way. They can also
use the language to extend the functionality of the system, defining, for instance, new
analytic computations.

A paradigmatic task for supporting the evolution of perspectives and their
knowledge is the merging of two unrelated perspectives. This was also identified as a
critical task by the authors of the perspectives mechanism in the PIE system, reviewed
in Chapter 7. In Section 9.1, above, the design team decided to merge the privacy
critic work in phyllis’ perspective with that in sophia’s
perspective, creating a new lunar habitat design team perspective.
This is an example of reorganizing evolved knowledge. The new perspective might
also be designated the privacy perspective. The point is that multiple
independent efforts had created new knowledge in separate perspectives. Because the
designers decided that this knowledge belonged together, they created a new category
(perspective) for it and reorganized the knowledge accordingly.

Figure 9-14 shows the HERMES interface for doing this. It is similar to the schematic
in Figure 9-9. Here, the new perspective is created by assigning it a name. Then
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existing perspectives are chosen from a pick list (either as a sorted list or a
hierarchical tree) to specify what information should be inherited. The inheritance
takes place using Method 1 described in Section 9.2. In the particular scenario of
Section 9.1, there was a multiple inheritance conflict in the definition of the
expression, too near. Such conflicis are resolved through a breadih-first search of
the inheritance tree. So the version of information in the most immediate ancestor
perspective takes precedence. In case of two ancestors at the same level, the one
named first in the dialog takes precedence. Note that this dialog allows one to review
and modify the inheritance tree of existing perspectives as well as perspectives being
newly created in the dialog.

New or selected context:

gerhard fischer context

gerhard fischer context
mike eisenberg context
clayton lewis context
computer science hackers
lunar habitat design task
msis :
hermes_universal_cont{|

Fioure 9-14. Interface for merging existing information into a new perspective,

Once the new perspective is set up, designers can browse through the
information visible in the perspective and modify it. Information can be added, deleted
or modified using the methods described in Section 9.2. This process of adding,
deleting, and modifying applies to both named nodes and to their contents. It also
applies to both individual nodes and to whole subnetworks of nodes. For instance, an
issue in the design rationale could be wholly deleted or it could merely have its
content changed in the new perspective. Furthermore, the networks of subissues,
answers, and arguments underneath a given issue could be copied in from another
perspective by one of several alternative methods already described in Section 9.2.
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Of particular interest in merging design rationale and other information from
different perspectives is the fact that multiple opinions can be preserved or suppressed
at will. Figure 9-15 shows the same segment of design rationale as viewed in three
perspectives, which inherit from each other sequentially (right to left). Two kinds of
changes have been made in the subsequent perspectives: changes that overwrite the
previous opinions and changes that add to the previous opinions.

File Edit Text 3-D Graphics Graphics Drawing Tools View Controls Optiens Window

issue_tree with their deliberation of node issue issue_tree with thelr deliberation of node issue

6.6.2.4

Issue_tree with thelr deliberation of node issue
6.6.2.4

it gerhard fischer context t4 clayton lewis context

What should be the size of the hunks?
\What should e the arcess to the bunks?
The arcess should be from the central
corridor to each slaep compartment, -
Clayton, 5/1692
The access should be frowa the conter of
the pinwhesl. -~ Mike, 371742
The aceess should he from a frap deor n
the bottom of each sleep compartraent,
w Gevhard, 371902

The bunks shonld he lined up scrosy the
hahitat.
This arvangement provides for sasy
expansion or contrnetion for more or
fower bunks.
This srrangsment creates movs uniforn
Spass.
Unifarmity keeps things simpler for
facture, radesign, {
The bunks should be made nuxrower than
the standard module.
This saves wasted space and allows this
ut to be as corepact as the

ur
pinwhesl

12 results

|| What should be the arrangeraent of the burks?

What showld he the wrraupsment of the hunks?

| [ What sheuld ha the size of the bunks?
|| What should he the access to the hunks?

The necess should be from the central
corvidor to sach sleep comparbinent, -
Clayton, 31642

The acensy should be from the center of
the pinwheel. - Mike, 3/17%92

The bunks should be arranged ina

pinwheel condiaratiow,
This mrangerent saves space and does ny
protrude over so nuch of the habitat,
This wrrangemwent allows for faller
separaifon of pubfe and private spaces.
The piwheel does not have to extend ovel
the galley-wardroown axea.

The bunks should be accessed through the

venter of the pinwheel

This arrangement minimizes the space
raserved for arcess to the hunks.

11 results

‘What should he the size af the bonks?
‘What should be the access to the bunks?
The access should be from the central
covtidor to sach sleep compartinent, -~
Clayton, /1647
What shwuld be the arrangement of the hunks?
The bunks should be lined along the outer
walls,
This arrangement provides eagy access
from the central corvidor.
This arrangement keeps the central
curridor open,

This armngerment allows huoks and evow |

stations to be aligned vertieally.
Tha bunks should ba oriented one way ox
one wall; the other on the other.
This arvangement provides privacy by
plazing sigeping heads apart,

In each perspective, the same three issues are raised. For the answer to the
second issue—“What should be the access to the bunks?’—the middle perspective
has added an additional answer to the original one and the perspective on the left has
added a third answer to those two answers. So in the final perspective, which inherits
from the other two, the three competing answers are all visible. However, the answers
to the third issue—“What should be the arrangement of the bunks?’—replace each
other. Here, the issue is answered differently in each perspective because the inherited
answers were deleted or modified to the new answers. This shows how support for
evolution of information can equally support the accumulation and deliberation of
historical versions of information or the replacing and modification of information.
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Another important concern for the evolution of knowledge is the need to
support the demotion and promotion of items of information from a given perspective
to one that is higher or lower in the perspective hierarchy. Assume that there is a
hierarchy of domain traditions such as that on the right-hand side of Figure 9-10.
From most general to most specific there are the perspectives: habitats, space-based
habitats, and Mars or lunar habitats. Suppose that a particular network of design
rationale had been formulated by a designer working in the space-based
habitat perspective at some point in the past. In reviewing this information
within the lunar habitat design team perspective the design team
members use the language constructs discussed below to determine which context this
rationale is defined in and they decide as a group that the rationale is general enough
to be placed in the habitats perspective. Alternatively, they might decide
that some other rationale is too specific to the moon and should be located in the
lunar habitat perspective. By clicking on the top node of the subnetwork
of rationale, they can bring up an interface dialog box (see Figure 9-16) that suggests
a number of options for reorganizing the location within the perspectives hierarchy of
the node and/or the network of nodes connected to it. These options are implemented
with the methods described in Section 9.2.

Node contents:

Main Perspective:
O Demotefpromote node P

lunar habitat design perspective

O demote/promote network

Inherited perspectives:
O delete node

sophia's perspective

O physical copy node

phyllis® perspective
O virtual copy noed

O virtual copy network

O lazy virtual copy network

Fioure 9-16. Interfuce for demoting or promoting a node or subnetwork of nodes
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Browsing perspectives. The perspectives mechanism simplifies the task of
1ocating information 1in the rich knowledge base of an evolving design environment by

Ao lados afial ntacneia T Axxrovre ala ndda +lhn

Paluu\}luub the }\uuvnvusu intoc usciu vawbuxlps nOwever, it also adds to the
complexity of finding information because the knowledge being sought may not be
visible in the current perspective even though it exists in the system. It may not be
obvious what perspective to look in. Support must be provided for searching the
network of perspectives and for browsing the knowledge available in the different
perspectives.

LHDE provides a simple browser with an indented outline representation of
the hierarchy of perspectives or a sorted list of the perspectives names as part of the
interface for perspectives selection and new perspective creation. This may be
adequate for people who are only interested in a handful of perspectives whose names
they recognize. It may also suffice as long as the hierarchy makes intuitive sense,
perspectives have descriptive names, and knowledge is distributed among the
perspectives in a clear and systematic manner. As the knowledge base evolves,
extended by multiple users, these conditions will likely not persist. Of course, users
can switch to different perspectives and explore the information there with display
queries and hypermedia navigation. Also, more sophisticated graphical browsers can
be added to the system interface to better represent the network of perspectives.

The HERMES language also offers a more flexible and expressive solution to
the problem of browsing the perspectives hierarchy and the knowledge bases in the
various perspectives. As discussed in the next chapter, the language syntax falls into
three primary classes: DataLists, Associations, and Filters. Each of these classes
supports the formulation of expressions providing information about perspectives or
contexts. (a) One can produce DataLists of objects that are visible in some arbitrary
context other than the current active perspective. (b) One can list context information
associated with a given object in the database. (¢) One can filter a list of contexts in
terms of their inheritance relations to other contexts or in terms of what objects are
visible within them. This provides a useful suite of language functions for browsing
the perspectives and exploring how they partition knowledge. Examples of these
functions will now be given.

(a) The first function allows one to, in effect, switch perspectives within the
evaluation of a language expression. For instance, if Phyllis wants to see what habitats
are visible from Sophia’s perspective then she can request a display of the following
DatalList:

habitats in sophia’s perspective

This produces the same effect as if she had first switched contexts and then evaluated
the expression, habitats. The same function allows Phyllis to apply her privacy
critic to the habitats in Sophia’s perspective rather than in her own:

privacy gradient catalog of habitats 1in sophia’s
perspective
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By including this capability in the language, it can be used as part of a complex
computation that may involve several context switches. Once defined, such a
computation can be given a name and subsequent users of the expression do not have
to worry about doing all the switching or remember what nodes are in which
contexts.

(b) The second language function related to perspectives provides a special
report on the context information associated with an item or a list of items. For each
item, it provides the original context that it was defined in, the list of all added
contexts in which it also appears, the list of all deleted contexts in which it does not
appear, and the optional switch context. (Only named—user-defined—contexts are
listed, not internally defined ones.) This way, one can find all the perspectives in
which a given item is visible. In the following example, the cont exts Association is
applied to the result of a query:

contexts of habitats in hermes_universal_ context

This example uses the function discussed in the previous paragraph to first switch to
the special perspective, hermes_universal_context. This special perspective
allows all knowledge in the database to be visible: it by-passes the context checking.
So first all the habitats in the system are found, and then their context information is
displayed.

(c) The third language function defines three Filters for lists of contexts. These
filters allow only the contexts to be listed that inherit from a given context, are
inherited by a given context, or allow a given item to be viewed. The following
expressions illustrate the use of these three Filters:

contexts that inherit from desi’s perspective
contexts that are inherited by archie’s perspective

contexts that view more than five habitats

These expressions allow one to explore the structure of the perspectives hierarchy and
of the way it organizes knowledge.

Perspectives fill in the layered architecture. Users of a design environment
with a perspectives mechanism can build new structures for partitioning the
knowledge base as it evolves. Thereby, the inheritance network of perspectives
provides a mechanism for end-users to extend the effective structure of the layered
architecture of the system. As discussed in Chapter 7, there is a gap (transformation
distance-2) in the traditional design environment architecture (e.g., in JANUS and
PHIDIAS) between the seeded representations of situations and the concrete task that
1s addressed during a given use of the system.
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Designing a particular habitat |

transformation user-defined perspectives with knowledge
distance-2 user-defined language expressions

Lunar Habitat Design Environment I

seeded perspectives with knowledge

transformation transformation seeded language expressions
distance-1 distance-3

Hermes substrate I

Object-oriented class libraries |

I General purpose programming language |

As shown in Figure 9-17, this gap is much smaller than that between the
implementation programming language and the actual task domain, but it is not
negligible.

