VISUALIZING THE PERFORMANCE OF PARALLEL
PROGRAMS: INTERFACE DESIGN USING
TASK-CENTERED WALKTHROUGHS

Casey Boyd, Michael Jones,
Joe Thielen

CU-CS-683-93

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

VISUALIZING THE PERFORMANCE OF PARALLEL
PROGRAMS: INTERFACE DESIGN USING
TASK-CENTERED WALKTHROUGHS

CU-CS-683-93 November 1993

Casey Boyd, Michael Jones,
Joe Thielen

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

VISUALIZING THE PERFORMANCE OF PARALLEL
PROGRAMS: INTERFACE DESIGN USING
TASK-CENTERED WALKTHROUGHS

Casey Boyd!, Michael Jones!, Joe Thielen?

nstitute of Cognitive Science and
Department of Computer Science
University of Colorado
Boulder, CO 80309
cboyd@cs.colorado.edu
mjones@cs.colorado.edu

ABSTRACT

Parallel performance debugging is a task that requires
large amounts of data to be evaluated by the user in an
easy and efficient manner. Consequently, careful atten-
tion must be given to the design of a user interface for
parallel performance visualization. The user interface
should allow the user to identify and correct possible
performance problems in a parallel program. We ex-
plore the application of task-centered design and the
cognitive walkthrough method to this task domain and
suggest some limitations of the walkthrough method.

KEYWORDS: Parallel performance visualization, par-
allel performance debugging, task-centered design, cog-
nitive walkthrough, interface design, large-scale concur-
rency.

INTRODUCTION

ProVis is designed to guide the user to identify and cor-
rect performance defects in programs. This includes let-
ting the user obtain desired information easily, without
being overwhelmed with the massive amounts of data
created by the parallel program. ProVis takes the mas-
sive amount of data in the trace file and presents it in a
visual format that lets a programmer recognize patterns
and measure system performance.

We designed the system beginning with the user inter-
face. The initial stage consisted of mockups of screen
displays. A refinement cycle was iterated several times
based on walkthroughs; first by the designers, then by
domain specialists.

Our approach to visualizing parallel program execution
begins with two displays: the general architecture of the
parallel system, figure 1, and a control panel that also
displays the source code of the program being analyzed,
figure 2. The user may monitor program activity in a
node or link by selecting it from the architecture dia-
gram. A programmer running ProVis can get a sense
of the overall performance and focus on specific trouble
areas. ProVis was designed to enable the programmer
to visually detect performance bottlenecks, especially

2U S WEST Advanced Technologies
Product Engineering and Development
Boulder, CO 80303

joe@advtech.uswest.com

Figure 1: Architecture display.

cache thrashing, since this is a common and difficult
problem to detect and determine how to resolve.

THE PROBLEM DOMAIN

Parallel and serial programs encounter efficiency prob-
lems when they fail to make good use of the cache. Since
access to main memory is slow relative to cache mem-
ory access, programs run more efficiently when the data
and instructions they need are already located in the
cache a large percentage of the time they are requested.
When a program’s inefficiency is a result of poor cache
utilization, it is difficult to determine which program
segments are responsible for the inefficiencies. Our sys-
tem is designed to allow a programmer to visualize a
program’s access patterns of cache and main memory.

Other Approaches to Parallel Visualization

Several pioneer parallel visualization systems embed-
ded the visualization code into the parallel program it-
self. Balsa[l] and SDL[9] use this approach. One of
the advantages of this approach is run-time visualiza-
tion, which allows the developer to monitor a program’s
performance in real-time. However, several drawbacks

Figure 2: Control panel and source code.

to this approach include the need to modify the par-
allel code, difficulty changing the information that is
displayed and its displayed format. [9]

ProVis doesn’t have these problems since it uses a
trace file that was created when the program last ran.
This approach has been used successfully in other par-
allel visualization systems, such as ParaGraph[3] and
TraceView[8]. The trace file contains a description of
the system architecture and program run time informa-
tion. The trace file can be thought of as a script to
recreate the program run-time states without running
the program again.

Design Features

If a programmer is going to be productive at debugging
performance bottlenecks, certain tools must be avail-
able that can help the programmer detect thrashing,
stop the trace file analysis when utilization reaches a
predetermined level, and tie that to the source code.
ProVis was designed to address these specific tasks for
the programmer.

A histogram meter, figure 3, can be used to display the
traffic or utilization level across some link. It is useful
to be able to stop playback of a trace file when bus
utilization reaches a predetermined point, such as 95%.
ProVis offers an alarm that allows the programmer to
halt playback or simply to notify the programmer when
a condition is met. This feature can be used to spot
trouble areas without having to look over the trace file
in great detail.

