

and Systematicity
in Neural Network Combinatorial Learning

Olivier Brousse

Department of Computer Science &
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430
olivier@cs.colorado.edu

&

University of Colorado at Boulder

Technical Report CU-CS-676-93

October 1993

Copyright (©) 1993 by Olivier Brousse

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Generativity and Systematicity in Neural Network Combinatorial Learning

Abstract

This thesis addresses a set of problems faced by connectionist learning that have originated from the
observation that connectionist cognitive models lack two fundamental properties of the mind: Generativity,
stemming from the boundless cognitive competence one can exhibit, and systematicity, due to the existence
of symmetries within them. Such properties have seldom been seen in neural networks models, which have
typically suffered from problems of inadequate generalization, as examplified both by small number of gen-
eralizations relative to training set sizes and heavy interference between newly learned items and previously
learned information.

Symbolic theories, arguing that mental representations have syntactic and semantic structure built from
structured combinations of symbolic constituents, can in principle account for these properties (both arise
from the sensitivity of structured semantic content with a generative and systematic syntax). This thesis
studies the question of whether connectionism, arguing that symbolic theories can only provide approximative
cognitive descriptions which can only be made precise at a sub-symbolic level, can also account for these
properties. Taking a cue from the domains in which human learning most dramatically displays generativity
and systematicity, the answer is hypothesized to be positive for domains with combinatorial structure.

A study of such domains is performed, and a measure of combinatorial complexity in terms of informa-
tion/entropy is used. Experiments are then designed to confirm the hypothesis. It is found that a basic
connectionist model trained on a very small percentage of a simple combinatorial domain of recognizing letter
sequences can correctly generalize to large numbers of novel sequences. These numbers are found to grow
exponentially when the combinatorial complexity of the domain grows. The same behavior is even more dra-
matically obtained with virtual generalizations: new items which, although not correctly generalized, can be
learned in a few presentations while leaving performance on the previously learned items intact.

Experiments are repeated with fully-distributed representations, and results imply that performance is not
degraded. When weight elimination is added, perfect systematicity is obtained. A formal analysis is then
attempted in a simpler case. The more general case is treated with contribution analysis.

Acknowledgments

I wish to express my gratitude to Mike Mozer, as well as Clayton Lewis, Michael Main, and Kelvin Wagner,
for insightful conversations about this research. Thanks also to the members of the Boulder Connectionist
Research Group, and the Computer Science Systems Group at the University of Colorado at Boulder, for the
first rate research and computing environment.

This work owes its existence to an original idea from Paul Smolensky. In addition, his contributions
permeate the concepts formulated here. While I carry full responsibility for the views expressed, the critical
role played by Paul is fully and gratefully acknowledged.

This technical report is a formatted version of my thesis. This work has been partially supported by NSF
grant IRI-8609599.

Contents

1 Nature of the problem

1.1 Overview of this chapter
1.2 Goal and overview of this thesis
1.3 Connectionist models
1.3.1 Imtroduction
1.3.2 A brefdescription
1.4 A viable framework for cognitive modeling? L.
1.4.1 Imtroduction
1.4.2 Symbolic artificial intelligence L
1.4.3 The sub-symbolic approach
1.4.4 Compatibility of the two approaches
1.5 Connectionism and some fundamental properties of cognition
1.6 Descriptions o L L e
1.6.1 Compositionality and connectionist representations
1.6.2 Systematicity of representations
1.6.3 Systematicity of inference L
1.6.4 Generativity
1.7 The connectionist construction of concepts
1.7.1 Imtroduction L
1.7.2 Cognitive explanation and the problem of embodied cognition
1.7.3 Conceptual content and the language of thought
1.7.4 Non-conceptual content and the connectionist construction of concepts
1.7.5 Relation to this thesis
1.8 A reply to a criticism of connectionism
1.8.1 Refutation.
1.8.2 Implementation issues: Concatenative and functional compositionality o
1.9 SUmMIATY .+ . vt v v e e e
2 Approach
2.1 Methodology
2.2 Choiceof thedomain
2.3 Choice of the representational scheme
2.4 Choice of the processing task: induction
24.1 Introduction

2.4.2 Generalization L L
2.4.3 Generalization and neural networks
2.4.4 Empirical studies

..

, 2.4.5 Connectionist modeling and generalization
2.5 Virtual generalization
2.5.1 Imtroduction
2.5.2 Connectionist modeling and interference,
2.5.3 Combinatorial domains and connectionist interference

2.6 Choice of the learning and processing machinery

vii

W Q0 =3 O O U i W W W W D e e b

e b el b e e et e
SO W N B b e = OO W

2.6.1 Description
2.6.2 Ratiomale
3 Combinatorial domains
3.1 Combinatorial representations and combinatorial domains
3.1.1 Combinatorial representations
3.1.2 Examples L,
3.2 Combinatorial domains L. ‘
3.2.1 Definitions L
3.2.2 Examples
3.3 Combinatorial complexity
3.3.1 Entropy: e e e e
3.3.2 Combinatorial complexity
3.3.3 Examples
3.4 Connectionist representations e e
3.4.1 Trivial structure-preserving connectionist representations
3.4.2 Examples
3.4.3 Structure-preserving connectionist representations
3.4.4 Examples
3.5 Conclusion
Experiments with semi-distributed representations
4.1 Performance MEASUTES ot v v vttt e e e e
4.2 Outline of our experimental approach
4.3 Choice of experimental parameters I
43.1 Domainsizes
4.3.2 Networksizes e
4.3.3 Computational requirements
4.4 Early experiments
4.4.1 Structure of English words with a recurrent auto-associator
442 The XX'UYY'problem
4.4.3 Regularity detection: English 4-letter words
4.5 Generalization L
4.5.1 Main results. e e e e e e e
4.5.2 Discrimination tests L
4.6 Virtual generalizations e
46.1 Mainresults. L
4.6.2 Discrimination tests L
4.6.3 Weight Updates
4.7 Better performance L e,
4.8 Noise resistance and pattern completion capabilities
4.8.1 Recovery from moise
4.8.2 Patterncompletion
4.8.3 Discussion,

4.9 The need for non-linearity
4.10 Varying the error criterion in training and testing
4.10.1 Generalizations and virtual generalizations
4.10.2 Discrimination factors
4.11 Discussion

..........................

.........................
.....................................
..

vili

35
35
35
36
37
37
37
39
39
41
45
45
46
48
49
50
51

5 Distributed representations

5.1 Introduction
5.2 Vertical decomposition L
5.3 Semi-distributed and fully-distributed representations
5.3.1 Equivalent Networks
5.3.2 Learning with fully-distributed representations
5.4 Auto-association with fully-distributed representations
5.4.1 Discussion
5.5 Results.o
5.6 Recognition with fully-distributed representations,
5.7 Conclusion
5.8 Experimental parameters e
6 From context dependence to independence
6.1 Perspective independence e
6.2 Weights elimination L
6.3 Experiment with the Cartesian product domain
6.3.1 Performanceresults L
6.3.2 Weight decomposition L
6.3.3 Discrimination results L L
6.4 Experiments with English words
6.4.1 Performanceresults
6.4.2 Discrimination results
6.5 Concluding remarks
6.6 Experiments parameters L0
7 Analysis and interpretation
T.1 Overview . ..o
7.2 Analysis in the one-layercase L
7.2.1 Formalanmalysis,
7.3 Statistical analyses L
7.3.1 Imtroduction,
7.3.2 Networksused
7.4 Analysis of the weights
T.4.1 Clusteranalysis
7.5 Principal component analysis
7.6 Analysis of the hidden unit activities,
7.6.1 Clusteranalysis
7.6.2 Principal component analysis
7.7 Contribution analysis
7.7.1 Distributed hidden-unit responsibilities
7.7.2 Local hidden unit responsibilities e e

7.8 Conclusion

...

8 Conclusion
8.1 Recapitulation
8.2 Shortcomings
8.3 Impact of this thesis on some related issues
8.3.1 The empiricism and nativism debate
8.3.2 The learning and processing dualism
8.4 Future directions

...

A Conditional entropy inequality

B Unbinding

81
81
82
90
90
92
94
94
95
97
100
100

101
101
101
102
102
103
107
107
107
107
107
108

111
111
111
111
119
119
120
122
122
122
125
125
128
131
131
134
137

139
139
139
140
140
140
140

141

143

C A naive analysis 145

C.1 Imtroduction 145
C.2 Remarks L 148
C.3 Verification 149
D Further contribution analysis 151
D.1 Full table of hidden units patterns 151
D.2 Local hidden unit responsibilities 153

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1

3.2

4.1
4.2
4.3
4.4
4.5

4.6
4.7

4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15

4.16

4.17
4.18

4.19

4.20
4.21

Auto-association with the Lo, morm
The space of generalizations L
The space of generalizations with a different trainingset
A three-layer back-propagation architecture
Units and weights L
The semi-linear function used L L

Graphical comparison of combinatorial complexity for some of the sets of English words and
strings presented in table 3.1. L
Graphical comparison of combinatorial complexity and redundancy for some of the sets of
English words and strings presented in table 3.1.

Architecture of the recurrent auto-associator with no self-connections
Generalizations; Network trained on 100 English 4-letter words.
Number of weight updates to learn a new input, after training on 100 4-letter English words.
The number of generalizations and virtual generalizations for the network trained on 100 English
d-letter words.
Exponential growth of generalizations for networks trained on sets of size 50, with A = 26, as
movaries from 2 60 6. L. L
Combinatorial complexity of the domain X as n increases.
The number of generalizations for networks trained on sets of sizes 50, with n = 4, and A=
16,21,26,31,36.
Combinatorial complexity of the domain X as Aincreases.
The number of generalizations for networks trained on sets of sizes 50, with n = 4, 4 = 26, as
Hwvaries 0 . T
Sum of training set sizes and generalizations for networks trained on sets of sizes p, with n =
2, A =26,88 PVATIES e e e e e e
Combinatorial complexity of the domain X as pincreases.
Discrimination measures for generalizations
Nearly exponential growth of virtual generalizations for networks trained on sets of size 50, with
A=26,asnvariesfrom 2t0 6.,
The number of virtual generalizations for networks trained on sets of sizes 50, with n = 4, and
= 16,21, 26,31, 36.,
The number of virtual generalizations for networks trained on sets of sizes 50, with n = - 4, and
A=26,and H varying.
The number of virtual generalizations for networks trained on sets of sizes 50, with n = 2, and
A=26,and pvarying.
Discrimination measures for virtual generalizations
Number of virtual generalizations obtained with various learning rates and number of weights
updates. . ..o
Median number of generalizations and virtual generalizations for networks trained on p =50

patterns, with n =4 and A = 6 (5 repetitions).
Discrimination measures with n = 4, A = 6, and p = 50 (Five repetmons)
Recovery frommoise,

4.22
4.23
4.24
4.25
4.26

4.27
4.28
4.29
4.30

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

6.1
6.2

6.3
6.4
6.5
6.6
6.7

Pattern completion 73
Recovering from one zeroed out letter L L 73
Comparison of generalization by linear and non-linear networks 74
Comparison of discrimination for linear and non-linear networks, learning the same task 75
Generalizations and virtual generalizations obtained with various values of € and ¢;, for networks

learning the domain withn =4, A =26, p=50and H =20 76
Generalizations: Comparison with training epsilon and testing epsilon varying. 78
Virtual Generalizations: Comparison with training epsilon and testing epsilon varying. 78
Generalizations : Discrimination factor d for various values of training and testing epsilon . . . 79
Virtual Generalizations: Discrimination factor d for various values of training and testing epsilon 79
Example of a network architecture forcing weights decomposition 82
The weights of a network having learned the domain withn = 4and 4 = 26 83
Example of a network exhibiting vertical weights decomposition 84
The weights of a network having learned the domain with an error criterion € = 0.1, for a

domain withn = 4,4 = 2,and H = 20 o i i it 85
The weights of a network having learned the domain with an error criterion ¢ = 0.1, for a

domain withn = 4,4 = 2,;and H = 20 i i i it i 86
The weights of a network having learned the domain with an error criterion € = 0.1, for a

domain withn = 4,4 = 2;and H = 20 i v i i it 87
Severed network architecture L 88
Comparison of the number of virtual generalizations and generalizations obtained with a “sev-

ered” network and a full network L. L 38
The vertically decomposed weights of a “severed” network having learned the domain with

no= 2and A = 20 e e e e 89
Architecture of an equivalent metwork L Lo Lo L 91
Five layer metwork e 93
Comparison of the number of virtual generalizations and generalizations obtained with fully-

distributed representations and semi-local representations, with n = 2, 4 = 20 and p = 40. .. 96
Comparison of the number of virtual generalizations and generalizations obtained with semi-

local representations, with various distributions of activities. 96
Comparison of the uses of the Euclidean norm L, and thenorm Ly 97
Comparison of the number of generalizations and virtual generalizations obtained with fully-

distributed representations and semi-local representations, for a recognizer learning the domain

with an error criterion for both training and testing was 0.5 98
Discrimination measures virtual generalizations and generalizations obtained with fully-distributed
representations and semi-local representations, for a recognizer. Error criterion for both training

and testing was 1 L L L e e e 98
Comparison of the number of virtual generalizations and generalizations obtained with fully-
distributed representations and semi-local representations, for a recognizer learning patterns of

the domain with an error criterion for both training and testing of 1.0 99
Discrimination measures for virtual generalizations and generalizations obtained with fully-
distributed representations and semi-local representations, for a recognizer. The error criterion

for both training and testing was 1.0 99

The contribution by one individual weight to the complexity cost term, when A = 1 and wg = 1.102
Exponential growth of generalizations for networks trained with weight elimination on sets of

size 50, with A = 26,asnvarlesfrom 2t0 6. i i i i 103
Systematicity through vertical weights decomposition. 104
Systematicity through vertical weights decomposition. 105
Systematicity through vertical weights decomposition. 106
Discrimination measures d' for the networks of figure 6.2. 107
The number of generalizations obtained for networks trained on subsets size 100 of English

n-letter words, as n variesfrom 3t0 6. 108

6.8

7.1

7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16

7.17

7.18

D1

D.2

Discrimination measures d for the networks learning the domain consisting of English n-letter
words, as nvaries from 3 t0 6

The partition induced by the relation R for the set of training patterns {ab, ad, ac, bc, be, bf,
xo, xl, xm, xm, jk, yu, op, wilt. ...
The weights developed by a linear network learning the individual pattern ab.
Weights developed when learning the patterns ab, ac,andad.
Weights developed by a network learning the patterns ab, ac, ad, be, be, bf. . e
Weights developed by a network learning the patterns be, beand bf.
Weights developed by a network having learned 40 patterns, with n = 2 and 4 = 16..
Weights developed by a network having learned 40 patterns, with n =4and A =38.
The weights of a network having learned all patterns of the domain with a harsh error criterion
of 0.000L. . . . L o
The weights of auto-associators for various activation functions having partially learned the
domainwithn = 2and A = 16
The weights of the network used analyzed.
Clustering tree for first layer weights
Clustering tree for first layer weights (transpose).
Clustering tree of hidden activity patterns corresponding to training input patterns.
Clustering tree of averaged hidden activity patterns corresponding to all patterns of the domain,
and averaged by letter/position.
Principal component analysis (first two rotated variables) of hidden activity patterns corre-
sponding to training input patterns. L L
Principal component analysis (first two rotated variables) of all hidden activity patterns corre-
sponding to all patterns of the domain, averaged by letter/position.
Result of contribution analysis for the first output unit: the points correspond to the first rotated
variable corresponding to each input pattern presentation. The first principal component is
shown at the bottom of the figure.
Result of contribution analysis for third output unit: Values of the first rotated variable for
each input pattern presentation.

Principal component analysis (first two principal components) of contributions, for first hidden
unit L e
Principal component analysis (first two principal components) of contributions, for third hidden
URIE. .o e e

List of Tables

1.1 Summary of central claims and hypotheses of this thesis 16
3.1 Values of entropy, combinatorial complexity and residual complexity for various combinatorial

and semi-combinatorial domains L L 46
4.1 Sizes of the testing sets used in experiments. 60
4.2 Experimental parameters 80
5.1 Some Experimental parameters for simulations performed in chapter 4 100
6.1 Ratios of probability of generalizations for members of X and random binary patterns 108
7.1 True and virtual generalizations, and discrimination measure, for the network analyzed. 120
7.2 Table of hidden unit patterns. 135
7.3 Table of hidden unit patterns obtained with a network trained with weight elimination. 136
D.1 Full table of hidden unit responsibilities 152
D.2 Table of hidden unit responsibilities 156

Xv

U xvi

Chapter 1

Nature of the problem

1.1 Overview of this chapter

The problem addressed by this thesis is presented in this introductory chapter. After a brief review of artificial
neural networks and connectionism — the attempt to model cognition, or aspects thereof, with artificial neural
networks, it is noted that while the first artificial neural networks appeared more that fifty years ago, their
pervasive intrusion into the field of cognitive science is much more recent. It is only within the last half
decade that they have been recognized within the cognitive science and artificial intelligence communities as
a serious framework for cognitive modeling as well as an alternative to the traditional approach presupposing
a symbolic ontology. In the context of this widespread recognition connectionism is evaluated against the
traditional artificial intelligence approach. It is realized that while it has seemed to be an adequate tool for
modeling certain low-level cognitive tasks, it has been less successful in modeling some fundamental properties
of cognition displayed in highly conceptual cognitive domains such as language. The question of whether there
is no obvious and fundamental limitation of the neural computation paradigm which would prevent it, in
theory, from modeling such properties is therefore asked. Connectionism, clearly, needs to address this serious
issue if it is to be considered as a viable framework for cognitive modeling. The question is placed in context
by presenting the problem from an artificial intelligence perspective, as it is noted that these properties have
been more easily addressed by the traditional symbolic artificial intelligence school.

A number of such basic properties displayed by the human mind are examined, namely generativity of
thought, systematicity and compositionality of mental representations, and systematicity of inferential pro-
cesses, properties that have been described in (Fodor and Pylyshyn, 1988). The question of how the connec-
tionist framework fares with respect to their modeling is addressed, leading to the conclusion that experiments
which could convince observers believing that some of these properties cannot in principle be neurally modeled
are needed. The connectionist theory of concepts, due to Cussins (1990) is then examined. This general theory
makes the point that connectionism is not, in principle, restricted in such a way that these properties could
not be modeled.

The last section of the chapter, finally, presents a refutation of the critique of connectionism found in
(Fodor and Pylyshyn, 1988).

1.2 Goal and overview of this thesis

Chapter 1 comes to the conclusion that connectionist systems would fail as proper cognitive models if they
could not in principle allow:

(P1) Compositional representations
(P2) Systematic representations
(P3) Structure-sensitive processing

(P4) Generative processing

Examining current connectionist research, we show that distributed representations are a case of com-
positional representations (P1), that tensor product and RAAM distributed representations are a case of
systematic representations (P2), and compositional representations (P1) a fortiori.

The goal of this thesis is to then show experimentally that structure-sensitive processing (P3) and gen-
erative processing (P4) can exist in connectionist networks, if it involves the connectionist processing of rep-
resentations which are instances of compositional representations (P1) and systematic representations (P2).
We will, in addition, experimentally show that with compositional (P1) and systematic representations (P2),
structure-sensitive processing (P3) and generative processing (P4) can be learned to be displayed by con-
nectionist learning procedures. The success of such experiments will in no way give a solution to the general
problem of connectionist modeling of the properties listed above. It will however show that connectionism is
not in principle incompatible with these properties.

This thesis is divided as follows.

In chapter 2 we present our experimental approach. We chose the most simple combinatorial domain-
whose elements present, by definition, compositionality and systematicity, as our experimental domain, as we
believe that such domains are the ones were generativity and systematic processing will emerge. We define
the connectionist auto-associative apparatus and representational scheme used, and present the cognitive
processing tasks modeled (Inference of regularity due to combinatorial laws in a simple domain
consisting of a Cartesian product of sets). The notion of generalization, central to connectionist learning,
is studied, and linked to the problem of interference in learning between newly learned items and previously
learned information. An extension of the notion of generalization called virtual generalization, which can be
used to measure competence, is introduced. We also review research literature pertaining to the chosen tasks.

In chapter 3, the notion of combinatorial domain is studied. An attempt is made at a characterization of
the notion, and a measure of combinatorial complexity, central to the study of generativity, is investigated.
An attempt at a mathematical characterization of the kinds of connectionist representations well suited to
encode members of combinatorial domains is also made.

Chapter 4 reports on a number of experiments performed with semi-distributed representations. Massive
true and virtual generalization, and their explosive growth as the complexity of the domain are increased, is
observed. The complexity of the domain, the architecture of the networks used, the learning rule, the sizes of
the training sets, and the training criteria are varied.

In Chapter 5, we discuss the relation and differences between semi-distributed representations and fully-
distributed representations. The case is made that the use of semi-distributed representations is not crucial to
the obtention of the results reported in the previous chapter, and that fully-distributed representations can,
in theory, lead to the same results. We also present further experiments implying experimentally that our
results are also valid when fully-distributed representations are used.

Chapter 6 repeats a number of experiments reported in chapter 4, with a modified learning rule im-
plementing the technique of weight elimination. Perfect systematicity and generativity are obtained in this
case.

In chapter 7, an attempt at a formal mathematical analysis of the weights developed by some of the
networks reported on earlier, in a simpler case, is made. Statistical analysis, including cluster, principal
component, and contribution analysis are then performed in the general case.

Chapter 8 concludes this thesis.

1.3 Connectionist models

1.3.1 Introduction

The idea that computation can be performed by assemblies of neuron-like elements is hardly new and can
be traced back to at least the middle of the 20th century. While the pioneering neural network research
of McCullogh and Pitts (1943) was concerned with computational and representational issues, Hebb (1949)
introduced learning principles, and Rosenblatt (1958) introduced a network, the Perceptron, that was capable
of learning. As later analytical work by Minsky and Papert (1969) showed severe theoretical limitations of
the Perceptron, and as the rise of digital computers boosted research in symbolic artificial intelligence, neural
network research stayed on a low plateau until the 1980’s, when Ackley et al. (1985) and Hinton & Sejmowski
(1986) introduced a learning algorithm for Boltzmann machines, Rumelhart et al. (1986a) experimented on

a learning algorithm overcoming the limitations of the Perceptron learning procedure, and Rumelhart and
McClelland’s group of cognitive scientists at the University of California at San Diego (Rumelhart et al.,
1986b) (McClelland et al., 1986) demonstrated the power of the connectionist approach for modeling diverse
aspects of cognition. This rebirth of connectionism also coincided with the realization that symbolic artificial
intelligence as a cognitive modeling tool seemed to be inadequate in many domains, especially those where
properties such as robustness to noise, self-organization, graceful degradation, and massive parallelism -all
natural properties of neural networks—, were needed.

Since then a tremendous renewal of interest in the use of connectionist networks has occurred, for modeling
cognitive processing tasks as diverse as speech, pronunciation, vision, language processing and motor control.
((McClelland and Elman, 1986) (Sejnowski and Rosenberg, 1987), (Zemel et al., 1990), (Elman, 1990), (Jordan
and Jacob, 1990), for instance)

1.3.2 A brief description

Connectionist (or neural) networks are artificial networks whose architecture and governing principles are
inspired by the biological networks of neurons found in the brain. They usually consist of a large number
of very simple processors, each characterized by a real-valued activity, interconnected by lines capable of
transmitting activities to a degree depending on their strength or weight. The pattern of connectivity among
processors of a connectionist network define its architecture, varying from one model to another. In somie
models, all units are inter-connected to every other unit of the network. In others, connections only exist
between units of different layers, or pools of units. Each processor of a connectionist network is typically able
to compute a simple function (activation function) of the weights of the lines and values of the activities of
the processors it is connected to.

Input to the system will be patterns of activity distributed over those units of the network chosen to
represent input patterns (the input layer) and output from the system will be the activities of those units
that have been chosen to represent output, conceptually grouped together as output layer. Processing in
connectionist networks consists in applying input patterns to the input layer, letting activity flow, via the
weighted lines, from the input processors to all connected processors in the network (including processors that
are not used for input nor output-these are the hidden units). Output patterns are then obtained at the
output layer. Processing can thus be seen as the evolution, through time, via the weighted lines, of a pattern
of activity over the set of processors.

The values of weights are typically learned with a learning algorithm that is applied before testing is
performed. In supervised learning, both desired input and output patterns are applied to the input and
output layers, respectively, and the network weights are iteratively modified according to the learning rule
used to yield, at processing time, the correct association. In unsupervised learning, only input patterns are
presented, and connections are modified to produce at the output layer some interesting function of the input
pattern. A number of different learning rules have been used to modify the weights of a connectionist network
to ensure proper behavior at processing time. These learning rules usually implement a variant of the principle
according to which the strength of a connection is increased or decreased in the direction of correct processing.

1.4 A viable framework for cognitive modeling?

1.4.1 Introduction

While most connectionist research has been concerned with finding and implementing new architectures, pro-
cessing algorithms, and learning rules which would allow for an adequate modeling of specialized cognitive
tasks, recent years have also witnessed principled analyses of connectionism as a paradigm for modeling cogni-
tion (Hofstadter, 1985) (Derthick, 1986) (Dreyfus and Dreyfus, 1988) (Fodor and Pylyshyn, 1988) (Smolensky,
1988). These analyses have had several merits.

First, they have reflected on the most general and theoretical question of the possible adequacy of connec-
tionism for modeling cognition. They have addressed, from a connectionist point of view, some basic properties
of mind which need to be accounted for if connectionism is to be viewed as a viable paradigm for modeling
cognition, and tackled the fundamental problem of whether there are theoretical, in principle, restrictions
which would prevent it from allowing for an account of such properties. These reflections are indeed very

valuable: While solving punctual problems advances one’s knowledge of the field and is often the only possible
activity allowing concrete results in a task so vastly complex, identification of larger problems and reflection
about the very adequacy of the framework for solving them is a much needed endeavor if the paradigm is to
have any future, especially when it has come of age.