In addition to providing palette items, catalog examples, and design rationale
for the general problem domain, the seeded knowledge base in HERMES can partition
this knowledge in a hierarchy of perspectives. Some of these perspectives can include
knowledge that is specific to certain concrete tasks. This mediates between the
general domain knowledge and specific tasks. In addition, end-users can extend the
hierarchy to close the gap between the generic domain knowledge and novel tasks
that arise. The extensibility of the perspectives hierarchy allows the gap to be
narrowed as much as is needed to support interpretation in design by eliminating gaps
in understanding that cause problems. As problems and knowledge evolve, the
perspectives hierarchy can evolve under end-user control to meet the new demands
and fill the shifting gaps.

In Chapter 10 it will be argued that the HERMES language can also be used as
an extensible mechanism for end-users to progressively fill in the gap in the layered
architecture. Definitions in the language exist within perspectives, so these two
solutions work in tandem. Together, the HERMES substrate, its perspectives, and its
language allow the major gaps in the layered architecture to be filled in to an
arbitrarily fine degree and in an end-user extensible manner. Figure 9-17 illustrates
this. From left to right in the figure are the original transformation distance between a
general-purpose programming language and a task, the two problematic gaps in the
traditional layered architecture of a design environment, and the fully layered
architecture supported by HERMES.
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Many of the features discussed in this section were originally suggested by
lunar habitat designers and other NASA employees who have reviewed versions of
HERMES. They have responded very favorably to the potential of the perspectives
mechanism—as well as the hypermedia and language—to meet their everyday needs
as designers facing complex, innovative, collaborative, knowledge-based tasks. To
really know the extent to which the perspectives mechanisms can be used tacitly
under realistic conditions will require extensive interface refinement and workplace
testing. However, it seems plausible that the perspectives mechanisms can be effective
in letting the computer manage a significant amount of the complexity of knowledge
organization behind the scenes of the task at hand in which the designer is immersed.



CHAPTER 10. ALANGUAGE FOR SUPPORTING
INTERPRETATION

The language presented in this chapter is designed as an integral part of the
active computer support of human interpretation in design. It is structured for
maximal plasticity so that designers can create and modify terms that express their
ideas and their interpretations of their developing designs. At the same time, it must
serve as a programming language used to instruct the computer in what computations
to make. As part of a hypermedia substrate for design environments, it needs to
provide expressive functionality useful for building user interface components and for
exploring the hypermedia database.

If one thinks of a computationally active medium for design as incorporating a
variety of “agents” that respond to events by computing information for messages and
displays, then the HERMES language must serve as a language of agents. It must be
able to analyze information in the database—using the customized terminology that
particular designers defined within their perspectives—and format the results of
computations on that information for display to the designers using the system. In the
people-centered HERMES system, the agents do not change stored information,
because such changes are left to the direct control of the human designers.

A central question addressed during the development of the HERMES language
was how to make the language appropriate to the nature of the human-computer
interaction that should take place in a design environment. The HERMES language
grew out of the query language of the PHIDIAS design environment, discussed in
Chapter 7. The PHIDIAS language was an attempt to provide a language that was
“English-like” in appearance in the hope that it could be used by designers who had
only a tacit understanding of what expressions in the language meant (i.e., what the
expressions accomplished computationally). However, Part II argued that tacit
understanding by itself was often insufficient; that interpretation required making
some things explicit. That was one reason a language is needed at all. Designers
cannot rely exclusively on pre-linguistic “human problem-domain communication” as
illustrated by the JANUS system, but must sometimes be able to articulate their
understanding in words. Language and explicit understanding are required to discover
innovative interpretations, to share ideas with collaborators, and to create computer
representations. On the other hand, explicit knowledge must be founded on tacit
understanding and it is only required during creative interpretive acts, not when tacit
understandings meet the needs. So PHIDIAS’ approach to a tacitly understood
language provides a promising alternative to traditional programming languages that
require a sustained high degree of explicit awareness; but it is not sufficient by itself.

Of course, the scope of the original PHIDIAS query language was quite limited.
The HERMES language extended that functionality to meet more of the expressive
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needs of design environments and of the designers who use them. During this process,
the evolving language was subjected to a series of programming walkthroughs (Bell,
et al., 1991) to evaluate its usability for writing programs. A primary result of these
walkthroughs—which are documented in detail in Appendix A—was the conclusion
that significantly more support was needed for explicit undersianding of
computational issues. However, previous evaluations of the MODIFIER system
summarized in Chapter 7 had shown that a purely explicit approach—even with
significant support mechanisms in the interface—was not the answer either.

The theory of computer support from Chapter 6 suggests that an adequate
language must support a dynamic movement between tacit and explicit
understanding. (1) Routine reuse of expressions can be largely racit. (2) Innovative
modification requires a certain amount of explicit analysis. But even here, only the
domain relationships and certain features of the representations need to be made
explicit. Much of the computational “doctrine”® associated with general purpose
programming languages does not need to be made explicit because it would only
distract from the problem-domain concerns. Much of this can be kept tacit. The
HERMES language represents an attempt to relieve the end-user of such programming
doctrine as much as possible.

Relieving the end-user of technical doctrine of programming does not mean
that designers using HERMES never need to worry about the explicit structure of the
knowledge they are taking advantage of. On the contrary, the analysis of
interpretation in this dissertation stresses the necessary role of explication in
furthering normally tacit understanding. Rather, the attempt is merely made to
minimize the amount of doctrine that must be learned that is unrelated to design.
Designers are often predominantly visual, holistic, intuitive thinkers; the symbolic,
detail-oriented, precise, mathematical character of programming language doctrine is
particularly burdensome for many skilled designers.

Section 10.1 elaborates on the principles that have gone into the development
of the HERMES language, including the necessity of supporting both tacit and explicit
understanding. The uniqueness of the HERMES language is the way in which it strives
to combine the problem-domain centered communicative goals of domain-specific
design environments like PHIDIAS and JANUS with the computationally expressive
goals of general purpose programming languages like PASCAL and LISP through this
mix of tacit and explicit understanding.

Section 10.2 shows at an in-depth level how a number of the basic
mechanisms of programming languages are available in the HERMES language in ways
that require minimal explicit understanding of technical doctrine by system users:
Abstraction is accomplished by ordinary naming, with no assignment statements.

6 The term doctrine refers to guiding knowledge that must be understood in order to use a
programming language. For instance, most general purpose programming languages require that
programmers know doctrine about when and how to use iteration control structures. The
programming walkthrough methodology is designed to assess what doctrine is required for a given
task in a language.
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Iteration takes place automatically without control structures. Typing is maintained
by the implicit organization of the syntax options. Recursion is defined without
explicit concern for halting conditions. Variables are generally avoided in favor of the
application of successive operators; where necessary, deictic pronouns can be used to
reference computational elements. Quantificarion operators can be appiied direcily L0
lists without use of explicitly bound variables. Other examples of the encapsulation of
explicit mechanisms of computation in tacitly understandable forms are developed in
Appendix B, where sample applications using them are also described. Of course,
users of the HERMES language need to learn doctrine specific to the use of this
language, but that is at a higher level of representation (closer to concerns of the
problem domain) than doctrine for a general purpose programming language.
Appendix C defines the complete syntax and semantics of the HERMES language.

Section 10.3 illustrates the use of the HERMES language for defining
interpretive critics. Interpretive critics provide a final example of the synergy of
HERMES’ support for interpretation, exploiting the combination of the integrated
substrate, perspectives, and the language. First, the critics from JANUS are redefined
in the HERMES language. Then, the privacy critics from Chapter 9 are analyzed
computationally. A number of the mechanisms discussed in Section 10.2 are shown at
work here. This spells out in some detail one way in which HERMES can respond to
the challenge from back in Chapter 3, to represent in a computer system Desi and
Archie’s concerns about privacy. The advantages of the HERMES approach are:
definitions are made at a higher level of representation, the definitions can be more
expressive, and alternative definitions can be organized in different perspectives.

10.1. AN APPROACH TO LANGUAGE DESIGN

The HERMES language is the result of following several principles arising from
the theory of computer support and the review of design environment needs in Part 11
These principles are:

1. Support a mix of tacit and explicit understanding.
2. Provide a people-centered approach.
3. Meet the needs of design environments.

4. Offer an end-user language for non-programmers.
This section will discuss how the HERMES language adheres to these principles.

1. Support a mix of tacit and explicit understanding. The HERMES
language stresses different priorities than traditional computation-centered language
designs, resulting in a different set of design decisions and a different character to the
language. The contrast between the HERMES language and the FP functional
programming language proposed by Backus (1978), on which the HERMES language
is formally modeled, or the PASCAL procedural language in which it is implemented
makes this point graphically.
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Here is a task like that posed for the programming walkthroughs reported in
Appendix A: Suppose you have a hypertext database with issues in nodes of two
types: question and problem; answers to the issues in answer nodes connected
by answer links; and arguments for the answers in argument nodes connected by
argument links. (See Figure 10-1.) Now, you want to know: which issues have
four or more arguments associated with them (via their answers).

answer

This could be accomplished by first defining i ssues as questions and
problems and defining rationale as arguments of answers. Then you
could define the query using these newly defined terms as:

issues that have more than 3 rationale

Notice how this “program” in the HERMES language is a simple statement in domain
terms of the desired results. All the computations that the computer must carry out to
produce the query results are implicit: iterating through all the questions and
problems in the database, following each of their answer links (if any) and their
argument links (if any), accumulating and counting their rationale nodes,
filtering out all the i ssues that do not fit the condition.

The statement of the query in the HERMES language contrasts with its
formulation in other programming languages. First, it has an appearance that seems
easier for non-programmers to understand tacitly than its equivalent in FP, even
though the HERMES language is formally close to Fp:

o (have-Q-R [>3, rationale]) ° issues

In this Fp declarative statement, much of the computation has been explicitly
symbolized in abstract mathematical formalisms of application, composition, and
comparison. Even so, the functional approach of FP using successive composition of
operators—which HERMES borrows from FP—avoids the step by step detail of a
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procedural language. The following procedural pseudo-code shows what this query
would require in a procedural language, and in fact how it is computed (behind the
scenes) even in the HERMES system:

begin

list0 := empty list;

listl := all nodes with Kind = question;
list2 := all nodes with Kind = problem;
list3 := listl append list2;

for i = 1 to size of list3 do
list4d := empty list;
for each link type from node do
if link type = answer
then for each linked node do
for each link type from node do
if link type = argument
then add node to list4;
if count of listd > 3
then add node to 1listO0;
return listO0;
end;

Traditional general purpose programming languages are based largely on
mathematical models of fully explicit expressions. To name some of the most popular
historical languages, FORTRAN is based on algebraic formulas, COBOL on business
arithmetic, APL on matrix algebra, and LISP on symbolic logic. Assembly languages
are necessarily closely modeled on the architecture of computer CPUs. Most recent
languages are derived from combinations of these prototypes. Even Backus’ Fp
language, which is an attempt to break away from the von Neumann and lambda-
calculus models, is strongly influenced by APL—particularly in its outward appearance
to the human programmer. All these languages have been developed under severe
pressure to optimize usage of computer resources (memory locations and cycle time).
This has led to the following problem: programming languages are necessary for
empowering people to communicate with and through computers; however, the way
in which the predominant languages are closely based on mathematical models make
them difficult for many people in many situations to use to express themselves

Natural languages that societies have historically developed for their own
expression and interpersonal communication needs have very different characteristics
from these programming languages. They tend to support informal, tacit, contextual,
situated expression. Thus, they are very dependent on human intentional
comprehension of semantics and communicative intent. They feature a highly
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generative phrase structure and huge vocabularies that evolve historically. They
develop under the constraint of cognitive ease for the human speaker and vocal
brevity (Grice, 1975).