Thrashing is a common performance bottleneck that
programmers deal with often. Thrashing occurs when
the CPU is processing a loop of code that repeatedly
requests data that is not in the cache. Usually the prob-
lem results when the data being processed is too large
to fit into the cache. A part of it is loaded and then the
CPU requests another part that isn’t loaded. The sys-

Figure 3: Histogram meter.

tem clears the first part of the cache to accommodate
the new data. When repetitive swapping of data into
the cache continues, thrashing occurs, hindering sys-
tem performance seriously. ProVis offers tools to help
the programmer see thrashing via the touch trace me-
ters. The meters show the memory being loaded into
the cache and displaced from it, when each cache ele-
ment is accessed. The programmer watches this meter
carefully whenever the potential for thrashing exists to
see whether parts of the cache are being repetitively
cleared.

The features described so far are useful only if the pro-
grammer can tie the information to the source code, so
that corrections can be made. Performance anomalies
show up in the histogram display. When the user clicks
on the histogram at the point where the anomaly ap-
pears, ProVis indexes into the trace file and highlights
the corresponding source code line in the control panel,
figure 2.

ProVis also allows the programmer to adjust the speed
at which the trace file is played. This gives the ability to
look at certain areas of code slowly, so that performance

problems that might have otherwise gone unnoticed can
be detected and fixed.

THE DESIGN APPROACH

The design and development of our program perfor-
mance visualizer, ProVis, has followed certain principles
for user interface design. Some of these principles have
been suggested by others. Our findings help substanti-
ate their work.

Principles

1. Initial designs should be produced and modi-
fied quickly.[4] This principle implies that the design
prototype should not require the designer to program.
Programming forces the designer to be concerned with
details that aren’t directly related to the interface de-
sign itself. A short design and modification cycle is
important so that changes can be quickly tested.

2. The design process should be task-centered.[7]
One can not produce a useful system without knowing
what the system is intended to do. A specific task or
set of tasks must be chosen for the system and then all
design considerations must be weighed by their contri-
bution (or lack thereof) to the solution of the task. A
task-centered approach keeps the designer focused and
gives a measuring stick against which all design deci-
sions can be judged for relevance and importance.

3. All information provided by the system should
be relevant to the task. Any information or con-
trol that does not apply to the functionality or purpose
of a window, dialog box, the system, etc. should be
eliminated. The superfluous information will only serve
to confuse and distract the user. The following design
principles argue in favor of this:[6, p. 236]

1. Make the repertory of available actions salient.
2. Offer few alternatives.

3. Require as few choices as possible.

We interpret these to mean: 1) all control options ap-
pearing in any window should be directly relevant to
the information displayed in that window, 2) no win-
dow should have more control options than are abso-
lutely necessary to use the contents of the window, and
3) each control option should offer only those selections
needed to work on the class of tasks targeted by the
system.

4. The system should guide the user in perform-
ing the task or solving the problem. The system
should provide enough information as analytical data
and system help to support the user’s purpose. This
information should guide the user to the solution rather
than make it necessary to hunt for or infer it. The sys-
tem should provide information that would be expected
given the task, and the information should be presented
in a comprehensible format.

5. The system should enable new users to learn
quickly what features are available and how to
use them.[6] A usable system should have an intuitive
feel about it. Users are rarely willing to spend much
time studying a user’s manual. If the system cannot be
understood and used with a little exploration, users are
likely to become frustrated and stop using the system.
The system should provide ready access to all the infor-
mation it can provide. There should not be any hidden
ways to get desired information. If the system: will pro-
vide a piece of information, it should be obvious how to
get that information.

Why Task-Centered?

Domain-specificity may not limit the scope of applica-
tion of a computer system enough when you are de-
signing for expressiveness and flexibility within the con-
straint of limited complexity. Fulfilling those goals may
require narrowing the scope further than the domain

level down to a class of tasks. An interface designer
can choose several representative tasks and use them to
guide the design process. We used specific tasks to de-
sign an interface adequate for the chosen task class while
deliberately leaving out all system features needed for
tasks not in the target class.[7]

By limiting its scope, our interface can present the right
information in full measure without overwhelming the
user. Also we limited the methods for controliing the
program to a reasonable number by offering no more
options than were necessary.

Once one makes the decision to follow this approach to
interface development and determines the base class of
tasks, it is still necessary to refine the interface with user
walkthroughs. The walkthrough phase ensures that the
interface design will support the relevant solution meth-
ods and processes. One might find that the task class
is still too broad. Several advantages of a walkthrough
method using mock-ups of the interface are that one can
design without programming, use a short refinement it-
eration cycle, and the cost of correcting fundamental
design errors is low.