Second, they have situated neural network modeling within the general field of cognitive modeling. Indeed,
connectionism, as a cognitive modeling tool, did not enter a field in its infancy. The questions of what makes
up a mind, of what are its general governing principles and properties which need to be taken into account if
one is to model intelligent behavior, are questions which have been studied for several centuries by philosophers
of mind, and at least for several decades by artificial intelligence researchers and cognitive psychologists alike.
It is therefore important that connectionism, as a computational framework targeted at providing the building
blocks with which to model cognition, situate itself within the general field of cognitive modeling. Any
reflection on the possible adequacy of connectionism to model cognition, any enquiry about the possibility
that connectionism might be the right modeling paradigm, needs to benefit from an evaluation of the paradigm
against the existing standards. It is the subsequent uncovering of incompatibilities and/or limitations that
will allow us to define the necessary starting base of problems upon which a remedying research plan can be
developed.

It is problems emerging from such analyses, as well as related independent observations of our own, which
prompted the line of research presented in this thesis. In the next sections we present a historical and
philosophical perspective on both symbolic and connectionist artificial intelligence. This perspective will
provide the needed background and context in which these analyses and the problems they have articulated
have evolved. We will then more specifically define the problems addressed by this thesis.

1.4.2 Symbolic artificial intelligence

Before the widespread appearance of neural networks for cognitive modeling, the world of artificial intelligence
was dominated by researchers belonging to what we might dub the “symbolic” school. One of its most
predominant figures, Allen Newell, formalized in his influential paper, “Physical Symbol Systems” (1980), the
principles that have driven symbolic artificial intelligence research in the last three decades.

In that paper, Newell articulates a hypothesis, according to which:

The necessary and sufficient condition for a physical system to exhibit general intelligent action
is that it be a physical symbol system. Necessary means than any physical system that exhibits
general intelligence will be an instance of a physical symbol system. Sufficient means that any
physical symbol system can be organized further to exhibit general intelligent action.

Defining a physical symbol system to be the same as a Universal Turing machine, Newell thus hypothesizes
that intelligence can be replicated to any degree of complexity in a sufficiently complex symbol system. That
school of thought has been shared by a number of prominent cognitive scientists, among which stand Fodor
and Pylyshyn (1975) (1988), who have argued, as we will see later, for a mind governed by a “language
of thought”, where elemental entities are symbols. Intelligence would thus originate from manipulation of
symbols according to the “grammar” of the language of thought.

The past four decades has witnessed tremendous research activity aimed at developing computer programs
modeling intelligent behavior, assuming the physical symbol systems hypothesis. The serial and discrete
traditional Von Neumann computers, no doubt, were and are well suited to model and implement these
“symbolic” views of the mind. But the passing decades produced a growing awareness that the symbolic Al
models are limited as far as replicating intelligence was concerned. Certainly, very sophisticated schemes have
been developed and used to code and process knowledge in these programs: semantic networks, for instance,
where semantic dependencies of knowledge symbols are links in a network representing a memory. Schemas,
where memory is assumed to be organized in terms of many small packets of related knowledge. Or frames,
where units of structured knowledge are hierarchically linked and contain procedural knowledge as well. But
these programs have been characterized as inflexible and brittle (they break when asked to work beyond the
borders of the domain that was formally described at implementation time), unrealistically slow (their internal
organization sometimes imply lengthy search at processing time) and unrealistically hard to maintain (limited
learning capabilities prevents them to adapt smoothly and naturally to new knowledge or conditions).

As these limitations were becoming more obvious, a different alternative view of the mind started to be
proposed, along with a different approach —the connectionist approach- to modeling intelligence. Below we

outline one such view, presented in (Smolensky, 1988).

1.4.3 The sub-symbolic approach

The sub-symbolic approach to cognitive modeling starts by acknowledging the existence of two kinds of
knowledge. A line is drawn between one kind called cultural knowledge, which appears to be governed by
conscious rule interpretation, and another which encompasses individual knowledge, skill and intuition. It is
hypothesized that the virtual machine running the program responsible for behavior that is not conscious rule
Interpretation, called the intuitive processor, has a connectionist architecture: It is a dynamical system whose
entities are complex patterns of activities, encoding sub-symbolic knowledge, that does not admit a complete,
formal and precise conceptual (symbolic) description. A precise description of the intuitive processor can only
be made at the sub-conceptual level. That level is different from the brain level, where the intuitive processor
is actually implemented. Intuitive knowledge which appears to be rule following only reflects the large scale
structure of micro-computations, and any conceptual description of that knowledge will only be, therefore,
an approximation. Identifying the human cognitive machine as a large dynamical system that can only be
precisely described at the sub-symbolic level has a number of important consequences. In the subsymbolic
paradigm, symbols are not atomic entities but collections of sub-symbols. Their context reside in the symbol
itself, in the subconceptual entities the symbol is made of. Knowledge resides in the connections, and inference
is a massively parallel process.

The connectionist paradigm, then, states, in opposition to Newell, Fodor and Pylyshyn, that intelligence
should be described and analyzed at the sub-symbolic level, a level lower than the symbolic one described
by Newell, yet higher than the implementation level where neurophysiological transformations occur. The
symbolic behavior observed by the researchers mentioned above is only an approximate macroscopic description
of complex interacting microscopic behaviors. Intelligence does not occur with symbol manipulation, but with
activation flows in large numbers of connectionist units.

1.4.4 Compatibility of the two approaches

It is important to notice that the sub-symbolic approach refutes the physical symbol system and the language
of thought hypotheses, by replacing symbols by connectionist units as the atomic entities needed to describe
the mind, but pushes for the view that symbolic and connectionist accounts are compatible once it is under-
stood that one is an approximation of the other. A natural question that one might ask, then, if one views
the connectionist approach as a serious alternative to the symbolic approach, is the following:

(1) Can connectionist models account for properties most naturally obtained by symbolic mod-
els?

In other words, can the former do as well where the latter is best, that is, in domains that can best be
described by symbolic manipulation, such as language processing? Surely, if symbolic descriptions are correct
approximations of cognitive behavior which can only be precisely accounted for at a connectionist, sub-symbolic
level, then the natural properties found in symbolic accounts should emerge from connectionist accounts. Just
as, for instance in the field of thermodynamics, the macroscopic and approximate law that relates the pres-
sure, the volume and the temperature of a perfect gas, PV = nRT, can be derived from the more precise
microscopic laws governing the momentum and kinetic energy of individual molecules of the gas, if one makes
the necessary approximations, symbolic properties of physical systems or a language of thought should be
derived and emerge from connectionist accounts.

A brief look at the connectionist literature would not, we believe, convince anyone.of either a positive or
negative answer to question (1), ! although it would certainly induce a definite bias in favor of a negative
answer. Indeed, it is interesting to note that whereas connectionism often fares relatively well where the
symbolic approach has consistently had severe problems, in areas such as ill-defined problem solving, mas-
sive constraint satisfaction or noise-filled environment processing, it has not been able to come even close to
replicating the modeling power of symbolic systems when it comes to addressing certain basic properties of
cognitive behavior. A brief analysis of the symbolic and connectionist approaches to language acquisition, in

! Although Fodor and Pylyshyn have certainly been convinced of a negative answer, wrongly as we will later find out.

the remainder of this section, will convince us of this fact.
A case in point: Language acquisition.

Human language acquisition is certainly a definite example of high competence acquisition from a small
set of examples. Although how much competence one believes is acquired depends both on how powerful one
deems the inductive apparatus is and on how much information is conjectured to be available during learning,
it would be hard to find anyone who would feel remotely comfortable with the claim that the set of examples
children are trained on is of the same order of magnitude as the set of examples they ultimately generalize to.

Symbolic accounts offer a simple and most natural explanation of how human language acquisition allows
for the possibly unbounded generation and understanding of language constructs from a relatively small and
finite set of examples:? they point out that a system composed of atomic elements (symbols) and combinatorial
laws governing their composition (grammar rules) will display a property of generativity, since the number of
valid constructs grows explosively with the number of atoms and combinatorial laws.

Sub-symbolic accounts, on the other hand, have not so far seemed to be able to offer a similar explanation.
Although learning from examples is a well-known characteristic of connectionist networks, they seem to be at
odds with the concept of generativity. A passage in one of the earliest works in neural networks ({Rosenblatt,
1962), page 73, emphasis is ours), is especially revealing:

In a simple perceptron, patterns are recognized before “relations”; indeed, abstract relations, such
as “A above B” or the triangle is inside the circle” are never abstracted as such, but can only be
acquired by means of a sort of exhaustive rote-learning procedure, in which every case
in which the relation holds is taught to the perceptron individually.

And indeed, even current models using more powerful learning techniques than the perceptron suggest that
in order to obtain correct performance on a target set of inputs, a network needs to be trained on a sizable
fraction (between 25% and 75%) of the learning set. (e.g. (Hinton, 1987), (Saito and Nakano, 1988), (Le Cun
et al., 1990)).

In light of this example, then, and abstracting over many other tasks tackled both by the symbolic and the
sub-symbolic approaches, we believe that question (1) has not been directly and experimentally addressed.

Our approach to addressing question (1) can now be described. We will consider several properties de-
scribed by an approximate symbolic theory of mind, and attempt to show that connectionist models can also
provide an account. Below we review, following (Fodor and Pylyshyn, 1988), four general and fundamental
properties of symbolic processing found in cognition. It is our opinion that these properties in no way charac-
terizes cognition exhaustively. But as was mentioned before, we also believe that connectionism would fail as
a plausible framework for modeling cognition if it exhibited inherent restrictions which would prevent it from
accounting for them.

It is the central concern of this thesis to address the theoretical question of whether these properties can in
principle be modeled by connectionist networks. After reviewing them, we will see how connectionist research
has addressed and/or modeled them so far. We will point out deficiencies, then investigate what can be done
to show that there is no in principle fundamental restriction which would prevent us from explaining and
modeling them.

1.5 Connectionism and some fundamental properties of cognition

1.6 Descriptions

The following four properties of the mind were put forward by Fodor and Pylyshyn (1988) and are here de-
scribed.

Generativity of thought

The classic argument for the generativity of thought revolves around the fact that we can produce a potentially

2We will present this explanation in greater detail in the next section.

unbounded number of mental representations under finite means. This in turn pushes for the assumption that
mental representations are expressions combined from atomic elements according to combinatorial rules, thus
allowing for the view that the set of possible representations is a generated set. The laws of combinatorics,
inducing an explosive growth in the number of possible combinations as the number of atomic slements in-
creases, allow for the extremely large (potentially unbounded) number of combined representations. This
reasoning was originally offered for language, e.g. (Chomsky, 1968), which exhibits an obvious generative
capacity: we can generate or understand an extremely large number of sentences, the majority of which
have not been uttered or heard before. The view that sentences are generated from the combination of words
of the lexicon according to grammar rules explains the unboundedness of grammatically well-formed sentences.

Systematicity of representations

Systematicity seems an inherent property in language production and language understanding when it is
noticed that understanding or producing the sentence “John loves Mary” could not possibly go without un-
derstanding or producing “Mary loves John”. As Fodor and Pylyshyn state, “The ability to produce or
understand some sentences is intrinsically connected to the ability to produce/understand others.” ((Fodor
and Pylyshyn, 1988), page 37). The argument for the systematicity of thought follows from the one for
the systematicity of linguistic capabilities by observing that just as understanding “Mary loves John” entails
understanding “John loves Mary”, the ability to have the thought of the first expression (which necessarily
precedes its utterance) entails the ability to have the thought of other. The systematicity of thought makes
the case for the internal structure of thought.

Compositionality of representations

Closely related to systematicity, the “principle of compositionality” as stated by Fodor and Pylyshyn is based
on the fact that, in language, sentences that are systematically related are not arbitrary from a semantic point
of view. Syntactical constituents of sentences that are systematically related must be composed in each of the
sentences to have approximatively the same semantic contribution. The argument about sentences in language
can also be made concerning mental representations in the language of thought. From this it follows that one
needs to assume that mental representations have both syntactic and semantic compositional structure.

Systematicity of inference

Systematicity of inference is a property illustrated by the simple following example: If one can make the
inference from P&Q&R to P, one must be able to make the inference from P&Q to P. As Fodor and Pylyshyn
state, “inferences that are of similar logical type ought, pretty generally, to elicit correspondingly similar
cognitive capacities.” This is yet another argument for the constituent structure of thought and for the fact
that processes operate with respect to that structure. If mental processes did not operate on that structure,
it would be possible to make one inference but not another on two expressions which had the same structure.

We now look at the properties just defined and investigate whether they have been displayed within the
connectionist framework.

1.6.1 Compositionality and connectionist representations

Can connectionist representations be compositional? That is, can connectionist representations be built up,
or composed, from the connectionist representations of constituents? The answer, obviously, depends on the
kind of connectionist representation used, which in turn depends on how the problem of connectionist repre-
sentations ~How can concepts (possibly structured) be mapped to activity patterns over a set of connectionist
units? —is solved. Below we therefore review connectionist representational schemes, and present an argument,
“the coffee story”, that answers the question in the affirmative, for the case of distributed representations.

Local representations.

A simple solution to the connectionist representation problem is to simply devote one unit of the network
per concept (local representation). Limitations of this scheme are obvious: Since relations among representa-

tions of concepts can only be implemented in the connections of the network, it is the way activation flows in
the network that regulates relationships among concepts. And it will not reflect, in general and except in the
most trivial cases, the relationships desired, unless each conmnection is specifically hand-tuned to induce the
desired effects in activation flow.

Likewise, since concepts with constituent structure can only be coded (by definition) by assigning a single
unit for each constituent, structural relations among constituents can only reside in the connections and are
regulated, again, by the way activity flows. But as seen before, this regulation will not be the desired one in
general.

Local representations, therefore, are not suited to display compositionality.

Distributed representations.

Another solution to the connectionist representation problem is to represent concepts over sets of units. If each
concept is represented over a distinct set of units, the representation is called semi-distributed. If concepts
are represented on a single set of units where each unit participates in the representation of many concepts,
the representation is called fully distributed.

The coffee story: Distributed representations can have compositionality

In (Smolensky, 1987a), Smolensky makes the case for the compositionality of distributed representations.
Let us suppose that we have a representation of the structured concept cup with coffee (with constituents cup
and coffee) using micro-features. The concept will thus be represented in a distributed way over a set of units,
where each unit corresponds to a microfeature (such as “is an upright container” , “has a burnt odor”, “brown
liquid contacting porcelain”, ...) and is activated when that microfeature is present in the description of the
concept.

Is there a compositionality relation between the representations of cup with coffee and the individual
representations of the constituents cup and coffee? Yes: if one subtracts the representation of cup without
coffee from the representation of cup with coffee, one obtains a representation of coffee, in the context of
being in a cup. Compositionality exists, therefore. Note that the fact that the representation obtained
from the subtraction above corresponds to coffee in the contezt of a cup shows that the compositionality is
approximative: the result is not the representation of the context-independent concept of coffee, yet is close
to it. Note also that the compositionality stands at the level of the patterns of activities. Also, in the case of
distributed representation, relations among concepts or structural relations among constituents of concepts are
coded directly in the patterns of activities. This is quite different from local representations where connections
were the coding agent.

1.6.2 Systematicity of representations

We have seen above that distributed representations can allow for compositionality. In this section we present
two representational schemes which allow for systematicity. That is, they allow two or more representations
of constituents to have the same structural role with respect to the representation of the structured concept
they belong to.

Tensor product representations

The basic idea of the tensor product representational scheme, developed by Smolensky (1987b), (1990), is
the following: Any concept with a constituent structure, made of constituents combined together according
to the structural role they play in the concept, can be represented by combining the representations of each
constituent and its associated structural role.

More specifically, coding of a structured concept can be performed by:

1. Finding a representation for each of the constituents,

2. Finding a representation of the structural role each one has,

3. Performing the tensor product operation® of the representations of each constituent with the represen-
tation of its structural role,

4. And adding the representations of the pairs (constituents/associated structural role) together.
A tensor product representation of the string AB, for instance, can be formed by:

1. Finding representations for the constituents A and B. Say (1,1,0), (1,0,1), respectively, where (1,1,0) and
{1,0,1) are vectors of activities of the three units used to code the constituents.

2. Finding representations for the structural roles of each constituents, here their position in the string.
Say rl = (1,1) for the structural role of A, 12 = (1,-1) for the structural role of B.

3. Performing the tensor product of each pair constituent/structural role representations: A ® 11 =
(1,1,0,1,1,0) and B ® r2 = (1,0,1,-1,0,-1).

4. Adding the pairs together which will lead to the representation A ® r1 + B ® 12 = (2,1,1,0,1,-1) for the
string AB.

Note that the tensor product representational scheme can be used, recursively, to code higher level struc-
tured concepts from lower-level ones, by applying the same algorithm described above bottom-up.

“Induced” distributed representations: Pollack’s RAAM

The “Recursive Auto-Associative Memory” (RAAM) representational scheme, due to Pollack (1988), can
be used to represent symbolic structures, and, like the tensor product scheme, allows for systematicity of
representations. Unlike the former, however, it requires, as we will see below, learning. The scheme is here
presented in the context of representing structured symbolic trees.

RAAM makes use of the following idea: Starting at the base of the tree to be represented, with a represen-
tation of each terminal leaf of the tree (where each leaf is represented by a pattern of activity over n units), a
compressor can be used to sequentially compress the representation of each set of leaves belonging to the same
sub-tree to a representation over n units. The compressor can be used recursively at each level of the tree,
from the base to the top, compressing the intermediate representations of each subtree at that level, until the
whole tree is represented over n units. To decompose a tree into its original constituents, a decompressor can
be used which will, recursively and from top to bottom, produce the intermediate representations obtained in
the compressing phase.

The compressor/decompressor used by Pollack is a connectionist network with three layers associating
each pattern to be compressed with itself, and the compressed representations are the patterns of activity
obtained on the hidden layer (which has n units) when the patterns to be compressed have been correctly
auto-associated through learning. The decompressor is the connectionist network which will produce, from a
compressed pattern, the decompressed ome: it is thus the two layer network made of the hidden and output
layer of the compressor/decompressor network. The compressor, producing a compressed pattern from an
input pattern, is the two layer network made of the input and hidden layer of the compressor/decompressor
network.

Again, as was the case with tensor product representations, the RAAM representational scheme allows
the connectionist representations of constituents to have structural roles with respect to the connectionist
representation of the structured concept they belong to.

1.6.3 Systematicity of inference

Systematicity of inference, we believe, has been displayed by connectionist networks, albeit in a very weak
form: Correct processing of representations is usually the case when these representations are similar (in terms
of Hamming or Euclidean distance) to ones the network has been trained on. This systematicity of inference
is weak because it does not involve the processing of structured compositional and systematic representations

3The tensor product of a p-dimensional vector z with a g-dimensional vector y, z ® y, is the outer product of the two vectors,
which is the p X g-dimensional matrix (or vector) whose elements M; ; are z; X y;

where correct processing would result both from the correct processing of constituents and attention to the
structural role these play within the overall structure. That kind of strong systematicity has, until very
recently , been rarely displayed. *

1.6.4 Generativity

Generativity, where a large number of representations are correctly processed, relative to the number of
representations that have been trained to be correctly processed, is a property that has not, to our knowledge,
been instantiated in the connectionist research. It should be noted that generativity is a property that
can only appear if the small number of training instances display systematicity and compositionality. It is
these properties which will allow, through recombination, for the correct processing of a large number of
untrained instances. In typical connectionist modeling, as was mentioned in section 1.4.4, a large proportion
of representations of objects in the domain to be processed is used for training.

The main points and conclusions made so far, anticipated at the beginning of this chapter (section 1.2
“Goal and overview of this thesis” are now reiterated. We have identified the hypothesis of the sub-symbolic
modeling paradigm, that descriptions of cognitive behavior can only accurately be made by connectionist
accounts; that symbolic accounts are only be approximation. We have realized that connectionism has so
far seemingly failed to address or replicate fundamental cognitive properties naturally accounted for by the
symbolic paradigm. In particular, we have come to the conclusion that connectionist systems would fail as
proper cognitive models if they could not in principle allow:

(P1) Compositional representations
(P2) Systematic representations
(P3) Structure-sensitive processing
(P4) Generative processing

Examining current connectionist research, we have seen that distributed representations are a case of com-
positional representations (P1), that tensor product and RAAM distributed representations are a case of
systematic representations (P2), and compositional representations (P1) a fortiori.

The goal of this thesis can now be made clear in light of this summary: Show experimentally that structure-
sensitive processing (P3) and generative processing (P4) can exist in connectionist networks, if it involves
the connectionist processing of representations which are instances of compositional representations (P1) and
systematic representations (P2). We will, in addition, experimentally show that with compositional (P1) and
systematic representations (P2), structure-sensitive processing (P3) and generative processing (P4) can be
learned to be displayed by connectionist learning procedures. The success of such experiments will in no way
give a solution to the general problem of connectionist modeling of the properties listed above. It will however
show that connectionism is not in principle incompatible with these properties.

1.7 The connectionist construction of concepts

1.7.1 Introduction

Before closing this chapter and presenting the approach that will be used to unearth instances of the properties
of generativity and systematicity in a connectionist model, it is important to ask just how such properties could
possibly arise. While the point was made earlier that connectionist representations can be compositional and
systematic, and thus in theory lead to systematicity and generativity, the problem of how typical connectionist
learning with such representations could lead to systematic and generative behavior is open: For such behavior
presupposes that the network has learned to develop, from specific training instances only, recognition of

#Recent independent work by Chalmers (1990a), has addressed (3): Using Pollack’s RAAM representational scheme, Chalmers
has shown that a network processing structured sentences which were represented with a non-concatenative representational
scheme (see next section) was sensitive to the internal structure of the sentences.

More recent research in connectionist linguistics has also reported systematicity of processing (Legendre et al., 1990a) (Legendre
et al., 1990b) (Legendre et al., 1991) (Elman, 1991).

10

structural constraints in such a way that any new object of the domain, just because it obeys these structural
constraints, is correctly processed. This last point might best be illustrated by a simple example: Systematicity
of understanding, as seen in the fact that one always understands the sentence “Mary loves John” if one
understands the sentence “Iohn loves Mary”, for example, originates from the fact that both sentences impose
structural constraints on the objects they are composed of, that both Mary and John are recognized to be of
the same category (noun phrase) and can freely be swapped as objects or subjects. Any cognitive system
recognizing that any proper nouns of human beings fall in the same category than the category as “John”
and “Mary” will then have no problem explaining that example of systematicity. But how can a connectionist
network, using structured connectionist representations like RAAM or tensor product representations, which
would only see specific instances of “namel Loves name2”, develop competence in such a way that any
pattern of the form “namel Loves name2” would be correctly processed?

A recent enlightning paper by Cussins, exceptional and ground breaking in my opinion, revisits the symbolic
and connectionist paradigm from a philosophy of mind perspective and throws some light on an answer to the
above question. Its most pertinent points are first reviewed below 8.

1.7.2 Cognitive explanation and the problem of embodied cognition

In his paper, Cussins defines what he calls the problem of embodied cognition, which is the central problem
that any cognitive science theory, attempting to explain how physical systems can think, needs to solve: How
can neurophysiological explanations at the brain level and cognitive explanations at the cognitive level, each
autonomous, relate and go hand in hand?

Such a problem, the case is made, needs to be solved without reducing cognitive properties to non-cognitive
properties, nor eliminating cognitive properties, nor rejecting the scientific indispensability of cognitive prop-
erties. The problem of embodied cognition is then given a necessary and sufficient condition for its solution.

This problem can be solved if and only if, Cussins shows, the cognitive theory explains how cognitive
properties at a high level can be constructed out of non-cognitive properties at a low level. Such an explanation
is possible if in between the highest and lowest level, there exists a number of intermediate levels such that,
although explanation and observation of a cognitive phenonema seem autonomous and unintelligibly related
in between the two extreme levels, it is intelligibly related between any pair of adjacent intermediate levels.

1.7.3 Conceptual content and the language of thought

Cussins makes the point that the language of thought cognitive theory, a theory of cognition at the level of
psychological explanation in terms of conceptual properties due to Fodor {1975), solves the problem of em-
bodied cognition: the required intelligible link between the computational component 7 and the psychological
component of modeling in cognitive science is made by the development of a syntactic theory and semantic
representational system, for which the syntax is implemented computationally and the semantics is suitable
for psychological explanation. The syntactic theory of the representational system, allowing for a definition
specification of all the legal combinations of the atomic representations of the system, thus marches in step
with the semantic theory, which provides specifications of the interpretation of all the representations.

1.7.4 Non-conceptual content and the connectionist construction of concepts

The language of thought theory is a theory involving a semantic theory of conceptual content: content
which presents the world to a subject as divided up into objects, properties and situations that have truth
condition properties. Cussins makes the point, however, that non-conceptual content, where the world is
perceived without being decomposed into objects, properties, or situations, also exists within the cognitive

®Both properties presuppose the existence of structural constraints on the constituents of the objects of the domain at hand,
governed by combinatorial laws.

8The following presentation is intentionally simplified, as a more rigorous and precise description of the connectionist con-
struction of concepts theory of Cussins, laid out by its author in highly technical and philosophical terms, would be too lengthy
and fall outside the scope of this thesis.

"How the link between the physical substrate, the brain that is, on which the computational component is implemented is
carried out seems to remain a mystery, at least for me.