Now that computer resources are several orders of magnitude less scarce than
in the past while human cognitive resources are being overwhelmed with the
complexities of the information age, it seems time to consider designing programming
languages or end-user languages in which some of the burdens are shifted to the
computer. That is, while a mathematical basis for languages may be important for
theoretical reasons, practical considerations of supporting the needs of users without
burdening them unnecessarily suggest that the logical computational structure of the
language should often be kept tacitly hidden in favor of a higher-level structure close
to the user’s explicit concerns. Computers increasingly have the power to manage the
translation between these levels to relieve the user of that burden.

The goal of the HERMES language is to make communication with the
computer system cognitively and interpretively easier for people. It tries to do this by
hiding many computational details, leaving it up to the computer software to take care
of them. It allows designers to build their own vocabulary incrementally, using terms
familiar from their domain of work. The vocabulary can grow through a history of
use, with different people developing different meanings for terms (in their own
perspectives) and sharing these meanings (in common group perspectives). The
language starts out with a shared basic vocabulary, established as a seeded vocabulary
by the design environment builders. Terminology in the language can be reused and
modified by subsequent system users, just as natural language words can take on new
metaphorical meanings. The language is intended to support interpretation,
explication, and interpersonal communication, not just formulaic statement. Section
10.2 will detail what is meant by hiding the computational structure of expressions.

2. Provide a people-centered approach. The slogan of a “people-centered”
approach means that the computer system should be controlled by the people with
whom it interacts at the points where judgmental decisions must be made that involve
the exercise of intentionality. The HERMES language is designed to empower people
to express their interpretations and judgments in ways that can affect the computer’s
actions and that can also be communicated to other people. By making the design
environment programmable, the language lets designers using the system determine
how displays, analyses, and critics used in the active computational environment are
to be defined. Terms used in the definitions of these displays, analyses, and critic rules
can be defined and modified by designers in accordance with their own interpretive
perspectives.

“People-centered” also means that the system interacts with people in ways
appropriate to human cognitive (interpretive) styles. HERMES features a language for
designers (rather than trained programmers) to use. The language is defined as a
series of subset languages to facilitate learning by new users. This way, people can
work with the language at a level that is comfortable for them. When they need more
explicit control in defining revised expressions to capture their precise interpretations,
they will have a relatively easy path to exploring language features that are new to



83

them. They can simply move to the next stage of the language in a particular area of
the language. For instance, if they need a new definition of a complex expression, they
can expand the beginner’s dialog box of syntax options to see the additional
intermediate options or they can view the definition of an existing expression and
modify it graduaily. (An interface for doing this is discussed under point 4, beiow.)

First it should be noted that previously defined terms and expressions are used
by designers most of the time. These can be simply selected from lists of relevant
terms, even by a novice. Then there is a beginner’s version of the language that is
similar to the PHIDIAS language, which proved easy to use for non-programmer users.
This level of the language suffices for defining or modifying most common terms and
queries. An intermediate level provides access to virtually all features of the language
except those related to graphics. Finally, an advanced level can be used for graphics-
related tasks, like defining interpretive critics. Most system displays and component
interfaces are defined in the language, so they can be modified through use of the
language. It would be possible to add a fully general programming level to the
language by providing a programming language interpreter that could treat the syntax
options of the HERMES language as predefined functions. This has not been done
because the research focus of the HERMES language is to support interpretation in
design and to make a language as interpretable as possible for non-programmers. This
goal probably does not require a computationally complete language. So, the
following levels of usage are supported by the HERMES language:

Novice. Even without defining any new expressions in the language, a novice
can still use most of the HERMES system in a flexible way. It is, for instance, possible
to define new link Types and node Kinds, although one cannot yet define new
computed expressions that refer to them. One can also use all the previously defined
(seeded) expressions in the language: DataLists, Predicates’, conditions, queries,
critics, etc. Thus, it is possible to define conditional nodes, conditional links, or virtual
structures (queries embedded in nodes) without writing new expressions in the
language.

Beginner. This version corresponds roughly to the original PHIDIAS language.
It allows the user to define expressions, displays, and critics incorporating Filter
clauses. With only 15% of the number of options of the full language, the Beginner
syntax provides a good learning experience for most of the features and conventions
of the HERMES language. This version of the language features Input Associations, a
subset of Associations useful for eliciting design rationale or argumentation. For
instance, if an Input Association, deliberation, is defined as issues with
their answers with their arguments, then it can be used to control
data entry. A special interface feature is designed to create new nodes following the
patterns of user-defined Input Associations. Using the definition of deliberation,
it will prompt for the text of an i ssue to be entered; then it prompts for one or more

7 The definition and use of Predicates, conditional nodes, and virtual structures is described
in Appendix B. DataLists and other syntax categories are defined and illustrated in Appendix C.
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answers to that issue; for each answer it prompts for one or more
arguments. Recursive Input Associations can also be defined that prompt for
whole trees of data to as much depth as the respondent is willing to go.

Intermediate. The intermediate version of the language expands the
computational power of the beginner version, without, however, including the
complications introduced by graphics. This corresponds roughly to the level of
complexity implemented for the version of the language used in the programming
walkthrough (Appendix A) and in the academic advising application (Appendix B).
Here, the simple data-entry Input Associations become a subset of the more powerful
and complex Associations. Predicates are a modification of Associations to hide some
of their complexity when displayed.

Advanced. This version adds the multi-media capability and more
sophisticated programming options. Now all the computational capability of the
language can be applied to nodes of any medium (e.g., vector graphics, sound, video,
and bitmaps). This is necessary for implementing displays or critics that take into
account graphical information (distances, spatial relationships, adjacencies, volumes,
etc.). [This level of the language has been designed (see Appendix C), but not yet
fully implemented.]

Programmer. Ultimately, one might want to give a user full programming
power. In a research prototyping environment, one could simply hand over the source
code. In a LISP environment, one can allow the user to enter programs as data that are
then interpreted. However, in realistic cases where the source code is not made
available and where speed is too much of a concern to use an interpreted language for
building the system itself, other mechanisms must be developed. HERMES provides a
form of procedural attachment implemented via dynamic link libraries (DLLs) in
WINDOWS. This lets the user define a certain number of pre-named functions, using
the full power of object-oriented PASCAL or C++. These functions can then be
attached to nodes or links in the hypermedia database (see active objects in Section
8.2) and referred to by expressions in the HERMES language. [This level of the
language has not been explored extensively, but is meant to be suggestive as a
response to the limits of programming complex algorithms in the HERMES language.]

These levels of the language extend the idea from JANUS of a layered
architecture, as discussed in Chapter 7. The layers of the language fill in the two gaps
that appeared in Figure 7-2: the transformation distance-3 between the system
building environment (LISP) and the design environment (JANUS), and the
transformation distance-2 between the seeded design environment and the actual task
domain (laying out a particular kitchen). The first of these gaps is filled primarily for
system builders who are constructing a new design environment or adding new
components to an existing one. When a design environment is built on top of the
HERMES substrate, new components take advantage of the substrate functionality,
including the language. As shown in Chapter 8, many functions are implemented as
windows or buttons that evaluate expressions defined in the HERMES language. That
means first of all that functionality can be defined using higher level terms in the
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HERMES language without the system builder needing to work at the lower level
implementation language. It also means that future end-users can revise the way those
functions work by modifying the definitions of the terms used in the HERMES
language, which is available to them at run-time as well. The second gap is filled
primarily for designers using a design environment buiit on HERMES. They can simply
use the terms, displays, and critics that have already been defined. If they need to
modify something, the Beginner version of the language is available. If this is not
sufficient, they can successively try more advanced versions of the language. This
provides almost a continuity of layers to support a range of understanding from tacit
work in the problem domain to explicit software programming in the underlying
programming environment. (See Figure 9-17 in Section 9.3.)

3. Meet the needs of design environments. Chapter 7 cited the idea of
programmable design environments proposed by Eisenberg and Fischer (1992). It was
claimed there that HERMES could be viewed as the first implementation of this notion.
In fact, the design and development of HERMES was driven by the desire to include
programmability as a central feature of a design environment in order to empower
designers to define, control, and extend the computational power of the software
system in which they carry out their design work.

The desire to have the language refer to, analyze, critique, and display all the
varieties of knowledge and representations in a design environment—including
information from previous designs in a catalog, palette items for use in new designs,
specification decisions, design rationale, domain distinctions, critic rules, etc.—forced
the system to become more and more integrated. As the power of the language was
extended from its original restriction to design rationale (in the original PHIDIAS query
language), more of the knowledge was represented as hypermedia nodes that could be
linked in one integrated knowledge base. New forms of knowledge were also added.
For instance, conditional expressions could be defined to implement conditional links,
conditional nodes, and critics. The increased generality of the system made it easy to
add new media, like bitmaps, voice, and video as well.

As the language grew in range and power, the number of its syntax options in
the language increased rapidly, despite extensive efforts to generalize and simplify the
syntactic structure. In the end, the number of options increased by an order of
magnitude. Most of these syntax options (those called “simple” options) directly
reflect elements of the multimedia knowledge representation substrate. Many other
syntax options (called “computed” options) define combinations of the primitives that
are needed for useful computations. The appearance of expressions in the language is
dominated by user-defined terms: names of objects, link types, node kinds, names of
defined sub-expressions. Otherwise, there are just a few “helper” words that remind
people of the functionality of the options. Little is left in its external appearance of the
language’s computational internal nature. Thus, the HERMES language appears to be a
“new” language, although it is really basically the result of adapting a stripped-down
functional programming approach to meet the needs of a design environment.

Despite its adherence to the notion of a programmable design environment,
the HERMES language is very different from a programmable application like
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SCHEMEPAINT (Eisenberg, 1992). In SCHEMEPAINT, the language is used for creation
of new objects. In contrast, the HERMES language is “non-imperative” (Schmidt,
1986). Evaluation of expressions in the HERMES language do not change state: they
do not create anything new. They navigate through the hypermedia database and
coilect iists of existing objects. Of course, by means of user interface features, these
lists can themselves be saved as new objects. Also, interface features can be designed
that use language expressions to organize, modify, or even create objects. For
instance, a design rationale prompting component in the interface can elicit and store
new argumentation using the Input Association syntax options as explained in
Appendix C. The language is primarily geared to the diverse information retrieval
needs of designers.

