Memory-Contention Responsive Hash Joins

Diane L. Davison

University of Colorado at Boulder
Computer Science Department
Campus Box 430
Boulder, Colorado 80309-0430

Goetz Graefe

Portland State University
Computer Science Department
P.O. Box 751
Portland, Oregon 97207-0751

CU-CS-682-93 December 1993

Memory-Contention Responsive Hash Joins

Diane L. Davison
davison @ cs.colorado.edu

University of Colorado at Boulder, Computer Science Department, Campus Box 430, Boulder, Colorado 80309-0430

Goetz Graefe
graefe @ cs.pdx.edu
Portland State University, Computer Science Department, P.O. Box 751, Portland, Oregon 97207-0751

Abstract

Fluctuations in memory contention during query execution may compromise the effectiveness of
previous allocation decisions and result in excessive I/O costs. In order to maximize system per-
formance, memory-intensive algorithms such as hash join must gracefully adapt to variations in
available memory. Responsiveness to memory contention is particularly important in systems
processing mixed workloads due to the erratic frequency and magnitude of fluctuations. Earlier
studies on adaptable hash joins have advocated lowering I/O costs by reducing the volume, or
number of pages, of I/O performed. In this paper, we present a group of memory-contention
responsive hash joins that lower I/O costs by using a large unit of I/O, or cluster, to reduce the
amount of time spent on I/O and that dynamically vary the cluster size in response to fluctuations
in memory availability. These techniques are effective for static as well as variable memory allo-
cations. Our simulation results demonstrate that our techniques provide much better perfor-
mance and responsiveness than previous algorithms.

1. Introduction

Static memory allocation techniques are inadequate for the execution of queries in a multi-
user environment due to the system’s inability to predict when new requests will arrive. Differ-
ences in query complexity and size complicate allocation by creating a mixed workload in which
memory demands may vary significantly among requests. The use of parallelism exacerbates the
memory allocation problem by drastically increasing the competition for this scarce resource
[SSU91]. This unpredictable environment precludes achieving good performance using static
memory allocation techniques since an optimal division of memory among competing queries
may become sub-optimal very quickly due to fluctuations in memory contention as queries enter
and leave the system. To overcome this uncertainty, the system must adapt to fluctuations in
memory contention by adjusting previous allocation decisions. This requires that memory-
intensive algorithms such as hash join and sort have the capability to gracefully respond to
changes in their memory allocation at any time during their execution.

In this paper, we show how memory can be most effectively utilized by hash joins whose
memory allocation varies during execution, particularly how a large cluster, or unit of I/O, can be
exploited for maximum performance and responsiveness in spite of memory fluctuations. We
designed and prototyped a group of memory-contention responsive hash joins and found that
fluctuating memory allocations can best be handled by dynamically adjusting the cluster size and

enlarging or reducing the size of the output buffers for spilled partitions based on memory avail-
ability.

Most previous hash joins have tried to reduce I/O cost by minimizing the overall /O vol-
ume, or number of pages of I/O. These join algorithms attempt to reduce the time spent on I/O
by keeping resident as much of the build input as possible in order to reduce the total amount of
I/O performed. However, previous research for joins with static memory allocations has shown
that it is more effective to use a large unit of I/O, or cluster, to reduce /O time even if it increases
I/O volume [Bra84]. Larger clusters reduce the number of I/O calls and thus reduce seek time
and rotational latency, the most expensive components of an I/O operation.

It would be possible to simply use a large, fixed cluster size that is independent of the cur-
rent memory allocation to try to realize the benefit of large 1/Os, but this approach has two prob-
lems compared to the dynamic approach. First, this could have an adverse effect on the partition-
ing fan-out. A large cluster size increases the memory commitment for each output buffer and
could, therefore, restrict the fan-out and result in large partitions that require multiple levels of
partitioning. Second, the most effective cluster size depends on the join’s memory allocation as
well as the performance of the I/O subsystem. A fixed cluster size does not allow the join to
adapt to changes in its memory allocation because it doesn’t take either of these factors into
account.

In Section 2, we review earlier research on hash join algorithms. We present our memory-
contention responsive hash join algorithm, discuss how it responds to memory fluctuations, and
describe several variations of the basic algorithm in Section 3. Other adaptable hash join algo-
rithms included in our performance study are discussed in Section 4. We describe our simulator
and simulation parameters in Section 5 before offering our experimental results in Section 6. In
the final section, we summarize the paper and present our conclusions.

2. Related Work

In this section, we review previous research that is related to our work. Before beginning
our discussion, we introduce the notation and terminology that we will use throughout this paper.

The join’s memory allocation, M, is allocated in fixed-size pages. The unit of disk I/O is a
cluster, C, that is composed of one or more pages. The number of partitions into which the
inputs are divided is referred to as the fan-out, F. Note that F refers to the total number of parti-
tions, any of which may be resident in memory or spilled to disk. The build input is designated
R, the probe input S, and the number of pages in the input buffer /. To account for hash table
overhead, we use a fudge factor fudge, thus fudge X R pages of memory are required to entirely
contain the hash table for the join.

A hash join is a sequence of one or more steps, where each step processes a pair of build
and probe inputs. A step can be the initial partitioning of the base inputs, an intermediate parti-
tioning level (if multiple levels are required), or the in-memory join in the deepest recursion
level. A step is composed of the build stage, during which the build input is processed, and the
probe stage, during which the corresponding probe input is processed. Depending on memory
availability, a partition may be in one of three states. A partition is resident if all build tuples

currently assigned to the partition are entirely contained in the partition’s in-memory buffer. If
some or all of the partition’s build tuples have been written to disk, the partition is spilled. If the
join’s memory allocation increases, the build file of a spilled partition could be read back into
memory or restored during the probe stage, so that it exists both in memory and on disk. Since at
least one page is required per partition and I pages are required for the input buffer, the mini-
mum memory requirement for a hash join is ¥ + I pages, and the join cannot reduce its memory
consumption below this amount. In this minimum allocation situation, it is likely that all F' parti-
tions would be spilled.

Early work on hash joins assumed a fixed memory allocation for the duration of the join
[Bra84, DKO84, KTM&83, KNT89, NKT88, Sha86]. Hybrid hash join can be used when the
memory allocation is large enough that R can be divided into partitions no larger than memory,
1.e., fudge x R < F x M [DKO84, Sha86]. If there is sufficient memory, hybrid hash join will
keep one partition resident to reduce the I/O volume. Nakayama et al. devised a new technique
called bucket tuning in which tuples are partitioned into a large number of buckets [NKT88].
Any resident buckets are then grouped into a single resident partition, and spilled buckets are
grouped into memory-size partitions for subsequent steps.

Zeller and Gray were the first to propose a hash join that can adapt to variations in available
memory during the build stage [ZeG90]. Their adaptable hash join creates a large number of
buckets, a number of partitions, and pre-assigns one or more buckets to each of the partitions.
They also proposed using a large cluster size for partition buffers, but C (as well as F and the
number of buckets) is provided by the optimizer and the paper did not elaborate on how it might
be determined. As opposed to hybrid hash join, all partitions are initially resident and each parti-
tion is assigned a single cluster for a hash table. During the build stage, each tuple is assigned to
a bucket and implicitly to that bucket’s partition. Resident partitions may grow in size until the
join’s memory is exhausted; at that time, the partition requesting additional memory is spilled
and retains only one cluster as an output buffer. If a partition ever grows in size beyond the join’s
current memory allocation, the fan-out is dynamically increased by splitting the large partition
into two smaller partitions. Unfortunately, this means that pages associated with the original
larger partition must be read at least twice in later steps. The algorithm performs only one level
of partitioning and resorts to a hashed-loops algorithm for partitions that are larger than memory.
Additional memory can be used during the build stage to enlarge resident partitions but is not
exploited during the probe stage. In response to a decrease in memory during either stage, one or
more partitions will be spilled. If this is an insufficient reduction in memory usage, the cluster
size is decreased; however, the cluster size is never increased in response to an increase in mem-
ory.