11

realm. He gives several examples, including some within the linguistic paradigms, of cognitive experiences
involving non-conceptual content &. :

From there, it is observed that certain kinds of non-conceptual content entail a lack of objectivity in the
subject experiencing it. A link is made between lack of objectivity and perspective dependence, and it is
shown that a theory of non-conceptual content can still explain conceptual experiences if it provides a mean to
reduce the perspective dependence of non-conceptual content, via a computational theory of transformation of
non-conceptual content. Such a reduction implements a transition from a non-conceptual content (perspective
dependent) to a conceptual content (perspective independent), as perspective independence evolves from
perspective dependence. How can such a reduction me made? Cussins argues that it involves the formation, or
construction, of a cognitive map, which will allow a non-conceptual representation to be treated independently
of its associated perspective, and thus just as a perspective independent conceptual representation.

Having made the case that a cognitive theory based on non-conceptual content can solve the problem of
embodied cognition and provide a basis for explaining both non-conceptual and conceptual cognitive experi-
ences, the question of whether connectionism can be be the right computational and architectural paradigm
for such a theory is then asked. The answer is positive: Connectionism is a non-conceptualist cognitive
modeling theory since the external representations that it uses are naturally perspective dependent, and thus
non-conceptual. It can explain conceptual content by reducing the perspective-dependence of the content of
the representational states of the system through learning. Such a reduction, as was stated earlier, can be
performed via the formation of a cognitive map, which in connectionist terms translates in the development
via learning of perspective independent internal representations.

1.7.5 Relation to this thesis

The connectionist construction of concepts theory, then, implies that external, non-conceptual, perspective
dependent connectionist representations can, through training, contribute to the formation of an internal
cognitive map (represented in the weights of the network) out of which perspective independent processing
of such representations will emerge. If we are successful in designing connectionist experiments exhibiting
generativity and systematicity, such experiments will necessarily involve the formation of a cognitive map. If
our models are simple enough, analysis of such cognitive map formation will be possible. In this case, our
experiments will have the advantage of presenting a simple yet concrete and analyzable instance of how the
connectionist construction of concepts might be realized.

1.8 A reply to a criticism of connectionism

If successful, our approach will also have the advantage of countering one of the most severe criticism made
against connectionism. We briefly introduced Fodor & Pylyshyn earlier in this chapter when we introduced
and reviewed the four properties of mind they have outlined in their paper: Connectionism and cognitive
architecture: a critical analysis (1988). In that paper, as the title implies, Fodor & Pylyshyn go far beyond
presenting these properties. They actually use them as a starting point for the argument that connectionism
cannot be a viable framework for cognitive modeling.

The underlying line of argumentation driving Fodor and Pylyshyn’s claim for the impossibility of a con-
nectionist architecture of the mind can be summarized succinctly:

If atomic constituents of mental representations are symbols, and mental processes operate on these sym-
bols, then we have a symbolic language of thought that can allow for the central properties of cognition such
as systematicity, generativity and compositionality. They thus posit the existence of a symbolic language
of thought where mental representations have constituent structure on which mental processes operate, and
claim that:

Standard connectionist representations cannot have a constituent structure, and connectionist processing
cannot be structure sensitive (i)

Standard connectionism, therefore, cannot be of any interest for cognitive modeling; the only interesting

8 Among others: the perception of color. Although there exists color concepts, the point is made that color-experience cannot
be explained in a conceptualist way.

12

connectionist models would be non-standard connectionist models that implement a language of thought (ii).
9

Now what is the rationale for believing (i)? Fodor and Pylyshyn’s argument is based on the znalysis of
networks using local representations (where each concept is represented by a single node in the network).
They show, convincingly in our view, (we drew the same conclusions in section 1.6.1) that such networks
cannot exhibit properties of systematicity and compositionality of representations, let alone generativity of
representations and systematicity of inference. They then erroneously conclude that no connectionist networks
can exhibit these properties.

1.8.1 Refutation

There are at least two ways to logically show that Fodor and Pylyshyn are wrong on (1) One is to show that
there is nothing to support (i) in principle, in exhibiting or designing representations that are compositional
and systematic, and show in theory that there is no restriction which would prevent connectionist systems
from exhibiting generativity and systematicity in inference. This refutation would make the case that (i) is
pure conjecture, but would not, however, prove that it is necessary wrong.

Another more powerful way is to show by ezample that (i) is wrong by designing and implementing net-
works whose behavior, relying on compositional and systematic representations, displays generativity and
systematic inference. This thesis can be seen as an example of this second approach.

Addressing (i) in principle

Here we proceed to refute (i) in theory, by simply showing that its premises, the following assertions:
(1) Connectionist representations cannot have compositionality

(2) Connectionist representations cannot be systematic

(8) Connectionist processing cannot be structure-sensitive

(4) Connectionist processing cannot be generative

are either false or so far unprovable. More precisely, we show that assertions (1) and (2) are false, while there
is no reason to believe that assertions (3) and (4) are true. Since showing that there is no solution so far to
a problem does not mean that the problem is not solvable (to show this one would need to show that any
approach would fail, something Fodor and Pylyshyn have not done since their assertion about the equivalence
of local and distributed representations is unsound), this will show that Fodor and Pylyshyn’s argument is
logically false.

(1) is wrong in theory because of the very existence of distributed representations, (where concepts are repre-
sented over a set of units and each unit participates in the representation of many concepts). As we have seen
earlier in our discussion of connectionist representations, distributed representations are fundamentally differ-
ent from local representations, and do allow for compositionality, as the “coffee story” showed. While Fodor
and Pylyshyn were right in their conclusion that local representations could not allow for compositionality, they
were wrong in assuming that using distributed representations could not change the nature of their conclusion.

(2) is wrong because of the very existence of the tensor product and RAAM representational schemes. These
schemes, as we have seen, allow for systematicity of representations. Fodor and Pylyshyn's erroneous conclu-
sion, again, originated from their lack of concern with more sophisticated representational schemes.

91t seems that Fodor and Pylyshyn, reluctantly realizing the success of connectionism, had to fit it at least somewhere and
could not go all the way and call for an abandonment of all related research. They went on to formulate the assertion that
connectionism can still be used as an implementation of a language of thought.

Chalmers (1990b) has analyzed this assertion, blending the use of the terms “standard” and “non-standard”, which Fodor and
Pylyshyn sometimes seem to do. In this case, their assertion is logically unsound, as it is a well known fact that connectionist
networks can implement Turing machines, and thus a language of thought. But then, if it is so, they can have structured
representations and structure sensitive processing. This violates the truth of their earlier claims.

13

(8), so far, is a conjecture. As we have seen earlier, no connectionist experiments have been made to specif-
ically either prove or disprove the fact that connectionist representations cannot display generativity. As we
have mentioned, it is the central concern of this thesis to actually prove, experimentally, that (3) is not true.

(4), like (3) and for the same reasons, is also a conjecture. Its experimental refutation is also the object
of this thesis.

1.8.2 Implementation issues: Concatenative and functional compositionality

It is important, at this point, to reflect on the relation that a connectionist system successful at being systematic
and generative (through perspective dependence reduction of its input/output behavior, via a cognitive map
formation) would have with a symbolic system. Let us suppose, for instance, that a connectionist system learns,
given a training subset of a domain, to behave like a given symbolic system implemented with symbolic rules.
That is, for a given symbolic processing task, we use connectionist representations to code symbol structures of
the symbolic system, and the input/output behavior of the connectionist system can be described in symbolic,
or conceptual terms.

If the connectionist system uses local representations, then each unit of the network will correspond to a
symbol in the symbolic system and we will have simply implemented the symbolic system with connectionist
means. The connectionist system will simply replicate, then, the behavior of the symbolic system and the two
will be isomorphic on that subset of the domain the networks was trained on. The connectionist network will,
like the symbolic system, exhibit ungraceful degradation, or brittleness, if any of the (input/output) external
units coding a symbol do not function properly. One difference, however, will be that the network might not
exhibit such behavior if internal units are damaged.

If the system uses semi-local representations, the story is different. Although there will be a one-to-ome
correspondence between each pool of units used for the representation of a symbol and that symbol in the
symbolic system, the system will not be “aware” of this correspondence,'® but will have learned it. In that
case, then, the connectionist system will have learned the spatial correspondence between symbols and the
pools of units used for their representation, and will learn to behave like the symbolic system. A description
in symbolic terms will be possible, but a precise description of just how the processing mechanism came to
be implemented through learning, by the very fact that learning occurred at the level of individual units,
will only be possible at the level of individual units and activities of the connectionist system, and not at
the symbolic level. Because of the spatial one-to-one correspondence between a pool of units devoted to the
representation of a symbolic structure and that symbolic structure, however, it would still be possible to claim
that the connectionist system has simply implemented the symbolic system, within an isomorphism. But
noise resistance and graceful degradation, on any unit now, will distinguish the network from its equivalent
brittle symbolic system. Note also that learning might never allow the network to “perfectly” replicate the
behavior of the symbolic system, although it might allow it come close. In this case, the two systems will not
be isomorphic.

If fully distributed representations are used, the story might be different again. Van Gelder (Van Gelder,
1990) has analyzed fully connectionist distributed representations and has made the important distinction
between concatenative compositionality, which is displayed by structured symbolic expressions, and functional
compositionality, displayed by fully distributed connectionist representations. Indeed, Van Gelder notices that
any symbolic representation of an expression literally contains the representations of the symbolic constituents
it is made of. The structural relation of a constituent and the expression it belongs to is only reflected through
its position in the representation of the expression. The function mapping the representation of a constituent
to the representation of the expression it belongs to is thus a simple concatenation. In the case of connectionist
fully distributed representations, however, the relationships between the constituents’ representations and the
representation of the structured concept they belong to are not spatial, but functional: A complex function,
not merely a concatenation, (composed of several tensor product operations and an addition in the case of
tensor product representations) maps the representation of a constituent to the representation of the structured
concept it belongs to.

19Unless the architecture of the connectionist system is designed to specifically take into account that one-to-one correspondence.

14

This distinction has important consequences: a fully-distributed connectionist representational scheme us-
ing non-concatenative compositionality to code structured representations might not be isomorphic to any
representational scheme (like one used in a symbolic system) using concatenative compositionality. Just as in
the case of semi distributed representations, then, a connectionist system learning to behave like a given sym-

3YS a8

bolic system will do so by implementing a correspondence, possibly approximate, between its fully distributed
connectionist representations of symbols and the symbols themselves. That correspondence, however, will
not be merely spatial as with semi-distributed representations, but functional and possibly non-isomorphic.
As before, a description of the behavior of the system in terms of symbol structures might be possible, but
a precise description of how the processing mechanism is impiemented will only be possible at the level of
individual units and activities.

In this thesis, the problem of systematicity and generativity will be studied using both semi-distributed
and fully distributed representations.

1.9 Summary

As a conclusion to this chapter, we present below, in a concise form, the axioms and the main hypothesis of
this thesis.
We believe that:

e Representations used in human cognitive processing of highly combinatorial domains display:

P1 Compositionality
P2 Systematicity

¢ Human cognitive processing involving representations of objects of highly combinatorial domains dis-
plays:

P3 Inferential systematicity
P4 Generativity

e Human cognitive learning in highly combinatorial domains displays:

P5 Low interference

P8 Rapid learning

e Some connectionist representational schemes are capable of displaying P1 and P2.

The following four hypotheses are proposed:

H1 In combinatorial domains, P3 will emerge with connectionist representations schemes displaying P1 and
P2

H2 In combinatorial domains, P4 will emerge with connectionist representations schemes displaying P1 and
P2

H3 In combinatorial domains, P5 will emerge with connectionist representations schemes displaying P1 and
P2

H4 In combinatorial domains, P8 will emerge with connectionist representations schemes displaying P1 and
P2

15

Table 1.1: Summary of central claims and hypotheses of this thesis

Strongly combinatorial domains | Weakly Combinatorial domains
Symbolic Connectionist Symbolic l Connectionist
Representations are: Syntactic Vectorial Unaccounted Vectorial
Compositional (P1) Yes Yes Unaccounted No
Systematic (P2) Yes Yes Unaccounted No
Processing is: Syntactic State changes Unaccounted | States changes
Systematic (P3) Yes Yes* (H1) Unaccounted No
Generative (P4) Yes Yes* (H2) Unaccounted No
Learning is: Syntactic Weight changes | Unaccounted | Weight changes
Low interference (P5) possibly yes Yes* (H3) Unaccounted No
Fast learning (P8) possibly yes Yes* (H4) Unaccounted No

We believe that hypotheses H1 through H4 can be instantiated with the passage from context independence
to content dependence, through learning, as a cognitive map would be formed.

Table 1.1 summarizes the connectionist claims and hypotheses stated above, and compares them with what
we believe could be their symbolic counterpart. The stars correspond to hypotheses.

The label “Strongly combinatorial domains” refers to those domains that can (although approximately
and incompletely sometimes) be described in terms of conceptual entities. The label “Weakly combinatorial
domains”, on the other hand, refers to domains for which conceptual descriptions are not possible, like visual
fields and auditory signals. Since symbolic theories do not apply to these domains, representations, processing
and learning are not accounted for by these theories. While symbolic learning theories are diverse, few do
not allow, in principle, for fast learning with low interference. Symbolic learning in strongly combinatorial
domains was therefore laeled “possible”.

16

Chapter 2

Approach

2.1 Methodology

As stated in the previous chapter, the goal of this thesis is to perform and analyze experiments designed to
show that, through the use of connectionist compositional and systematic representations, generativity and
systematic processing are properties that can be learned and displayed by a connectionist network. In order
to design such experiments, we need to make the following choices:

e Choose a domain with objects that admit compositional and systematic descriptions.

¢ Choose a connectionist representational scheme preserving compositionality and systematicity of objects
in the domain.

o Choose a processing task(s) which will fail if it is (they are) not systematically inferential and generative.
e Choose a connectionist learning procedure and a connectionist processing medium.
e Make sure that we are not implementing a language of thought.

The underlying philosophy which will guide our choices will be that of simplicity, for two reasons.

First, using well known and understood neural network machinery on a domain which is simply and
obviously compositional and systematic will ease analyses of our experiments. Designing a complex task, on
the other hand, would make the problem of finding why it worked or did not much harder, if not unsolvable.

Second, and most important, the simplest task will persuade us, in case of failure, that there is but very
little hope that connectionism can solve our problem in general. Indeed, if we cannot solve the problem even
in the simplest environment, probability of failure for any other will be very high. On the other hand, in
case of success, a simple experiment will allow for a better generalization to more complex tasks in the space
of architectures, learning and processing paradigms. The simpler the paradigm and architecture on which
principles have been discovered, the easier the generalization to more complex architectures or paradigms.

With these considerations in mind, we now proceed to describe the choices made.

2.2 Choice of the domain

Combinatorial domains are domains whose elements present a compositional and systematic structure. In such
domains, elements in the domain are constructed by combining smaller elements, and the correct processing
of larger elements can be generalized from correct processing of smaller elements of which they are composed,
taking due consideration of the means of composition. For our main experiments, we have chosen one of the
simplest combinatorial domains possible: Cartesian products of sets. If X are sets, for ¢ = 1,...,n, then our
combinatorial domain will be

X = X x X2 x .. x X = {(21, 23, ..o, 2n) | 2 € X}

17

X will be the domain consisting of sequences of n elements, the ith element in each sequence being some
member of X;. For simplicity, all X;’s will have the same number of elements in our experiments, 4. This
domain, in addition to being simple, has the advantage that the parameters define it, n and 4, can easily be
varied.

A number of more limited experiments will also be conducted with the domain X consisting of English
words, in order to study whether our experiments can indeed generalize to a more complex domain. That
domain, of course has a much more complex structure than the one described above, and rules of legal
combination for its individual letters cannot be specified. A domain with strong cross-positional constraints,
such as the union of sets X X' UYY", will also be considered (section 4.4.2).

2.3 Choice of the representational scheme

We will choose a connectionist representational scheme that allows for compositionality and systematicity,
namely the tensor product scheme, as defined in the first chapter. Each element in X will be coded by adding
the tensor product representations of each element of X it is composed of. The tensor product representation
of an element of X; is formed by performing the tensor product (outer product) of the representations of its
structural role (a vector representing the set X; it belongs to) and its filler (representation of the element =;).

Fillers z; € X; will be coded as random binary vectors. Their representation is thus distributed, since
each dimension in the representation vectors may participate in the coding of several fillers. Role vectors will
simply be, for the main experiments reported in chapter 4, vectors of null activities with the exception of the
ith coordinate of X; which will have activity 1. These representations will thus be semi-distributed (fillers
have distributed representations, roles have local representations), as defined in (Smolensky, 1987b). They
simply amount to a simple concatenation of the representations of the z;’s. In chapter 5 the important case
of fully-distributed tensor product representations, where roles also have distributed representations, will also
be considered.

Thus, in the case n = 3, and with semi-local representations as described above, if the random binary
vectors of activities representing z1 € X1, 22 € X, 23 € X3, are (1,0, 1,1, 0), (0,0, 1, 0, 0) and (1, 1, 1, 0,
0), respectively, then the vector of activities representing (X1, X3, X3) will simply be:

(1,0,1,1,0,0,0,1,0,0,1,1,1,0,0) =
(1,0,1,1,0)® (1,0,0)+
(0,0,1,0,0)® (0,1, 0)+
(1,1,1,0,0)® (0,0,1)

where ® denotes the tensor product operation.

It is important to note that in our connectionist experiments, each element of each set is represented in
the network as some pattern of activities. It is these patterns, of course, that matter, and not whatever name
we find convenient to give to the elements. In this thesis we will use letters as convenient labels for these
elements. As a further convenience we will use the same set of labels for each set X; in the Cartesian product,
but again this is of no consequence. (In particular the network is not charged in any way with discovering
that we like to use the same letter to label an element in X; and an element in Xz2.) Thusif n = 4, a typical
element of X could be written (A, B, A, C) or, more simply, as the string ABAC. We call the number of
elements in X, A, the alphabet size.

2.4 Choice of the processing task: induction

2.4.1 Introduction

Our goal in designing our experiments, as was expressed earlier, is to study whether compositionality and
systematicity of representations can be exploited by simple connectionist learning and processing media to
allow for generativity and systematic inference. The processing task we have chosen is one of set induction:
For a given combinatorial domain of the form discussed in section 2.2, we will present a network with a small

18

subset of training patterns representing objects of that domain, and test how the network has induced the
combinatorial structure of the domain by measuring its competence on the domain. (The term competence
is here used to refer to a measure, to be defined, of how well the system performs the task.) A successful
induction will show that the network learned to be systematically inferential by exploiting the compositionality
and systematicity of the representations. Furthermore, successful successive inductions obtained by increasing
the number of sets X; composing X’s (while keeping the size of the subset of training patterns for X constant)
will show that connectionist learning can be generative, if the networks’ competence grow exponentially as a
function of the complexity of the domain they learn.

One simple task we could study is one where a connectionist system would learn to be a recognizer of a
structured domain. Given only a small sample of instances of the domain, the system, unable because of the
size of the sample to perform any kind of rote learning of all individual elements of the domain, (although it
would have no problem to perform rote learning of all the elements of the training set) would have to induce
(and therefore be sensitive to) the structure of the domain to correctly recognize whether a future untrained
pattern belongs to the domain or not.

Another more complex task we could consider would be one where, in addition to recognizing the domain
by discriminating between members and non members of the domain, a connectionist system would learn
to reproduce each pattern representing a member of the domain. In that case the system would learn to
be, in addition to a recognizer of the domain, an auto-associator. Repeating experiments with domains of
increasing size and structural complexity would, also, allow us to test for the property of generativity, which
would be detected if an explosive growth in the system’s competence was observed as the size and structural
complexity of the domains increase.

Still more complex, we could ask a connectionist system to learn to act as a memory model. In addition
to auto-associative capabilities, the system would have to learn to display capabilities typically found in human
memory, such as pattern completion (that is, the system would have to learn to reproduce correctly a member
of the domain even when only a part of its representz:ion is presented), or resistance to noise (the system
would have to reproduce correctly a member of the domain even when a degraded version of its representation
is given).

Another task, independent of the previous one yet an extension of the second one, would be to associate,
according to a predetermined mapping sensitive to the structure of the domain, members of the structured
domain to their mappings. In that case, the system would learn to act as a pattern associator. Structure
sensitivity and generativity could be detected following the same approach used with the auto-associator.

Faced with this preliminary and certainly not exhaustive list of possible approaches, we decided to choose
the second one, for our main experiments, as a good trade-off in terms of implementation and testing
complexity.! While the auto-associator task as mentioned above can only be successful if the processing
mechanism involved is structure-sensitive and does allow testing for generativity, (this last property would be
hard if not impossible to test with a recognizer) it does not require the kind of stringent restrictions, in terms
of psychological modeling adequacy, that the design of a memory model would impose. It is, furthermore,
easier to test. Indeed, testing for an adequate pattern completion capability alone would involve many tests,
since there are many ways to present a partial representation to a system.

It is worthwhile to note that at a conceptual level, an auto-associator is a simple case of a pattern associator
where the mapping relating input patterns of the domain and their output is the identity.? While presenting the
advantage of being simpler, there is no reason to believe that results obtained with it could not be generalized
to the case of a pattern associator.

With this preliminary choice of the auto-associator in mind, we now proceed to describe the processing
task more formally. If £ = {0,1}" is the space of all binary vectors of dimension v containing all vectors
representing members of a given domain X, || || a norm on R”, and ¢ a strictly positive real number, then a
network, given a small set of training examples of X that could learn a mapping f of the form:

!Small experiments testing the memory capabilities of some of our networks will be reported in chapter 4, however. In
chapter 5, we will also report on experiments modeling the simpler recognition problem.

20f course, since the auto-associator is asked to discriminate between members and non members of the domain, the mapping
it has to implement, defined on sll possible patterns rather than just the ones of the domain, is not the identity. This issue will
be expanded shortly.

19

® (L,LD

N

B B e ——
(S
m

Figure 2.1: Auto-association with the L norm. If v = 3, the pattern (1,1,1) is allowed to be auto-associated
with any point within the smaller cube, of side size 2¢, centered on the point (1,1,1).

E — RY

f: [f(z) — 2|]] < eifze X (2.1)
VORI i f I A5

would have induced the structure of the domain, interpreting a pattern z of E as recognized if and only if
I£(z) = 2l < e |

Note that we did not say anything about ¢, which measures both the maximum distance allowed between
any representations of members of the domain and their network associated vector, and the minimum distance
between any vector which is not a representation of a member of the domain and its associated vector. Any
chosen value would guarantee discrimination and thus learning of the structure of the domain. If, in addition,
€ € R is chosen such that

V(z1,22) € B2 |l2r ~ 23| > 2 (2.2)

then the network will discriminate between individual members of X and will therefore, ® |in the case of a
successful learning of a function f, act not only as a recognizer but also as an auto-associator for members of
X, associating each element z € E to X € E, the closest element to f(=).

Unless indicated otherwise, the norm we will use is the “infinity” norm || ||, defined as 2l = sup;—; ll2i|
where ¢ € R" has coordinates z;, and ¢ will have a value of 0.4. This means, in practice, that we ask our
system to auto-associate each representation of a member of X with an error of at most 0.4 along each di-
mension. In other words, we ask that all activities be “on the right side” of 0.5, and so by at least a distance
of 0.5 — 0.4 = 0.1.

From a geometrical perspective, the choice of the “infinity norm” can be interpreted in the following
way. With the semi-distributed tensor product representation defined in section 2.3, members of X can be
interpreted as being at certain corners of the v dimensional hypercube defined by E, which has a corner at the
origin and sides parallel to the axis and of length 1. The constraints on f state that the network associating

a pattern with itself can do so with a maximum distance error (in terms of || ||o) of €, that is that flz) is

3Let X € E, [[f(z) — z|| < ¢, and let & be the closest point in E to F(X). Let us suppose that & # z. Then the inequalities
lI7(=) = || < [|#(=) = z|| < € holds. It follows that ||z - &| = ||z ~ f(z) + f(z) - &|| < [le - f(2)|| + |f(z) - | < e+ ¢ = 2,
which contradicts condition 2.2. So = = &.

20

constrained to lie within the n-dimensional hypercube of sides of size 2¢ centered on z. Figure 2.1 shows the
two hypercubes in the case v = 3, for a pattern with coordinates (1,1,1). The use of the infinity norm can be
contrasted from the use of an Euclidian norm, where an auto-associated output pattern would be constrained
to lie in a hypersphere of radius ¢ centered on the input pattern, instead of the hypercube defined above.

The use of the infinity norm is valuable, practically, for the following reason. Although there is an un-
countably infinite number of functions f that could satisfy equations 2.1 and 2.2, there is a finite number of
binary function fg’s that satisfy equations 2.1 and 2.2.

The functions fg’s are simply the binary functions that would be implemented by a network computing
any f satisfying the two constraints named above, where each output unit would be replaced by a binary
threshold unit. The replacement would have the effect of thresholding activations smaller than € to 0, and
activations larger than 1 — ¢ to 1. As we will see later, it is on the simple functions fz’s that our measures of
both generalization power and discrimination will be based.

It is important, at this point, to reflect on just how a connectionist network could learn, or induce, a mapping
f as defined by equation 2.1, and thus learn to be sensitive to the structure of the domain X.

The network, at the beginning, has only knowledge of individual bits and does not “know” that each pattern
of X is made out of sub-patterns X;’s. During learning, as the connectionist learning algorithm chosen modifies
the weights to ensure proper auto-association of the patterns of the sample training set, the network could
learn to simply copy the bits of the input representation to the bits of the output representation. But what we
will show is that, with certain architectural constraints, the learning process can avoid this simple mapping
(which would prevent any discrimination between members and non-members the domain) by, instead, taking
into consideration the structure of the domain, and “extracting”, from the statistical regularities seen in the
training sample, the structure of the domain.