Design environments have a variety of data retrieval, manipulation, and
display needs. In a hypermedia-based system like HERMES, these needs can generally
be categorized into three groups: (a) to generate lists of information, (b) to selectively
choose items from lists, and (c) to navigate through the inter-connected network of
the database. This corresponds to the three categories of operations that Abelson &
Sussman (1985) emphasize for functional computer programs: to enumerate, map,
and filter lists or streams of information.® The HERMES language syntax provides three
primary classes of terms to operationalize these functions: DataLists, Filters, and
Associations, as indicated in Table 10-1:

uses operations HERMES language
(a) generate lists enumerate Datal ist
(b) selectively choose filter Filter
©) navigate network map Association

(a) Many forms of lists must be generated (enumerated) in a design
environment. In a system built on top of the HERMES substrate, virtually all displays in
the user interface are constructed dynamically from such lists. The HERMES language
is designed above all to provide a flexible means for defining lists of items stored in
the database and useful for interpretive tasks in the represented domain. In this sense,
the HERMES language is a database query language. The HERMES language is
optimized for expressing queries in this environment and for retrieving the requested
information efficiently in useful formats. Unlike SQL (a general purpose query
language for relational databases), it is designed for an object-oriented, multimedia
database in which items are linked together in hypertext style. It differs from SQL in

8 The suggestion to interpret operations in the HERMES language as the processing of
streams of information in this sense was suggested by both C. Lewis and M. FEisenberg,
independently.
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being non-relational and hypermedia-specific. Among the information listings
available through the HERMES language are general queries and the basic displays
used in design environments, such as design rationale issue-base views, catalogs of
past designs, palettes of design components. An example of a DataList that computes
ihe items for a display of some raiionale created by Archie is:

issues that have creator archie

(b) Filtering functions of the language are important for implementing critics
and for making all displays relative to design decisions encoded in specifications,
constructions, or design rationale. For instance, using the language one can define a
display of all catalog items that pass a Filter referring to the existence of specific
palette items in a certain construction, answers resolved in the design rationale, or
selections made in a specification listing. Perspectives provide another filtering
mechanism in HERMES, allowing only nodes that are defined in the currently active
perspective to be processed by the language. The two filtering mechanisms can be
combined in expressions in the language like:

issues in context desi’s habitat perspective that have
creator archie

(c) Navigation through the hypermedia database (mapping) is also
accomplished with the HERMES language. A good example of such navigation is
shown in Figure 10-1 with the expression:

issues that have more than 3 rationale

Here, the expression rationale, defined as arguments of answers,
navigates from each issue node across its answer links to new nodes and across
their argument links.

The three major syntax categories of the HERMES language (DatalLists, Filters,
Associations) provide the three primary functions required for design environments:
(a) definitions of lists of nodes, (b) expressions for filtering out nodes not meeting
stated criteria, and (c) operations to traverse various kinds of associations. These
support the situated, perspectival, and linguistic character of interpretation by naming
representations of things in the design situation, filtering out objects for display based
on viewing criteria, and providing expressions for exploring semantic associations.
Objects in each of these three categories can be either (1) reused or (2) refined by
combining expressions in useful ways. This defines the six primary syntactic classes;
four other classes provide auxiliary terms and features. The syntactic classes are listed
with brief descriptions in Table 10-2.
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syntactic class description

a-1 Datalists options for identifying hypermedia nodes.

a-2 Computed Datalists permitted combinations of language elements that
determine sets of nodes

b-1 Filters operations characterizing nodes for selection

b-2 Computed Filters permitted combinations of language elements that define
filter conditions

c-1 Associations links and other associations of nodes

c-2 Computed Associations permitted combinations of language elements that

determine non-primitive Associations

d-1 Media Elements nodes of various media; text, numbers, booleans, graphics,
sound, video, etc.

d-2 Computed Media Elements permitted combinations of media elements, e.g., arithmetic
or boolean computations

e-1 Pre-defined Terminology connective terms, measurement primitives, fixed values for
attributes and types

e-2 Computed Terminology namable quantifiers and numerical comparisons

The central syntax classes of the HERMES language are (a) DataLists, (b)
Filters, and (c) Associations. In addition, (d) the Media elements define several
syntax classes, one for each kind of allowable multimedia content in the hypermedia
database that is traversed by the language: Character, Number, Boolean, Graphic,
Image, Pen, Sound, Video, Animation, and ComputedView. (e) The Terminology
options provide the connective terms for joining multiple items together and for
counting items, as well as certain definitions useful for graphical computations; these
include three syntax classes for user-definable options: Count, Quantifier, Measure;
and eight syntax classes that are system-defined: Connective, Combination, Distance,
Units, Dimension, Attribute, Value, and LanguageType. In addition there are three
hypermedia classes that are part of the syntax: Contexts, NodeKinds and LinkTypes.
The syntax classes are divided into Simple and Computed options. The Simple
options define a single operation for producing a result. The Composite options
define legal combinations of applying one operation to another. This defines the
operator algebra that is at the heart of the HERMES language. It is discussed below.
Table 10-3 (below) provides sample options from each of the classes listed in Table
10-2 (above).

The Datal.ist, Filter, and Association options constitute the majority of the
syntax options. The Simple options are all defined as primitive operators. For
instance, Simple DataLists return a node or list of nodes as their result. DataL.ist,
Filter, and Association (both Simple and Computed) evaluation functions all take a
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DataList as input and return a new DataList as a result. This DataList result format
acts as a stream of data items that passes through the operators to generate new
items, filter out items that were there, or map from the old items to associated new
items. Because of this uniform format, any of the operators can be applied
ainnanoterales fa tha wacilea AF amer At operators Thio n11/\. o thin sramlieaitad mactiem o ~F
DU\/UL«DDLVUI)’ LU WU 100UIW UL ally ULLICL Upbld O1S. 111S auOWs i Uiimica HOSULLE UL
phrases and application of operators that makes the HERMES language highly
generative.

syntactic class example

a-1 Datalists all database items of a specified NodeKind

a-2 Computed Datalists items of a DatalList that pass a specified Filter

b-1 Filters items that are of a specified NodeKind

b-2 Computed Filters items that pass Filterl and also pass Filter2

c-1 Associations a Link Type (e.g., children)

c-2 Computed Associations Associationl with their Association2

d-1 Media Elements areal number (e.g., 3.14)

d-2 Computed Media Elements the total of all numbers in a specified DaraList
e-1 Pre-defined Terminology closest distance between two graphic items
e-2 Computed Terminology a Distance is greater than a specified Number

(e.g., too near: closest distance is less than 5 feet)

In HERMES, only certain combinations of applications are permitted, as
defined by the Computed options. If the Simple options were incorporated as
predefined functions in a general programming language like FP or SCHEME, then any
combinations of operators could be evaluated. However, a judgment has been made in
designing HERMES to limit the combinations to semantically meaningful and useful
options. That accounts for the seeming proliferation of options. In fact, however, the
majority of options are nothing but combinations of other options applied to each
other. For these combination options, the semantics are trivially defined, as shown in
Appendix C in which the denotational semantics and the corresponding
implementation code for the evaluation function of one such combination option is
shown. The HERMES language is a carefully constrained language, designed to
promote relatively tacit usage by structuring the choice of operation combinations to
avoid many problematic expression definitions and to guide the language user.
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4. Offer an end-user language for non-programmers. The use of the
language in HERMES can be made appropriate for non-programmers in many ways
through interface features. Some examples were already given in Chapter 8. Consider
how navigation through the hypermedia database (mapping) is accomplished with the
HERMES language. An example of such navigation is shown in Figure 10-2 (above). A
textual node has been selected in a Design Rationale window by clicking on it. This
brings up the Navigating the Hypertext window. The selected node has been
displayed in the top of this window and the default option of “Navigate out-going
links” has been chosen. The list of “Out-going Links” displays “issue”, indicating that
the selected node is associated with out-going links of type issue to other nodes.
The list of Predicates® displays three terms that have previously been defined in the
HERMES language; these terms are all defined with expressions that include issue as
their initial traversal, so they are relevant to the selected node that has issue links.
If the user had selected “issue” under “Out-going Links”, then a new Design
Rationale window would have been displayed listing all the nodes navigated to by
following issue links from the original selected node. In the case shown in the
figure, the user has instead selected the Predicate discussion. Discussion is
defined in the HERMES language (either in the seed or by a previous user) as a series

? Predicates are a special form of computed Association. They are explained in Appendix B.
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of link navigations beginning with issue links. So the display produced in the new
window is an indented list resulting from the navigations defined by the language
expression named discussion.

The example just given illustrates a number of points about language usage in
HERMES. First, expressions (like discussion) can be reused without explicit
concern for their detailed definition, particularly if their name indicates their function
adequately. Second, rather complex displays can be defined relatively easily. If one
wanted to, one could modify the definition of discussion or define a new term
based on it. The new term could use Filter conditions to eliminate items selectively as
well. For instance, one could define a new Predicate bunk discussion as:
discussion that contains ‘bunk’. Then the list of Predicates displayed
in the Navigating the Hypertext window would include bunk discussion and
selection of this option would result in a display that only listed items including the
word “bunk”. Third, language usage can be integrated into the user interface so that it
feels like tacit navigation through hypermedia rather than explicit querying with a
language. The use of this language need not have the look and feel of programming,
even when new expressions are being defined for accomplishing arbitrarily complex
computations.

When an expression must be explicitly programmed, interface support is
available to reduce the cognitive burden of recalling syntax options, strict formats,
expression names, or terminology spellings. As part of the attempt to reduce
programming errors that would frustrate a non-programmer, a direct manipulation
interface is provided for use, reuse, modification, and creation of expressions in the
HERMES language. Strictly speaking, this is not part of the HERMES substrate, but
belongs to the interface of a design environment built on top of the substrate. It is
presented here simply to suggest one solution to the problem of supporting people to
use the HERMES language with minimal cognitive overload.

* By presenting all relevant options on the computer screen at each stage and
requiring expressions to be built up by choosing from these dialog options, the
user is relieved of having to remember the various legal options.

*  Similarly the problem of entering the precise proper format and spelling is
solved. Novice programmers are particularly frustrated by punctuation and
spelling errors during program input.

*  The interface presents definitions of terms in a readable format. Given that
expressions in the HERMES language often read much like English, it is
important to avoid the impression that the system can understand arbitrary
English formulations. The restriction to a visible menu of choices makes the
restrictions clear and unavoidable.

* The same dialog boxes that are used for defining new expressions encourage
the reuse of previously defined expressions. Old definitions can be reviewed
with the dialogs to see their internal structure, and the definitions can then be
modified and reused.
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Figure 10-3 shows the three dialog boxes for defining a DataList expression.
This is typically the starting point for defining expressions in the language, such as
queries or critics. It is also possible to start with other dialogs to define conditional
expressions, numerical computations, and so on. The leftmost dialog, labeled
“DataList options,” is the first dialog to appear under conditions in which one needs
to define a new DataList. If one wants to- select a previously defined DataList
expression—whether defined as part of the HERMES seed, by other system users or by
the current user—then a pick-list of the names of all defined Datal.ists 1s used instead.