More recently, Pang et al. proposed a partially preemptible hash join (PPHJ) that adapts to
memory fluctuations during both the build and probe stages [PCL93]. PPHJ uses a small, fixed
cluster size of C = 1 page and a fan-out of F =+ fudge X R that results in partitions of average

size \ fudge x R. PPHIJ requires a minimum of «fudge x R pages' of memory; therefore, only
one level of partitioning is required since the partition files are no larger than memory. Three

techniques were presented to allow a join to adapt to memory fluctuations: preassigning clusters
to partitions versus assigning clusters to partitions on demand (early vs. late contraction), assign-
ing excess memory to an I/O buffer managed by LRU versus priority policy, and restoring spilled
build partitions (expansion). Using late contraction, the same technique used in [ZeG90], all par-
titions are initially resident and have one cluster assigned for a hash table. As long as sufficient
memory is available, partitions may obtain new clusters and grow in size. When a partition
needs additional memory but none is available, the resident partition with the highest partition
number is spilled and retains only one cluster as an output buffer. The choice of spilling from
highest to lowest partition number (i.e., partition F is spilled first and partition 1 is spilled last) is
in contrast to dynamically choosing the resident partition to spill based on the current partition
size as is done in [NKT88]. A decrease in memory during either the build or the probe stage
causes the algorithm to spill one or more build partitions. Additional memory during the build
stage is used to expand either resident partitions or the I/O buffer, while additional memory dur-
ing the probe stage is used either to expand the I/O buffer or to restore spilled build partitions, if
that option is enabled. Pang et al. performed a simulation study comparing PPHJ to previous
techniques and found that restoration of spilled build partitions during the probe stage is very
effective when the inputs differ in size, whereas late contraction and priority spooling provide
only a small improvement. The only situation in which restoration was found to harm perfor-
mance is when the join’s memory allocation fluctuates very rapidly.

An unfortunate limitation of PPHJ is that it fails the “Guy Lohman test for join techniques”
[Gra93b], requiring that a join algorithm apply to joining three inputs without interrupting the
dataflow between the join operators. PPHJ’s choice of fan-out and inability to recursively parti-
tion the inputs require that it know the exact size of the build input at the beginning of the algo-
rithm. Consider input size under-estimation. In this case, PPHJ would create partitions that are
larger than its minimum memory requirement. The algorithm cannot handle this situation, given
its minimum memory allocation. Since intermediate result size estimation could be inexact by as
much as one or two orders of magnitude [IoC91], this requirement for foreknowledge of the
exact input size is a serious limitation. Furthermore, even if the exact input size were known,
data skew could also result in partitions larger than the minimum memory requirement.

There are two approaches to reducing I/O cost: reduce I/O volume, or reduce the number of
I/O operations. All of the algorithms we have discussed, static or adaptable, take the former
approach. They attempt to achieve cost savings through reduction of I/O volume by keeping data
resident when possible, and maximize memory utilization by creating partitions equal in size to
the join’s memory allocation. However, the real issue is reducing I/O time, and this involves a
tradeoff between I/O volume and the number of /O operations. It has been shown for both sort

! PPHJ uses an input buffer of one page that is considered to be overhead rather than part of
the join’s memory allocation.

and hash-based algorithms using modern disks and having static memory allocations that it is
much more effective to use large clusters, or I/O buffers, to reduce /O time even if it increases
I/0 volume [Bra84, Gra93b, GLS9%4].

In [Gra90], we explained how these two approaches to I/O cost minimization conflict for
external sorting. We described in detail how to determine the optimal cluster size C to be used in
conjunction with the maximal fan-in F =| M /C -1 | so that these conflicting goals are

balanced®. Since merging in sort-merge and partitioning in hash join are dual operations, the
exact same conflict and solution apply to hash joins [Bra84, Gra93b, GLS94, Sal88]. On one
hand, a smaller cluster size reduces the amount of memory committed to partition output buffers
and allows a larger fan-out, which results in smaller partitions that may remain resident and
reduce I/O volume. On the other hand, large clusters reduce the number of I/O calls, but this also
restricts the fan-out since more pages are committed to each output buffer. Furthermore, the
smaller fan-out causes creation of larger partitions, which can cause an increase in I/O volume
because multiple levels of partitioning may be required. Due to space limitations, we refer the
reader to [Gra90] for the exact derivation, but we point out here that the optimal cluster size can
be approximated independently of the input sizes and depends only on the algorithm’s memory
allocation and the disk parameters (seek time, rotational latency, and transfer speed). The opti-
mal cluster size derivation in [Gra90] is designed for a static memory allocation, and we use it
here as a starting point in our dynamic algorithm.

3. Responsive Hash Joins

The effectiveness of an adaptable algorithm can be determined by two metrics. First, the
algorithm must be capable both of capitalizing on memory increases and of gracefully degrading
in the face of memory losses. The algorithm’s techniques must be effective for fluctuations that
vary drastically in both frequency and magnitude. Second, the algorithm must exhibit good
responsiveness to reduction requests from the memory manager. We define responsiveness as the
ability of an algorithm to reduce quickly its memory usage when requested to do so by the mem-
ory manager. Responsiveness may assist the memory manager in its allocation decisions, thus it
is important to overall system performance. To accomplish these goals, our hash join dynami-
cally adjusts the cluster size, sets the fan-out independently for each step, and enlarges and
reduces partition buffers depending on its memory allocation.

In this section, we present and discuss a new algorithm and describe how it responds to
memory fluctuations. Then we describe a number of variations of the basic algorithm and an
option that may be used with the dynamic variants.

2 Using the maximal fan-in or fan-out results in statically assigning one cluster to the input
buffer and one cluster to each partition.

Basic Algorithm Description

Pseudo-code for the basic algorithm is given in Figure 1. The hash join is composed of a
sequence of one or more steps, and the pseudo-code illustrates one step. Recall that a step pro-
cesses one pair of build and probe inputs and that there will be multiple steps if the build input is
larger than memory. The same logic is used to process both base inputs and partition files, so the

/* step initialization */
determine fan-out and initial cluster size
obtain one cluster for the input buffer
for each partition

set state to resident

obtain one page for a hash table
initialize the free list with all unused pages

/* build stage */
for each build tuple
hash the tuple to a partition
while the tuple has not been added to the partition
if the tuple fits in the partition
insert the tuple into the partition
else if a new page is available
enlarge the partition with a new page®
else if the partition is resident
spill the largest resident partition
return all pages except one to the free list
else /* partition is spilled */
flush the partition output buffer

/* probe stage */
for each probe tuple
hash the tuple to a partition
if the partition is resident
probe the hash table
if there is a match, emit the result
else /* the partition is spilled */
if the tuple does not fit in the partition
if a new page is available
enlarge the partition with a new page’
else
flush the partition output buffer
insert the tuple into the partition’s output buffer

Figure 1. Memory-Contention Responsive Hash Join — Basic Algorithm.

3 If the partition is spilled, the size of its output buffer is limited to C. See the discussion in
the text.

inputs will be recursively partitioned if necessary. Thus, our algorithm does not depend on accu-
rate estimates of the input sizes. While Zeller and Gray’s algorithm also handles inaccurate esti-
mates of input sizes, their algorithm resorts to a hashed-loops algorithm if the initial level of par-
titioning produces partitions larger than memory.