We then hope that the network will behave in the same way on unseen patterns as it has learned to behave
on trained ones. In other words, we hope that the network’s behavior will generalize its learned behavior to
unseen patterns. The process of generalization is a complex one, and worth addressing here.

2.4.2 Generalization

Generalization is one of the most pervasive inductive activities found in human reasoning. Indeed, as Holland
et al. (1986) have written,

Since Aristotle, generalization has been the paradigmatic form of inductive inference (page 231).

What, exactly, do we mean when we say we generalize? This complex question has been addressed both
from a philosophical point of view, starting back from Aristotle, Hume and Popper to, for instance, (Thagard
and Nisbett, 1982), (Holland et al., 1986), and a psychological point of view (e.g.(Medin and Smith, 1984),
(Holland et al., 1986)). The problem has also, recently, been investigated by researchers in traditional artificial
intelligence (Mitchell, 1982) (Michalski, 1983), theoretical learning (Valiant, 1984) (Blumer et al., 1987), and
neural networks (Denker et al., 1987) (Samalam and Schwartz, 1989) (Schwartz et al., 1990). ‘

Mitchell (1982), in some pioneering work in the context of symbolic machine learning, formalized the
problem in the following way. (The description below was heavily inspired by a review paper by Haussler
(1987).)

For a given problem, the space 2 of all possible examples (including the subset of examples used for
learning) is defined as the instance space Q. Concepts of Q are defined as arbitrary subsets of 2, on which
a space H of all concepts that can be described by a given concept description language (a generalization
language) can be defined. Such a space H is called a hypothesis space. ' t

Given a type of concept description language, we are interested, when solving a generalization problem, in
~ finding an algorithm which would solve the problem for any hypothesis space H associated with any concept
description language of that type. If H is a class of spaces H associated with concept description languages of a
given type, then, a recognition algorithm for H is defined as an algorithm, defined on the set of all descriptions
of instance spaces {2 and all samples (subsets) of an unknown concept in 2, that either produces a hypothesis
space Hn in H defined on consistent with the sample or indicates that no such hypothesis exists.

Mitchell gives an example of such a recognition algorithm. He defines a version space, which we can denote
SH,q, with respect to a sample Q of examples and a hypothesis space H € H as the set of all hypotheses in H
that are consistent with Q. The version space recognition algorithm, then, is one that, given a description of
an instance space {2 and a sample Q of examples, examines each example in Q and shrinks the version space

21

SHq,q associated with Hq defined with respect to 2, by rejecting hypotheses that are not consistent with the
example. When all examples in Q have been examined, the algorithm either returns that no hypothesis Hq
has been found (when the version space is shrunk to the empty set), or returns a hypothesis of the shrunk
version space. *

Note that there is no sense, within this framework, of a topology which could help us measure how “close”
we are, when applying the recognition algorithm, to the target concept. We would need such a measure to
formalize the idea that a true generalization algorithm is one that “closes in” or converges on the target concept.
Valiant, in his “theory of the learnable” (1984), introduced and formalized such a concept of convergence within
this framework.

He defines a learning algorithm as a recognition algorithm for H such that:

For any instance space {2,

For any probability distribution on Q and target concept in Hgq,
Ve > 0, V& < 1,

there exists a sample size such that the algorithm produces,
with probability at least 1 —§,

a hypothesis with error at most ¢

Valiant also introduced the concept of computability, in the theoretical computer science sense, by con-
sidering the rate of convergence and the amount of computation required to produce a hypothesis. If the
size of a concept ¢ in H, size(c), is defined as the number of symbols in the smallest description of ¢ in the
concept description language associated with H (size(c) gives an approximate measure of the complexity of
the target concept), then H is said to be polynomially learnable (in the sense of Valiant) if the sample size in
the algorithm described above grows polynomially in %, %, size(c) and the complexity parameters of H, and
the algorithm runs in polynomial time with respect to the size of the sample.

2.4.3 Generalization and neural networks

Generalization ability prediction for a given problem and training set

The view of generalization as the process which consists of searching (inferring), when presented with a
subset of a set of examples, a hypothesis among a set of alternative hypotheses which will be consistent with
both the seen and unseen examples of the entire set, as formalized by Mitchell, and the refinement of such a
view by Valiant who introduces the idea of convergence of hypotheses, then, allows for a clear understanding
of the process of generalization which can take place within the connectionist learning framework. Figure 2.2
simply illustrates that view. Two hypotheses G1 and G2, in the space of all hypotheses consistent with the
training set, are shown. Both could be the valid output of a recognition algorithm (in the sense of Mitchell).
Only G2, however, consistent with the testing set, could be, on average, the output of a learning algorithm
(in the sense of Valiant) because convergence restrictions in the algorithm would constrain it to output a hy-
pothesis which would agree, with a high probability, with the testing set. Furthermore, a learning algorithm,
in the sense of Valiant, would find, with a high probability, the hypothesis G2 independently of the specific
training set. G2 would still, therefore, be found in the configuration illustrated in figure 2.3.

The view of the generalization process as expressed above and as formally defined by Valiant has recently
been exploited (or independently reformulated), by a number of researchers in the neural network research
community (e.g (Denker et al,, 1987) (Samalam and Schwartz, 1989) (Schwartz et al., 1990)) and has led to
important results.

Schwartz et al. (1990), in particular, have derived the following. Consider a network, defined by a set of
weights W, with which we would like to learn a particular binary function f defined on E = {0, 1}¥ and

*Mitchell’s algorithm does more than that. In the context of symbolic concept description language, it takes into consideration
a natural partial order of increasing generality defined on hypotheses of the version space, which is simply the partial order of set
containment among hypothesizes. The algorithm can thus, if the version space has not been shrinked to the empty set, return a
“maximally general” or “minimally general” hypothesis of the version space.

22

Gl

Figure 2.2: The space of generalizations

.. J/

Figure 2.3: The space of generalizations with a different training set

mapping E to a single binary output. 5 The network is trained with a set of m input/output examples of
f, and is expected to generalize to f. For each different configuration of weights W the network computes
a particular function f. As the network learns from the training examples, its weights are modified and the
network computes a new function 7. The generalization ability of a function f computed by a ngen network
can be defined as:

o) = L= dulh)

g(f) measures the fraction of the number of input patterns on which f and f differ. (dg is the Hamming
distance between f and £, or the number of bits different on their truth table.)

®The results below also apply to a network learning a binary function with multiple binary outputs, such as the functions
fB’s with which we have been concerned. In that case, the term dg in the definition of the generalization ability would be the
Hamming distance between f and fg, and the term 2 in that definition would have to be replaced by v2¥.

23

If po(g) is the probability density of generating a network prior to learning (generating random weights),
with generalization ability g, then Schwartz et al. have shown that the average generalization ability G,, after
m training examples is:

o g™ eo(g)dg

m = 2.3
Jy g™ po(g)dg (22)

This derivation is obtained from probabilistic considerations, and rests on the following important assumption:

(1) The probability that the function f, computed by the network after m — 1 examples, will correctly
map the next input/output example m is, on average, g(f).

Equality 2.3 holds for any given network architecture and learning technique, as long as assumption (1)
described above is justified, and states that the generalization ability can, in theory, be computed before
any learning. Although it can seldom be used in practice, because the space to explore to estimate po(9)
Is too large, its existence has an important repercussion: Equation 2.3 means that if a particular average
generalization ability G, is observed, for a given network architecture, learning algorithm, processing task
and training set of m examples, then any generalization ability for the same task, same training set and same
network, but with a different learning algorithm, as long as assumption (1) is valid for that algorithm, will be
G, on average. This is because po(g) depends only on the function f, the network architecture it is computed
on and the testing set, but not on the particular learning algorithm used, as long as that learning algorithm
can justify assumption (1).

Which learning algorithms verify assumption (1) is an open and empirical question. Schwartz et al. have
shown, however, that the particular back-propagation learning algorithm ((Rumelhart et al., 1986a), also,
see section 2.6.1), on a small problem, the contiguity problem, does behave according to equation 2.3. (The
contiguity problem, which consists in counting the number of blocks of contiguous 1’s in the input pattern, was
examined for patterns with low dimensionality). They have furthermore shown that the overall shape of the
average generalization error 1 — G, when m is large enough can be predicted from equation 2.3, and is either a
decreasing exponential or follows a decreasing power law, depending, respectively, on whether there is a finite
gap in the distribution density po(g) between g=1 and the next highest value of g for which p, {g) is non zero.
These results are consistent with empirical results obtained by Ahmad (1988), who studied generalization
ability of networks learning with the back-propagation algorithm the majority function (that function returns
a 1 if the majority of binary inputs are 1’s, 0 otherwise).

Although it remains to be proved, it is our intuition that assumption (1) will be satisfied for any learning
algorithm based on a reduction of error, such as the back-propagation algorithm. There is a good chance,
therefore, that our results will generalize well to other learning algorithms and will not crucially depend on
the particular ones used in our experiments.

Generalization ability prediction for a given problem and any training set.

We stated earlier that the theoretical framework introduced by Valiant has had the merit of formalizing
views of the generalization process. It has had, in addition, the advantage of allowing, in certain cases, proofs
showing that certain problems were learnable as well as derivations of theoretical bounds on the number of
examples needed to learn specific problems. Haussler (1986), for instance, has shown that a modified version
of Mitchell’s version space algorithm, the “One-sided algorithm for pure conjunctive concepts”, which can be
applied to version spaces described in terms of conjunctive features, is a learning algorithm in the sense of
Valiant. In a related manner but within the neural network paradigm, Baum and Haussler (1989) have derived
a theoretical upper bound on the number of training examples with which a neural network would need to
be presented, to guarantee learning (in the sense of Valiant) of a specific task. It is important to note that
whereas the results of Schwartz et al. concern estimates of the average generalization capability for a given
network and a given training set, the theoretical upper bound computed by Baum and Haussler holds for any
networks of a given architecture, and any given training set drawn randomly from the problem. Baum and
Haussler’s result originate from a result in statistics obtained by Vapnik and Chervonenkis (1971) who have

24

shown the following:

P(maxqans m(f) = 9(A)ll > ¢) < 4F(2m)e™s™ (2-4)

where F' is a function that measures the maximum number of different binary functions, or the maximum
number of dichotomies, that could be implemented by the network on any set of m training examples, and
the left hand term measures the probability that the worst case estimation error exceeds . Vapnik and
Chervonenkis have shown that the function f, called the growth function, is always either equal to 2™ or
“slows down”, (more precisely, is bounded by m?ve 4+ 1) when m exceeds dy¢.

dv ¢ is called the Vapnik-Chervonenkis, or VC, dimension, which is infinite when F(m) is equal to 2™ for
all m. Baum and Haussler derived an upper bound on the VC dimension for a feed-forward network of linear
threshold units with W weights and v threshold units, by estimating the maximum number of dichotomies
implementable by such a network, and from that proved that if o(+ ¥ log) examples were used for training
such a network which would correctly perform on a fraction 1 — 3 of this training set, then the network was
guaranteed to perform correctly with probability approaching 1 on a fraction 1 — € of any other training set
based on the same distribution, when ¢ < %.

A feed-forward network with 30 input and output units, and 20 hidden units, then, would need, to be
guaranteed to correctly perform on 7/8 of any testing set, (¢ = 1/8)to correctly classify 15/16 of a randomly

chosen training set of size

w v 2x30x20 20 4+ 30
€

log — = T log — = 82,944
¢ 8 8

In practice, however, much less sampling might be required, depending on the training task.

Sontag (1990) has shown that such an upper-bound could be further reduced when non-linear sigmoidal
activations functions are are used.

With respect to probabilistic generalization ability analysis, where predictions are estimated for any ran-
domly chosen training set for a given problem, we should also mention approaches to the problem that have
originated from the field of statistical mechanics. When viewed as collections of simple interacting units, neural
networks closely resemble large-scale atomic physical systems, and their dynamics can, indeed, be studied in
a similar way (Tishby et al., 1989). Drawing on (Gardner and Derrida, 1989) who used mean field analysis to
study optimal storage capacity of Hopfield networks, a calculation of the generalization ability as a function of
the size of the randomly chosen training set, this independently of the learning algorithm used, was possible
(Opper et al., 1990). In (Krogh and Hertz, To appear), a related approach has led to the theoretical estimation
of the generalization ability of linear perceptrons.

Mathematical approach to the problem of generalization

Wolpert (1990b) (1990c) has approached the problem of generalization from a highly abstract mathemati-
cal standpoint. Defining generalizers as a countably infinite set of functions, with certain properties such as
input and output space translation, rotation, parity inversion, and scaling invariance, Wolpert spends consid-
erable time narrowing his definition of generalizers to allow for properties deemed valuable in a generalizer,
such as, for example, convergence (in a sense related to Valiant’s). The theory, however, is as of now incom-
plete, and the title of (Wolpert, 1990a), “Constructing a generalizer superior to NETtalk via a mathematical
theory of generalization”, might be misleading. In this paper, it is shown that a particular processor, one
introduced by (Stanﬁll and Waltz, 1986), does better in terms of generalization capability, while qualifying
as a generalizer in the sense of Wolpert, than the “reading-aloud” connectionist network NETtalk (Sejnowski
and Rosenberg, 1987), for the same task.

2.4.4 Empirical studies

Apart from experimental studies confirming theoretical results similar to those obtained by Schwartz et al.
and reported in (Denker et al., 1987) (Schwartz et al., 1990) (Samalam and Schwartz, 1989), (Tishby et al.,
1989), little empirical research has been done on generalization.

25

Ahmad (1988), as mentioned earlier, has studied how the perceptron learns the majority function and has
derived a number of results. He has shown that in his experiments, the fraction of misclassified instances
decreases exponentially with the size of the training sets. He has also shown that the size of the training set
needed to obtain a fixed competence level scales linearly with the number of input units, and that the nature
of representations used play a crucial role in generalization performance.

Other experimental research activities on generalization have been targeted at improving generalization
(e.g (Mozer and Smolensky, 1989) (Chauvin, 1990) (Weigend et al, 1990) (Yu and Simmons, 1990)) by
modifying learning algorithms. We will briefly discuss these in chapter 4.

2.4.5 Connectionist modeling and generalization

Within the connectionist cognitive modeling paradigm, generalization has, surprisingly, received little atten-
tion as a property which would be worth studying for its own sake, in spite of the inherent aptitude at
generalization that neural networks seem to possess. As was briefly mentioned in chapter 1, generalization
has until now been a property of connectionist networks which, in the specific context of cognitive modeling,
has been merely observed. Studies involving generalization have invariably followed the same pattern: First
a selection of input/output examples from the task at hand is chosen. Then a network is trained on a subset
of that selection. It is then tested on the small number of remaining examples (10-20%) of the selected set.
Generalizations are few, and do not outnumber training examples. Current models suggests that in order
to obtain correct performance on a target set of inputs, a network needs to be trained on a sizable fraction
(between 25% and 75%) of the learning set. This state of affairs, no doubt, leaves little room for the view that
connectionist systems could perhaps exhibit massive generalization, a much needed property if one believes
that connectionism is not in theory incompatible with cognitive properties such as generativity or systematic
inference.

The question of how many possible generalizations could occur, in the context of a cognitive modeling task,
has never, to our knowledge, been investigated. Our results, as we will see, suggest that much more generaliza-
tion can be obtained than has previously been reported. This is in part due to the fact that our experiments
will be designed to look specifically for all possible generalized patterns. It is also because our experiments
will deal with combinatorial domains, where patterns of the training set follow combinatorial and systematic
principles allowing for generativity and systematic inference, and thus large number of generalizations.

2.5 Virtual generalization

2.5.1 Introduction

Looking at how well a network has generalized from training examples, for a given task, by counting how many
generalizations are obtained is one measure of the network’s competence, but a crude one since it does not give
any indication on how well the network would converge, given more training examples, on the target mapping
defined by the task. One way of measuring such convergence, as presented earlier, would be to test the network
on how it “closes in”, as size of training sets increase, on the target mapping, by testing how generalization
ability of the network increases with more examples. Another similar way of measuring convergence, and one
which can be more directly related to human learning, would be to measure both how easily the network, once
it has learned a training set, can learn an unseen example of the domain at hand, and how much that unseen
example would interfere in the performance of previously learned items.

Examples of such easy and interference-free learning abound in the human learning paradigm. In the
context of linguistic competence, for instance, sentences that we have never heard before and which contain
new information that we wish to learn can be, with very fast and limited learning, understood and memorized
easily, with little, if any, interference with previous linguistic knowledge. In general, any human learning task
involving examples with underlying regularities requires, once a level of competence is acquired, (that is, once
the regularities have been discovered), little learning for additional examples. These examples, furthermore,
cause little disruption to the acquired competence, because of the very fact that they share in the regularities
already discovered.

Within the connectionist modeling paradigm, then, a network generalizing poorly would learn an unseen
example laboriously and that example, furthermore, would disrupt performance of examples of the previously

26

learned training set. On the contrary, one would expect, in a network which is generalizing well in terms of
convergence, that an unseen example of the domain would be learned easily, and cause no interference with
the correct performance of examples of the original training set. This view has led us to define such an unseen
example as a virtual generalization ® Simply stated, then, a virtual generalization is an example which,
although not correctly generalized, can be learned quickly while leaving performance on the previously learned
examples intact.

By leaving performance of the previously learned examples intact, we simply mean that each example of
the original training set, with respect to the criterion for learning used for members of that set, performs
to criterion after the virtual generalization is learned. By quick learning, we mean that, in connectionist
terms, the number of presentations needed to train a virtual generalization is small compared to the number
of presentations which was needed to train the original set. Our original intuition, based on the observation
that interference and quick learning are intrinsically related, was that any example which would cause no
interference could be learned in just one presentation. Some empirical studies, performed with a specific
learning algorithm, convinced us, however, that this is almost always the case, but not quite. In other words,
there are examples, for some learning tasks, which can be learned without causing interference, but not in Just
one presentation. Let us say, then, and for now, that what me mean when we use the term “quick learning”,
is simply that the unseen example can, most probably, be learned in just one presentation, or can be learned,
in the worse case, with a small fraction of the number of training presentations which were needed to train
adequately the original set of examples.

A virtual generalization, then, is a novel input which can be trained, in a very small number of trials,
to criterion, while leaving performance on the training set error-free. For computational time reasons, we
restricted the number of learning trials when testing for a virtual generalization to 5. All our results concerning
their number are thus lower bounds only: The use of lower learning rates and/or larger number of trials could
yield higher numbers. We will henceforth mean virtual generalizations that can be learned in 5 trials or less
when we refer to virtual generalizations.

2.5.2 Connectionist modeling and interference

Until recently, connectionist relearning of new items has followed a typical scenario, 7 which can be summarized
by the following account: First the weights of the network are given small random values, and the learning
procedure chosen is applied a large number of times until the patterns belonging to the original set are learned.
Then, if a new pattern needs to be learned, it is simply added to the set of original patterns and the network
is retrained again from scraich, all the weights being reinitialized again, the learning procedure being again
applied as before thousands of times. New items to be learned, then, were in current practice intermingled with
all the previously trained inputs and subjected again to the lengthy and rather laborious training algorithm.

Research by McCloskey and Cohen (1989) suggested that this state of affairs was unavoidable. In a first set
of experiments, the authors used a standard three-layer back-propagation network to model sequential learning
of simple arithmetic facts. Single digits were coded using distributed representations, while the representation
of a two digit number was the concatenation of the two single-digit representations. Four units were used to
code either the “4” sign of addition or the “ x” of multiplication. When the network was first trained on all
200 single-digit addition and multiplication problems, it performed very well. However, when it was trained
on only the “1’s” addition problem (that is, 1+1 through 1+ 9 and 2+1 through 9+1), and then, subsequently,
on the “2’s” addition problem, then it was found that training on the “2’s” addition problem interfered with
previous knowledge on the “1’s” addition problem in such a way that the network performed very poorly on
the the “1’s” addition problem. In other words, the network, successfully trained on the first set of items,
“unlearned” that first set when it was trained on the second one.

8In earlier publications, ((Brousse and Smolensky, 1989b), (Brousse and Smolensky, 1989a), (Brousse and Smolensky, 1990)),
we used the term “virtual memory”, instead. The term “virtual generalization”, which obviously refers to learning tasks where
there is an underlying mapping or structure to generalize on, and which in addition does not require that the connectionist
network studied have properties of a memory model, is used here.

" An exception should be made concerning this, in the case of category learning modeled by adaptive resonance theory (Gross-
berg, 197¢! (Carpenter and Grossberg, 1987). Within the framework of competitive learning, the adaptive resonance theory
scheme addresses the problem of classifying new patterns into new or previously discovered categories by forming new ones as
needed, depending on how well the current pattern fits within a previous category. This unsupervised “one-trial” learning scheme
can thus classify new patterns in a continuous manner.

27

In another set of experiments, McCloskey and Cohen modeled a classic experiment involving human learn-
ing retroactive interference (Barnes and Underwood, 1959). In that experiment, subjects are asked to first
learn a list of 8 paired-associates of the form A-B, and then to learn a second list of the form A-C. The cue
in the second list is thus the same as in the first list. It is shown in that experiment that human retroac-
tive interference occurs, as performance on the initial list is disrupted by learning of the second list. When
modeling the task with standard three-layer back-propagation networks, McCloskey and Cohen found that the
networks, too, displayed interference. But this interference was “catastrophic” in that it was much higher than
in the case of the human experiment. While subjects still retained some competence on the first set of paired
associates after having learned the second one, the connectionist networks unlearned dramatically the first
sets when they were trained on the second one. No architecture or parameter adjusting, furthermore, allowed
McCloskey and Cohen to obtain, with their networks, interference results close to the limited interference
observed in the psychological experiment.

From a related perspective, Ratcliff (1990) studied the feasibility of modeling learning and forgetting in
recognition memory, with multi-layer back-propagation encoder (auto-associator) networks. In a first set of
experiments, a network was trained on three items represented by orthogonal vectors of length four, and a
fourth one was then trained separately on top of the three previously learned items. Testing on all items
showed that the training of the last item severely disrupted the recognition of the previous items. Variants
of the experiment, made by adding more hidden units, or allowing only modification of small weights during
learning of the last item, or by adding new hidden units and allowing only modification for weights connected
to the new units when training on the last item, yielded the conclusion that it was not possible to have both
the first three items and the last one be correctly reproduced, since the last item could only be reproduced
correctly at the expense of the three previous ones, or vice-versa. Similar experiments were repeated using
larger networks (and thus larger representations) and various presentation order schemes, and yielded similar
conclusions.

In another set of experiments, Ratcliff investigated whether multi-layer back-propagation encoders could
properly model recognition, where items need only be discriminated. Although the first set of experiments
had clearly suggested that the networks used could not model a recognition memory (where each item
needs to be properly recalled, that is, correctly reproduced) because of dramatic unlearning, it was found
that discrimination measures performed on all the items yielded reasonable values consistent with human
data. Studies of such discrimination measures as a function of amount of rehearsal, however, produced results
inconsistent with human data. Not surprisingly, the kind of massive interference caused by learning of new
items yielded a discrimination function which was either non-monotonic or decreasing with rehearsal amounts,
a result inconsistent with human data where that function is invariably monotonically increasing. As before,
several variations on the learning scheme and the architecture used did not significantly improve the ability
of the networks at modeling the task.

A number of architectures or modified training algorithms/techniques have been devised to reduce the
kind of massive interference reported by Ratcliff and McCloskey & Cohen. It should be mentioned, before
we proceed to briefly present these, that connectionist interference is not, per se, a harmful property, since
it is also present in certain human cognitive tasks. It is only a problem when it is catastrophic, that is,
when its magnitude in a modeled task is much higher in a connectionist system than the one observed in
the corresponding human processing experiment, as was the case with the paired-associates or recognition
connectionist models.

The magnitude of interference observed in a connectionist model, relative to the magnitude observed in
the corresponding human task, depends obviously on the realism of the model. Hetherington and Seidenberg,
(1989), for example, replicated the McCloskey and Cohen experiments on the simple arithmetic facts problem,
and showed that things were not as bad as they seemed. While learning the “2’s” addition problem set of
facts after learning the “1’s” set of facts indeed caused “catastrophic interference” that seriously impaired
performance on the first set, they showed that knowledge about the first set had not be completely erased,
and little relearning on the first set was enough to induce good performance on both sets. If each set of ¢
’s” addition facts, for ¢ varying from 1 to 5, was learned serially but along with the “ — 1’s” addition facts
and “i+ 1’s” addition facts, in a serial “sliding window” manner, they showed, furthermore, that the whole
addition problem could be learned without catastrophic interference. That more realistical learning scheme,
then, which was a better approximation of the learning scheme applied by children when they learn arithmetic
facts, effectively dealt with the problem of catastrophic interference in that case.

28

Interference depends, obviously also, on the learning technique and architecture used. Kortge, (1990), for
example, replicated some of Ratcliff’s experiments with a slightly modified learning technique (larger initial
weights were used and activation values were constrained to be in a [-0.5, 0.5], instead of [0,1], range) and
obtained much smaller interference. Relatedly, Estes (1991) mentions that replications of some of Ratcliff’s ex-
periments on different architectures, still however within the feed-forward back-propagation paradigm, yielded
interference which was consistent, in magnitude, with corresponding interference found in humans.

It seems, then, that interference might not be as dramatic as a problem as earlier studies tended to
show, in domains where human interference is significant. For processing tasks that involve very little human
interference, however, the connectionist approach does not seem an easy one: Slight variations on typical
learning techniques or architectures could reduce interference, but that would not be enough. Such processing
tasks include episodic memorizing, where facts are only presented once but are quickly and easily remembered,
with no interference, and processing in domains characterized by high regularity or structure -the kind of
domains we are concerned with.

Episodic memory connectionist modeling, not surprisingly, has therefore made use of rather radical modi-
fications of existing architectures and learning techniques.