This programming interface incorporates the breakdown of the language into
a series of levels for users with different degrees of experience in using the language.
This is an example of the mixture of support for tacit and explicit understanding. Even
when the system user needs to make interpretations explicit and state them in the
programming language, this burden is softened by providing a direct manipulation,
construction kit interface for defining expressions and by providing a layered
architecture of many levels of successive complexity.
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The leftmost dialog presents the Beginner’s version of the syntax. The heart
of this dialog is the list of seven small circles, the radio buttons for selecting one of
the three Simple DataList options or one of the four Composite Datalist options. The
first of these options allows the user to simply select a node from a pick-list, which
will be displayed when this option is chosen. The second option defines a DataList
consisting of all nodes in the database that are of a specified NodeKind. If this option
is selected (by clicking the mouse on its NodeKind button), a pick-list of the names of
all defined NodeKinds is displayed. The third option retrieves a Datal.ist expression
that has been previously defined and saved.

The Composite Datalist options lead to other dialog boxes to define
constituent parts of the composite expression. The first of these, for instance, has
three buttons: “DataList”, “Combination”, “DataList”. If this option is selected, then
each of these buttons must be pressed with the mouse before the new expression can
be saved. Pressing the first (or the third) of these buttons brings up another copy of
the same dialog box so that the constituent DataLists may be selected. For instance,
to define a DatalList named issues as questions and problems, use this
option and press the first button. When the new Datalist dialog appears, select the
first Simple DataList option and choose questions from the pick-list that appears.
Then click the “ok” button at the bottom of the new dialog to confirm this choice.
The new dialog will disappear. Then press the “Combination” button. This will bring
up a dialog listing the five Combination options. Simply select the and option and
click the “ok™ button. Then define the DataList for the third button as problems.
Now the expression questions and problems will show in the small window
near the bottom of the Datal.ist dialog box. Press the *“save DataList” button below
there. A small dialog will ask for the name of the new DataList that has just been
defined. Type the word issues and the new expression will be part of the HERMES
system.

Below the list of options in the DataList dialog are buttons labeled “more
DataLists” and “graphic DataLists”. These bring up the dialogs with the Intermediate
and Advanced DatalList options, respectively. They are also shown in Figure 10-3.
They work the same way as the options in the first dialog, which remains on the
screen and controls the overall expression definition process. This is how a user
advances from the Beginner to the Intermediate or Advanced levels of the language
based on their specific needs.

One more button should be mentioned in the basic “DataList options” dialog
box. That is the uppermost button: “reuse a DataList”. Pressing this button brings up
a pick-list of defined DataLists. When one is selected from this list, the list disappears
and the definition of the selected DataL.ist appears in the dialog. First it appears in the
display window in its narrative format. But it also appears in the options in the sense
that the option that was used for defining it is now selected in the dialog. Pressing the
buttons for that option will bring up dialogs that are also already displaying the
constituent parts. This provides a way of exploring the structure of a defined
expression. If anything is changed on the subsidiary dialogs and confirmed and saved,
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then the definition of that expression will be modified accordingly (within the
currently selected perspective).

While the foregoing description and its accompanying figure may seem
complicated, that is partly because it is harder to describe this process explicitly in
words, covering most of the various possible actions, then it is to use the direct
manipulation interface to make selections needed to accomplish a specific task.

The HERMES language represents an attempt to push a particular approach to
language design as far as possible. This is what makes the HERMES language
distinctive. The approach is motivated by the theory of computer support of
interpretation. It includes an effort to balance support for tacit and explicit
understanding, promoting tacit activity whenever possible, even during the
accomplishment of explicit programming tasks. It tries to develop an expressive and
extensible programming language for people like designers who may not be
experienced at computer programming. To do this, it hides many of the computational
mechanisms (as described in the following section), and constrains the syntax of the
language. Of course, there are trade-offs involved in keeping mechanisms hidden and
in limiting options to enforce meaningfulness of expressions. The HERMES language
has great flexibility and expressivity. It is infinitely generative and arbitrarily complex.
But it is far from being Turing complete. There are many definitions of lists that
cannot be expressed in it, but that are relatively straight-forward to program in
PASCAL or LISP, for instance. Subsequent examples and analysis in the remainder of
this chapter and in the Appendices should show the language’s ability to formulate
easily and tacitly the expressions most useful for design environments, as well as
pointing out the limitations that can arise in more complex circumstances.

10.2 ENCAPSULATING EXPLICIT MECHANISMS IN TACIT FORMS

The HERMES language has been designed to minimize the amount of
programming language doctrine required as explicit knowledge by people writing and
reading expressions in the language. This has been accomplished by hiding a number
of programming language mechanisms in the syntax options of the HERMES language
so they can be used with only a tacit understanding of their functioning. This section
illustrates what is meant by this approach. A number of important areas of
programming language doctrine that require explicit understanding for the use of
languages like LISP or PASCAL are incorporated in the syntax options, evaluation
processes, and user interfaces of the HERMES language in ways that can be used
without explicit understanding.

1. Abstraction in HERMES takes place by simply giving a name to an expression
that has been defined; there is no explicit assignment statement. All
expressions in the HERMES language can be named and the names may be used
wherever the corresponding expression could be used.

2. Tteration is implicit in HERMES. For instance, in the example of displaying the
discussion of an item from the Design Rationale window, all the issue
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links from the item’s node were followed. Normally, this would be expressed
in a traditional programming language as some form of iteration (a £or-loop
or a recursion). However, in the HERMES language it is not expressed at all,
but merely assumed in the declaration calling for a list of the issues.

3. Typing of expressions is enforced by restrictions on the allowable syntax
options, without the user needing to be aware of this.

4. Recursion is an important technique for navigating successive links in
hypermedia networks using the HERMES language, but users need not be
aware of it or worry about halting conditions.

5. Variable binding occurs as a natural result of the syntax of expressions, but
explicit variables are not used.

6. The syntax allows one to quantify expressions by asking for all items,
checking for at least one item, and so on, but the computational
implementation of these is hidden from the user.

7. Conditionals can be stated in explicit if / then format or implied through more
tacit formats.

1. Abstraction. The importance of abstraction has been emphasized by many
leading language designers (e.g., Liskov, et al.,, 1977; Cardelli & Wegner, 1985;
Abelson & Sussman, 1985; Wirth, 1988). From a people-centered perspective, the
importance of abstraction in definition of expressions in a programming language is
that a complex expression can be hidden under an easy-to-use name that corresponds
to terminology in the application domain. That means that the name can be used in a
relatively tacit way once it has been defined explicitly.

To use an example from Chapter 3, it may be quite difficult to define an
operational definition of privacy for lunar habitats. Such a definition must be spelled
out in complete and explicit detail (see Section 10.3 below for such a definition) so
that the computer system can use it. However, once defined, the definition can be
stored under the name privacy. From then on, designers using the system can make
use of the term privacy without being concerned about all the computational
details. In fact, the term may have been defined as part of the system’s knowledge
seed by the software developers or by some intermediate knowledge engineer, so that
the lunar habitat designers never need to be concemed with (or develop the skills to
understand) the technical details of implementation. This is a case in which the
analysis of interpretation provides a new argument about the role of abstraction, an
old technique. Based on this argument, HERMES in fact places considerable emphasis
on this form of abstraction in the design of the HERMES language, allowing every
object stored in the computer memory—including all defined expressions and sub-
expressions in the language—to be referred to by user-defined names.

The use of abstraction in HERMES supports extensibility of the language. Not
only can link Types and node Kinds be user-defined (as they already were in
PHIDIAS), but so can the language’s namable terminology elements: Count, Quantifier,
and Measure. For instance, a new Count term, several, could be defined as: more
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than 2 and less than 7. By naming the expression “several,” a user can
then make use of this term without worrying about its precise definition. Of course, if
another user interprets the term several differently, the definition can always be
explored and modified through the interface to the language. Similarly, Measure terms
can be added to the language, like “set off from” central distance 1is
less than 24 inches and closest distance is more than 4
inches

In Section 9.1’s scenario in which the notion of privacy is made operational,
the scale of privacy values from 1 to 9 was abstracted by the definition of the
following Number terms:

very public:
quite public:
public:

somewhat public:
neutral:

somewhat private:

private:

0o N o Ul W N

quite private:

O

very private:

These definitions allow designers to think in tacit problem domain terms rather than in
the explicit quantitative terms required by the computer. The abstractions are
constructed tacitly by simply supplying a name when an expression is defined; there
are no explicit assignment statements in the language.

2. Iteration. Much traditional programming language doctrine has to do with
iteration: for loops versus while control statements, recursive list processing,
sequential comparisons, etc. In HERMES, there are no explicit control structures for
iteration. Yet, iterating through lists (e.g., all the nodes of such and such a
description, or all the links of a certain Type from a node) is ubiquitous in its central
task of navigating through hypermedia. In the HERMES language, the various iterative
tasks of the design environment and of its hypermedia substrate are encapsulated in
primitive syntax options.

A Simple DataList can be defined by a NodeKind or LanguageType; these
options iterate through the database index to retrieve all nodes of the specified
category. A Simple Association can be defined by a Link Type; this option iterates
through all the links of the specified Type from a given starting node. The option,
all associations, iterates through all of a node’s out-going links; inverse
Association iterates in-coming links; parts iterates content links. Each of these
options returns the list of all nodes at the other end of these links. The options are
implemented with iteration control structures, but the user need not be aware of this.
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Simple Filters also iterate through lists of nodes. They test each node
successively to see whether it meets some condition. The nodes that meet the
condition are returned. For instance, the expression, arguments of answers
of the bunk locations issue that are of kind pro-
argument, will be evaluated by iterating through all the nodes at the ends of the
specified argument links and testing which of them are of node Kind pro-
argument.

Several of the Number options are also implicitly iterative, returning a count
of elements in a list, a minimum, maximum, total, or product of the values. One
Number option even iterates through all combinations of two or three graphical
objects to return a list of the distances between them. To test for an acceptable work
triangle in a kitchen, a designer can simply take the minimum value of this list of
distances, without needing to worry about the details of iterating through all the
combinatorial possibilities if there are multiple stoves, sinks, or refrigerators in the
kitchen.

3. Typing. The constrained syntax of the HERMES language provides an
implicit typing system. Like the strong typing system of languages like PASCAL, it
avoids syntactic combinations that would be meaningless or cause conflicts. However,
it is enforced “behind the scenes” so users do not have to be aware of it as a typing
system. Types are not declared explicitly by the user.

The Simple syntax options are categorized in the syntax classes discussed in
the previous section, such as DataList, Filter, and Association. These 25 classes are
the types of the HERMES language. A typical Computed syntax option combines terms
from several of these classes. For instance, one Computed DataList option is:
DataList Combination DataList. This joins any two expressions of type DataList with
any expression of type Combination, like and or or.

Notice that each of the computed syntax options listed in Appendix C refers to
one or more syntax classes (or types). Legal combinations of these types are defined
by the options of the syntax. This is a convention of the language; it would be
possible to define combinations of individual options or to distinguish between
categories of options like Simple and Computed—but that would be a different
language. For instance, example a-2 in Table 10-3 allows a DataList to be defined as a
Filter applied to a DataList. This means that any expression of type Filter can be
applied to any expression of type DataList and the result will be a legal expression of
type DataList. The DataList used as a component in this definition may itself be a
Computed DataList composed of several components. By applying these rules
repeatedly, one can build up well-defined expressions of arbitrary nested complexity.