Preparing for the Walkthrough

To guide our system-building effort we used the cog-
nitive walkthrough method when we designed our sys-
tem’s interface. The cognitive walkthrough method is a
procedure for systematically evaluating the features of
an interface.[6, 5]

We chose a specific task to focus the walkthrough. It
represented the class of tasks for which the new system
was targeted. The class of tasks was the debugging of
efficiency pathologies in parallel programs, with special
attention to the use of memory structures. The specific
task was a matrix multiply program whose execution
behavior presented slow performance.

Preparation for the walkthrough consisted of sketching
out a tentative system design, including an example of
every input method and every output display. It was
necessary to consider precisely each logical path through
the system. How would the display look when the sys-
tem startup command was given? What buttons, scroll
bars, and other mouse-sensitive areas would be needed
in the initial display to control the displayed material
and to access the rest of the system? What would be
the contents of windows called up by such interactions?

Preparing the tentative system design constituted a con-
siderable part of the design effort. However at this point
“implementing” was limited to producing a diagram-
matic representation on paper. So the consequences of
design mis-decisions and their redesign were light. It
was possible to change the design quickly in response to
iterative refinements.

Making the Walkthrough Method Work
The mock-up of the interface went through four itera-
tion cycles. The first was based on sketches made on a

whiteboard during an early meeting between the design
team and our collaborators. The second was internal
to the project team and the last two were performed
by our collaborators/users under the direction of the
project team. We considered it imperative that the sys-
tem as mocked up should represent full functionality be-
fore presenting it to the users for a formal walkthrough.
It should have no gaps to block a user from accessing
every portion of the system.

The project designers acted out the user’s role in the
first and second walkthroughs. Our lack of expertise
with the task kept us from seeing needed enhancements
and our familiarity with the design made us overlook
confusing or troublesome points, limiting the overall
value of those walkthroughs. Yet this step ensured a
successful first walkthrough with the users because we
checked the design for completeness. This was partic-
ularly valuable since one dimension we wanted to test
with the users was ease of learning the system. Each
iteration by the users trained them in the use of the
interface, so we were careful not to expose them to it
before it was ready.

Our two collaborators are professors of computer sci-
ence with research interests in visualization of paral-
lel program execution. Owing to this, they brought a
high level of commitment to the project. They have
substantial experience with exploring and learning how
to use new computer systems. These factors and their
commitment probably contributed to the success of our
walkthroughs. Anyone using this method of evaluating
interfaces ought to be aware of this as a potential factor.

Our experience demonstrated that the mock-upis a use-
ful component in the system design cycle. We found
that each refinement cycle using the mock-up produced
numerous valuable changes to the design. The walk-
throughs yielded information that clarified decisions
about the organization of the interface and techniques
used to seek and display information. We detected
where the system was hard to use and why. We learned
how the system could increase the value of the informa-
tion it provides to the users as they work on the task.

Set Load Meter

® Histogram O Needle
® Percentage O Absolute
Maximum | 100

Update the Meter Times per Second

® Load Meter O Alarm

Figure 4: Initial dialog box design.

DESIGN EVOLUTION

The most important lesson is the unpre-
dictability of good design: The large number
of features of the final design that were not and
could not have been anticipated in the initial
design. These features were only discovered
and incorporated because of the focus on users
and user testing in the design process.[2, p.

£a01
900]

Eliminating the Dialog Boxes

An example of the unpredictability of good design is
illustrated by our replacing the original dialog boxes,
figure 4, with a'more direct interaction, figure 3. In the
initial design the user would use the mouse to select a
component of the architecture to be monitored. A dia-
log box with all the customization options available was
then presented to the user. After setting the desired
options, a meter conforming to the selected options re-
placed the dialog box.

The dialog boxes reduced screen clutter by removing
some parameter setting functions from displays that
users keep on the screen. During the walkthroughs, the
subjects found that the dialog boxes interfered with us-
ing the system. They did not want to cancel and then
regenerate a meter to change its properties.

The designers responded in two ways. First by elimi-
nating some unnecessary information and interactions
contained in the dialog boxes and second by incorpo-
rating what remained into the displays that the dialog
boxes customized. This turned out to be a complete
win as we succeeded in making the interaction simpler,
more direct and more customizable without giving up
any necessary system features.