Kortge, (1990), for instance, has devised a modification of the standard generalized delta rule, where
weight modification to ensure proper processing of a new pattern takes into account the “novelty” of that new
pattern with respect to old ones previously learned. In that case, then, weights are not modified according to
the difference between output and target patterns, as with the standard delta rule, but are modified instead
according to the “novelty pattern”, where the novelty pattern is defined, heuristically, as:

e For the input layer: the difference between the output and target pattern.

e For the hidden layer: the output at the hidden layer of the aiﬁ"erence vector defined above, fed at the
input layer.

(The hidden novelty vector is also set to zero under certain circumstances). This modified learning rule has
the net effect of changing less those weights coding well learned patterns, while still allowing for gradient
(although not steepest) descent in total error. Experiments performed with such a modified learning rule
yielded reduced interference.

Otwell (1990), in an ingenious scheme, uses recurrent novelty filters (Kohonen, 1984)8 to allow incremental
and interference-free back-propagation learning, by using the activities of a “filtered out” input pattern,
instead of the activities of the input pattern, in the delta rule. Simulation results showed that interference-free
incremental learning was possible, although a large number of hidden units (larger than the number of training
patterns) were needed, which significantly reduced the present applicability of this approach.

French (1991), somewhat relatedly, has proposed an “activation sharpening” technique, where activations
in the hidden layer are sharpened, that is, artificially increased where they are significant, and artificially
decreased where they are small. Weights of the connections between the input and output layer are then
modified according to the new association. The idea behind this scheme is to reduce activation overlap
among different patterns, which causes interference. Simulation results showed that interference, again, was
significantly reduced.

A final example of significant departure from standard architectures and learning techniques to reduce
interference is seen in (Sloman and Rumelhart, To appear), where a Willshaw network (Willshaw, 1981)
with additional “episodic” units, which act as gating units and context units, is used to model episodic
memory. Interference is avoided as the extra connections involved with the episodic units develop their own
representations when new learning occurs. Such representations prevents new knowledge from interfering with
previous information stored in the other connections of the network.

8Recurrent novelty filters are a variant of recurrent auto-associative linear networks learning with the delta rule. It can be
shown (Kohonen et al., 1981) that such networks output, when presented with a pattern represented by a vector p, the vector 3,
where $ is the orthogonal projection of p onto the subspace spanned by the vectors representing the previously learned patterns.
p — P can thus be interpreted as the “filtered out” component of p which is “maximally new”, with respect to the stored patterns.
Novelty filters are networks which, presented with a pattern represented by the vector p, output only the “novel” component
p— B

29

2.5.3 Combinatorial domains and connectionist interference

These research results, then, would seem to indicate that there is but little hope that learning of new examples
for our chosen task will yield little interference, unless we depart from traditional architectures and learning
algorithms.

But for processing on highly structured domains, in fact, we hypothesize that connectionist interference
will not be a serious problem.

McCloskey and Cohen gave a good explanation of why catastrophic interference can appear, which can be
reworded and generalized as follows. When a learning algorithm based on iterative global error minimization,
like the back-propagation learning scheme, is used to train a network on a set of patterns, the learning process
can be viewed as a trajectory in weight space where each point along the trajectory further minimizes the
total added error for all patterns of the training set (section 2.6.1). The back-propagation learning algorithm,
then, can be viewed as a minimization procedure that performs a gradient descent in the multi-dimensional
weight landscape where the total error is represented as a function of the weights.

When concurrent training is used, that is, when all patterns of the training set are learned simultaneously,
all patterns are responsible for small steps in the trajectory towards global minimization, and thus equally
influence the trajectory. If patterns are trained one at a time, on the other hand, the learning algorithm will
first minimize the error of the first pattern, by following a trajectory in weight space minimizing that error,
and will then move to a point that corresponds to a minimization of error of the second pattern. If these two
points are close, or if the second point is also one that minimizes the first error, then learning of the second
pattern will not have interfered with performance on the first pattern. In general, however, there is no reason
to expect that the two end-points of the two trajectories associated with the separate and successive learning
of two different patterns will be close or will both minimize the error for both patterns.

In structured domains, however, examples all share underlying regularities. Patterns representing members
of the domain, therefore, are not random but all share common features. This is precisely why the network
can generalize, in the first place. Initial learning of the training set will thus, it can be hypothesized, induce
a structured landscape that allows untrained items of the domain to be learned with “small” independent
learning trajectories. The new error landscapes corresponding to the total error of patterns of the training
set plus the new pattern might not be significantly different and the small move in weight space due to the
learning of the new pattern will not result in a significant altitude loss.

An alternative yet related hypothesis concerning interference-free learning in highly structured domains
can also be formulated as follows: As was shown by (Hopfield, 1982) and (Smolensky, 1983), processing in
a network can be interpreted as a move to a state of activity minimizing energy, or maximizing harmony.
Learning consists in building, by changing connection strengths, the energy function according to which the
training examples have low energy, or high harmony. As a result of this process, other states that are not part
of the training set will typically become energy minima: these states determine the network’s generalizations.
When the domain at hand is a structured domain, we can hypothesize that the energy function built through
training will put energy minima at the training examples by a process that simultaneously puts minima at
a number of other combinations of the subpatterns whose recombinations form the training examples. (This
will probably not happen if the domain is not structured and contains patterns not systematically related).
Learning a new pattern of the domain, then, which does not yet constitute an energy minima but which is
close, will involve, we hypothesize, minimal training in such a way that disruption of the existing distribution
of energy minima (interference) will not occur.

2.6 Choice of the learning and processing machinery

The connectionist learning and processing technique we will use is a standard and much used one: auto-
association in a feed-forward network using standard back-propagation learning (Werbos, 1974) (Le Cun,
1985) (Parker, 1985), (Rumelhart et al., 1986a). A variant of back-propagation learning using the technique
of weights elimination (Weigend et al., 1991) is also used later on in this thesis (chapter 6). Below we describe
the network used, to then present the reasons for our choices.

30

SRR DLER
Nossiradet
’/ XA Yo &, ',r‘gs’.:,'q~~ (>

RO
OO 00

4

PIR IR AL
N ‘\ Ry

Figure 2.4: A three-layer back-propagation architecture

Description

‘ o PO o)

Unit i ~ Unitj

Figure 2.5: Units and weights

The networks which will be used in our experiments are three-layer feed-forward networks (figure 2.4) in which
the input layer and output layer have N units and the hidden layer has H units. Each training input (one of
the elements of X)) is represented as a pattern of activity on the N input units following the tensor product
representational scheme described earlier. The target output on the N output units is identical to the input
pattern: the network must therefore associate each element of X with itself. The network is trained with
standard back-propagation, the units of the network being semi-linear units (figures 2.5 and 2.6), where each
unit j which is not an input unit computes its activity oj = f(3.;Wjio;) by feeding to a semi-linear sigmoidal
function, f, the sum of the weighted activities of the units i it is connected to. The function f used for our

experiments was, unless indicated otherwise, the standard:

R— R
[sz(z),___ 1

1 4+ e

Learning is done with the generalized delta rule. The basic idea behind this learning procedure is the
following: Within an epoch cycle, all input/output pattern pairs are presented to the network, and at each

31

f(x)
al

Figure 2.6: The semi-linear function used

presentation, an association between the specific input and output patterns presented is partially learned.
The process is repeated over until all input/output pattern pairs are associated according to a specified error
criterion. At each presentation, learning is done in two steps. In the first step, the input pattern is presented
and propagated forward. The output pattern present in the last layer of units is then compared to the teaching
input. The error (difference between actual value and target value) of each unit is then computed and “back-
propagated” through the network, where weights changes are performed in order to reduce the error, according
to the following generalized delta rule:

Apwji = bpjopi

with

5. — F'(ip;) 24 frwr; if unit j is not an output unit
P f'(pj) (tp; — op;) if unit j is an output unit

where 1,5, opj, tp; are the input, output, and target activation values of the jth unit, tespectively, when a
pattern pis presented, f'(4,;) is the derivative of the semilinear activation function which maps the total input
(weighted sum of activities of units with incoming connections) to unit j, (figure 2.5) and 7 is the learning
rate.

The generalized delta rule therefore provides a recursive top-down ° formula for updating weights: Updates
of weights connecting to the output layer are directly computed while weights of lower layers are successively
updated as a function of updates of weights connecting to the layer above.

Let E, be the error, in terms of least squares, between the output pattern and the target pattern.

L X
p—‘§>: OPJ

i=1

We show here, following (Rumelhart et al., 1986a), that the back-propagation algorithm performs a stochastic

approximation of a gradient descent in the total error over all patterns, F = Z E,. For this we will show
that
6F
AnWes = — P
pWii Y Bw;:

9By convention, the top layer is the output layer and the bottom layer is the input later.

32

Since

and since, in practice, values of 7 are small, we are insured that, although weights are changed after each
pattern presentation, the net result is close to a true gradient descent in E where weights would only be
changed after all patterns are presented.

Using the chain rule, we obtain,

8F. 8E, 08i,; 8F
el I e
3wj,- 3Zm' BWj,' 3lpj
Now since
OE, - do,; OF, - f'(i) oF,
3ipj Bipj BOPJ' P Bopj
and since

Bop; Oipr Oop; Oip;

0, _ \~0E, Oim _ -~ 0B,
T8 - T

we have, with

E)
—n dwy 10p: f' (ip;) 2};5&%

with, following from the definition of E,,

6 = f'ip;) (tpj — 0pj)

if j is the index of an output unit.

It must also be noticed that, as a gradient descent procedure, the generalized delta rule is bound by the
problem of local minima. In practice, however, a large number of simulations have shown that local minima
are rarely obtained. To allow for a maximal learning rate without leading to local minima oscillations, a
momentum term «, increasing the effect of previous weight changes on the current descent direction, can be
incorporated in the learning rule. The learning rule then becomes:

Awji(t+1) = nlbpj0p) + axAwji(t)

33

2.6.2 Rationale

Reasons for the back-propagation choice are numerous:

First back-propagation networks can be considered as one of the generic “pillars” of connectionist modeling
and have been extensively used for cogritive modeling, in area as diverse as natural language processing (e.g
(Hanson and Kegl, 1987), (Kukich, 1988)), speech pronunciation ((Sejnowski and Rosenberg, 1987)), control
((Miyata, 1988)), and expert systems, ((Fozzard et al., 1989)) to cite only a few applications.

Second, their use is generally simple and straight-forward.

Third they belong to the class of models that self-organize: Their hidden layer(s) can develop internal
representations which are used by the network to perform the designated task.

Finally, and most importantly, experimenting with the most straightforward and least special archltectuxe
will convince us, in case of success, that our results were not due to special architectural idiosyncrasies.

34

Chapter 3

Combinatorial domains

In the first chapter, we stated the central hypotheses of this thesis: that generativity and systematic processing
could arise in combinatorial domains in which objects have compositional and systematic representations, In
this chapter an attempt is made to formally define what will be meant by combinatorial domain, when the
the laws of combination are concatenative.

The notion of combinatorial complexity, furthermore, is explored with such laws. Such a notion is central
for any study of generativity in a growingly complex domain, which by definition involves explosive growth of
competence as the complexity of the domain increases. The concept of “structure-preserving” connectionist
representations, that is, representations which are most likely to faithfully represent the kind of combinatorial
constraints within objects of a combinatorial domain, is furthermore explored. 1.

3.1 Combinatorial representations and combinatorial domains

3.1.1 Combinatorial representations

Intuitively, we say that a represented domain is combinatorial if it consists of combinations of representa-
tions of atomic elements. The set of written representations of grammatically well-formed English sentences,
for instance, is combinatorial because it consists of all syntactically correct combinations of written repre-
sentations of English words. Similarly, the set of all written English words is combinatorial, as it consists
of orthographically correct combinations of representations of individual letters. When the representational
scheme is symbolic, (as is the case with written language), combinations consists of the simple operation of
concatenation. The representation of the word “GREEN”, for instance, is made from the combination, or
concatenation, of the letters “G”, “R”,“E”, and “N”. Likewise, written well-formed sentences are made from
the concatenation of English words and the “blank” symbol.

Intuitively, then, a represented domain X of objects is a combinatorial domain if it is represented by a
mapping R such that the set of representations of the objects of X falls in a Cartesian product. More formally:

Definition 1 Let X = {2;,...,2,} be a domain of p elements, where each element can be described
by at most b bits.
A combinatorial representation of X is an injective mapping

D C I, A

X —
R:y o R(z) = (df,...,d%)

(where Vi€ {1,...,n},d? € 4;) and
(I)l<n<p

! Concatenative laws of combination are but one example of combination laws Other examples include recursive laws, like
gramatical laws, that recursively govern combinations of combinations of elements. An attempt to generalize the results reported
in this chapter to such laws will not be made here, although a possible direction will be briefly discussed in section 3.3.2.

35

Condition (i) states that the representation of a domain X that simply consists of a listing of the individual
representations of elements of X taken as a whole, that is, taken as atoms and not further decomposable, is
not a combinatorial representation. If X is the set of the first 10 integers, for instance, the Arabic decimal
representation (Adr) of X

R, ¥ = {0,1,2,3,4,567389}
C 2z o~ R(e)=Adi(e)

is not a combinatorial representation, since condition (i) is not satisfied.

3.1.2 Examples

1. Let X be the set of all 4-letter strings of the alphabet A = {a,b,...,2}, and let 2_; be the ith letter of z.
The written representation R, of X

D=T 4= A*

X —
z = Ry 3):(13_1,2_2,2_3,2_4)

R,

is a combinatorial representation, with 1 < (n = 4) < (p = 26*). In written language, R, (z) is simply written
as ¢_1&_2®_3%_4. For simplicity, this last notation will henceforth mostly be used.

2. Let X = {0,...,p} be the set of the first p + 1 integers. The binary representation R, of X

Rb: X
z

where 2 P = [log,(p) and z_; is the ith binary digit of the binary representation of P bits “left-padded” with
0’s, of @, is a combinatorial representation.
3. Any domain X = {21,...,2,} C Z, where 7 is the set of all positive or negative integers, has a combina-

torial representation, for instance its binary representation:
Let P = |log,(p). Then,

X - D={+-}x{0,1}

Ryin : . .
bin €, > Ryin(p) = (binary representations of p)

is a combinatorial representation, as P +1 < p.

4. Let X = {1,...,p} be the set of the first p integers. The “thermometer” representation of X :

X — D=17,{0,1}
Ryt 2 = Rye)=(1,1,1,1,0,...,0)
e e’

is not a combinatorial representation, since n = p ¢ p.

5. Let X = {1,...,p} be the set of the first p integers. The “positional”, or “local” representation:

2If z is a real number, the notation |« is used to refer to the smallest integer larger than z.

36

=17, {0,1}
)=1(0,0,0,1,0,...,0)
N e’

3

Iy
e

is not a combinatorial representation, since again n = p &£ p.

6. Let X be any range of real numbers. Since X is uncountably infinite, X cannot be represented with
a combinatorial representation.)

3.2 Combinatorial domains

It appears clearly, from the few examples reviewed above, that the notion of combinatorial domain is intrin-
sically related to the representation used to describe the domain. Domains that we think of as combinatorial,
then, are only so because we chose to represent them with combinatorial representations.

3.2.1 Definitions

The following definition of a combinatorial domain, thus, depends crucially on the interdependence of the
nature of the domain thought of as combinatorial and the representation actually used to describe it.

Definition 2 A domain X is combinatorial, if and only if the representation R

DI, 4

X —
By A R(z) = (d1,,...,dn,)

that is used for describing it or processing it is combinatorial.
A domain X is purely combinatorial if it is combinatorial and R(X) = II?_, 4;.

C
A domain X is semi-combinatorial if it is combinatorial and R(X) # O, 4;.

It is important to note, at this point, that although there are many different combinatorial representations that
can be used to represent a domain, these representations are not necessarily of equivalent analytic value, in
the sense that some representations are more useful than others in bringing to light the regularity or structure
of the domain considered, if their is one.® The following examples illustrate this last point.

3.2.2 Examples

a. Let X be the domain of integers whose semi-combinatorial decimal representation Sy is:
Sq = {26,34,35,6,70,7,78, 44, 25}

(S4 is written here with the “concatenation” convention; that is, the decimal representation “26” stands for
(2,6)€{0,1,2,3,4,5,6,7,8,9} x {0,1,2,3,4,5,6,7, 8, 9}).

X was not chosen with “random” integers, but was actually chosen with elements having some regularity.
It is quite hard, however, to catch at first glance the regularity of the elements of X through the decimal
representation shown above. If, however, X is now represented with the combinatorial representation mapping
integers to their representations in base 3, we obtain the following set Sya:

3 A large part of the scientific inquiry can be'seen as consisting in finding the appropriate representations and formalisms using
these representations to describe the regularities of observed phenomena.

37

Sps = {0222,1021,1022,0020, 2121, 0021, 2220,1122, 0221}

whose elements can, for clarity, be vertically arranged:

Sps = |
0222,
1021,
1022,
0020,
2121,
0021,
2220,
1122,
0221

}

The regularity in X, which was hidden in the decimal representation, now appears clear: All elements of
Sps have the regularity that a 2 in the second right-most position of their representations in base 3 appears.

b. Now let X be a domain of integers whose combinatorial representation in base 3 yields the set Sy is:

Shs = {0121, 0000, 0022, 0220, 2222,1012, 1210, 2002}

Again, it is quite hard to capture the structure of X through the above representation. If, however, X is now
represented with the combinatorial decimal representation yielding Sy,

Sq = {16,0,8, 24, 80, 32,48, 56}

it appears that integers of X are all multiples of 4.
The non combinatorial “positional” representation of X yielding Sp, shown below, also displays, although
maybe not as obviously, the structure of X:

S, =

It can be seen, then, that although some domains can be represented with various combinatorial and non-
combinatorial representations, some representations are “better” than others, that is, catch the regularities of

the domain in a more obvious way, for a given processing task like regularity recognition, as examples a and
b showed.

The “goodness” of the representation depends of course both on the nature of the processing task, and on
the nature of the domain. It can be conjectured, however, that domains that are “naturally” combinatorial,
that is, domains that we have learned to describe and/or process with a given combinatorial representation, like

38

language, * will, for just about every possible processing task, be better processed if they are represented with
that combinatorial representation. Other domains will sometimes benefit from a combinatorial representation,
but not always, as the preceding examples showed.

3.3 Combinatorial complexity

A combinatorial domain, that is, a domain represented with a combinatorial structure displays, by construc-
tion, some irreducible structure: Each “atomic” element in the sets 4;’s will always appear at position i in the
representation of an elements of the domain, and cannot appear anywhere else (unless another set AjJ# 1
contains the same atomic element).

If a domain is semi-combinatorial, additional constraints appear since each element of the sets 4; does not
necessarily have to appear in any of the members of the domain. Different semi-combinatorial domains can
thus have different degree of structure, depending on the nature of the constraints imposed on their elements.
The two domains {abe, whe, gbc, bek} and {akd, eod, wqx, ert}, for instance, do not have as much structure:
The sub-pattern “bc” is always present in the elements of the first set, while there is not common sub-pattern
in the second set. The set {abc, wbc, gbc, bek} is thus more redundant, or is less complex, than the set {akd,
eod, wgx, ert}.

The word “complexity” will be used in this thesis to refer to how much regularity or structure a given
represented domain has. Intuitively, the domain consisting of all written representations of English 4 letter
words has more “structure” than the domain consisting of the same number of randomly chosen strings.
Intuitively, also, the set of all English 4 letter words is more “complex” than the set of all English 3-letter
words. Similarly, the set {abc, wbe, qbc, bek} has more structure, or is more redundant, than the set {akd,
eod, wqx, ert}. In this section a quantitative definition for the notions of structure and redundancy is studied.

3.3.1 Entropy

To better characterize the notions of “complexity” or “structure”, it is helpful to study a combinatorial do-
main from an information theory perspective. Intuitively, two domains whose individual elements can be fully
described by different amounts of information have different complexities, and the concepts of “structure”
and “redundancy” are linked with how statistically irregular, or uncertain, combinations of elements of the
domain are. This observation was central in the development of information theory by Shannon (1948), whose
important ideas are reviewed below.

Shannon’s measure of information quantity ~
The observation that a source of information producing written English can be seen as a statistical gener-
ator of symbols where sequences of symbols depend on constant probabilities led Shannon to view a source
of information as a statistically stationary, or stochastic, process. Furthermore, since written English as an
information source has the property that definite probabilities of transitions between a symbol and the next
exist, it can be viewed as a high-order Markov process, an ergodic one as transition probabilities are constant.
Having represented a source of information as a Markov process, Shannon then introduced a measure
quantifying the expected amount of information per symbol produced by such a source. If S, is any sequence
of symbols produced by the source, and P,(S,) the probability of occurrence of S,, he showed that the
function

1
E, = -~ P.(Sn)log, Pa(S,
n; (Sn)log, ()

the entropy per symbol of the source approximated by an nth order Markov process, can be used to measure
the expected amount of information, or uncertainty, conveyed by an nth order Markov process source, and

*With the restricted definition of a combinatorial domain given earlier, language as the set of all possible grammatically well-

formed sentences is not combinatorial nor semi-combinatorial, since that set is infinite. Any finite subset of language, however, is
semi-combinatorial.

39

defined the true entropy as °

EF = lim F,

n— o0

Shannon (1951) was then able to estimate the entropy E of English, by successively approximating English
generation with Markov processes of increasing order n yielding entropies E,.

It is informative to look at typical sequences produced by Markov processes of different orders approxi-
mating English, and see how regularity and “structure” increases as the order of the process increases and as
the entropy per symbol decreases.

A Oth order Markov process approximation (all symbols of English, 26 letters and a space, are equally
likely) yields an entropy per symbol Fy = — 257 i%logz(;—,{) = log, 27 ~ 4.76. An example of a sequence
produced by such an information source is:
xfoml rxkhrjffjuj zlpwefwkcyj ffjeyvkcqsgxyd gpaamkbzaacibzlhjqd

If symbols are produced independently but with frequencies of English text, then the calculation of E; =
— >.; pilog,(pi) (first order Markov process yields Ey =~ 4.03, and an example of a sequence is:
ocro hli rgwr nmielwis eu 11 nbnesebya th eei alhenhttpa oobttva nah brl
We can see here that the example displays more “regularity”, and has more redundancies, than the preceding
example.

If all symbols are not produced independently, but their probabilities only depend on the preceding symbol
(second order Markov process), then Shannon calculated that E; =~ 3.32, an example of a sequence being:
on ie antsoutinys are t inctore st be s deamy achin d ilonasive tucoowe at teasomare fuso tizin
andy tobe seace ctisbe ,

If now symbols are produced with their probabilities depending on the two preceding symbols, (third or-
der Markov process), the value E3 ~ 3.1 is found, and an example of a sequence generated by such a process is: ,
in no ist lat whey cratict froure birs grocid pondenome of demonstures of the reptagin is regoacti 1a
of cre
Regularity is striking, as some of the blank-separated substrings “could” be English words. &

Entropy and Combinatorial domains

It is important to note at this point that although information entropy as defined by Shannon measures re-
markably well the amount of statistical regularity in a stochastic information source, it fails to do so if it is
blindly applied to a finite domain, like a combinatorial one: If D C H}‘clfL is a combinatorial domain, for
instance, its entropy E(D) can naturally be defined as:)

E(D) =~ Z P(ay,...,a,)log, Play,...,an) (3.1)
S5 L b
<D *** D]

®If an event occurs with probability p, a measure E(p) of how much surprise, or how much information is gained when the
event actually occurs should have the properties that E(1) = 0 (an event happening with probability 1 creates no surprise, or
brings no information), E(p) is a strictly decreasing function of p (the smaller the probability, the greater the surprise, or amount
of information gained), E is & continuous function of p (when p infinitesimally changes, so should E(p)), and E(pq) = E(p) +E(q),
(the surprise, or amount of information, caused by or gained from the joint occurrence of two events should be the sum of the
surprises caused by, or information gained from, the independent occurrence of each event). Shannon showed that the only
functions satisfying the 4 conditions listed above are functions of the form E(p) = ~C In(p), where C is a positive constant and
determines the measuring unit of E. C can be chosen so that E(p) = —log,(p), where log; is the logarithm function of base 2.
In this case, E is measured in bits. It follows that E(p) = - Zi pi logy (pi), the entropy of X, measures the expected surprise, or
uncertainty, of a discrete variable X that can take values z; with probabilities p; (See also Ross, 1988, for instance).

® Shannon found lower and upper bounds of 0.6 and 1.3, respectively, for E, when written English text was approximated by
a Markov process of order 100. Later studies using different statistical techniques confirmed these results, with an estimate of
E =~ 1.3 bits per symbol by (Cover and King, 1978) and a estimate of £ = 1 by (Grassberger, 1989).

40

= log, | D]

where ay, ..., a, are discrete random variables which can take as values any of the elements of 4, ¢ A5,

, v of men A i C
Ay, respectively, and P(ay,...,a,) is the joint probability of occurrence of ay, ..., a,.