At the beginning of a step, it is possible to set the cluster size and fan-out as desired since
no data are resident in memory. Here we could ideally balance the I/O volume and number of
I/O operations by using the optimal cluster size and the maximal fan-out based on the current
memory allocation, but other considerations may affect these choices. Since extremely large I/O
requests would monopolize the disk, we limit all I/O requests to 10,,,,. A reasonable choice for
10,,,4x is one track, and that is the value we use. The cluster size C is set to the smaller of 10,,,,
and the optimal cluster size that was discussed in Section 2. The maximal fan-out of
F=| M/C -1 |could be very large, resulting in a join that is less resilient to memory loss due
to a larger minimum memory requirement. Therefore, rather than using the maximal fan-out, we
base the fan-out on the size of the build input. For the first step, the fan-out is set to
F =+ fudge x R, based on the estimated size of the base build input in pages. Notice that R,
is an estimate of the size of R; the algorithm benefits from but does not depend on estimation
accuracy. For all other steps, F is set to / fudge X R;, where R; pages is the actual size of the
build partition file for the step. F will be smaller for later steps since the partition files are
smaller. For example, consider a join for which R, = 10000 pages and fudge = 1.2. For the
first step, F =V1.2 x 10000 = 110. If R, were low by 10% (i.e., R = 11000 pages), the parti-
tion files R; would be approximately of size 100 pages. Then for subsequent steps, the fan-out
would be F =V1.2 x 100 = 11. The fan-out for our first step, F' = fudge X R,, is the same as
the fan-out that PPHJ uses for its first step, except that PPHJ requires R, to be accurate. PPHJ
uses classic in-memory hash join in subsequent steps, so it sets the fan-out for the first step only.
All of the F partitions are resident initially and are given a one-page buffer, but additional pages
may be obtained later as needed (this technique was used in [ZeG90] and also [PCL93], where it
was referred to as late contraction). Any unused pages are added to the operator’s free list.

During the build stage, all build tuples are consumed, and each is assigned to a partition, P;.
A tuple that is assigned to a resident partition is copied to the partition’s buffer and inserted into
the hash table. If there is no space for the tuple in the partition’s buffer, a new page may be
obtained to enlarge this resident partition’s buffer. If no new page is available, the largest resi-
dent partition is spilled and retains only a single page as an output buffer. The join spills the
largest resident partition since it makes available the most memory, similar to [NKT88]. More-
over, spilling the largest resident partition is the most reasonable action if nothing is known about
hash value skew in the probe input [Gra93a, NKT88]. After the largest partition has been spilled,
either P; is still resident and may obtain an additional page, or P; is spilled and has space in its
output buffer. A tuple assigned to a spilled partition is copied to the partition’s output buffer if
there is space. If the buffer is full, the join will enlarge the spilled partition buffer by obtaining a
new page if one is available, or by flushing the output buffer if none is available. While resident
partitions may be enlarged without limit, spilled partition buffers may not exceed the cluster size.
Figure 2 illustrates both minimal and enlarged spill buffers. The dashed box represents the clus-
ter size, which is the target size for buffers of spilled partitions. In Figure 2, partition 1 has a

7

Partitions

0 =l el]

| il A
] |
Lo oo |
Fr---------- a
2 = 1
Lo J

|

resident partition | | target cluster
- | SRS |

| spilled partition [] memory page

Figure 2. Partitioning with Dynamic Clusters.

minimal spill buffer of 1 page, while the spill buffer for partition 2 has been enlarged to the cur-
rent cluster size of 2 pages. At the end of the build stage, all spilled partitions are flushed and
each retains one page as an output buffer to be used while partitioning the probe input.

After the build stage is completed, the probe input is consumed. At the beginning of the
probe stage, there are F partitions, some resident and some spilled. For probe tuples assigned to
resident partitions, the hash table is probed immediately. A probe tuple that is assigned to a
spilled partition is copied to the partition’s output buffer, if there is space. If the buffer is full, the
partition buffer will be enlarged with a new page if one is available, or flushed if none is avail-
able. This enlargment of spilled partition buffers is exactly the same as that during the build
stage. At the end of the probe stage, all spilled partitions are flushed and all buffer memory is
returned to the operator’s free list.

When both build and probe stages for one step are complete, the algorithm initializes the
next step to process the next pair of partition files, if any remain to be processed.

To summarize, the basic algorithm manages the tradeoff between reducing I/O volume and
reducing the number of I/O requests by having resident partitions and spilled partitions compete
for memory. Resident partitions are restricted in size only by memory availability, whereas
spilled partition buffers may not exceed one cluster. This differs from previous approaches that
focus on reducing the I/O volume and do not enlarge spill buffers in response to increases in

Imemory.
Algorithm Discussion: Memory Fluctuations

Before descrihing how our basic algorithm responds to memory fluctuations, it is important
to emphasize the difference in the way we utilize the dynamic cluster size versus the way a fixed
cluster size is used. An algorithm with a large, fixed cluster size uses the cluster size as the unit
of I/O for all I/O requests. Rather than using the dynamic cluster size as the mandatory unit of
I/0, we use it as the target size for the output buffers of spilled partitions. That is, the goal is to
use output buffers of one cluster in size, but the ability to realize that goal depends on memory
availability. The target cluster was illustrated in Figure 2.

A memory fluctuation between steps is handled very easily by the basic algorithm, since
each step is processed independently and may have a different fan-out F and cluster size C.
However, a fluctuation during a step requires special action.

Additional memory is utilized to enlarge the join’s input and output buffers during either the
build or probe stage. Although the fan-out remains unchanged for the duration of a step, the
cluster size may be adjusted during a step. In response to an increase in memory, the cluster size
is recalculated as the minimum of IO,,,, the Ilargest I/O request allowed, and
C=| M /(F+1)], the maximal cluster size. The maximal cluster size is the one that would
provide an even division of memory among the F partitions and the input buffer. While no
buffer is guaranteed C pages of memory, the cluster size is used as the target size for the /O
buffers. Once the new cluster size has been determined, the input buffer is increased to C pages,
if possible. A large input buffer is beneficial for all partitions, so it is a wise investment of mem-
ory. Any remaining pages after enlargement of the input buffer are assigned to the join’s free list
so that they may be used to enlarge partition buffers as needed. For example, in Figure 2, addi-
tional memory could be obtained by any of partitions 0, 1, or 3; if the additional memory resulted
in an increase in the target cluster size, partition 2 could also compete for the memory. In con-
trast to the use of additional memory in our algorithm, the algorithms of Pang et al. as well as
Zeller and Gray use additional memory only to reduce I/O volume by avoiding I/O (Zeller and
Gray may use large buffers initially, but additional memory is used only to enlarge resident parti-
tions).

In response to a decrease in memory, the join must reduce its memory usage by reclaiming
memory, first from its free list and then from its partition buffers. The join could also reduce the
input buffer, but since a large input buffer is so generally beneficial, our join never reduces the
size of the input buffer. The disadvantage of retaining a large input buffer is that it increases the
join’s minimum memory requirement (F + I pages). If the join’s reduced memory allocation is
already equal to its minimum memory requirement, the join is unable to free any more pages.
Otherwise, to decrease its memory usage, the join must reclaim pages until its memory usage has
been sufficiently reduced. First, it will reclaim pages from its free list. Second, it will reduce the
buffers of spilled partitions to one page by flushing the full pages from the partition output
buffers. Third, it will spill resident partitions and reclaim all but one page to be used as an output
buffer. Both spilled and resident partitions are chosen in increasing order of partition number.
For example, given the situation in Figure 2, a request for the join to decrease its memory usage

to its minimum memory requirement of 4 + I pages would cause the following actions: the full
pages of partition 2 would be flushed and its buffer reduced to 1 page; partition 0 would be
spilled and given one page; and partition 3 would be spilled and given one page. Finally, after
memory consumption has been adequately reduced, the new cluster size wiil be determined in
the same manner as for a memory increase. In contrast to our handling of memory decreases,
Zeller and Gray spill resident partitions before they consider reducing the cluster size. Pang et
al. reclaim excess memory from the join’s I/O buffer before they spill resident partitions.