The set of defined legal options has been carefully designed to permit the
construction of a broad range of expressions to meet the needs of people using a
hypermedia-based design environment. While generality of expression has been a
priority, an attempt has also been made to exclude combinations that would lead to
problems for the users. Another constraint has been to keep the sheer number of
options as small as possible. Of the 110 options defined, only a small number will be
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used most of the time; many are for advanced techniques primarily necessary for
internal use building interface functionality or for complex graphical computations.

4. Recursion. Recursion was already available in the PHIDIAS query language.
A simple example is the definition of issue trees as: issues with their
issue trees. Here, the definition recursively incorporates its own name. This is
useful for navigating hypermedia networks to arbitrary depth. The evaluation
proceeds from a node across all its i ssue links to new nodes, across their issue
links, etc. The recursion terminates at nodes that have no issue links. This graceful
termination condition is built into the implementation of the Simple Association
option, Link Type. Therefore, users of the language do not need to be concerned
about explicitly stating a halting condition for the recursion, a step that frequently
causes bugs for novice programmers. The implementation supports what a naive user
would tacitly expect, or at least what one would come to expect after having been
exposed to some sample recursive definitions in the language.

5. Variables. The HERMES language experiments with how far a programming
language can go without the use of explicit variables. Variables are perhaps the first
serious barrier that most programming poses for people who are not mathematically
inclined or experienced. Lack of explicit variables differentiates the HERMES language
clearly from procedural languages (that use variables for iteration counters,
subroutine parameters, array indices, etc.), functional languages (that use variables for
lambda parameters), and logic languages (that use variables for quantification).

HERMES makes use of operator application, applying successive operations
directly to the results of previous operations without need for abstract variables to
relate the operations to the operands. This works smoothly in simple cases and
supports tacit expectations. When expressions are nested several levels deep, the
relations of what operations are to be applied to which operands can become
confusing. (Several examples of this are given in Section 10.3 and in Appendix B, in
which moderately complex applications in the HERMES language are discussed.) For
these cases, three special “deictic variables” have been defined. These are not abstract
variables, but terms that perform much the same concrete role as deictic pronouns in
natural languages.

The deictic variables of HERMES are the following Simple Datalist options:
that (last subject), this (expression), and those items. They
are used within an expression to refer to a node or list of nodes that has been
previously computed. They disambiguate the application of Predicates and allow
intermediate results of computations to be displayed or reused without recomputing
them. Examples of the use of the it and them deictic variables will be seen in the
analysis of the privacy critics in the following section. The this (expression)
variable can be useful in defining recursive terms; issue trees can be defined as:
issues with their this (expression), where this
(expression) refers to the term issue trees thatis itself being defined.

It should be noted that the lack of variables is a trade-off in the design of the
HERMES language. It is intended to reduce the cognitive overhead of the use of
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explicit variables. However, it probably introduces the most severe restriction in the
expressibility of the language for relatively complex computations, making critics like
the privacy gradient critique in Section 10.3 and the advice critic in
the academic advising application in Appendix B difficult to construct and
comprehend. However, the language is not meant primarily to be used for building
computationally complex systems, but rather for supporting the incessant reuse and
modification of relatively simple definitions of terms needed for displaying, analyzing,
and critiquing hypermedia representations of designs.

6. Quantification. The HERMES Quantifier type is provided to support
quantification. As just discussed, it does not use the explicit bound variables of
predicate calculus or PROLOG. Three examples show how it is used:

chairs that are near to at least one table in archie’s
habitat

issues that have no answers that include “bunk”

if all privacy ratings of parts of archie’s habitat are
more than quite private

As should be clear from these expressions, the computation of a quantity like
all is carried out internally by the implementation of this syntax option and need not
be an explicit concern of the user.

7. Conditionals. Conditionals are important in a design environment. They
are, for instance, used for critic rules, conditional links, and conditional nodes. In
addition to the standard syntax form for conditionals, i1f Boolean then
DataListl, else DataList?2, HERMES offers the following form: either
DataListl or DataList2. The second format is more supportive of a tacit
approach. Its evaluation first computes DataListl. If it returns something, that is
returned as the result of the whole conditional expression; if it returns no nodes, then
Datalist2 is computed and its results are returned for the conditional. For instance, if
one wants to list the answers to an issue if there are any and give a warning message
otherwise, one can define the following conditional expression:

either answers of my issue or “There are no answers to
my issue.”

The implementation of this option takes care of the checking of whether there are any
results of the first part and deciding whether or not to compute and return the results
of the second part.

10.3 DEFINING INTERPRETIVE CRITICS

Interpretive critics. Interpretive critics in the Lunar Habitat Design
Environment (LHDE) built on HERMES play much the same role as critics in JANUS
and triggers in PHIDIAS, as discussed in Chapter 7. In LHDE the critics are not active
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the way that JANUS’ critics were, although a different design environment built on the
HERMES substrate could make use of the same mechanisms as JANUS to activate
critics associated with a design unit whenever an instance of that unit is created or
moved in a design construction. In LHDE and PHIDIAS II (which is also built on
HERMES), critics are tied 1o user inierface buitons io provide PHIDIAS-style triggers.
Interpretive critics can be used whenever a user has them evaluated by means of any
interface mechanism. That is, designers can define and evaluate interpretive critics
very freely, without necessarily having them tied to design units in a palette
component or to predefined buttons in a construction interface. Interpretive critics
are, thus, more general than the critics and triggers of the related systems they were
inspired by.

Interpretive critics are defined using the HERMES language. They can take
advantage of all of the expressive power of the language. Basically, a critic is any
expression in the language that analyzes the state of the hypermedia database.
Typically, a critic looks for certain features in a graphical construction and displays a
message or takes some other action depending on whether the feature is found or not.
The message can include design rationale or examples explaining the reasoning behind
the critic definition. It might, for instance, include a selection of items from the design
rationale, through which the designer can browse, e.g.:

privacy check of habitats and deliberation of privacy
issue

By using the HERMES language, interpretive critics can be more general, more
expressive, and more complex than JANUS critics. They are not restricted to spatial
relations of individual design units in the palette or to a single construction area. They
can analyze, for instance, multiple habitats in the database, evaluate global
characteristics of designs (like number of parts or absence of particular parts), and
make their analysis dependent on other conditions in the database. Examples of
complex critics are the privacy critics described in Chapter 9 and the academic
advising critic discussed in Appendix B.

Because the whole language can be used and the whole database accessed,
critics can be made dependent upon information in other designs, in an issue base, or
in a distinct specification component (as indicated in Chapter 8). The critics can play
an important role in integrating diverse pieces of information in the system.

Critics in HERMES are called interpretive because of the synergy which they
engender between the HERMES language and the mechanism of interpretive
perspectives. This is best explained with an example. Suppose Desi defined a critic
named refrigerator access as:

if refrigerators are too near doors then refrigerator
access message

Now, if Desi had defined too near as closest distance 1s less than
5 feet but Archie had modified too near to be closest distance 1is
less than 3 feet, then the refrigerator access critic will be
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“interpreted” differently in Archie’s perspective then in Desi’s. Since the language
allows critics to be built up to arbitrary levels of complexity, a critic like the
academic advising critic (in Appendix B) may be dependent upon the
definition of many sub-expression, which may be defined differently in different
perspectives. The point in the example is that Desi and Archie have different
interpretations of what it means for something in the kitchen to be too close to
something else. In another domain (e.g., molecular chemistry or astronomy) the term
too near might need to be redefined more drastically. The perspectives mechanism
assures that the evaluation of an interpretive critic will always interpret the terms and
sub-expressions of the critic’s definition within the context of the current active
perspective.

Comparison with JANUS critics. HERMES critics are defined in the high level
representations made available through the language. That is, they can be defined
using vocabulary that is close to the problem domain, without needing to think in the
explicit functional manner of the LISP syntax used by MODIFIER. All of the critics used
in systems like JANUS and MODIFIER can be concisely stated in the HERMES language.
Following are definitions of terms used for defining these critics:

next to: closest distance is less than 4 inches

far from: closest distance is more than 30 inches
close to: central distance is less than 60 inches
near: closest distance is less than 12 inches
set off from: close to and not next to

work triangle distances: list of closest distance in

feet among sink, stove, refrigerator
Using these terms, the equivalent of JANUS’ critic rules can be concisely and readably
defined as follows in the HERMES language:

all stoves are set off from sinks

no stoves are next to refrigerators

all stoves are far from all doors and windows
all dishwashers are next to sinks

all refrigerators are far from all windows
refrigerators are close to doors

sinks are near windows

the minimum work triangle distances are less than 23

In MODIFIER, the critic rules are meant to be available to and modifiable by the
end-user. However, they are written in LISP. Thus, a designer wishing to modify a
critic rule in MODIFIER must be at least somewhat familiar with the complexities of
LISP doctrine, including its non-intuitive Polish notation. In addition, conventions of
MODIFIER’s property sheets must be understood and used to make explicit
computational decisions. For instance, the HERMES critic,



102

all stoves are set off from sinks

appears in MODIFIER s property sheets as:

not next to (stove , sink ) apply to: all
near (stove, sink) apply to: one

The parentheses of LISP in MODIFIER’s critics are replaced in HERMES by an
implicit nested phrase structure that is familiar to people from natural language. This
nesting is unambiguously determined at definition time through the tacit use of the
interface to the language discussed above. Figure 10-4 shows the explicit phrase
structure for the critic rule just discussed. Note that this diagram not only expands the
definition of set off from (which has been abstracted in the rule statement), but
also indicates the clauses at least one and in kitchen, which are
computationally important but are implicit in the expression that the user sees and
manipulates. That is to say, both the structure of the critic and substantial contents of
it are kept implicit and are hidden from the user’s explicit understanding, in much the
sense that the explicit phrase structure of normal speech is not usually an object
during ordinary communication.

Boolean
Quantifier  Datalist  Filter
all Nodekind are Measure QuTtiﬁer Datalist [in GrThic]
stoves set off from Count Nodelit\ kitchen

MeaTure Connec]ive Measure\(at least one) sinks
close’ to and not Meaui

Tstance is Count UTts next to
central distance inches istance is Cqunt Units
less than  Number 'l
l closest distance inches

more than  Number
. |

[E=N

Figure 10-4. Phrase structure of a HERMES critic rule.

The critic rule can be read from the leaves of the tree: all stoves are set off
from [at least one] sinks [in kitchen]. Phrases in brackets are implicit.
The phrase set off from can be expanded as: central distance is less
than 60 inches and not closest distance is more than 4 inches.
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The point of this diagram is not to show how complex interpretive critics are
internally, but on the contrary to show how rules that are inherently quite complex
can be expressed in apparently relatively simple expressions (like, all stoves
are set off from sinks), which hide much of the complexity that the user
ordinarily does not need to be concerned with.

Analysis of the privacy critics. The privacy critics developed in the scenario
of Chapter 9 provide a good example of a complex definition in the HERMES
language. A close look can reveal both some of the advantages of using the language
and also some of the difficulties.