E(D) thus depends solely on the number of elements of D, and although it clearly takes into account the
fact that not all members of H?zlfi.; are in D, it is a rather crude measure of the complexity of D: It does
not take into account the “internal structure” of D and is the same for any domain with the same number of
elements. The set {abc, wbe, gbe, bek}, for instance, has the same entropy E = log,4 = 2 as the set {akd,
eod, wqx, ert}. Even worse, both of these sets have the same entropy as the set { skdjfhsk, mkocdsdc, sdkfsdf,
qazpldjh }. ‘

The problem here is that a well-defined measure that can be applied to stochastic processes “sequentially”
generating an infinite number of symbols with fixed probabilities was roughly generalized to a domain that
can be described and analyzed in terms of symbol frequencies but that cannot be modeled as a probabilistic

Markov process, nor a fortiori as a stochastic process. To quote Kolmogorov {1965):

The probabilistic approach [to a quantitative definitions of “information”] is natural in the theory
of information transmission over communication channels carrying “bulk” information consisting
of a large number of unrelated or weakly related messages obeying definite probabilistic laws. In
this type of problem there is a harmless and (in applied work) deep-rooted tendency to mix up
probabilities and frequencies within a sufficiently long time sequence (which is rigorously justified
if it is assumed that “mixing” is sufficiently rapid). In practice, for example, it can be assumed
that the problem of finding the “entropy” of a flow of congratulatory telegrams and the channel
“capacity” required for timely and undistorted transmission is validly represented by a probabilistic
treatment even with the usual substitution of empirical frequencies for probabilities. [...] But what
meaning is there, for example, in asking how much information is contained in “War and Peace”?
Is it reasonable to include this novel in the set of “possible novels”, or even to postulate some
probability distribution for this set?

3.3.2 Combinatorial complexity

There are at least two approaches that can be taken to the problem of measuring quantitatively the regularity
or structure of a finite object. The first one is algorithmic in nature, and consists in viewing the description
of an object as the output of a descriptive algorithm. Kolmogorov (1965), for instance, defined a measure of
algorithmic complexity for a finite object as the minimum number of bits (the shortest program) containing
all information about it sufficient for its decoding. (A clear survey of the main concepts of algorithmic
complexity can be found in (Zvonkin and Levin, 1970).) A related measure of complexity was also introduced
by Solomonoft (1964) (1978), Chaitin (1965) 7 and Lempel and Ziv (1974). 8. Rissanen (1986) (1989) later
refined these measures by introducing the concept of minimum length description.

Such measures of algorithmic complexity, or variants thereof, could possibly be used to generalize the
measures which will be introduced in this chapter for the case of recursive laws of combination, as such laws
and the expressions they allow can more easily be expressed in algorithmic notations. Given a grammar G
and an alphabet X, for instance, a simple algorithmic measure of the complexity of the set of gramatically
well-formed sentences with respect to G over ¥ could be the length of the smallest deterministic automaton
accepting these sentences, for instance (Ehrenfeucht, 1991).

Another approach, which has been used in psychology (Attneave, 1959), (Garner, 1962), (Staniland, 1966),
is to further decompose the term

E(D) = -~ Z P(ay,...,a,)log, P(ay,...,an)

Q1;..,8n

"The Shennon measure of complexity was related to measures based on Kolmogorov and Chaitin measures by (Leung-Yan
Cheong and Cover, 1978) and later by Abu-Mostafa (1986), who showed that they were equivalent for a wide range of problems.

8Tt is interesting to note that the study of Lempel and Ziv concluded in the now famous L7 compression algorithm (Ziv and
Lempel, 1978), a variant of which is used for the program “compress” in UNIX systems.

41

This second approach is concretely much simpler than the first for the case of combinatorial domains formed
by concatenative laws of combination, will thus be the only approach taken here. °

Cartesian product of two sets : _
The case of a combinatorial domain D C A; X A,, where

E(D) =~) P(a,a2)log, P(as,a5) = log,(| D)

G1,a3

is first studied.
Denoting by P,,(a2) the conditional probability of a, given a;, and since P(ay,a3) = P(ay)Py,(az2), Ep
can be further decomposed:

E(D) =~) P(a1,a2)log, P(a1, az)

a1,a2

== > P(a1)Ps,(a)log; P(a1) P, (22)

a1,a3

— > P(a1)logy P(a1) = Y P(a1) Y Pu,(az)log, Pu, (a2)

ay

= B(41) + B (As) | (3.2)

where E(A1) =}, P(a1)log, P(ay) is the entropy of A; and E4,(A;), which has been called a conditional
entropy by Shannon, measures the average entropy of A, for each value of elements of 4. E 4,(A2) can be
interpreted as the “information” about A, from 4;.

It is important to note that

E(D) < E(A) + E(4,) (3.3)

The entropy of D is always smaller than the sum of the individual entropies of 4; and A,, with equality if

and only if a; and a; are independent. This intuitive result can be proved by the following argument (Young,
1971):

If a; and a; are independent, then

E(D) = - Z P(ay, a3)log, P(a1,az)

G1,a3

® Another measure that has not be investigated here but that possibly could have been used (Ehrenfeucht, 1991) is the Kullback
measure of information K (Kullback, 1959) (Hobson and Cheng, 1973), defined as Z‘, pi log, %1 K represents the information

gained from the result of a random experiment when the prior probability q is changed to p.

42

il

—_ Z Z P(a1)P(as) log, P(ay)P(az)

a; az

_ZZP a1)P(az)log, P ZZP (a1)P(az)log, P(az)

ay ajz ay a3

= - P(a1)log, P(a1){D_ P(az)} - {>_ P(a1)} Y P(az)log, P(az)

= ——ZP a]_ logz ZP 02 lOgZ)

= E(4A1) + E(4,)

If a; and a; are not independent, then any prior information about the relation of an element of A, and an
element of 4y will reduce the surprise, or the information gained, when an element of A; appears with an
element of A;. In this case the information gained by the occurrence of an element of Az when an element
of A; has already occurred is strictly less that the information which would have been gained if there was no
relation between the two elements. It follows, thus, that

Ey4,(42) < E(4,) (3.4)

with equality if and only if a; and a; are independent. (An analytical proof of the inequality of equation 3.4,
following (Ross, 1988), is given in appendix A)
The inequality of equation 3.3 follows from equations 3.2 and 3.4.

Since equation 3.3 holds, a symmetrical measure of the “inter- -entropy” of the relation between 4; and A,

R(A1, A;), can be introduced:

R(41, 4,)
= E(Az) bl EAI(Az)
= E(A1) — E4,(4;)

= R(Az, A1)

E(D) can then be rewritten as:

43

E(D) = E(A1) + E(Az) — R(A1, 42)

E(D) is thus the sum of two terms, E(4,) + E(4,) measurmg, given the probabﬂxty distribution induced by
2; and a3, the maximum entropy that could be obtained, and R measuring the “residual entropy” of 4; X A,,
due to the statistical dependency of a; and a,. It should be noted that E(4;) + E(A4,) is not necessarily the
maximum entropy that can be obtained given the symbols in 4; x A;: Such a maximum entropy would be
obtained if all symbols in each set A, and A, were equi-probable. In this case the equality E(D) = log |41 ||4,]|
would hold.

General case
The symmetrical measure R(A4y, A2) of the “closeness” of the relation between 4; and A, can be generalized
for the cases of domains D C II7_; 4; with n > 2. Since

Plai,...,a2) = P(a1)Pa,(a2) X ... X Py ay,.an_, (n)

where Py a;..q;_, (@) is the conditional probability of occurrence of a; given ay, ..., a;_1, E(D) can be rewritten
as

E(D) = E(A1) + B, (A2) + ...+ Eay,a, (40) (3.5)
Eyg,,...,4:_, (A;) is the conditional entropy of A4; given l'I""1 Aj;, and measures the average amount of uncertainty,

or entropy, that remains in 4; when information on II’ 1A is known. The term R(A;...4;_1, A4;) can be

defined as
R(Ar... Ao, &) = B(4;) — B4, 40, (4i)

(with R(A;Ao, A1) = 0) and the following equality holds:

iz

ZEA)—ZR Aiy, 45) (3.6)

=1 i=1

Since the maximum joint entropy of D, measuring the entropy of the random variables a; and a» when they
are independent, is: 10

19Since
- Za, a7y Plas) logy (TIZ P(ay))
== Za; oD g TR P(ai) logy (I P(ay))
== ey Doay o D, Wy Plad) T, logg Plas)
= =y Yoay e, I P(a)logy Pag) — ... — Yy ey g, Ty P(as) logy Plan)
= —{an P(ay)log, P(a1)} an P(as).. .Z% Plag)—=...—

241 Pla1)...3 0, Plan-1){}, P(an)log, P(an)}

== 2_,, Pla)log; P(a1) = 37, P(az)log; Paz) = ... = 3. P(an)log, P(an)

= 3 IT E(4A)

44

Emaz(D) =~ > W7 P(a;)logy (I, P(ai)) or

Emae(D) = i E(4:) (3.7
i=1
E(D) can be rewritten as:
E(D) = Epmae(D) — S R{A;... 41, 4) (3.8)
or
E(D) = Emqe (D) — R(D) (3.9)

E(D) = log, |D| is thus the sum of two terms, Emq,(D), which can be called the combinatorial complexity
C(D) of D, measuring, given the probability distribution induced by ay,...,a,, the maximum entropy that
could be obtained, and R(D) measuring the “residual entropy”, or residual complexity of D, due to the
statistical dependency of ay,..., a,.

3.3.3 Examples

Table 3.1 lists values of entropy, combinatorial complexity and residual entropies, or complexities, as defined
above for various sets including the sets A™ of all strings of the alphabet A = {a,...,2} oflengthn = 2,3,4,5
and 6, the sets W, of English words of length n, and random subsets S, of A™ having the same number of
elements as W,. It is observed as expected that the combinatorial complexity is always larger for a given
set S than for the corresponding set W, the set of English words of length n being more “siructured”
than the corresponding set that has the same number of elements but that is composed with random strings.
The residual complexities of the sets A™ is 0, since the probabilities of each symbol at a given position are
independent.

Figure 3.1 graphically compares the combinatorial complexity Enq. of the sets A" W, and S,, and shows
again that the combinatorial complexity is always larger for a given set S, than for the corresponding set W,
the set of English words of length n

Figure 3.2 is a two-dimensional plot showing the same sets with their combinatorial complexity as ordinate
and their residual complexities as abscissa. The point “5Lstrings, 3same letters” has also been added, showing
the intermediate residual complexity between the set of all strings that have three letters in common, larger
that the null residual complexity of the set of all stings of length 5 but smaller that the residual complexity
of the set of all English 5 letter words.

3.4 Connectionist representations

The preceding study of combinatorial domains has introduced their definition, and a quantitative measure
which can be used to discriminate between them according to their structure, in the context of symbolic
representations: In this context, elements of a combinatorial domain are symbolically represented by the
spatial concatenation of the symbolic representations of their atomic elements. Processing a combinatorial
domain thus involves spatial symbol manipulation.

45

Table 3.1: Values of entropy, combinatorial complexity and residual complexity for various combinatorial
and semi-combinatorial domains

| Domain D | E(D) | C(D) R(D) |

{ aa, ab, ac } 1.58 1.58 0

{ aa, ab, ba } 1.58 | 1.84 | 0.25
{ aa, ba, be } 1.58 | 1.84 | 0.25
{ aa, ab, ac, ad, ae } 2.32 | 2.32 0

{ ab, cd, ef } 1.58 | 3.17 | 1.58
45 randomly chosen different strings from an alphabet of length | 5.49 5.57 0.08
8

45 English 2 letter words 5.49 7.57 | 2.08
45 different randomly chosen strings of length 2 5.49 8.89 3.40
All 262 = 676 strings of length 2 9.40 | 9.40 0
753 Engiish 3 letter words 9.54 | 12.34 | 2.78
753 different randomly chosen strings of length 3 9.54 | 14.02 | 4.47
All 26° = 17576 strings of length 3 14.1 | 14.10 0
2177 English 4 letter words 11.09 | 16.03 | 4.94
2177 different randomly chosen strings of length 4 11.09 | 18.77 | 7.68
All 26% = 456, 976 strings of length 4 18.80 | 18.80 0
All strings of length 4 with 2 identical letters 16.58 | 18.80 | 2.23
3146 English 5 letter words 11.62 | 20.24 | 8.62
3146 different randomly chosen strings of length 5 11.62 | 23.47 | 11.85
All 26 =11, 881, 376 strings of length 5 23.50 | 23.50 0
All strings of length 5 with 3 identical letters 17.33 | 23.50 | 6.16
3852 English 6 letter words 11.91 | 24.09 | 12.18
3852 different randomly chosen strings of length 6 11.91 | 28.18 | 16.26
All 26° = 308,915, 776 strings of length 6 28.20 | 28.20 0

If a combinatorial domain is to be processed by a connectionist network, a connectionist representation
mapping elements of the domain to vectors in a vector space needs to be found. Processing a domain now
involves vectorial manipulations. In the rest of this chapter I will be concerned with the following question:
Given a “symbolic” cognitive combinatorial domain D, what are the kinds of connectionist representations
that are likely to preserve the structure of a combinatorial domain in such a way that connectionist processing
of these representations is likely to display the same kind of properties, like generativity and systematicity,
found in symbolic processing of the domain?

3.4.1 Trivial structure-preserving connectionist representations

A connectionist representation of a domain X is a mapping:

Let R be a connectionist representation of D:

46

30[;

r ‘/»" -

I %= n10g2(26)]

25 TS .

b s All strings //‘]

é C - = = . Random strings (subset) pid]

s i

Y20k English words J

I]

a o -

E t i

S 15 -

3 []

s r -

g r -t

‘E 10:-' .

€ L 4
<}

o f i

Sr —

o r -

1 2 3 4 5 6 7

Length of string or English word

Figure 3.1: Graphical comparison of combinatorial complexity for some of the sets of English words and
strings presented in table 3.1.

30
i 6L strings
[6Lstrings ""..o 8L string
25 .
i i & 6L words
i Ststrings xgus::rr:‘gslekters Pl ’“Y"g‘ subset
pr
s
20 LA 5L words
s
1 4Lstrings 7. AL strings subset

e
-

A T AL yords
5 . ‘.
[3Lstrings 7 973L strings subset
-, s
r' 3L words
/

O Set of alt strings
& Random subset of strings
4 2L words A English words

Combinatorial Complexity Emax

10 ings | 7
p2Lstrings & 2L strings subset

E - Emax

Figure 3.2: Graphical comparison of combinatorial complexity and redundancy for some of the sets of English
words and strings presented in table 3.1.

DcCHO-,A; — VCR™

R: z — R(z)=v,

47

In a symbolic representation of a combinatorial domain, elements of D are symbolically characterized by
the spatial concatenation of their constituents in the sets A;’s. The combinatorial nature of D C II7_, 4; is
characterized by the facts that:

e For any element of U which has two or more identical constituents, any permutation of these same
constituents yields that same element.

e For any two different members dy and d; of D that have : identical constituents in different positions,
with 1 < i < n, a permutation exists such that permuting these i constituents of d; yields ds.

It is natural to conjecture that good connectionist representations for a combinatorial domain, that is, connec-
tionist representation which would “code” the combinatorial systematicity of the objects of the domain and
thus potentially lead to systematic processing, should exhibit these same properties.

In the case where the domain D is a Cartesian product of sets that have the same elements, it is possible to
characterize such a constraint mathematically, by asking that for each permutation of atomic elements leaving
a set of members of D unchanged, there exists a corresponding permutation of the coordinates in the space of
connectionist representations of these members which does exactly the same, that is, that leaves unchanged
the set of corresponding connectionist representations.

Formally:
Let Sp be the set of all permutations of n elements, and let Sy be the set of all permutations of m elements.
For any o € Sp, let

Ip(s) ={d € D,o(d) € D}

Ip(o) is thus the set of elements of D which is invariant under o.
Similarly, for any 7 € Sy, let

Iy(r)={veV,r(v) eV}

Definition 3 R is a trivially structure preserving connectionist representation if and only if

Yo € Sp, dr € Sv, ID(«T) = Iv(‘r)

3.4.2 Examples

Let D = {arc, bee, car, oak} C {a,b,c,0} x {a,e,;r} x {c,e,k,r}.
Then, Sp ={Z,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)}, where T is the identity permutation'?, and

Ip(T) = D
Ip((1,2)) = @
Ip((%3) = {bee}
Ip((1,3)) = @
Ip((1,2,3)) = {arc, car}
Ip((1,3,2)) = ©

1. Let Ry be the connectionist semi-distributed tensor representation of D with fillers
a = (0,0,0,1), b = (1,0,0,1), ¢ = (1,1,1,0), e = (1,0,1,0) k = (0,0,1,1),
o = (1,1,0,0) and r = (0,1,0,1), and positional roles

T = (1,0,0), Ty = (0,1,0), T3 = (0,0,1).

'1The other permutations are written using the cycle notation

48

D —_ VCRLZ

R d=(di,dz,d3) — Riy(d)=di®mM +d2@r2+d3@73

The connectionist representations of the elements of D are:

Ri((a,r,¢)) = (0,0,0,1,0,1,0,1,1,1,1,0)
Ri((bye,e)) = (1,0,0,1,1,0,1,0,1,0,1,0)
Ri((¢ya,r)) = (1,1,1,0,0,0,0,1,0,1,0,1)
Ri((o,a,k)) = (1,1,0,0,0,0,0,1,0,1,0,1)

Ry is trivially structure preserving.

Proof: For any o € Sp = S3, let 7, € Sy = Sy, be the permutation

{1,..,12} — {1,...,12}

Tl > T.(i) = 40((i — 1)/4) + ((i — 1)remd) + 1

where the sign “ /” refers to integer division, and “rem” denotes the remainder operation.
7o thus permutes consecutive blocks of 4 elements in the same relative positions as o does. It follows that:

Vo € SD, ID(O') = Iv(TC,)

2. Generalizing from the example above, it is easy to see that for any combinatorial X, any semi-distributed
tensor representation using unit vectors of R™ as roles and different fillers for different elements of 4; is trivially
structure preserving.

3. Let R3 be the following hashing representation of D:

Rs(arc) = (0,0,1)
Rs(bee) = (0,1,0)
Ra(car) = (0,1,1)
Ra(oak) = (1,0,0)

R3 is not trivially structure preserving. For instance, there does not exist any permutation of three ele-
ments 7 € Sy such that Iy (r) = Ip((1,2,3)) = {arc, car}, since the only permutations preserving Ra(arc)
are T and (1,2), but Iy (Z) = {arc, bee, car, oak} and Iy((1,2)) = {arc}. L

3.4.3 Structure-preserving connectionist representations

Definition 3 defined trivial structure-preserving connectionist representations: what was asked of these was
that the spatial combinatorial properties found in symbolic representations of members of a combinatorial
domain could be found on the coordinates of their representations.

It can be conjectured, however, that any connectionist representation which systematically transforms a
trivially structure-preserving connectionist representations of a combinatorial domain will also “capture” the
combinatorics of a combinatorial domain and thus exhibit the same kind of properties found in symbolic
processing of combinatorial domains, or in other words be “structure preserving”, or systematic.

The term “systematically” used above is unfortunately problematic here. We propose the following defi-
nition of a structure preserving connectionist representation, based on the existence of an invertible mapping
between the structure preserving connectionist representation and any trivial-structure preserving connection-
ist representation.

A definition of an approximately structure preserving connectionist representation is also introduced.
Definition 4 R is a structure preserving connectionist representation of a combinatorial domain D if and

49

only if there exists an invertible mapping M and a trivially structure preserving connectionist representation
R

such that
Yz € D,R(z) = M(R(z))

Definition 5 Let || || be the Euclidean norm on the representational space.

R is an approximate structure preserving connectionist representation of a combinatorial domain D, with pre-
cision p, if and only if there exists two mappings M; and M, and a trivially structure preserving connectionist
representation R

DCUO,4 — VCR™

R: z ~ Rz)=v,

such that

¥z € D,|[R(z) - My(R(=))]| < p and |[R(z) - Ma(R(=))]| < p

3.4.4 Examples

4. In the example above, any fully-distributed tensor representation Ry of D = {arc, bee, car, oak} using the
same fillers and linearly independent roles is structure preserving.

Proof: Let 7;, i = 1,2,3 be the linearly independent role vectors chosen, and let fe, be the vector repre-
senting the ith element of D in the decomposition z = (d;_,...,d,.)

There exists a matrix M = {#;}, such that 7; = Mr;, i = 1,2,3, (where the role vectors r; are defined in section
3.4.2), since the vectors 7; are linearly independent. It follows that:

i=3 =3
Va € Da,}él(m) :Zfz;®Fi :Z,fm;®M7'i
i=1 i=1

The transformation T

i=3 i=3
Ru(2)= for®r = T(Ri(z) = fo, ® Mr;
1=1 i=1

is linear in R(z). A matrix M thus exists, (it can be shown to be invertible, due to the fact that the fillers
are lineally independent) such that

50

i=3
Ve € D,Ri(z) = M(D_ fo, ®7:) = MRy(2)

=1

R, is thus structure preserving, as R is trivially structure preserving as shown in section 3.4.2.

5. Let R, be a connectionist RAAM representation of a combinatorial domain D. Then if a trivially struc-
ture preserving representation R is used to represent elements = of D on the input and output layers of the
back-propagation network auto-associating R(z), 2 € D, with a training criterion p, R, is approximately
structure-preserving, with precision p.

Proof: Let f be the activation function used in the auto-associative back-propagation network, M; and M be
the weight matrix of the first layer and second layer of the network, respectively, and, if YE R = (y1,....y),

let F(Y) = (f(x1),---, f(yq)). Then 752(2) = Fo M;(R(z)), and ||R(z) — fo Mz-il—zz(z)ﬂ < p.

5. It is conjectured that the hashing representation R in example 3 is not structure preserving.

3.5 Conclusion

It is our intuition that the results reported in this thesis are crucially dependent upon the nature of the domain
being processed and upon the kind of connectionist representations used, and can potentially be generalized
to more complex tasks if and only if these involve elements of domains that present a combinatorial structure.

It is for this reason that such domains were studied in this chapter, as there is no doubt that a non-structure
preserving connectionist representational scheme, such as a scheme based on hashing, could not possibly induce
systematic or generative processing. Likewise, processing of a non-combinatorial domain could not possibly
exhibit such properties. While the formalizations described are only a first step towards a full understanding
of such domains, we believe that they do allow for a better understanding of the issues at play, which include:

o Availability of equally expressive representations for a given domain, yet non-equivalent if one is to
perform inferences on them.

e Combinatorial complexity, central in its relation to the property of generativity, as will be seen in the
next chapter.

e Structure-preserving representations, central in the hypotheses made in this thesis.

51

52

Chapter 4

Experiments with semi-distributed
representations

4.1 Performance measures

As discussed in chapter 2, our measure of how well a particular network has induced the structure of the
domain, when trained with examples of that domain, will consist in estimating how close the actual function
f performed by the trained network is to an ideal binary functions fp, as defined in section 2.4, which would
correctly reproduce all members of the domain and incorrectly reproduce all non-members of the domain.

We could, to perform this estimation, compute an average generalization ability by computing the Hamming
distance between f and a binary function fz which auto-associates perfectly every input bits of representa-
tions of all members of the domain, and incorrectly auto-associates (with maximum error) each input bits
of representations of all non-members of the domain. This would involve testing the network on all possible
binary input patterns, and counting how many output bits, for each of these binary patterns, are incorrect.
Since such testing would involve, for n-bit patterns, n2™ comparisons, this is clearly unfeasible: Even a middle
sized network with 30 input units would require on the order of 3 x 101° processing passes through the network.

Another way to perform that estimation, and one more closely related to classic measures of human
performance used in cognitive science, would be to perform two measures, the first giving an indication on
how well the network has learned members of the domain, and the second estimating how well the network has
discriminated between members and non-members of the domain. This is what we chose. The first measure
simply amounted to estimating the number of true and virtual generalizations produced by the network for
members of the domain. The other measure was performed by generating a discrimination measure based
on the number of true and virtual generalizations that a given network would produce for members of the
domain, along with the number of incorrect true and virtual generalizations the network would produce for
non-members of the domain. We used the statistical discriminability measure (Estes, 1982),

where Px is the probability that a member of X is accepted, and Pg the probability that a non-member is
accepted. Values of 2-4 for such a discrimination measure correspond to reliable discriminability.

Since Px and Pg are small, as we will see, d is close to log(Px/Pg); d, then, is the number of orders
of magnitude (based on e rather than 10) by which Px exceeds Pg. The measure d corresponds to an
underlying logistic cumulative distribution, rather than a normal or Gaussian error function, which underlies
the d' measure of discriminability. (The d’ values for the discriminations performed by most of the networks
we will report on were rather low, since, while Px /Pg was high (as reflected in d), Px itself was rather low.)

In attempting to characterize the number of true and virtual generalizations for a given n across networks
with various random choices of weights and training sets, we have little a priori information about the distri-

53

bution we are sampling. We have chosen to employ the median !, because it provides a simple distribution-free
analysis. Repeating experiments five times with different randomly chosen training sets and initial weights
will ensure that our estimated median number of generalizations or virtual generalizations approximates the
true number with a maximum error of around 6%, since, if the minimum of a given sample of five independent
experiments is m, the maximum is M, and u is the true median, then

prob(m > u) = (1/2)° = prob(M < p);
and
prob(m < p < M) =1-2x (1/2°%) = .9375

That is, the range between the minimum (m) and maximum (M) obtained in five independent experiments
gives an approximate 94% confidence interval for the median.

4.2 Outline of our experimental approach

We will, then, train a feed-forward auto-associative network on a randomly selected subset of the chosen
domain, and test for correct association each of the remaining items of the domain, one by one. If an untrained
test item is not generalized, we will train the network on it for a small number of trials and, if the test item
is then learned to criterion, we then test each item of the original training set for correct association. If all
items of the training set are still correctly associated after the fast training of the new test item, that item will
not have interfered with the correct auto-association of items of the training set and we will call it a virtual
generalization, as defined in the previous chapter. Although it was not correctly associated and thus was not
generalized, it was “almost” generalized, since only a small number of trials, preserving performance of the
items of the original memory intact, allowed it to be correctly associated.