In summary, our algorithm capitalizes on memory increases by enlarging both resident par-
titions and the output buffers of spilled partitions. It adapts to memory losses by decreasing the
sizes of output buffers of spilled partitions as well as spilling resident partitions. By adjusting
both resident and spilled partitions in response to memory fluctuations, the algorithm can better
balance I/O volume and the number of I/O requests to reduce I/O time. Moreover, a large cluster
size should allow an algorithm to be more responsive to memory reduction requests from the
memory manager, since algorithms usually require I/O to reduce their memory usage.

Algorithm Variants

Our basic algorithm provides one approach to utilizing large clusters in a dynamic environ-
ment. In this section, we present several variations of the basic algorithm that take different
approaches to exploiting large clusters in the face of unpredictable and changing memory alloca-
tions.

* basic algorithm (basic)
The basic algorithm, shown in Figure 1, was discussed above. The size of resident parti-
tions is limited only by memory availability, whereas spilled partition buffers may not
exceed one cluster.

« immediate allocation of entire cluster (fair)

To provide a more even distribution of memory among the partitions, this variant attempts
to give all partitions a fair share of memory. Rather than using C only as an upper limit on
the size of each output buffer of a spilled partition, this algorithm immediately allocates the
buffer to be of size C. That is, when a resident partition is spilled, rather than being
reduced to one page, it is given C pages. During memory reduction, this algorithm also
attempts to evenly decrease the size of partition buffers, first of spilled partitions and then of
resident ones.

* maximize write operations (max)

This variant maximizes the size of each write operation by always flushing the spilled parti-
tion with the largest current memory allocation and spilling the largest resident partition.
When a tuple must be inserted into a spilled partition that has a full buffer and no additional
pages are available, all our other algorithm variants flush the partition that currently requires
space. Instead, if the partition’s buffer is less than C pages, this variant flushes the spilled
partition with the largest output buffer and leaves it only one page as an output buffer; the
partition with the full buffer may then enlarge its output buffer. In response to a memory
decrease, this variant choses the partition with the largest memory allocation to flush or
spill, rather than the partition with the lowest partition number.

10

e statically determine cluster size and fan-out (stat)

To provide a basis for comparison with our dynamic techniques, this variant is an adaptation
of what has been shown to be effective for joins with static memory allocations. It stati-
cally sets the optimal cluster size and fan-out based on the join’s memory allocation at algo-
rithm initialization time and retains these initial settings throughout its execution. Rather
than preassigning one cluster to each partition, stat allows resident partitions to grow with-
out limit and gives one cluster to each spilled partition. In response to memory fluctuations,
stat behaves exactly like basic, except it does not adjust the cluster size.

For our dynamic algorithm variants (basic, fair, max), we provide the following option:

* balance cluster size with restoration (bal)

It is clear that large clusters are effective for static memory allocations and that restoration
can be effective in some situations. To derive benefit from both techniques, large dynamic
buffers and restoration, we provide an option that attempts to balance the two. An algo-
rithm with the bal option responds to an increase in memory during the probe stage as fol-
lows. It first attempts to realize the largest part of the cost savings from a large cluster size,
and then it uses any remaining memory to restore as many spilled build partitions as possi-
ble. Figure 3 shows the general shape of the join cost curve as the cluster size increases. To
realize the largest part of the cost savings from a large cluster size, the algorithm simply
chooses a cluster size where the cost curve begins to flatten. Such a point is illustrated in
Figure 3. The algorithm preserves enough memory so that each partition could be of this
cluster size, and uses any remaining memory for restoration.

Cost

largest cost savings realized
Cluster Size

Figure 3. Cluster Size with Most of the Performance Gain.

11

4. Other Adaptable Algorithms

A thorough simulation study demonstrated that PPHJ has as good or much better perfor-
mance than previous memory-adaptable algorithms, including adaptable variants of Grace and
hybrid hash join, and Zeller and Gray’s adaptable hash join algorithm [PCL93]. Therefore, it is
sufficient to compare our algorithms only to PPHJ. We discussed PPHIJ in detail in Section 2,
and in this section we describe our implementation of PPHJ. We implemented PPHJ as faithfully
as possible based on the algorithm description in [PCL93], with one important modification to
allow PPHI to handle pipelined input.

The original PPHJ algorithm requires foreknowledge of the exact build input size to set the
fan-out, and requires that tuples are evenly distributed. We modified the PPHJ algorithm to han-
dle pipelined input to make it comparable to our algorithms. We refer to the modified algorithm
as PPHJ,. For steps after the initial step, PPHJ uses a different cost function that does not use
copying. Since we do not assume an accurate estimate of the build input size and do not require
tuples to be evenly distributed, we did not use this simplification. PPHJ}, recursively partitions its
inputs and processes partition files exactly the same way it processes the base inputs. That is,
rather than reading a build partition file, R;, and inserting the tuples into the hash table without
copying, PPHJ,, hashes tuples and copies them to the appropriate partition. For steps processing
partition files, PPHJ, uses the same fan-out as our dynamic algorithms, F = v fudge X R;.

Among the variants of PPHJ studied in [PCL93], the most effective variant combines late
contraction, restoration (expansion), and priority spooling, with restoration providing the largest
performance improvement. PPHIJ, includes both late contraction and "enhanced" LRU spooling,
and it includes restoration as an option. Since prioritized spooling provides only a small
improvement, we use LRU spooling with the enhancement that we prefer build pages over probe
pages. PPHIJ provides this enhancement as part of prioritized spooling, so our spooling tech-
nique should be slightly better than LRU spooling, but not quite as good as prioritized spooling.
Restoration was effective in some but not all situations analyzed in [PCL93], so we include
PPHJ;, both with and without restoration (res option).

5. Database Simulator

We implemented a simulator to study how to most effectively adapt to memory fluctuations
in a dynamic environment, and to determine the effectiveness of our techniques compared to pre-
vious approaches. In this section, we describe the simulated hardware architecture and software
architecture.

The simulated machine has a single CPU, a single disk, a memory manager, and a query
source. Table 1 summarizes the machine architecture, with the disk paramaters taken from a
Maxtor MXT-1240S. To prevent any request from monopolizing the disk, all I/O requests are
limited to 10,,,,, one track. If the current I/O request is for the next cluster in the same file as the
previous request, the I/O is charged as sequential (latency + transfer); otherwise, it is charged as
random (seek + latency + transfer). We use synchronous I/O in this simulation because it pro-
vides a better measure of total resource consumption.

12

Architecture Parameter Value
CPU Speed 20 MIPS
Page Size 8 KB
Avg. Disk Transfer Rate 3.5 MB/sec
Avg. Disk Rotational Latency | 4.76 ms
Avg. Disk Seek Time 8.5 ms
Avg. Disk Track Size 256 KB
I0ax 256 KB

Table 1. Machine Architecture.

The join we model is a primary key-foreign key join, and each probe tuple matches with
exactly one build tuple. The hash values are assumed to follow a uniform distribution. Table 2

lists the number of CPU instructions for the simulator operations*. The fudge factor to account
for hash table overhead is fudge = 1.2.