Increasing Direct Manipulation in the Histogram
Meters

Several other design enhancements to the histogram me-
ter were suggested during the walkthroughs. One sug-
gestion was the ability to zoom in on a section of the
histogram to get a magnified view of the data. Another
was to present in the histogram the correspondence be-
tween percent utilization and raw traffic count on the
bus being monitored. These two ideas resulted in the
addition of editable y-axis labels that reflect both the
percentage of use and the raw use of the bus. As an
example of their use, consider changing the upper per-
centage label from 100 to 50. The view of the histogram
data would be magnified to display the lower half of the
histogram in the same visual space. A corresponding
change would antomatically be made by ProVis in the
upper raw data label to reflect 50% of the maximum
raw bus traffic.

As the subjects studied the histogram data from a task-
centered perspective, they realized that they would be
watching for patterns of excessive activity (spikes in the
histogram display). Consequently they requested the
ability to correlate patterns in the display with lines in

the source code. The new design highlights the source
code line corresponding to a position in the histogram
selected with the mouse.

Adding Task-Specific Information to the Cache
Touch Trace Meter

A primary goal of the system is to help a program-
mer detect thrashing during program execution. In the
walkthroughs the subjects reported that a high utiliza-
tion of the bus between the cache and main memory
does not necessarily mean that thrashing is occurring.
To make this determination the programmer also needs
to know the activity in the cache. While the histogram
can show a bus utilization rate it can not show cache
use patterns. The cache touch trace meter is designed
to show access patterns within the cache. In the initial
design only accesses by the CPU were shown. How-
ever, the subjects realized that besides knowing which
data in the cache were being used, they also needed to
know which data were being replaced. The touch trace
meter was extended to show both kinds of information
side-by-side so that the two could be compared.

A comment similar to the following was made during the
walkthrough. “Now that I have seen a high cache miss
rate, I need to know which variables are responsible.”
To satisfy this need, the designers added a color-coded
filter to the touch trace meter. The user is able to select
program variables and display their activity in the cache
using different colors. The user is then able to see which
variables are consuming large portions of the cache and
which are being constantly swapped in and out.

A Brief Description of Some of the Other Design
Changes Suggested by the Walkthroughs

We moved some controls to associate them more closely
with the relevant displays. In the first walkthrough we
realized that users would simultaneously display several
meters of the same type. Multiple histograms might
confuse users if there were no way to remember which
architectural component was being monitored by which
meter. To remind users we added a reduced-size im-
age of the architecture model to each meter with the
monitored component highlighted.

Our collaborators suggested ideas for improving the use-
fulness of breakpoints. One suggestion allowed restart-
ing the trace file and skipping ahead to the first or next
breakpoint without updating the meters. Eliminating
the display computation and screen updates improves
the execution speed of ProVis through the parts of the
program that the user does not want to see.

Another suggestion increased control flexibility when
setting breakpoints. Thrashing problems often occur
inside the body of a loop. Users can set breakpoints
by both line number and the number of times the line
has been executed in the trace file. This allows large
segments of the program trace to be skipped without
having to stop on each loop iteration.

CONCLUSIONS

Is There an Inherent Limitation in Using a Mock-
Up for Design Refinement lterations - a Point of
Diminishing Returns?

While some aspects of new technology may
be difficult to simulate we have never en-
countered a design problem in which at least

some important aspects could not be usefully
simulated.[2, p. 534]

A mock-up may not be useful for settling all interface
design issues. Some important aspects will not be pos-
sible to simulate usefully.

After their second iteration our walkthrough partici-
pants perceived an inability to imagine any further how
to use the system to solve problems without having a
running program to give live results, rather than made-
up displays. They felt they would require active and
precisely responsive behavior from the system to engage
in further evaluation of the interface’s usability.

We could have mocked up more thoroughly realistic re-
sults showing high fidelity to displays of the sort that
would be produced by running the system on a problem.
But one obstacle is that we would need an implementa-
tion of the system to get such displays. Another obsta-
cle is that we could not have anticipated the problem-
solving paths needed by our participants to cover all
the possibilities they would want to try in pursuing a
solution for the target task.

For ProVis an additional difficulty in the mock-up phase
came from the program’s feature of displaying tempo-
rally visible patterns in aid of the problem-solving pro-
cess. Paper mock-ups or any other static display could
not in principle present the dynamic visual images of
time-based patterns that are needed in this problem
class to understand how to proceed toward a problem
solution.

Principles Revisited

1. Initial designs should be produced and mod-
ified quickly. We achieved this goal by using a paper
mock-up of the system that allowed our test users to
walk through the system and suggest possible changes.
These changes were quickly incorporated and the cy-
cle repeated. We have also argued that certain systems
reach a point of diminishing returns with this approach.
A static display cannot do justice to the temporal pat-
terns of activity that ProVis needs to model. We do,
however, advocate the mock-up approach for initial de-
sign work because much can be accomplished with this
method.