Since we would like to show that connectionist learning and processing can be sensitive to the underlying
structure of the representations of the objects being learned and processed, and can also allow for productivity,
we will count (or infer statistically) how many of the test items are generalizations, that is, how many are
correctly auto-associated, and how many are virtual generalizations. A large number of generalizations relative
to the size of the training set, and explosive growth with the complexity of the domain, will show that processing
is productive and systematic by exploiting the compositionality and systematicity of the representations. Fast
interference-free learning of new items of the domain will show that learning exploits the compositionality
and systematicity of the representations, while a large number of virtual generalizations obtained and their
explosive growth with the complexity of the domain will, again, show productivity and systematicity.

4.3 Choice of experimental parameters

4.3.1 Domain sizes

To measure how performance grows with the complexity of the domain X = [T, Xi, we will perform
experiments with n varying and plot the median number of generalizations and virtual generalizations obtained
for members of the domain. If 4 is the size of each (identical) set X; in X, then the number of elements in
the domain , ||X||, is A™. A good experimental choice for A would be one that allows both a decent size for X
for small values of 7, and a small enough number, since the size of X grows exponentially with n, for larger
n’s to allow testing on a sizable fraction of the domain. We mean, by “decent” size for X for small values of
n, a size that would allow training sets to be both small relative to X, (say, smaller by at least an order of
magnitude), and large enough to reflect the statistical regularity of the domain.

! Clayton Lewis is gratefully acknowledged for suggesting this.

54

We found that the choice of A = 26, while allowing n to vary within the range [2,6], somewhat obeyed
these constraints, when choosing a training set size of p = 50. That choice, furthermore, allowed comparisons
with experiments involving English words.

With n = 2, networks were thus trained on random sample sets of 7 % of the 262 members of X. With
n = 6, A™ was on the order of 102, and testing set samples of size 10 - 10° allowed for an estimation of the
median. Such testing set sizes were clearly an upper limit in terms of computational effort, as discussed in the
next section.

4.3.2 Network sizes

Input and output layers.

With A = 26, the minimum number of bits to code an individual letter would be 5. We decided to use
8-bit fillers, thus giving each representation 3 extra bits to differentiate itself from others and allowing coding
of domains with larger alphabets. 3 extra bits allow for at least 2° = 8 times as many bit representations
as legal string representations, which means that binary patterns representing members of the domain will
constitute a fraction (26 / 28)2 ~ 1% of the total number of binary strings. Th sizes of the input and output
layers of the networks were thus 8n.

Hidden layer

The choice of the size of the hidden layer, relative to the size of the input and output layers, is a crucial
one, since it directly affects generalization ability.? Intuitively, if a back-propagation network has too many
hidden units, then the network will easily develop internal representations in the hidden layer, without relying
on the statistical regularities of the training set, to allow for correct performance on the training set. Each
training pattern will thus be learned “individually”. If few hidden units are used, on the other hand, the
network is forced to extract the statistical regularities of the training set to perform correctly on the training
set. It is this extraction, then, which will allow for good generalization.

As was briefly mentioned in section 2.4.4, a number of techniques have been devised to reduce the number
of free parameters (weights to hidden units or hidden units themselves) to improve generalization in a back-
propagation network learning a given task. These include weight removal, where a weight “cost” term tending
to penalize large weights is added in the error function on which gradient descent is performed, (Hanson
and Pratt, 1989), (Chauvin, 1990) (Weigend et al., 1990), unit removal, where a measure of unit relevance
is assessed allowing irrelevant ones to be discarded, (Mozer and Smolensky, 1989), and network construction
algorithms, (Mezard and Nadal, 1989) (Sirat and Nadal, 1990) (Marchand et al., 1990) (Frean, 1990) (Sankar
and Mammone, 1991), where networks are constructed with optimization in mind.

Since our purpose was not to study how networks with specialized architectures could best generalize for
our chosen tasks, but was rather to study, with generality and simplicity in mind, generalization ability of
“average” networks, we did not use any of these techniques in our main experiments (chapter 4 and chapter 5.
Instead we simply empirically determined, by performing a number of preliminary experiments with varying
hidden layers sizes, the greatest constant compression ratio, independent of n, which would allow learning of
the training sets. A ratio of 8/5 turned out to allow, with some difficulty sometimes, learning of training sets
®. The number of hidden units A was thus 5n. When a particular network could not learn a training set, we
simply started the experiment again with new random weights.

It should be noted, then, that the results obtained in our main experiments are in no way the best results
possible, * in terms of generalization ability. They will, rather, indicate average performance. In chapter 6,

the technique of weights elimination was used. The corresponding experiments, in that case, indicate optimum
performance.

2An often heard rule of thumb is that the best generalization ability will be accomplished with the smallest network capable
of learning the training set.

*It is interesting to note that 5 is the minimum number of bits o code all letters

*Yu and Simmons (1990) have argued, furthermore, that reduction of the total sum of error over all training patterns, as
performed by the traditional gradient descent back-propagation algorithm, will not necessarily lead to a solution that is best in
terms of binary output correctness, which is the measure we use. This could be seen, for example, in a network where a great
majority of output units would be very close to their target value, while a few would be very far. The sum of squared errors, in
that case, would still be small while the pattern would not have been learned according to our measure. Yu and Simmons (1990)
have proposed a technique called “Descending Epsilon” to improve binary correctness ratio when back-propagationis used. That
technique involves, at an extra computational cost, a “selective attention” on individual output units that are far from their
target.

55

Figure 4.1: Architecture of the recurrent auto-associator with no self-connections, after McClelland & Rumel-
hart [1986]. Each of the 4 units (white) are connected to all others.

4.3.3 Computational requirements

If £ is the number of floating point operations needed for the calculation of the sigmoid for a given point,
then a pass through a network with N units in the input and output units, and H hidden units, requiring the
computation of the squashed weighted sum of activities for each non-input unit, will require on the order of
CH2N+E-1) + N(2H+FE-1)]=4CNH + C(E - 1)(N + H) floating point operations, where C is a
constant of proportionality to be determined later.)

With 8-bit fillers and n-bit orthogonal roles to code elements of a domain X = [[;Z7 X;, then N = 8n.
A compression ratio of 8/5 for the hidden layer yields H = 5n. Assuming an approximate £ = 45 floating-
point operations for the calculation of the sigmoid (1 division, 1 addition, and a power series expansion
to approximately 8 terms, for the calculation of the exponential, which induces about 27 multiplications, 7
divisions by factorials found in hashing tables, and 8 additions), then a pass through the network will involve
on the order of C(160n? + 572n) = 160Cn(n + 3.6).

If p is the number of patterns in the training set and T' is the number of patterns in the testing set, then
testing for virtual generalizations will involve on the order of 160CTpn(n + 3.6) floating-point operations
to perform the Tp passes needed to test the correct performance of patterns of the training set after a new
pattern of the testing set is learned. (We ignore here the number of floating point operations required for the
fast learning of each virtual generalizations, since it is small compared to the number of operations required
to test correct performance of the original training set). Repeating an experiment 10 times with 7' = 10,000
testing patterns for a training set of size p = 50, (5 times to test members of the domain and 5 times to test
random-bit patterns) will thus require on the order of 8Cn(n + 3.6) x 108 floating point operations.

Small simulations yielded a value of about 15 for C. With n = 6, a machine performing at around 1
mflops such as a Sun 4 or Sparcstation 1 would then need on the order of a week to perform the approximate
7 x 10! floating point operations needed for a median point. Use of a powerful 20-processor Encore Multimax
machine, however, allowed us to reduce that time to an order of a day.

4.4 Early experiments

4.4.1 Structure of English words with a recurrent auto-associator

Some early experiments were performed not with a standard feed-forward back-propagation network, but with
a non-linear recurrent auto-associator. (Kohonen, 1977) (Anderson et al., 1977) (McClelland and Rumelhart,
1986), the architecture of which is shown in figure 4.1. Such highly recurrent networks (each unit is connected
to all others) are typically used for modeling content-addressable memories: Training is performed using a

56

variant of the delta rule, and during testing, or recall, a part of a pattern is presented to the network. Activity
circulates in the connections for a number of cycles until equilibrium is reached, after which the entire pattern,
hopefully, is reconstructed on the network’s units.

Experiments involving 4-letter English words (section 4.4.3) were performed with such a network, but were
abandoned for a number of reasons.

First, the network, lacking hidden units, was considerably less performant that an equivalent 3-layer
standard back-propagation network. Training for large numbers of epochs (moze than 5,000} was not enough
to reduce overall error to the point where correct performance on the training set, with criteria similar to
the one used with a standard back-propagation network, was achieved. Hidden units could have been used
using recurrent versions of back-propagation (Almeida, 1987) (Pineda, 1987), but this would have raised
computational costs which, as we have seen earlier, are high in our simulations.

Second, computation costs associated with testing untrained patterns were high, since there is more that
one way to select and present “part” of a pattern. Relatedly, computational costs associated with testing the
networks are high, because of the number of cycles needed to reach equilibrium.

Finally, there is no reason to believe that results obtained with our experiments cannot be generalized to
recurrent networks, which have been shown (Almeida, 1987) to perform better at pattern completion.

4.42 The XX'UYY' problem

Another experiment involved learning a domain whose structure reflected, in a trivialized way, grammatical
determiner/noun agreement structure. Four sets X, ¥, X' and Y’ of random vectors, where X NY = 0
and X' NY' = @, were generated, which could be interpreted as representing singular determiners, plural
determiners, singular nouns and plural nouns, respectively.

]

{nan, "this", "that“, "one' }

Y = "some", "many", "all", "several"}
X' = {"dog", "cat", "person", "student", "friend" }
Y' = {"dogs", "cats", "persons", "students', "friends" }

The network was trained, within the back-propagation auto-associative paradigm, on a subset of positive
examples drawn from XX’ UYY', where each example was formed by concatenating the representations of
members of X and X', or Y and Y'. The task was to correctly generalize or quickly learn with no interference
all members of X X' UYY’, while discriminating them from non members, e.g. members of XY/ UY X".

The network was able to perfectly generalize and discriminate when the slightest indication (i.e an on
or off bit) of either “singular” or “plural” was coded in members of X and X', and members of Y and Y’ ,
respectively. Such an indication ® | of course, trivializes the problem, as the network only needs to learn to
be a “bit” detector, that is, process that particular information to “decide” whether an association should be
made or not.

A large number of experiments, within the back-propagation paradigm, were conducted without success,
with representations lacking indications as described above. The network could easily learn the training set
but, systematically generalizing on both XX'UYY’ and XY’ UY X', could not discriminate. It thus learned
to recognize (X UY)(X' UY'), but not XX’ UYY'. Several simulations involving various semi-local and
distributed representations, hidden layer sizes, training and testing set sizes were performed, yielding the
same conclusion. The networks, then, learned to be “too” systematic.

4.4.3 Regularity detection: English 4-letter words

We report here on an early experiment designed to test our basic assumption that a feed-forward auto-
associator is capable of learning through back-propagation to recognize whether an unfamiliar sequence shares
in the combinatorial regularities characterizing some domain.

®It should be noted that a corresponding indication exists in most, but not all, determiners and agreeing nouns in English, as
an ending “s”, for instance, in most commonly an indication of the plural form of a noun.

57

250 T T T T T

—— Novel 4—letter English Words
...... Random 4-—fetter Strings
- Rondom Patterns

>

200

g

LI IO S A L R M I N R B B A

Number of Patterns

VIS TS GRS ST U SN S S U DS

o
w
N
[=]

Number of incorrect Bits

Figure 4.2: Generalizations; Network trained on 100 English 4-letter words.

In this experiment, we took the domain X to be a set of 1100 4-letter English words®, and trained a
network (here and henceforth, a back-propagation feed-forward 8n x 5n x 8n auto-associator, unless specified
otherwise, where n is the length of the letter sequence) on 100 randomly selected such words. We then tested
its generalization ability on the 1000 remaining untrained words, on 1000 randomly selected 4-letter strings,
and 1000 random bit patterns. If the network can recognize the degree to which new patterns share in the
regularities with the training set, it should generalize best with English words, then 4-letter strings, then
random-bit patterns. This is confirmed experimentally in figure 4.2, where 87% of English words have less
that 5 incorrect bits, versus 45% for random strings and 22% for random bit patterns.

Not only do new examples that share in the regularities of the training set produce fewer erroneous output
bits, but they are also easier to learn, as shown in figures 4.3 and 4.4.

The discrimination measure d between English words and random-bit patterns was 3.7, indicating good
discrimination. The value of d corresponding to discrimination between English words and 4-letter strings
was much lower, at 1.12. Experiments reported in chapter 6 will show, however, that such a measure can be
improved. In the following experiments we will summarize information on generalization and ease of learning of
a new input by reporting just the number of generalizations (the number of novel patterns with zero incorrect
bits) and the number of virtual generalizations. We observe (figure 4.4) that the number of generalizations and
virtual generalizations is the biggest for the set of English words, then for the set of random 4-letter strings.
For the random selection of 1000 random bit patterns, there were simply no generalizations.

4.5 Generalization

In this section we describe generalization results of our main experiments, addressing learning in Cartesian
product domains X = X; X X; X .. x X, for various values of n and sets X;. For clarity, all results
pertaining to virtual generalizations will be given in the next section.

For the cases n = 2 and n = 3, it was possible to test the entire set of untrained examples; the number of
generalizations (and virtual generalizations in the next sections) for these two cases is thus exact. For the cases
n = 4, 5, 6, complete testing was not feasible for computational time reasons (section 4.3.3). We therefore
tested a sample of T randomly-generated examples (with replacement). The number of generalizations plotted
(and later, the number of virtual generalizations) is thus an estimate, assuming unbiased samples. For each
value of the varying parameter (in this case n), we repeated our experiments 5 times {as in all subsequent

8The words used were an arbitrarily chosen subset of the most common English 4-letter words.

58

250 [~ — v : ey
200 7 -
@ r ————— Novel 4~letter English Words o
5 150 » ceisieen. Rondom 4-letter Strings B
B - -~~~ Random Patterns i

-8

s ™ -
H o -
é 100 =
3 r E
< o -
504/ .
ok =]

0 20

Number of weight updates

Figure 4.3: Number of weight updates to learn a new input, after training on 100 4-letter English words.

Yirtuct Generalizations
Generalizations

Novel Words Random Strings Random Patterns

Figure 4.4: The number of generalizations and virtual generalizations for the network trained on 100 English
4-letter words.

experiments), each time starting with new random initial weights, a new randomly selected training set, and
a new randomly selected testing set of T patterns in the cases n = 4, 5, 6. For n = 4 and 5, T was 10,000.
Forn = 6, T was 100,000 for generalizations and 10,000 for virtual generalizations. Table 4.1 summarizes this
information. All figures display the number of generalizations (or virtual generalizations) obtained for each
experiment, as well as the line connecting the median number of generalizations {or virtual generalizations)
obtained. Discriminations measures are shown in the following subsection.

59

Table 4.1: Sizes of the testing sets used in experiments.

n | Domain X Size Testing Set Size
2 | 676 = 26° 676
3 | 17576 = 26° 17576
4 | 456,976 = 267 10%
5 | 11,881,376 = 26° | 104
6 | 308,915,776 = 26°% | 10°
1065 """"" T T Ty TTrrTTTTYTY T T T E
s — Generdlizations (Median) ;
107t E
[o]
§ 10“? ° : 3
g f 3
s L °]
§ 0L o ? E
1025';' ¥
10’ i | TR PP Lonses L 1 "]
1 2 3 4 5 6 7
Length of string
Figure 4.5: Exponential growth of generalizations for networks trained on sets of size 50, with 4 = 26, as
n varies from 2 to 6.
4.5.1 Main results
The number of generalizations in networks trained on p = 50 examples in the case A = |X;| = 26 and n =

2,3, ..., 6is shown in figure 4.5, in a semi-logarithmic plot in which a straight line corresponds to the graph of
an exponential function. As n increases and the combinatorial complexity of the domain increases (as shown
in figure 4.6 7), we observe that the number of generalizations grows approximatively exponentially.

Although, with the exception of domains with a small degree of combinatorial structure, or combinatorial
complexity, (n < 3), the networks have been trained on a very small fraction of examples, the number of
generalizations outnumber the number of training examples by several orders of magnitude. We estimate,
for instance, over 4,000 generalizations in the case n = 5, although the training set size (50) corresponds to
4 x 107*% of the domain. For n = 6, we estimate 10,000 generalizations, with a training set size corresponding
to 2 x 107°% of the domain.

Figure 4.7 shows the number of generalizations as the size of the sets X;’s~ the alphabet size A—, varies, for
n = 4 and training sets of size p. The overall trend here seems to suggest that the number of generalizations
decreases with the size A of the alphabet, a behavior which could be explained by the following tentative

"These complexity measures, and the ones that follow, were performed on the “written” representations of the strings. What
the network is exposed to, of course, are their bit representations. Corresponding measure on the bit representations, however,
did not reveal qualitative differences in the shape of the curves.

60

8
]
4
]
4
3
3

—— Combinatorial complexity
25

13
o

>

oo d v e by v b v v e by by g

Combinatorial complexity
I
l"l'llll’llll‘lll‘lllll’lll'

(=]

N
(%]
S
w
an
~

Length of string

Figure 4.6: Combinatorial complexity of the domain X as n increases.

105 E T T | SIS M s S s e 4 Tty 3

- — Generclizations (Median) 3

10t E

o 'S b

o " o & -

§oF : . -

~§ 103 - <o © -

] E 3

3 E 3

& I °]

107 3
10’ FRNIPRNFINE SN WA SN NSRRI SIS RSP R S

10 15 20 25 30 35 40

Size of Alphabet

Figure 4.7: The number of generalizations for networks trained on sets of sizes 50, with n = 4, and 4 = 16,
21, 26, 31, 36.

account involving two opposite trends.

On one hand, since a letter, for a given position, is seen with a probability 50/4 on average during training,
its frequency during training is inversely proportional to 4. Due to this factor, performance, then, could be
hypothesized to decrease as A increases, for a fixed domain size. ® The domain size A*, on the other hand,
grows polynomially as a function of 4. We could thus hypothesize, for a fixed performance, a growth in
generalizations as A increases.

What figure 4.7 seems to suggest, then, if these two hypotheses are correct, is that performance decreases
as presentation frequencies of a given letter at a given position decrease, less rapidly than the opposite growth

8Such a performance decrease is in fact, although in a slightly different context, observed in figure 4.10 where the number of
generalizations is shown as a function of the size of the training set.

61

07 T T N L T T T

/&/9 Combinatorial cgmplexity

Combingtorial complexity and redundancy
=)
LA S S B LI T A S S s S B B

PO INN S W SN SUUT THUNS WY VN SH SN YO SUNY U SN TN ST R

(o] IS ENUNR S S AU S ST STIS TSI R

10 15 20 25 0 35
Size of Alphabet

'S
Qo

Figure 4.8: Combinatorial complexity of the domain X as A increases.

—— Generalizations (Median)

g
°

Generalizations

vl v o caaenad asvund b vaaaed 4

LELRRELL M S L B AL B R AL e R R L e R AL
<

p

O\ E

10 P ST | R N
15 20 25 30
Number of Hidden Units

O
w

Figure 4.9: The number of generalizations for networks trained on sets of sizes 50, with n = 4, A = 26, as
H varies

in generalizations due to polynomial growth of the domain with A at first, but more rapidly afterwards.

Performance thus follows closely the combinatorial complexity of the training set. This is supported by
figure 4.8, which shows how the combinatorial complexity of the domain X evolves as A increases. We observe
that the shape of the curve crudely approximates the shape of the curve of figure 4.7.

In figure 4.9, the relation between the number of generalizations obtained and the size H of the hidden
layers used in the networks is shown, as n = 4 and p = 50 are constant. The plotted points correspond to
compression ratios N : H from input to hidden units of 8:5, 8:6, 8:7 and 1. The number of generalizations is
surprisingly rather insensitive to these, although an expected increase, as the compression ratio approaches
1, occurs: When the number of hidden units is sufficiently close to the number of input units (and the equal
number of output units), the networks can more easily compute an approximation of the identity function,

62

1000 LA L A S A SR L B A S T ™

T

[I— Sum of Training Set size and Generaglizations (Median)

Generalizations

f 1) R TR SR S SRS

0 20 40 60 80 100 120
Number of training patterns

Figure 4.10: Sum of training set sizes and generalizations for networks trained on sets of sizes p, with n =
2, A = 26, as p varies

instead of relying on the combinatorial structure of the domain. The networks, clearly, never compute such
an identity mapping, since performance is never optimal on the domain. No matter how many hidden units
are present, then, they rely on the statistical regularities of the training examples. But adding more hidden
units decreases this reliance, thus inducing more generalizations. This is also indicated by the lower left graph
of figure 4.12, where discrimination is seen to decrease between H = 20 and H = 25, and although it rises
again, it never reaches it first value estimated at around 4.

Combined with the present graph, figure 4.12 concerning discrimination can help us develop the following
very tentative account: When the number of hidden units is small (H = 20), the network discriminates well,
with an estimated value of d = 4, as the structure of the domain is relied on. As H increases, discrimination
first decreases to around 2 as the combinatorial structure of the domain is less relied upon, but the networks do
not generalize better since the added hidden units have had the effect of both increasing generalization power,
(the networks implement the identity function closer) and decreasing generalization power (the networks rely
less on the structure of the domain). As H approaches 32, the size of the input and output layers, generalization
finally increases as the first effect overcomes the second. Discrimination increases again, to an estimated value
of about 3 (smaller that the first value of 4), as generalizations of patterns of the domain grow slightly faster
than generalizations of non-members of the domain. Such an analysis, we should point out, is highly tentative,
given the small number of data points available.

Figure 4.10 shows the sum of training set sizes and generalizations for networks trained on p patterns as p
varies, with n = 2 and A = 26 constant. While training patterns were not counted as generalizations earlier,
we include them here since the number of generalizations is small with respect to p, and since this graph can
be better interpreted as showing performance growth, or generalization ability, as a function of training set
sizes. The trend here indicates exponential growth for small values of p, asymptoting as training set sizes get
large. For small training set sizes, performance increases quickly as induction of the combinatorial structure
of the domain occurs. Past a certain value (around p = 30), this induction is mostly done, and generalization
ability does not increase as quickly, the networks having closely reached, with their limited capacity due to
their small sizes, their optimal performance for the given task. These results are in accordance with general
theoretical studies of generalization ability, as discussed in the previous chapter.

Figure 4.11 shows how combinatorial complexity evolves with the size of the training sets. The shape of
the curve, again, approximates that of figure 4.10.

63

10 v T T T Y T
T Combinatorial complexity
8 -
> ke 4
3 L J
2
IS i
3 L -
o
3 L E
<
S r 4
R .
a ol -
£ [1
<
2 -
[+ S SR SN S | I N
0 20 40 60 80 100 120

Number of training patterns

Figure 4.11: Combinatorial complexity of the domain X as p increases.

‘ * /\
v 2F E v 2F E
Generalizations Generalizotions
0 0
1 2 3 4 5 8 7 10 15 20 25 30 35 40
Length of Sequence Length of Alphabet
4
v 2f g
Generalizations
[+ A
15 20 25 k4 35

Number of hidden units

Figure 4.12: Discrimination measures for generalizations

4.5.2 Discrimination tests

As was mentioned in chapter 2, discrimination measures are crucial in our experiments, since no discrimina-
tion would indicate that the networks have failed to induce the combinatorial structure of the domains, by
generalizing equally on both members and non-members of the domain.

Figure 4.12 show estimates of such measures, obtained by testing random binary patterns in the same
conditions present for testing members of the domain. ® The upper left graph, showing discrimination for

®The chance, in generating random binary patterns, of producing one of the members of the domain X studied was very low
and not taken into account, since there are 2™ such binary patterns for sequences of length n, a number much greater than the
size of the testing set used. There was thus a 1 in 216/262 = 96 chance with n = 2, a 1 in 955 chance for n = 3, and a less than 1
in 400,000 chance for larger n's, to randomly generate a binary pattern corresponding to a pattern of the corresponding domain.
Furthermore, any errors produced by ignoring this factor would be towards lower estimates of d.

64

L4
<
P
<&

—— Virtual Generalizations (Median) ..~

...... Domain size

Virtua! Generdlizations

Length of string

Figure 4.13: Nearly exponential growth of virtual generalizations for networks trained on sets of size 50,
with A = 26, as n varies from 2 to 6.

generalization as a function of n, indicates that as the combinatorial complexity of the domain increases, so
does discrimination: As the number of statistical regularities of the training set increases, their capture by the
networks induce less acceptance of non-members.

The upper right graph, showing discrimination as a function of the alphabet size A, indicates the same
trend that was observed with generalizations. It can thus be tentatively explained by a similar account:
Discrimination decreases as presentation frequencies of a given letter at a given position decrease, less rapidly
at first than the opposite discrimination decrease due to polynomial growth of the domain with A at first, but
more rapidly afterwards.

The lower left graph, showing discrimination as a function of the number of hidden units H used, was
tentatively explained when the graph showing generalization as a function of H was studied.

4.6 Virtual generalizations

4.6.1 Main results

Figure 4.13 shows the number of virtual generalizations in the case of the networks trained on 50 input patterns,
forn = 2,3, .., 6, with A = 26 and p = 50. As the combinatorial complexity of the domain increases, large
numbers of virtual generalizations appear. For n = 6, for instance, we estimate that about 3,000,000 virtual
generalizations exist. The growth is approximately exponential, and the growth rate is quite close to that of
the size of X itself (shown in the dotted line).

‘ Figure 4.14 shows the number of virtual generalizations for networks trained on sets of size 50, with n =
4 and A = 16, 21, 26, 31, 36. We observe that the pattern is similar to that for generalizations, although
slightly less pronounced. The same explanation involving two opposite trends can thus be hypothesized.