The simulation consists of a single stream of adaptable two-way join queries. At any point
in time, one adaptable join is active; as soon as that join completes, another one is started. Con-
current operations are reflected in the fluctuating memory allocations. The join has a minimum
memory requirement of F + I pages, providing an input buffer and one page per partition as an
output buffer. A join that is allocated less memory than its minimum memory requirement is
suspended until additional memory is available. The memory allocated to a join is considered to
be "pinned" in the buffer and managed entirely by the join operator without system intervention.
The memory manager may decrease or increase the join’s memory allocation, and the join

Operation #Instructions
Initiate a join 40,000
Terminate a join 10,000
Read a tuple from a memory page 300
Hash a tuple 500
Copy a tuple to output buffer 100
Insert a tuple into hash table 100
Probe the hash table 200
Start an I/O operation 1000
Read a page from disk 10,000
Write a page to disk 10,000

Table 2. Number of CPU Instructions per Operation.

4 This table was reproduced from [PCL93].

13

responds to these changes by unpinning or pinning pages. For this simulation, the join responds
as soon as possible to memory fluctuations. For example, if the join is in the process of reducing
its memory consumption and more memory becomes available, it will cease reduction.

6. Experimental Results

In this section, we evaluate our techniques compared to PPHJ, for several different work-
loads. To facilitate comparison with PPHJ,, we have structured our simulation experiments simi-
larly to those presented in [PCL93]. However, in our experiments, we consider that the adaptable
join may be part of a multi-join query with pipelined inputs, so we measure only the processor
and I/O time used by the join. The performance metric we use is average join response time,
which includes the CPU time used by the join and the time used for I/O to partition files. Note
that this is not the same as the average query response time since we specifically exclude the time
to read the base inputs and write the final output. In this section, we refer to the metric as aver-
age response time, but the reader should keep in mind that the measurement is the join’s contri-
bution to the response time rather than the overall query response time. We report the I/O activ-
ity as the average number of I/O requests and the average I/O volume in pages. The I/O volume
is further differentiated as I/O to either build or probe partition files. The adaptable join algo-
rithms and options are summarized in Table 3. The first experiment demonstrates the ability of
the join algorithms to adapt to a large change in memory availability in an otherwise stable sys-
tem. This experiment shows how well the algorithms can overcome planning based on a poor
prediction in the amount of memory available to the join, and also illustrates the responsiveness
of the algorithms. We examine how well the algorithms adapt under different magnitudes of
memory contention in the second experiment in Section 6.2. The final experiment in Section

Algorithm Description
Variant
basic Limit buffers to C
adjust C at every fluctuation
fair Force buffers to be C pages
adjust C at every fluctuation
max Maximize write requests
adjust C at every fluctuation
stat Statically set C & F
PPHJ, Partially Preemptible Hash Join
Options Description
bal Balance cluster size and
restoration (basic, fair, max only)
res Restore (PPHJ,, only)

Table 3. Algorithms and Options.

14

6. 3 shows the stability of the algorithms with respect to different frequencies of fluctuations.
6.1. Poorly Predicted But Stable Memory Allocation

This experiment demonstrates the ability of a join algorithm to adapt to a large change in its
memory allocation. Such a fluctuation might occur if a large query completes or begins during
the execution of the join, but system activity is otherwise stable until the join completes. The
join is given an initial allocation of memory that it uses for planning purposes, i.e., to determine
the cluster size and fan-out. This allocation has a very short duration with a mean of 1 second
after which the join experiences either a large increase or a large decrease in its memory alloca-
tion. After the single fluctutation, the join’s memory allocation remains stable and the join com-
pletes with that final memory allocation. The join inputs for this experiment are R = SMB and
S =50MB. Obviously, a shorter or longer duration than 1 second would produce different
results. We simply chose a duration that would allow us to examine fundamental differences
among the algorithms. The next section illustrates the more general situation of many fluctua-
tions with varying durations.

Figure 4 shows the average response time for each of the algorithms when the join experi-
ences a large memory increase. In this experiment, the join’s memory is increased from 1 MB to
4 MB. Notice that this memory is the join’s memory allocation rather than the total machine
memory, thus this is not a memory-starved environment.

All of our variants provide much better performance in response to the large increase than
PPHIJ,. The reason for this is clear from Table 4. Even though PPHJ, has a total I/O volume that
is much smaller than our variants, its number of I/O calls is much larger due to its small cluster
size. PPHIJ:res reduces the I/O volume from PPHJ,, but even PPHJ:res has a response time that
1s 50% higher than our worst dynamic variant fair (94 vs. 62 seconds).

From Table 4, we see that the bal option, which combines large clusters with restoration, is
clearly beneficial for basic and max. It allows the algorithms to realize the enormous savings in

125 —
PPHJ,
 PPHI,;
100 — A res
’ BN
licvsi B st fair e L
Time /| basic max T s S O P
[secs] = bal S A
25 - // \\
R AP / \
O . .

Figure 4. Large Memory Increase (1MB to 4MB).

15

Average 1/0 Average

Alg. Total Total Build Probe | Response
Variant 1O 016 10,,; 10,,; 10, Time

[pages] | [pages] [pages] | [seconds]
stat 1792 14214 1306 12908 67.30
basic 691 12456 1152 11304 53.14
max » 642 12010 1110 10900 51.21
fair 762 15496 1430 14066 62.34
basic:bal 703 9758 1168 8590 45.85
max:bal 552 9536 1122 8414 43.13
fair:bal 758 15464 1448 14016 62.21
PPHJ, 7922 7922 742 7180 107.38
PPHJres | 6910 6910 742 6168 94.69

Table 4. 1Os for Large Memory Increase.

the number of I/O calls compared to PPHJ,,, and also to reduce the total I/O volume by avoiding
some probe I/O compared to our variants without this option.

Overall, stat has the highest response time of our variants due to its inability to adapt to the
memory gain by increasing its cluster size. This results in a significantly higher number of /O
calls than our other variants. Fair is clearly the worst performer of our dynamic variants. In
evenly dividing memory, fair attempts to make an equitable division that penalizes no partition.
Unfortunately, this even division results in poor memory utilization. After a spilled partition is
flushed, most of its buffer pages are idle for a significant amount of time. These pages could be
used immediately by resident partitions to reduce the I/O volume, but this is not possible with
Jair since it ensures each partition a fair share of memory. This ineffective utilization of memory
also prevents the bal option from providing any benefit in this situation, since the memory is not
available for restoration. Our other variants (basic and max) have similar response times. How-
ever, the technique used by max to perform larger writes results in a somewhat lower response
time than basic. This is the case for the two algorithms both with and without the bal option.

For the second part of this experiment, we examine the ability of the join algorithms to
adapt to a large reduction in memory. In addition to the effectiveness at reducing response time,
we also examine the algorithm responsiveness. In this experiment, the join’s memory allocation
is decreased from 4 MB to 1 MB.

Figure 5 shows the average response time for each of the algorithms when the join experi-
ences a large memory decrease. The average I/O activity is shown in Table 5. Algorithm vari-
ants with either the res or bal option are not included in this experiment since restoration is not
possible in response to a memory decrease.

16

200 T,
Avg 150 —
Resp
Time 100 S
[secs]
50 —
0

Figure 5. Large Memory Decrease (4MB to 1 MB).

Average 1/0
Alg. Total Total Build Probe Average
Variant | IO.q; 10, 10, 10, Resp. Time

[pages] | [pages] [pages] [seconds]

stat 3302 17392 1606 15786 100.00
basic 3999 16738 1546 15192 108.76
max 3582 16544 1530 15014 102.46
fair 3394 16786 1548 15238 100.50

PPHJ, 15554 15554 1436 14118 199.55

Table 5. IOs for Large Memory Decrease.