2. Design should be problem-centered. We chose
a single, specific problem for ProVis. Because we were
able to focus on this task, each meter and display was
carefully chosen and designed to aid a programmer to
detect and correct thrashing problems in a program.

3. All information provided by the system should
be relevant to the task. We eliminated dialog boxes
because they turned out to be an unnecessary layer that
our test users found cumbersome. The relevant infor-
mation and options they contained were more closely
linked with the meter. Selecting an architectural com-
ponent immediately produces the desired meter. The
meter attributes can then be modified directly.

4. The system should guide the user in perform-
ing the task or solving the problem. ProVis pro-
vides the ability to monitor cache and link activity by
selecting parts of an architectural model. The system
correlates meter display activity to the corresponding
source code line with the click of a mouse button. The
system also lets the user set alarms to detect automat-
ically when activity exceeds a certain threshold. The
histogram and other displays are common methods of
displaying information and are easily read and under-
stood.

5. The system should enable new users to learn
quickly what features are available and how to
use them. We have attempted to label clearly each sys-
tem component. The number of choice points in ProVis
was streamlined so that a few buttons in each window
would provide access to all features and options. We
were able to forego the use of menus and integrate all
the command options of the system into the information
displays. Admittedly this approach may not work for a
system with many choices to be made, but it was feasi-
ble for our design. Further testing should show whether
ProVis can be learned by exploration.

Summary

ProVis may turn out to be a more useful system because
it was designed with a specific task in mind. The infor-
mation displays are designed to guide the user to correct
thrashing problems in a parallel program. The system
is designed to ease learning by new users. It supports
a strategy of learning by exploration. All information
provided by the system is readily accessible and relevant
to the task class. We achieved these results primarily by
taking a task-centered design approach and by refining
the design repeatedly based on feedback from system-
atic walkthroughs with users.

Acknowledgments

We would like to thank Professors Dirk Grunwald and
Gary Nutt of the CU Computer Science department for
their time, support, and valuable contributions to this
project. We also thank Tony Sloane for providing the
trace files. Professor Clayton Lewis gave us valuable
guidance about applying the walkthrough method. We
appreciate the helpful criticism by several reviewers of
earlier drafts of this paper.

References

[1] M. H. Brown and R. Sedgewick. A system for al-
gorithm animation. In Proceedings of SIGGRAPH
‘84, pages 177-186. Association for Computing Ma-
chinery, July 1986.

[2] John D. Gould and Clayton Lewis. Designing for us-
ability: key principles and what designers think. In
R. M. Baecker and W. A. S. Buxton, editors, Read-
ings in Human-Computer Interaction, chapter 11,
pages 528-539. Morgan Kaufmann, Los Altos, CA,
1987.

[3] M. T. Heath and J. A. Etheridge. Visualizing the
performance of parallel programs. IEEE Software,
8(5):29-39, September 1991.

[4] D. Austin Henderson, Jr. The Trillium user interface
design environment. In R. M. Baecker and W. A. S.
Buxton, editors, Readings in Human-Computer In-
teraction, chapter 12, pages 584-590. Morgan Kauf-
mann, Los Altos, CA, 1987.

[5] Robin Jeffries, James R. Miller, Cathleen Wharton,
and Kathy M. Uyeda. User interface evaluation in
the real world: a comparison of four techniques. In
Proceedings of CHI’91, pages 119-124. Association
for Computing Machinery, New York, 1991.

[6] Clayton Lewis, Peter Polson, Cathleen Wharton,
and John Rieman. Testing a walkthrough method-
ology for theory-based design of walk-up-and-use in-
terfaces. In Proceedings of CHI’90, pages 235-242.
Association for Computing Machinery, New York,
1990.

[7] Clayton Lewis, John Rieman, and Brigham Bell.
Problem-centered design for expressiveness and fa-
cility in a graphical programming system. Techni-
cal Report CU-CS5-479-90, Department of Computer
Science, University of Colorado, June 1990.

[8] A. D. Malony, D. H. Hammerslag, and D. J.
Jablonowski. Traceview: A trace visualization tool.
IEEE Software, 8(5):19-38, September 1991.

[9] Gruia-Catalin Roman. Language and visualization
support for large-scale concurrency. In Proceedings
of the 10th International Conference on Software
Engineering, pages 296-308. IEEE Computer Soci-
ety Press, April 1988.