The task of the privacy critic is to determine if public areas of a lunar habitat
are too near to private areas. So first the notions of privacy and nearness must be
operationalized and applied to areas within habitats. A privacy values scale
from 1 to 9 is established and these Number values are given names from very
public (1) to very private (9). Links of type privacy rating are
attached to various parts of the habitats and connected to nodes with appropriate
privacy values. The Measure term too near is defined as:

closest distance is less than 5 feet

Now it is possible to define public and private areas:

public area: parts that have privacy ratings that are
less than somewhat public

private areas: parts that have privacy ratings that are
more than somewhat private

These are Computed Associations or Predicates. They look at all the parts of
whatever Datalist they are applied to. These parts are then Filtered by checking if
they have privacy ratings links and furthermore if the nodes connected by
such links lead to values greater or less than the values named somewhat
private or somewhat public. Any parts found that have at least one such link
will be returned by these expressions.

It would be more efficient to make these definitions for immediate parts
(i.e., top level parts of the habitats) rather than all parts (including subparts, all the
way down to primitive graphical polygons). That would save considerable traversal of
the hierarchies of graphical objects making up the habitats. However, that would
require that the person defining the expression knew that all the relevant public and
private parts were defined as top level parts of the habitats. If the designer defining
this expression had also constructed the habitat graphic this would be possible. For
the sake of generality that has not been assumed in this discussion.

Note that a given part might have multiple privacy rating links (even in
the same perspective). The definitions above only require one such link meeting the
Filter condition. Thus, a given part could be returned as both a public areaand a
private area. Such an anomaly would quickly show up as a problem area in
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the critic results. In general, the ability of the definitions to deal reasonably with such
multiple-definitions is an aspect of robustness in the HERMES language. It is discussed
in Appendix B under the topic of defeasible reasoning.

The next step is to create a display of problem areas, thatis, private
areas that are too near to public areas. This can be accomplished with the
following definition of problem areas:

private areas that are too near public areas of that
(last subject) with those items

The idea here is to select one private area of a habitat at a time and for each
one to then iterate through all the public areas of the same habitat and list the
public areas that are too near to the selected private area. Both
private areas and public areas are Associations that operate on the same
habitat (DataList) when the overall problem areas Association is applied to a
habitat or a list of habitats.

The Filter syntax option used in the definition of problem areas has the
following form: Measure [Quantifier] DataList [in Graphic]. The Measure has already
been defined and stored with the name too near. The optional [Quantifier] defaults
to an implicit “at least one”. The DataList that the private area isto be
measured to is each public area of whichever habitat is currently being operated
on by the problem areas Association. To define a Datalist consisting of these
public areas, the deictic variable, that (last subject), is used to refer
to the habitat to which the problem areas Association is applied. This deictic
refers to the most recently defined “subject” to which operators are being applied,
namely the “subject” of the problem areas Association. Here the term “subject”
refers to the Datalist that is the input to the evaluation of an expression. A stack of
recent subjects is maintained in order to implement this deictic variable. The
parenthetical explanatory phrase, “(last subject)”, departs from the tacit feel
of the language in order to alert the reader to think explicitly about the computational
structure of operator application in this case because a reference is being made to
some term outside the immediate expression—namely to the subject to which this
expression will be applied.

The optional [in Graphic] phrase defaults to in that (last subject),
which, again, refers to the “subject” of the problem areas Association. That
means that the measurement of distance between the private area and the
public area is computed within the graphical habitat. Unless a graphical object is
explicitly named as the context for distance measurements, the assumption is made
that the last explicitly named subject should serve this role. The necessity of naming
(tacitly or explicitly) a graphical context for measurements arises from the generality
of the HERMES language, which can be referring to any object in the database, rather
than to the content of a unique construction area as assumed in JANUS and PHIDIAS.

Finally, in the definition of problem areas the deictic variable those
items refers to the most recently enumerated items, namely the public areas
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that are enumerated for each private area and that satisfy the Filter condition.
During the testing of the Filter condition, the successful enumerated items are stored
on a special list that can be referenced by the special deictic variable “those
items”. Thus, the with those items phrase following the Filter phrase
retrieves the list of public areas thatare too near a given private area
and adds them to the result list of the critic following that private area and
indented under it.

Now that the computational heart of the privacy check critic has been
defined, the critic can be assembled. First, a privacy message is defined to be
displayed in the case that no problem areas are found for a given habitat. This is
simply a Character node with the contents:

“pPublic and private areas are separated.”

This node can be named privacy message or it can be linked to the privacy
check critic itself. If it is named, the critic is defined as: ‘

name with either name of problem areas or privacy
message

If it is linked with a link of type message, then the critic is defined as:

name with either name of problem areas or message of
this (expression)

In the latter case, the reference to the privacy message is replaced by a
computation, message of this (expression), using the deictic variable
this. The variable this (expression) refers to the current object itself, so
message of this (expression) follows the message link from the
definition of this critic to the Character node whose content is the required message.
Again, the use of parentheses signals the need for some explicit reflection by the
reader.

The privacy check critic uses the implicit if / then construction, either
/ ox, in which the first phrase is used if it produces any results, otherwise the second
phrase (in this case, simply displaying the message) is used. The principal work done
by the definition of privacy check is to display the names of graphical objects,
rather than displaying them as graphics. Privacy check is a Computed
Association that is applied to a DataList of one or more habitats. So it first displays
the name to the habitat to which it is being applied, then (indented under that name,
because of the with conjunction) it computes the list of problem areas of that
habitat and displays the names of all the items in the resultant list (including the names
of the public areas that are indented in the list under the private areas). If
the resultant list was empty for a given habitat, the privacy message is displayed
instead.

In the scenario, a variation on privacy check named privacy
display was defined:

name and privacy ratings of problem areas
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This critic displays the privacy ratings as well as the names of all items in the
list computed by the problem areas Association.

Recall from Chapter 3 that the lunar habitat designers eventually settled on a
concept of privacy gradient in the transcribed session. That meant that they wanted
the arrangement of the habitat to change gradually from private areas to public areas.
To operationalize this notion, one could introduce a test to see if any two areas that
are near each other differ by more than a value of, say, plus or minus two. This
introduces explicit arithmetic computations into the definitions of a critic. It also
introduces a complicated comparison of each habitat part with all the other parts of
the habitat. The following set of definitions can be used to compute habitat parts that
are incompatible in this sense of a privacy gradient.

In the Chapter 9 scenario, the designers ended up with a critic called
privacy gradient catalog. It goes through all habitats in the database,
selecting those for which privacy ratings links are attached to some parts. For
those habitats, it displays their name and an analysis of how they meet the defined
privacy gradient considerations:

name with privacy gradient critique of habitats that
have parts that have privacy ratings

For each habitat that has privacy ratings, the privacy gradient
critique is displayed. This is similar to the privacy display, above, in that it
computes problem parts using a privacy gradient listing
Association, or else displays a privacy gradient message. Here are the
definitions to handle this:

privacy gradient critique: either privacy gradient
listing or privacy gradient message

privacy gradient listing: name and privacy ratings of
parts that have privacy ratings with their problem
parts

privacy gradient message: “The parts of this design are
arranged along a privacy gradient.”

The privacy gradient 1listing Association iterates through the
parts of a habitat and for each part lists (indented) their problem parts. The
definition of problem parts is the tricky part. It uses three further definitions:
too near, other parts, and are incompatible. The Measure, too
near, is the same as it was in the privacy check critic, except that in the
current perspective it has been modified from 5 feet to 3 feet:

problem parts: name and privacy ratings of other parts

that are too near that (last subject) and that are
incompatible

too near: closest distance 1s less than 3 feet
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other parts: parts of inverse parts that do not equal
that (last subject)

are incompatible: have privacy ratings that are more

than privacy ratings of that {last subject) + 2 or
are less than privacy ratings of that (last subject)

-2

The definition of other parts requires some explanation. Within the
privacy gradient listing expression, the Association problem parts
must be applied to parts (of a habitat). The definition of problem parts
centers on the definition of other parts. However, what is wanted is “other
parts” of the habitat, not other parts of the selected part of the habitat, which is what
would result from the application of problem parts to parts. Therefore, within
the definition of other parts, the computation must get back to the habitat by
tracing backwards the part link between the habitat and its part. This is
accomplished by the construction, inverse parts. Once the computation is back
at the habitat, it can find the other parts by navigating all the parts (i.e., graphical
content) links of the habitat. Of course, the computation of “other parts” should
exclude the part from which the computation began in order to avoid comparing that
part with itself. This is accomplished with the Filter, that do not equal that
(last subject), in which the deictic variable that (last subject)
refers to the last “subject” of application, namely the original part iterated in the
privacy gradient listing expression.

The definition of the Filter, are incompatible, uses the same that
(last subject) variable in order to compare each of the other parts with
the original part. This Filter also introduces explicit arithmetic in order to judge
whether the privacy ratings of these two parts differ by more than 2 on the
privacy scale. This comparison completes the operationalization of the idea of a
privacy gradient as it occurred in the lunar habitat design transcript.

The definition of privacy gradient catalog with all its preliminary
definitions is a relatively formidable task. If one undertakes figuring it out from
scratch, it might well seem that the task is easier to do in a traditional programming
language. This seems especially true to people who are experienced in programming.
It may well be that such a task pushes the HERMES language to near its limits. On the
other hand, a design environment built on the HERMES substrate might support reuse
and modification sufficiently to make the HERMES alternative preferable. First, much
of the defining could have been done in the seeded set of language definitions,
providing a well thought-out collection of building blocks for complex tasks involving
privacy. If this was not available in the original seed, a reseeding process could take
place when the privacy issue is raised as an important concern. Then an experienced
programmer or a HERMES local developer could step in and provide a set of privacy-
related definitions for everyone to use.
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As stated at the outset of this chapter, the HERMES language has been
developed to push its approach to supporting a mix of tacit and explicit understanding
as far as possible and to explore its limits. The privacy gradient critique
expression provides an important test of these limits. On the one hand, it shows that
the task that appeared extremely challenging back in Chapter 3 can in fact be
accomplished using the HERMES language. On the other hand, it shows that such a
task may strain the limits of the language. The limits of the language are explored
further by examples in Appendix B. More thorough experience will have to await the
building of robust design environments on the HERMES substrate and their use by a
community of designers.



CHAPTER 11. CONTRIBUTIONS

The topic of this dissertation has been the problem of providing computer
support for cooperative design given the nature of tacit and explicit understanding.
But at a meta-level, an important theme has been the role of theory in software
design. Often, work in cognitive science and artificial intelligence proceeds with little
reference to philosophy, which is given lip service as one constituent of these
interdisciplinary endeavors. Of course, preconceptions abound in such work, but they
are either treated as self-evident common sense or addressed through discussions of
individual concepts whose inner coherence remains outside the investigation.

This dissertation is an attempt to take theory seriously in computer science.
Rather than first creating a software artifact whose theory is at best only tacitly
available retrospectively,!0 and then subjecting the artifact to controlled user testing to
determine its effectiveness, the approach followed here is to formulate a set of explicit
theoretical principles to motivate an approach to computer support of design and then
to present a package of prototyped functionality to illustrate that approach. Together,
the theory and the examples are meant to provide cogent arguments for the
deliberation of central issues in software design of systems to support innovative,
collaborative design work in exploratory domains.