PPHJ), has a slightly lower I/O volume than our variants, but its large number of I/O calls
contributes heavily to its higher response time. Our variants make one fourth to one fifth the
number of I/O calls made by PPHJ, resulting in response times that are 80-100% faster than
PPHJ,, |

p

In this situation, all of our variants provide similar response times. Although stat and fair
provided the worst performance in reponse to the memory increase, here they provide similar
response times to max. While they have a slightly higher I/O volume than max, they have a
slightly lower number of IO calls. The preallocation of one cluster to each spilled partition
leaves less memory for resident partitions, increasing the I/O volume. Having fewer resident par-
titions results in more memory for output buffers of spilled partitions, decreasing the number of
I/O calls. Thus, the technique of preallocation is effective in response to memory decreases,
although it was ineffective for memory increases. Max, which was our most effective variant for
memory increases, provides similar performance to fair and stat. Furthermore, max is successful
at reducing slightly the number of I/O calls and thus the response time compared to basic.

In Section 3, we defined responsiveness as the ability of an algorithm to reduce quickly its

17

Avg. Response Delay
Alg. Total Per MB
Variant | [seconds] | [seconds]
stat 0.64 0.46
basic 0.90 0.40
max 0.91 0.40
fair 0.66 0.44
PPHJ, 2.36 1.03

Table 6. Algorithm Responsiveness.

memory usage. In Table 6, we show the responsiveness of the algorithms for the last experiment,
the large memory decrease that was shown in Figure 5 and Table 5. We measured responsiveness
as the average response delay for the algorithm to reduce its memory usage from 4 MB to 1 MB.
Table 6 shows the total delay for each algorithm to complete the memory reduction, as well as
the delay specified as seconds per megabyte. The total delay shows that the amount of time
required to reduce memory usage by 3 MB varies considerably among the different algorithm
variants. The explanation for this is that at any point in time, different numbers of partitions may
be spilled depending on the techniques employed by the particular variant. Thus, the amount of
work (and time) necessary to reduce memory usage may vary. For this reason, it is more logical
to examine the delay per megabyte, which takes into account the amount of data as well as the
amount of time. From the delay per megabyte column in Table 6, we see that all of our variants
provide a much quicker response than PPHJ,. Our most responsive variants, max and basic, are
over 150% faster than PPHJ,. Thus, our techniques of utilizing large, dynamic units of I/O pro-
vide much better algorithm responsiveness.

In summary, this experiment has demonstrated three important points. First, large clusters
provide much lower response times than previous techniques for both large increases and large
decreases in the memory allocation. This technique can be effectively utilized in combination
with the technique of restoration to further reduce response time, as in our bal option. Second,
the static technique is ineffective in response to memory increases due to its inability to adapt to
the gain. Third, our techniques are much more responsive to memory reduction requests than
PPHJ,, due to the use of large, dynamic clusters. We also found that overall max is our most
effective variant in response to both memory increases, memory decreases, and responsiveness.
Therefore, the remaining experiments will include our variants max and max:bal in addition to
PPHJ, and PPHJ:res.

6.2. Varying Contention

In this experiment, we subject the join algorithms to varying magnitudes of contention to
determine if the techniques are equally effective at different levels of contention. We attempt to
simulate a situation in which the adaptable join competes for memory with other queries in the
system. System activity is fairly unpredictable since other queries may enter or leave the system
at any time. The join’s memory allocation is uniformly selected from the range of 80-100% of

18

total system memory 80% of the time. This represents changes in available memory as other
queries enter and leave the system. The other 20% of the time, the allocation is uniformly
selected from the range of 0-100% of total system memory. This represents the possibility of an
occasional surge in contention due to either a particularly large query or the simuitaneous arrival
of several smaller queries. The duration of the join’s allocation is based on an exponential distri-
bution with a mean of 1 second. We vary the magnitude of contention by varying the amount of
system memory. The join inputs for this experiment are R = 5MB and S =50MB. Figure 6
shows the average response time for the various algorithms where the memory from which the
adaptable join’s allocation is taken ranges from 0.625 MB to 8 MB. The high contention situa-
tion with 0. 625 MB may seem to create excessive contention, but it is actually quite reasonable.
Hybrid hash join for our inputs requires only 0.22 MB of memory, and our experimental param-
eters with 0. 625 MB of memory permit more than that most of the time. Furthermore, the other
end of the range (8 MB) provides extremely low contention. To perform a classic in-memory
hash join, our inputs require approximately 6.2 MB of memory, accounting for hash table over-
head. Our experimental parameters with 8 MB of memory give the join about 6.4 MB most of
the time.

As shown in Figure 6, our algorithm variants produce much lower response times than
PPHJ, at higher levels of contention. At low contention (M = 8MB), where the technique of
restoration is most effective, max:bal is a little faster than PPHJ,:res. We now examine the two
extremes of high and low contention in detail, i.e., all measurements in Figure 6 for 0. 625 MB

- max
240+ ~ --0-- max:bal
—A— PPHJ,
PPHJp:res
Avg 160 —
Resp
Time
[secs]
80 —
0 | I] | I I

0.625 2.5 4 5 6.25 8
Memory (MB)

Figure 6. Varying Contention (R = SMB, S = 50MB).

19

memory and for 8 MB memory.

Detailed data for the high contention situation are shown in Table 7. Max and PPHI; have a
similar I/O volume, but max has less than one third as many I/O calls as PPHJ), resulting in a
response time that is 70% faster. The technique of restoration provides only a small
improvement under high contention since the scarcity of memory prevents this technique from
being used often. For PPHJ,, restoration increases the build I/O volume by 352 pages to
decrease the probe I/O volume by 1098 pages, a net win (albeit small). In this situation, max:bal
provides a similar response time to max. The bal technique decreases I/O volume by only 99
pages, but increases the number of I/O calls by 296. Max:bal uses restoration very little and
achieves most of its response time reduction compared to PPHJ, from large, dynamic clusters.
Our techniques are very effective for the high I/O volume resulting from a high contention envi-
ronment.

For the low contention situation, the I/O activity is shown in Table 8. Our balanced
approach is very effective here, causing max:bal to be about 55% faster than max. Restoration is
also very effective, with the result that PPHJ,:res is about 100% faster than PPHJ,,. It is interest-
ing to note from Table 8 that the I/O volume for our variants is over twice as high as for the
PPHIJ, variants due to our use of large clusters. Using memory for large spill buffers prevents

Average I/O Average

Alg. Total Total Build Probe | Response
Variant 10 cqu1s 10,4 10, 10, Time

[pages] | [pages] [pages] | [seconds]
max 5560 18032 1706 16326 139.37
max:bal 5856 17933 2001 15932 141.31
PPHIJ, 18374 18374 1764 16610 251.68
PPHJres | 17628 17628 2116 15512 239.72

Table 7. IOs for High Contention (M =.625MB, R = 5MB, S = 50MB).

Average 1/0 Average

Alg. Total Total Build Probe | Response
Variant 104115 10,4 10, 10, Time

[pages] | [pages] [pages] | [seconds]
max 215 4958 720 4238 26.51
max:bal 152 1977 1227 750 17.04
PPHJ, 2432 2432 362 2070 38.93
PPHIJ,:res 953 953 673 280 19.10

Table 8. I0s for Low Contention (M = 8MB, R = 5MB, S = 50MB).

20

using the memory for resident partitions, resulting in the increase in I/O volume. However, the
larger clusters significantly reduce the number of I/O calls. Comparing max and PPHJ,, this
tradeoff is very effective (max is about 47% faster). For max:bal and PPHJ:res, the tradeoff is
also effective (max:bal is 12% faster).

We performed an identical experiment to the above with equal join inputs R = § = 5MB.
Figure 7 shows the results of this experiment. The relative performance of max and PPHJ; is
very similar to the previous experiment with different input sizes. The main difference, as was
shown in [PCL93], is that the technique of restoration does not reduce the response time (in fact,
PPHJ;:res is actually slightly worse that PPHJ;, in some cases). Again, our techniques provide a
significant improvement in performance at higher levels of contention, and some improvement at
the lowest level of contention. Detailed data for the high contention situation are shown in Table
9. The PPHJ, variants and our variants have a similar /O volume, but our variants have about
one third as many I/O calls. This reduction in I/O calls results in the response times that are
66-68% faster than the PPHJ, variants, similar to the previous experiment with unequal inputs.
Table 10 gives the detailed data for the low contention situation. Our variants have 2-2.5 times
the I/O volume of the PPHJ, variants, but only about one seventh as many I/O calls. This sav-
ings in the number of I/O calls results in response times that are 10-17% faster than the PPHJ,
variants.

In summary, this experiment has demonstrated that our technique of dynamically adjusting
the cluster size is very effective at all levels of contention, compared to previous techniques. Our

45
—e— max
--0-— max:bal
—A— PPHJ,
PPHJres
30 —
Avg
Resp
Time
[secs]
15+
0 I | | | [I
0.625 2.5 4 5 6.25 8
Memory (MB)

Figure 7. Varying Contention (R = S = SMB).

21

Average I/O Average

Alg. Total Total Build Probe | Response
Variant | (O397% 10, 10, 10, Time

[pages] | [pages] [pages] | [seconds]
max 1046 3262 1632 1630 25.87
max:bal 1082 3284 1666 1618 26.28
PPHJ, 3220 3220 1626 1594 43.58
PPHJ,:res 3238 3238 1674 1564 43.60

Table 9. I0s for High Contention (M = 0.625MB, R = S = 5MB).

Average /O Average

Alg. Total Total Build Probe | Response
Variant 1Ocqis 10,1 10,4 10, Time

[pages] | [pages] [pages] | [seconds]
max 24 408 220 188 3.14
max:bal 27 374 274 100 3.02
PPHI, 162 162 138 24 3.44
PPHJ,:res 197 197 183 14 3.54

Table 10. IOs for Low Contention (M = 8MB, R = S =5MB).

algorithm variants achieve significant reductions in response time compared to PPHJ, variants at
higher levels of contention, and a smaller reduction at a very low level of contention. This is the
case for inputs that differ in size significantly as well as for inputs that are equal in size.

6.3. Varying Frequency

In addition to being effective for large memory fluctuations and widely differing magni-
tudes of contention, an adaptable algorithm should also be stable with respect to extreme varia-
tions in the frequency of the memory fluctuations. The rate of memory fluctuations will vary
depending on the amount of concurrent activity in the system. If there is much concurrent activ-
ity, the join may experience a high rate of fluctuations. However, if there is little concurrent
activity, the join is more likely to experience a lower rate of fluctuations and retain its memory
allocation for a longer duration. It is desirable for the join to provide consistent performance
regardless of the frequency of the memory fluctuations. In this experiment, we examine the sta-
bility of the algorithm variants with respect to extreme variations in the frequency of the memory
fluctuations. We vary the mean frequency of the fluctuations from 0.1 second to 10 seconds.
The total memory from which the join’s allocation is taken is M =2 MB, representing a
medium-high contention environment. The join inputs for this experiment are R = § = 5MB.
All other parameters are as described in the previous experiment in Section 6.2.

22

Figure 8 shows the response times of the algorithms as the fluctuations vary in frequency
from very frequent to infrequent. To be effective, an adaptive technique must be faster than the
fluctuation frequency. When fluctuations occur very frequently, PPHJ,:res significantly increases
the response time over PPHJ, as reported in [PCLY3]. Restoration 1s an adaptive technique of
coarse granularity. It is an expensive operation that takes a certain amount of time to complete
once it is initiated, thus, its performance is affected by the rate of fluctuations. In contrast, our
techniques provide a finer granularity of adaptation. As shown in Figure 8, max and max:bal are
stable and provide consistent performance over the entire range of frequencies. Our techniques
do not incur a large overhead and are, therefore, unaffected by the frequency of the fluctuations.

7. Summary and Conclusions

Dynamically varying the cluster size, or unit of I/O, is an effective technique for hash joins
that experience fluctuations in their memory allocation during execution. Large clusters have
been shown to be effective for algorithms with static memory allocations, but this study is the
first to show how they might be exploited in a dynamic environment. While previous adaptable
techniques focus on reducing the volume of I/O, our techniques reduce the amount of time spent
on I/O.

We evaluated several algorithm variants that dynamically adjust the cluster size based on
the current memory allocation, and one static variant that does not respond to the variations in
memory availability. The static technique, stat, was unable to effectively exploit memory gains.
The most effective dynamic variant was max:bal. This variant maximizes the size of each /O
request, and balances the use of additional memory between large clusters and restoration, a
recently proposed technique. Restoration exploits memory increases during the probe stage by
reading spilled build partitions back into memory to avoid probe I/O. Max:bal determines the

45 — —4A— PPHI, —&— max
A - -/~ PPHJ ;res --0-- max:bal
\
‘*i-%\ﬁ:
= T S UL S
Avg 30
Resp
Time
15+ peo—e o & e S)
0— I I | I I

0 2 4 6 8 10
Mean Fluctuation Freq. (sec)

Figure 8. Varying Frequency of Fluctuations.

23

cluster size that would achieve most of the reduction in estimated response time, but it does not
guarantee this amount to any partition. Memory in excess of what would be required to enlarge
each spilled partition buffer to one cluster is used for restoration. Read requests are optimized by
using a large input buffer. When a write is necessary, max:bal maximizes the size of the write
request by writing the partition that has the largest amount of memory allocated. That is, if a res-
ident partition must be spilled, max:bal spills the largest resident partition; if a spilled partition
must be flushed, it flushes the spilled partition with the most pages assigned to its output buffer.
Output buffers of spilled partitions may not exceed one cluster, but they are dynamically enlarged
and reduced so that memory assigned to a partition is never idle. The output buffer of a partition
that is spilled or flushed is reduced to one page, and may increase in size as needed, subject to
memory availability. This dynamic resizing of spill buffers is a key contributor to the perfor-
mance gains reported in this paper.

Our experimental evaluation included the Partially Preemptible Hash Join algorithm (PPHJ)
that was recently shown to have better performance than earlier adaptable algorithms. PPHJ
achieved its performance improvement by reducing I/O volume. However, our experimental
evaluation showed that using large, dynamically sized clusters to increase I/O bandwidth allows
the join to adapt much more effectively. Our techniques provide better performance for both
large and frequent fluctuations, and for various magnitudes of contention. Moreover, the use of
large clusters increases responsiveness, the ability to reduce quickly memory usage, which is
important to overall system performance. We conclude that the current focus on reducing I/O
volume to adapt to fluctutations in memory availability is misguided and should be refocused on
decreasing I/O time, since it significantly improves both performance and responsiveness.

Acknowledgements

We are grateful for helpful discussions with Rick Cole, Denise Ecklund, Leonard Shapiro,
and Richard Wolniewicz. This research was partially supported by a grant from Digital Equip-
ment Corporation. Diane L. Davison was partially supported by an ARPA Fellowship in High
Performance Computing administered by the Institute for Advanced Computer Studies, Univer-
sity of Maryland.