Of course, several preconceptions have been at work here, too. However, the
major assumptions have been systematically reflected upon in the process and
explicated or modified as need be. It has been assumed, for instance, that software to
support professional designers should be based on an understanding of the structure
of their work processes. As a guiding idea, the design process was viewed (or pre-
viewed) as a process of interpretation (Chapter 1). Two approaches were then taken
to explore this work process: one by looking at some of the best available
descriptions of the way designers work (by Alexander, Rittel, and Schon in Chapter
2), and the other by looking at a concrete example of designers working (on lunar
habitat design in Chapter 3). To make this theory even more explicit and general, it
was then put into the framework of a philosophy (Heidegger’s hermeneutics in
Chapter 4). An explicit theory of computer support for interpretation in design was
built on top of the results of the preceding investigations (Chapter 5 and 6). The
theory developed in this way was then used to evaluate related software systems

10Carroll and associates have made a case for considering artifacts as themselves implicit
expressions of theories, as though guiding philosophies were unnecessary. This case has been made
specifically in terms of software artifacts in the realm of human-computer interaction, and has even
been related to hermeneutics (Carroll & Campbell, 1989; Carroll & Kellogg, 1989). While they
persuasively point out problems with the traditional assumptions about the relation of psychological
theory to design practice, they overlook the spiral character of understanding, in particular the
guiding role of (often tacit) philosophical beliefs and conceptual frameworks.
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meant to support design (Chapter 7). Finally, the theory served to motivate and justify
design decisions in the HERMES software (Chapters 8, 9, and 10).

While this approach stresses theory, it does not ignore the need for empirical
grounding or iterative testing. The design methodologies reviewed all grew out of
either reflection on professional practice or consideration of experimental findings.
The study of lunar habitat design pursued as part of the dissertation took on the flavor
of participatory design (Ehn, 1988; Greenbaum & Kyng, 1991) by having the
software designers and the design professionals working together on a lunar habitat
design, and by involving the two groups in dialogue about the design work and about
possibilities for computer-based support of this work. Although it was never reflected
in the Chapter 3 transcripts, the lunar habitat designers have been involved in on-
going evaluation of the HERMES system and its functionality as part of their role as
corporate sponsors of the funded research. In addition, the design of HERMES is a
response to empirical experience with the related design environments on which it is
based, as well as on a series of programming walkthroughs to evaluate the HERMES
language design (reported in Appendix A).

Evaluation and refinement of the Lunar Habitat Design Environment (LHDE)
and PHIDIAS II built on top of the HERMES substrate are expected to continue
indefinitely. Clearly, the greatest need for future work is to build a robust design
environment that exercises all of the functionality of the HERMES substrate and to gain
experience in the utility of this functionality through use by professional designers.
Unfortunately, that is beyond the scope of the present effort. For one thing, it will
involve identifying real-world projects in which a system like LHDE makes commercial
sense in order to get professionals to invest significant time in using preliminary
versions. The support of lunar habitat design has served as a fruitful application
domain in developing HERMES, but a specific project must now provide a practical
context for further participatory development and workplace evaluation.

It is useful to view the unfolding of this dissertation as a hermeneutic process,
in which a vague preconception of interpretation in design becomes increasingly
clearer through precisely the kind of interpretive process that has been analyzed in the
dissertation. The concept of interpretation has been elaborated through an
investigation of the role of interpretation in design. The guiding perspective was the
intuition that interpretation is the central category for founding a theory of computer
support. This perspective was tied through a process of reflection to its explicit roots
in Heidegger's philosophy, but also to the almost forgotten role of interpretation in
the related systems that HERMES grew out of. In a sense, the dissertation embodies a
moment of reflection in which the effort to build systems of computer support ran up
against the limits of multi-faceted, domain-oriented, knowledge-based systems; made
explicit the role of interpretation in design; and then, using this, proposed a system
that integrates the facets in a hypermedia substrate, extends the notion of domain-
orientation with perspectives, and uncovers the basis of explicit computer knowledge
representations in the expressing of tacit human preunderstanding in language.

In looking back over what has been accomplished in this dissertation, it is
clear that no final answers have been given. The analysis of interpretation remains
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unclear and incomplete in many ways. The theory of computer support is no more
than a beginning in an attempt to provide rationale for a new direction in artificial
intelligence. The design of HERMES is suggestive of promising functionality, but this
promise remains largely untested. Nevertheless, whatever the limits of this work, it
does seem to have made significant contributions on three primary leveis: on a
philosophical level (11.1), on a theoretical level (11.2), and on a system building level
(11.3).

11.1  CONTRIBUTIONS TO A PHILOSOPHY OF INTERPRETATION

At least since Dreyfus (1966; 1972; & Dreyfus, 1986), the relevance of
Heidegger’s philosophy to Al has been debated. Unfortunately, most of the discussion
by computer scientists has relied on secondary sources, especially pre-publication
drafts of Dreyfus’ (1991) commentary on Heidegger. So one contribution of this
dissertation has been to return to the original text of Heidegger (1927) and to
systematically apply that text to the context of computer support for interpretation in
design. The result has been an analysis of interpretation that is frequently more
detailed and rigorous than alternative presentations. This represents a contribution to
Heideggerian scholarship as such, not just from a computer science perspective.

Of course, according to the philosophy there is no “correct” interpretation of a
text unrelated to a background of concerns. The confrontation of the Heideggerian
text with the problematic of design and computer support for design had important
consequences. Examples from design methodology and from lunar habitat design
provided not only a concreteness to Heidegger’s abstractions, but a more realistic
context than Heidegger’s own craft-oriented glimpses of the lonely carpenter
absorbed in his hammering. Design shifted the emphasis to collaborative work. It also
moved (thanks largely to Schon’s insights) from use of the physical artifact to the
more conceptual design of artifacts. In particular, this brought to the fore the role of
discovery over that of laying out what was implicitly disclosed. This clarified and
extended the analysis of interpretation, removing certain ambiguities that Heidegger
glossed over.

Perhaps most importantly, the effort to apply Heidegger’s philosophy to
computer system building not only forced a precision of concept, but resulted in the
operationalizing of many of the ideas. This is, of course, a common benefit to
philosophy of mind when it is applied in Al In this case, the result was a computer
model of human interpretation as situated, perspectival, and linguistic. However, in
addition to the model, there is an extensive recognition of the limits of the model and
the need to involve people in the operation of the model. These limits are shown to be
consequences of the Heideggerian analysis. So philosophy benefited from its meeting
with computer science.
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11.2 CONTRIBUTIONS TO A THEORY OF COMPUTER SUPPORT

The ceniral contribution was to identify the key concept for a theory of
computer support: interpretation. Although Winograd & Flores (1986), for instance,
talked a lot about interpretation, they ranged across Heidegger’s (1927) framework
and focused on its critique of technical rationality. Ironically, their proposed software
example, the COORDINATOR program, suffered from a lack of respect for the
importance of interpretative control by the users. They failed to take seriously the fact
that there is no objective structure to a domain and that people should be supported in
defining their own analyses, interpretations, and terminologies from their own
perspectives. Support for interpretation is the ingredient missing from most traditional
AI programs. This dissertation contributes the antidote: a recognition of the central
role of interpretation and the impossibility of fully automating it. It is difficult to
convey the potential importance of this contribution; that is why so many pages of the
dissertation have been devoted to this theme.

The proposed theory of computer support is built squarely on the analysis of
interpretation. This gives the theory a coherence and consistency missing from other
theoretical frameworks in computer science (other than those based on strictly formal
logical grounds). It demonstrates how philosophy (again, other than logic) can be put
in the service of computer science.

Knowledge-based system design inevitably raises the question of the nature of
knowledge. Some contributions have been made here. First, the varieties of
knowledge or information have been categorized in terms of their origins in various
phases of the process of interpretation. This includes not only tacit and explicit
understanding, but also shared understanding and captured computer representations.
Second, the idea of domain knowledge has been critiqued. Not only does knowledge
in a design domain change as the related technologies and styles change and as the
expertise of the field matures and grows, but every designer and every design team
has their own domain knowledge. It is not simply that they each have different pieces
of an underlying knowledge. Rather, to know is to know from a perspective, so there
is no objective body of domain knowledge independent of what people know in their
own ways, within their many perspectives. Third, the role of language in expressing
knowledge has been emphasized. The emergence of interpersonal or operationalized
knowledge from tacit experience takes place through discourse and assertion within
situated interpretation. Correspondingly, an end-user language has an important role
to play in computer support.
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11.3 CONTRIBUTIONS TO A SYSTEM FOR INNOVATIVE DESIGN

The effort to illustrate the functionality called for by the theory resulted in
three major contributions to building computer support for innovative design: (a) a
hypermedia knowledge representation substrate, incorporating: (b) a system of
perspectives and (c) an end-user language. The design of each of these features has
been thought through, both in terms of the functionality required by the theory and in
terms of their usability in a practical computer system for design professionals. Each
has also been prototyped in executable code and subjected to testing to confirm the
implementability of the ideas. Various versions of these features, along with auxiliary
functionality have also been incorporated in a series of design environments that have
been shown to lunar habitat designers for feedback.

(a) The hypermedia substrate incorporates the power of the fine-grained
hypertext in the original PHIDIAS system, provides an efficient and scalable object-
oriented database for persistence, incorporates multi-media nodes, and integrates the
perspectives and language into the fundamental node and link structure. This
hypermedia offers an extremely powerful and flexible knowledge representation
system, whose control by the user is limited primarily by the lack of a fuller user
interface. Adaptability by the user—or plasticity of representation—is critical
according to the theory. The HERMES hypermedia contributes an example of a
substrate for supporting such adaptability.

(b) The perspectives mechanism is a contribution to Computer Supported
Cooperative Work. It allows individuals to organize their own versions of knowledge
representations and to share them. This provides a tool for supporting the evolution
of knowledge by starting with systematically organized domains and allowing users to
inherit and modify these and to organize meaningful new domains. The virtual
copying approach is an inherently efficient mechanism, which encourages consistency
by eliminating unnecessary duplication of representations in multiple copies.

(¢) The HERMES language is a contribution to end-user programming
languages and programmable design environments. It suggests ways of reducing the
programming doctrine that users have to learn or keep in mind. Much of the
traditional programming language doctrine is suppressed by keeping the
corresponding features tacit in the HERMES language. Also, the appearance of
expressions in the language supports tacit understanding by making heavy use of user-
defined domain terminology and by following several syntactic conventions of natural
language. At the same time, when the computational structure of an expression must
be made more explicit to be understood or modified, this can be done to some extent
through interface displays and to some extent by exploratory execution. A
programming language paradigm that was implicit in PHIDIAS’ query language has
been pushed forward, extended, and modified to the point of a powerful end-user
language that can play key roles in a system to support interpretation.
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Computer technology can contribute to human emancipation. By providing
computationally active media of external memory, it can significantly extend cognitive
capabilities within an increasingly complex world. However, that requires a people-
centered approach in which machine computations are at the service of human
judgments and interpretation. Mainstream software approaches have developed within
a social context dominated by the interests of military, government, and multinational
corporations, resulting in computer applications that replace people or that dictate
how they think and work. This dissertation has tried to present design rationale to
oppose the bureaucratic interests, a theory to guide people-centered software
development, and example mechanisms for giving people innovative, shared control
over software computations.
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