References

[Bra84] K. Bratbergsengen, “Hashing Methods and Relational Algebra Operations”, Proc. Int’l. Conf. on Very
Large Data Bases, Singapore, August 1984, 323.

[DKORg4] D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood, “Implementation Tech-
niques for Main Memory Database Systems”, Proc. ACM SIGMOD Conf., Boston, MA, June 1984, 1.

[Gra90] G. Graefe, “Parallel External Sorting in Volcano”, Univ. of Colorado at Boulder Comp. Sci. Tech. Rep.
459, 1990. Available via anonymous ftp from ftp.cs.pdx.edu as pub/faculty/graefe/papers/sort.ps.Z.

[Gra93a] G. Graefe, “Performance Enhancements for Hybrid Hash Join”, submitted for publication, 1993.

[Gra93b] G. Graefe, “Query Evaluation Techniques for Large Databases”, ACM Computing Surveys 25, 2 (June
1993), 73-170.

[GLS94] G. Graefe, A. Linville, and L. D. Shapiro, “Sort versus Hash Revisited”, to appear in IEEE Trans. on
Knowledge and Data Eng., 1994.

[ToC91] Y. E. Ioannidis and S. Christodoulakis, “On the Propagation of Errors in the Size of Join Results”,
Proc. ACM SIGMOD Conf., Denver, CO, May 1991, 268.

24

[KTM83]

[KNT89]

[NKT88]

[PCL93]

[Sal88]

[Sha86]

[SSU91]

[ZeG90]

M. Kitsuregawa, H. Tanaka, and T. Motooka, “Application of Hash to Data Base Machine and Its Ar-
chitecture”, New Generation Computing 1, 1 (1983), 63.

M. Kitsuregawa, M. Nakayama, and M. Takagi, “The Effect of Bucket Size Tuning in the Dynamic
Hybrid GRACE Hash Join Method”, Proc. Int’l. Conf. on Very Large Data Bases, Amsterdam, The
Netherlands, August 1989, 257.

M. Nakayama, M. Kitsuregawa, and M. Takagi, “Hash-Partitioned Join Method Using Dynamic
Destaging Strategy”, Proc. Int’l. Conf. on Very Large Data Bases, Los Angeles, CA, August 1988,
468.

H. Pang, M. J. Carey, and M. Livny, “Partially Preemptible Hash Joins”, Proc. ACM SIGMOD Conf.,
Washington, DC, May 1993, 59.

B. Salzberg, File Structures: An Analytic Approach, Prentice-Hall, Englewood Cliffs, NJ, 1988.

L. D. Shapiro, “Join Processing in Database Systems with Large Main Memories”, ACM Trans. on
Database Sys. 11, 3 (September 1986), 239.

A. Silberschatz, M. Stonebraker, and J. Ullman, “Database Systems: Achievements and Opportuni-
ties”, Comm. of the ACM, Special Section on Next-Generation Database Systems 34, 10 (October
1991), 110.

H. Zeller and J. Gray, “An Adaptive Hash Join Algorithm for Multiuser Environments”, Proc. Int’l
Conf. on Very Large Data Bases, Brisbane, Australia, August 1990, 186.

25

Table of Contents

ADSITACE .ttt et e bbb bbbttt er b b
L. TEEOQUCHION vttt ettt eh et bbbk eh ek e bbb bbbt b bbb b e st ansreeseneebessesanaenis
2. REIALEA WOTK .eviviiiiieieierercet ittt s sa et e h st h kbbb eb bbbt r b b er b e et et st ebeenas
3. ReSPONSIVE HASH JOINS 1..eriiteiiiieiiiercic et bbbttt ettt as s e s et aeseneenan
Basic Algorithm DesCIIPLionccovireiiriiieiirneen ettt sttt b e e b s
Algorithm Discussion: Memory FIUCIUALIONScccoveeirieiirinieniiteirieintetesni sttt en s
ATGOTIHNIM VATTANES ..eovtiniitiiieiietieteet ettt sttt et et b ek ea e bbbt e ke e b e e bk e e se s et et basearesseatabaateseesnis
4. Other Adaptable AIZOTItNINScccooiiiiiiiiiic et
5. Database SIMULAIOTccocvioiiiii ettt s bttt b et eb e b er e e
6. EXperimental RESUILSccviiiiieiiecect sttt bbb se e e
6.1. Poorly Predicted But Stable Memory AIIOCAtIONcccecvviririiciieirieticcee ettt
6.2. Varying CONEIEION ...eceeieuiiitirietitieiiiesirtreetes et et esis e sbese et et be s baseaseseebeseseesesessessseseseseseeseseebbesbesensssnseneens
6.3. Varying FIOQUEICYccciiiiiiiiiiiieiiiiete ettt ettt et b etk s b b st s b e s sa s et st es b en et esaesetensases
7. Summary and CONCIUSIONSeiiviriieiriiieiitie ettt ettt st bbbt b e st anssasaenens
ACKNOWIBAZEIMENLSeuviiiiriiiritirit ettt bbbt r bbb bbb bbbk b et et eb ettt
RETEIEIICES ..ot ireee ettt sttt sttt s be e e bbbt et b ettt s ees
List of Figures

Figure 1. Memory-Contention Responsive Hash Join — Basic Algorithmccccoooveeiiiniiniciecnnnen
Figure 2. Partitioning with Dynamic CIUSETSceceieiiiieiiniirierieiteiceit ettt et seate st e s ae e aeeeeanens
Figure 3. Cluster Size with Most of the Performance Gaincccccocvovviririonincii et e
Figure 4. Large Memory Increase (LMB 10 4MB) ..o
Figure 5. Large Memory Decrease (4MB 10 1 MB) ..o
Figure 6. Varying Contention (R = SMB, S = SOMB)coovvvvimiriieeeeeeeeee e
Figure 7. Varying Contention (R = 8 = SMB)cooovovieeeeeeeeeeeeeeeeeeeveeee e
Figure 8. Varying Frequency of FIUCTUAtIONSccooeririeiiiiiiiienitee ettt
List of Tables

Table 1. Machine ATCRILECIUTEieriiriiiteeiit ettt ettt et es ettt bt e st et eseeas et sbeseas s arsaesean
Table 2. Number of CPU Instructions per OPETatiOnccceeeveerreiricrinicrereerinreeesieesesmssesesescsesassessesssssesnsne
Table 3. Algorithms and OPLIONSccoiiieriiiri ettt ettt ter e s s e e st ese st snaasesneeseseaetens
Table 4. IOs for Large MemoTy INCTEASEccveviuiruiriieiiiiet ettt ettt ettt st et eve bt saeneenrans
Table 5. I0s for Large Memory DECIEASEocvueoviriruiririeiirieieieesenise sttt e e ae st ens s evene
Table 6. Algorithim RESPONSIVENESScc.veutiiriiiiiirieiiierieiiie ettt ettt ettt et et sttt see s ne s
Table 7. 10s for High Contention (M = .625MB, R = 5MB, S = 50MB)cccoovvovoeooieeeeeeeeen
Table 8. I0s for Low Contention (M = 8MB, R =5MB, S = S50MB)oooooreeeeeeoeeeeceeeeeeeeeeeeeeea,
Table 9. 10s for High Contention (M = 0.625MB, R =S =5MB) ...cooooooooeeoeeeeeeeeeeeeeeeeee

Table 10. IOs for Low Contention (M = 8MB, R = S = 5MB)

O O L N =

12
12
14
15
18
22
23
24
24

11
15
17
19
21
23

13
13
14
16
17
18
20
20
22
22