Figure 4.15 shows the number of virtual generalizations for networks trained on sets of size 50, with n =
4 A = 26, and H varying. Again, the pattern is similar to that obtained with generalizations. Discrimination
in that case, as shown in the lower left graph of figure 4.16, follows a pattern that is almost similar, but not
quite: It steadily decreases between the points corresponding to H = 20 and H = 25, and instead of increasing
again, slightly decreases, until the point corresponding to H = 28 is reached, where it increases.

It seems, then, that virtual generalizations of patterns of the domain grow slightly slower than virtual
generalizations of non-members of the domain, explaining decreased discrimination up to the point of abscissa
H = 28. Past this point the relation is reversed.

65

E T T T T T T T T ‘7:
C — Virtual Generalizations (Median)]
105 . . .
= 8 ° 3
2F ¢ ° E
. = 3
3 o]
&
(3 = -
K] 1035‘ -3
3 = 3
£ E 3
= C 3
102 e -
1()1 SRS I " | IR IS SN NPT ST S S
10 i5 20 25 0 35 40

Size of Alphabet

Figure 4.14: The number of virtual generalizations for networks trained on sets of sizes 50, with n = 4, and
A =16, 21, 26, 31, 36.

108¢] 3
L —— Virtual Generalizations (Median)]
¢ <
10° £ o 3
e F E
s T © ° 3
R °]
B
é 104 k- ° ~
$ E 3
&) r 3
3 r]
2 - 4
b - 4
103 E
102 i A PO |
15 20 25 30 35

Number of Hidden Units

Figure 4.15: The number of virtual generalizations for networks trained on sets of sizes 50, with n = 4, and
A = 26, and H varying.

Figure 4.16 shows the sum of training set sizes and virtual generalizations for networks trained on p
patterns as p varies, with n = 2 and A = 26 constant. As with the case with generalizations, we show the
combined sum of both training sets sizes and virtual generalizations. The figure indicates, as was the case
with generalizations although here more markedly, that the number of virtual generalizations grows fast for
small values of p, and slow as these values get large.

66

1000 LR S L AR TS A A |

T 77 T7T
IR W I W

Virtual Generalizations
8
T

TS |

e Sum of Training Set size and Yirtual Generalizations (Median)

1o} IR TSN B U SRS

0 20 40 60 80 100 120
Number of training patterns

Figure 4.16: The number of virtual generalizations for networks trained on sets of sizes 50, with n = 2, and
A = 26, and p varying.

4 4 T
Yirluol Generafizations Yirtual Generalizations
w 2f - w2} \\/_ 1
0]
1 2 3 4 s 5 7 10 15 20 28 30 35 40
Length of Sequence Length of Aiphabet

Virtual Generaiizations

2t \/ :

15 20 25 30 3%
Number of hidden unils

Figure 4.17: Discrimination measures for virtual generalizations

4.6.2 Discrimination tests

If the number of virtual generalizations is to give us, as was argued in chapter 2, a measure of how well
the networks have induced the structure of the domains, we must also, as was the case with generalizations,
measure how well the networks can discriminate between virtual generalizations of members of the domain and
spurious virtual generalizations obtained for non-members of the domain. Figure 4.17 shows such measures.
All trends are strikingly similar to those obtained with generalizations, except for the case of discrimination
varying with hidden units, which was discussed above. We should note, however, that discrimination is under
2 for experiments done with n = 2 and n = 3, with an alphabet size of A = 26. This experiments, thus, loose
their value if it were not for their contribution to show the overall trend in the figures.

67

4.6.3 Weight Updates

In all previous experiments investigating learning in the combinatorial domain X = H:Z’ X;, we allowed a
potential virtual generalization to be learned with a maximum number of 5 trials. The learning rate for such
learning was empirically chosen to be 20 times larger that the learning rate used for original learning of the
training sets (the reader is referred to the last section of this chapter for values of these). ° It follows, then,
that all numbers previously reported, pertaining to virtual generalizations, were lower bounds: Some items,
maybe, could have been learned with different learning rates or with more learning trials.

Our original intuition, however, was that since patterns of the testing sets shared in the combinatorial
structure of the learned patterns, they could be learned with few learning trials with no interference, and if
50, a choice of a large enough learning rate could result in a “one-trial” learning.

In the linear, no hidden units case , a new pattern can be learned in just one trial. This is because, if W
is the weight matrix of a network having learned the training set, the new matrix W,.,, that has learned the
pattern P with the delta learning rule with a learning rate 7 satisfies:

WiewP = P
if

n= oo

12"
since
Woew = W — 5 (WP - P) PT

In the linear case, then, any pattern can be learned in one trial given an adequate learning rate. A pattern
which was successfully learned in ¢ trials and did not produce any interference might not, however, be learned
in one trial and still produce no interference, because there is no reason to believe that the resulting matrix
after ¢ learning trials will be equal, in general, to Wi, ,s,.

This is because, if W, is the new matrix obtained after ¢ learning trials of P at a learning rate 7, ¢ recursive
applications of the delta rule

Wy = W — n(W,_,P~P)PT

il

yields

W, = (I-nPPTY'W + f(t)PPT

It

where I is the identity matrix and f{t) is a function of ¢ found by recursion. There is no reason to believe,
one can verify, that the equation

Wi = Woew = W — n (WP~ P) PT

is verified with

10Except for the cases where n was 2, where that learning rate was 40 times larger.

68

25 1 1 I 1 25 i I i 1
:. 0.08 4 20+
207 A.._,.é 0.2/0.1]
. ~-7 4+ 0.05
L /, < Tl.. .
) r JAY F‘
s L / :
3 15k Sl . 15F
L] . ’ /! ; 1
S [
B r N // S
c L h / R
s | R
3 10F R KA . 1of
2 [l
S A colR
— L N A 1
S L ./ /7
3 A 5
S ; b r
€ 02 4 7.
3 5o
=z L 7. 0.01 L
[b
L@
or . o .
-5l ! ! ! ! -5l ! ! [;
1 5 10 20 1 5 10 20
Maximum number of learning triais Maximum number of learning trials

Figure 4.18: Number of virtual generalizations obtained with various learning rates and number of weight
updates, in a network trained on 100 patterns, with n = 3, 4 = 26 and H = 15. The numbers adjacent to
the curves are the learning rates used.

_ 1
I1P|I”

n

Within a generalization task for a structured domain, however, we hypothesize that W, and W, .., although
different, would both lead to little interference with the patterns of the training set correctly associated with
w.

To test this hypothesis, we first conducted an experiment testing the variability of the number of virtual
generalizations obtained with various learning rates and number of weight updates. A sample of 100 patterns,
with n = 3, A = 26 and H = 15, was tested on a network having learned 50 other patterns of the same
structure with a training learning rate of 0.01.

Figure 4.18 shows the number of virtual generalizations obtained with various learning rates and maximum
number of weight updates. We observe rather large variability, but there is a clear and predictable trend: The
number of virtual generalizations starts high and grows slowly, if at all, with the maximum number of training
trials allowed for large learning rate, while it starts low but “catches up” for small learning rates, where a
greater number of trials are needed. With a learning rate of 0.08, for instance, only 1 virtual generalization is
found in one trial, but 20 are found if 20 learning trials our allowed. A much larger rate of 0.4, on the other
hand, allows 8 virtual generalizations to be learned in one trial, 16 virtual generalizations to be learned in less
that 5 trials, but only one more in less than 20 trials.

The same testing set as described above was then used to approximate the maximal number of virtual
generalizations for the small problem considered. With a large number of weight updates allowed (200) and
a very small learning rate (0.01), 24 virtual generalizations were found. To test how many of these could be
learned in one trial, each pattern of the testing set was subjected to the learning algorithm with increasingly

69

larger learning rates (the starting point was 0.01, the last point was 1.5, and the grain was 0.001) until the
individual error on the pattern was 0. The training set was then tested for interference. The number of virtual
generalizations found that way was 22. This restricted experiment, then, seems to indicate that with rather
high probability, a virtual generalization can be learned in on trial, since out of an estimated 24, only 2 could
not be learned in one trial.

We should also note that, although again clearly calling for further investigation, this experiment confirms
our hypothesis that the number of virtual generalizations reported in all earlier experiments were estimated
conservatively: With a learning rate of 0.2, figure 4.18 indicates 17 (out of an estimated 24) virtual general-
izations, when the maximum number of learning trials is 5, as was the case in our experiments.

4.7 Better performance

Although we have, so far, obtained quite large numbers of generalizations and virtual generalizations, these
have always been small compared to the sizes of the corresponding target domains. The networks, it can be
hypothesized, had too little capacity to learn to generalize very well 1.

With alphabet sizes A of 26, they were, during training, presented with only two occurrences of a given
letter at a given position, on average.]

In this section, we present results pertaining to networks learning a domain X = Hz? X; with a smaller
alphabet, in order to confirm our hypothesis concerning the limited capacity of earlier networks. We chose
a domain characterized by n = 4 and A = 6. The size of the training set was, again, p = 50. For a given
position, a letter was thus seen, on average, about 50/6 & 8 times during training.

As before, all experiments were repeated five times with different randomly chosen training sets and initial
weights. Testing sets for generalizations and virtual generalizations consisted of all 1,296 patterns representing
the domain X, (with the exception of patterns of the training sets) and discrimination measures were performed
with five randomly selected subsets of 1,246 patterns. Since we were expecting better performance, because
of the small value of A, we increased the size of the hidden layer to H = 30 assuming that discrimination
would still be high. '* Members of the domain were coded as before, with the exception that values of 0.1
and 0.9, instead of 0 and 1, respectively, were used. (These values were also used for random patterns used
for discrimination testing). Use of such values were found to increase generalization capability, as we will see
in chapter 4. Both training and testing error criterion had a value of 0.4, relative to the target activations of
0.1 or 0.9. (An output unit was thus expected to be “on the right side” of 0.5, with no margin around that
value as was the case in the previously reported experiments. Since discrimination was high, as we will see,
this was not a problem).

Figure 4.19 shows the number of generalizations and virtual generalizations obtained with such networks.

We observe a median number of generalizations of about 700, and a median number of virtual generaliza-
tions of about 490. The networks, then, generalize on average to about 56% of the domain, while they has been
trained on 4% of the domain. Taking both true and virtual generalizations together, we find that, on average,
92% of members of the domain are either generalized or can be learned without causing any interference. For
the two most performant networks, that proportion was about 98%.

With such few letters in the alphabet, the networks, also, discriminate particularly well. Figure 4.20 shows
the related discrimination measures for virtual generalizations, where the same (randomly chosen) training
sets and testing sets were used when testing for generalizations and virtual generalizations of members and
non-members of the domain.

In our testing sets of size 6* = 1296, only one virtual generalization was found when testing random binary
patterns, in all of the five experiments combined. We can derive a conservative lower bound on discrimination
for generalizations, assuming a “faked” one generalization in each experiment. Such a lower bound is about
6.5.

For virtual generalizations, figure 4.20 indicates that all measures are well above 2, with a median of about
4.

11The emphasis here is on learning, since there does exists a weight configuration, where each letter in the string is auto-
associated individually without any consideration for the context in which it stands, for which the networks can perfectly auto-
associate all members of the domain. This issue will be discussed at length in the next two chapters

12There was thus more than 6 hidden units per position, with A = 6. In spite of this over abundance of hidden units,
generalization, as will be seen, was high.

70

1500 —
Virtual Generalizations
I Generalizations h
Domain Size el Training set
1000 -
500 -
[¢]

Figure 4.19: Median number of generalizations and virtual generalizations for networks trained on p =150
patterns, with n = 4 and A = 6 (5 repetitions).

Discrimination performance: Virtual generglizations 7
§ Discrimination performance: Generalizations

0 Generalizations Yirtual generalizotions

Figure 4.20: Discrimination measures with n = 4, 4 = 6, and p = 50 (Five repetitions)

4.8 Noise resistance and pattern completion capabilities

We present, in this section, experiments investigating properties that are typical of memory models: Noise
resistance and patterns completion abilities.
4.8.1 Recovery from noise

In a first experiment, we tested all five networks used in the experiment reported in the last section on
randomly distorted patterns of the domain. More precisely, each component of the vectors representing the
members of the domain was either increased by a random value of at most 0.2 when its original value was

71

1500 —
R Virtual Generalizations
r WY Generalizations 5 b
Domain Size SRR Troining Set Generalizations
1000 -
500 -
o

Figure 4.21: Recovery from noise

0.1, or decreased by a similar value when its original value was 0.9. The distortion, thus, always pointed
towards 0.5, and changed a component, on average, by a fraction of 10% of its maximum allowed range, with
a maximum change of 20%.

Figure 4.21 shows the number of true and virtual generalizations obtained, distinguishing between gener-
alized patterns that belonged to the training set and generalized patterns that did not.

All 50 distorted patterns of the training set were correctly associated, and the number of generalizations
and virtual generalizations were almost similar to those derived from undistorted patterns.

Such performance suggests that the non-linearity of the activation function is crucially used by the networks,
as the weights need to learn to rely solely on whether a bit is on one side of 0.5 or on the other and as, for
each hidden or output unit, the weighted sum of individual distortions of activities of all their lower adjacent
units is not enough to move the sum of activities to the non-linear portion of the sigmoid. (Although 80% of
the weights had a magnitude of at least 0.1, and roughly half were negative).

4.8.2 Pattern completion

The following experiments was aimed at testing pattern completion capabilities of the network. In the first
one, we systematically “zeroed out” out 2 bits in the 8-bit representations of the letters of the domain. That
is, we chose randomly two positive bits for each representation of a letter and flipped it to its corresponding
opposite value. Each 4 letters of a pattern representing a member of the domain, then, were, with four bits on
on average, half “destroyed”. The target patterns were the original undistorted patterns. Figure 4.22 shows
the performance of the networks on the modified patterns.

We estimate a median number of 10 patterns of the training set which could be learned with no interference,
(that is, which left intact performance of the original, unmodified, training patterns), and a median number of
about 200 virtual generalizations which were not from the original training set. No patterns were generalized.

Another experiment investigated how the network reacted to presentations of patterns that had one letter
“zeroed out”. That is, a filler representing any of the six letters in the domain was systematically replaced by
the null vector in one specific position. Note that on average, fillers will have 8/2 = 4 bits on. So “wiping out”
a letter consisted in flipping, on average, 4 bits of one of the letter representations making the patterns. It
should be noted that since the letters in a sequence are uncorrelated, we should expect very poor generalization
if the network learns to behave in a systematic way. This is confirmed in figure 4.23, which shows the (small)
number of virtual generalizations obtained. No generalizations were obtained.

We estimate a median number of about 16 patterns of the training set which could be learned with no
interference, and a median number of about 288 virtual generalizations which were not from the original

72

1500

- TR Virtugl genergiizations . h
Domain Size i Virtual generalizations in troining set

1000 -1

Figure 4.22: Pattern completion

1500
+ iy Virtuol generalizations . 1
Domain Size SRR VYirtual generalizations in training set
1000~ -
500 -
[Training_set size 1
0

Figure 4.23: Recovering from one zeroed out letter

training set,
It is interesting to note that, although the bit distribution of the letter representations varied with the
representations, the letter distributions at the “zeroed out” position, for patterns which were reconstructed

through learning, was completely even. We show below the randomly-generated 8-bit representations of the
letter used.

73

{1, 0, 0, 1,0, 1,1, 0} /*x A/
{1,0,1,0,1,1,0,0} /*xB %/
{0, 0, 1,1, 1,1, 1,1} /xcC =/
{0, 0, 0,1,0,0,0,1} /%D =/
{1, 0, 1,0, 0,0,0,1} /*E =%/
{1, 0,0,0,1,0,0,0} /*F */

Although some representations, like the ones corresponding to D and F, have only 2 bits on, patterns with
such letters in the zeroed out position were not predominant in the set of virtual generalizations obtained.
In fact, all letters had an equal chance of figuring at the “zeroed out” position. The networks, thus, did not
choose to learn to reconstruct the patterns with missing letters that were the closest, in term of incorrect bits,
to the null vector corresponding to a “wipe out” position.

4.8.3 Discussion

The experiment reported above indicate that our networks fall short of presenting the kind of pattern comple-
tion ability that memory models require. Although noise resistance is rather good, the patterns of the training
set were not “completed” in a significant manner. This might not be so surprising since the networks are
feed-forward and thus lack recurrent connections on the input and output units. Such recurrent connections
have been shown to enhance pattern completion ability with back-propagation (Almeida, 1987).

4.9 The need for non-linearity

All the networks we have used in our experiments have a non linear activation function. In this section, we
report on small experiments involving learning the domains with a linear (the identity) activity function.

In a first series of simulations, we attempted to replicate, with the same networks and under the same
conditions except for the use of the linear activation function, the simulation performed on the domains with
A = 26, p = 50 and n =4. Five randomly chosen subsets of 50 patterns representing members of the domain
were thus generated, and were trained on five networks with different random initial weights, with the same
architecture that was used earlier.

It turned out that is was impossible to conclude this first series of experiments. Various learning rates
were used, and large numbers of epochs were allowed (more than 5,000), but the networks could not learn the
training sets to criterion, although such learning could be completed in a few hundred epochs at most by the
non-linear networks.

In a second series of experiments, we repeated our approach, but this time for the much easier problem,
reported earlier in the case of non-linear networks, consisting in learning the domain with p = 50, n = 4 and
A = 6. Figure 4.24 shows the numbers of generalization and virtual memories obtained, and compares these
with the corresponding quantities obtained with non-linear networks.

The linear networks perform clearly better, with an estimated median number of generalizations of about
1,060, which represents about 82 % of the number of patterns in the domain.

Figure 4.25 shows results of discrimination measures, again comparing them with the corresponding mea-
sures obtained with the non-linear networks, where the same (randomly chosen) training sets and testing sets
were used when testing for generalizations and virtual generalizations members and non-members of the do-
main. The linear networks, clearly, discriminate much less. Judging from these results, it can be hypothesized
that these linear networks “attempt” to bypass the regularities of the training sets and try to approximate the
identity function. Since the size of the hidden layer, in the experiment reported here, is just slightly smaller
than the size of the input and output layers (H = 30), the approximation is possible. It is far from perfect,
but as the rather good discrimination measures of value above 2 show, it is good enough to induce very good
generalization. For harder problems like those where the alphabet size A is larger and/or the size of the hidden

layer is reduced, however, such an approximation is not possible any more and the linear networks, therefore,
cannot learn the training sets!

T4

1500 T T
: = Virtual Generalizations
- = Generolizations
Domain Size w8 Training set
1000t~ —
500 I~ -
[
0 Linear Non-linear

Figure 4.24: Comparison of generalization by linear and non-linear networks

8 T T
o 4
&b Discrimination meosures for -
L qenerclizations 4
4= -t
29 .
L 4
0
0 Non—linear

Figure 4.25: Comparison of discrimination for linear and non-linear networks, learning the same task

4.10 Varying the error criterion in training and testing

4.10.1 Generalizations and virtual generalizations

In all our previous experiments, we have used a constant error criterion, (here and henceforth €) of 0.4 for
training, and an error criterion for testing (here and henceforth ¢,) of the same value.

The following simulations were aimed at estimating the dependence of the number of generalizations and
virtual generalizations on these two quantities. All the following experiments were conducted with 4 = 26, H
= 20, p = 50 and n = 4, testing being performed 5 times with different initial random weights and training
sets. 10,000 random binary patterns and 10,000 random patterns of the domain were used for testing. It
should be mentioned that in this experiment, for better comparison purposes, the same (randomly chosen)
training sets and testing sets were used when testing for generalizations and virtual generalizations of members

75

Generalizations Generalizations

Generalizations

Figure 4.26: Generalizations and virtual generalizations obtained with various values of € and ¢;, for networks
learning the domain withn =4, 4 = 26, p =50 and H = 20

and non-members of the domain.

Figure 4.26 combines semi-logarithmic graphs obtained with various values of ¢ and ¢,. The dependence
of the numbers of generalizations and “spurious” random binary pattern generalizations on the testing error
criterion e, obtained with different values of the training error ¢, are shown on graphs appearing on the left
side of the figure, while the corresponding numbers for virtual generalizations are shown on the right side.
The relative positions of both the generalization and virtual generalizations curves for the various values of €

and €, will be shown in a separate figure.

76

Generalizations ‘ ' 0 E _ Vituol Generalzations o ' 3
Generalizations: Random bit Patlerns 5 Virtual Generalizations: Rondom bil Pattems]
3 4n 10° e E
E c E E
F ¢t
BT
3 £ 'k E
3 gk
r ¥
3 B0’k
3 B :
L . .3 L 4
- Traning Cteron: 0.2 £ 1L 1
i ‘]
Dk AL y A A, " 1 101 k L 1 1
1 2 3 4) 6 1 2 3 4 5 §
' Testjnq Criterion (1‘0)() ' 6 ‘ Test[inq Criterion (10X) ,
E ___ Ceneralizations 10 E— Virtuol Generalizations 3
Generafization: Random bit Pattems . Yirtuot Generalizations: Random bil Pattems]
3 kL 105 3 E
3 ic E E
£ 1 F]
L 10
3 -+ fq* 3 E
3 A P F E
C Rt ¥
L A, ® 10° 3 ' E
g A O 4
b ‘ 3 S .. o 4
. T £ 102 - I Training Criterion: 0.3 i
Training Criterion: 0.3 A E
i i ki . i ! 101 [N ! N i ! Laa
{ 2 3 4 5 6 { 2 3 4 5 6
_ [Testing Criterion (10X) 5. Testing Crilerion UrOX)
— Generalizations . 10 — Virtual Generelfzct‘»ons 1
: - .. Generalizations: Random bit Pekterns ... Virtual Generalizations: Random it Patterns
3 105? E
L L cA J
to'e :
i A ; g]
3 -4 103 3 A E
: A 3 3
L. . I Training Criterion: 0.
Training Criterion: 0. i 3 100G G 041
. . , . 10'L s . . .
2 o3 4 5 6 { 2 3 4 5 6
Testing Crilerion (10X) Testing Criterion (10X)

10 £ T ™ r T T T Y 3
3 —— Training Error Criterion = 0.2 b
Fooe Training Error Criterion = 0.3 p
r - Training Error Criterion = 0.4 B
- 5 Training Error Crterion = 0.5 b
0% E
e k]
€
3 - 4
o
AT -
3 10k E
1 £ 3
8 E p
o L 4
10 E
101 - L Lt s { " Lo

Testing Error Criterion (10X)

Figure 4.27: Generalizations: Comparison with training epsilon and testing epsilon varying.

The graphs displayed on the left side of the figure suggest an approximately exponential growth of both
spurious and domain generalizations as the training error criterion ¢ grows, for all values of the testing error
criterion €;. The rather constant height between the approximately parallel curves corresponding to domain
and spurious generalizations also suggest that no matter how harsh the training error criterion is, the number
of spurious generalizations is always almost constantly proportional to the number of domain generalizations,
That proportionality constant is about two orders of magnitude, which loosely corresponds to a discrimination
measures of 2.

Graphs displayed on the right side of the figure, pertaining to spurious and domain virtual generalizations,
suggest that these grow rather less exponentially with the training error criterion e. We observe, again, a rather
constant height between each pair of curves corresponding to spurious and domain virtual generalizations,
that similarly suggests that spurious virtual generalizations are almost constantly fewer than domain virtual
generalizations, by about one order of magnitude.

Figure 4.27 shows how the various domain generalization curves as a function of the testing error criterion
€, obtained with various values of the training error criterion ¢, compare. The graph suggests an only slight
loss of generalization power, estimated at a maximum of one tenth of an order of magnitude, for a given testing
error criterion, when training error criteria are decreased. High precision learning of the training set does not
seem, then, to be crucial in the networks’ generalizing performance. So, for example, if one will test with a
testing error criterion of €; = 0.5, there is no use in training with a harsh 0.2 error criterion, which will slow
down (sometimes dramatically) the training process, if one is only concerned with generalization power.

Figure 4.28 shows how the corresponding virtual generalization curves compare.

In this case we note that the loss of virtual generalizations due to the use of a “harsh” training error
criterion €, for a given testing error criterion ¢, is more severe, but seems to diminish as larger ¢, are used.
This loss is about an order of magnitude for ¢, = 3, half of an order of magnitude for ¢; = 4, and less that a
tenth of an order of magnitude for ¢, = 5.

It should be mentioned that, assuming correct generalization of behavior across various domains, the graphs
above indicate that by our choice of error criteria € and ¢; of 0.4 in our previous main experiments, we have lost
about one order of magnitude of virtual generalizations, but hardly any generalizations, by chosing a testing
error criterion of 0.4 instead of 0.5.

4.10.2 Discrimination factors

We study, in this section, the dependence of discrimination measures on both € and ¢;. Figure 4.29 shows
discrimination measures when ¢ and ¢, vary, for generalizations. Due to the parallelism of the spurious and

77

M| T T T A M
o Training Error Criterion = 0.2 3
C Training Error Criterion = 0.3 3
- Training Error Criterion = 0.4 b
Troining Error Criterion = 0.5 h
10°E 3
o - 3
|4 - p
2 L 4
A]
°
3 10tk 3
? & 3
S E 1
= C p
3 o -
< L J
>
10%%- 3
102 NP IR IR AP SPU T PIr S
1 2 3 4 5 6

Testing Error Criterion {10X)

Figure 4.28: Virtual Generalizations: Comparison with training epsilon and testing epsilon varying.

10 T A e . o

" N Used in experiments E

L P Training Error Criterion = 0.2 A
....... Training Error Criterion = 0.3

3 - Training Error Criterion = 0.4 4
sk ° Training Error Criterion = 0.5

Generalizations: Discrimination Factor d
N
i

] PRSI AT E ST I T AP AT RSP AT e

1 2 3 4 5 6
Testing Error Criterion (10X)

Figure 4.29: Generalizations : Discrimination factor d for various values of training and testing epsilon .

domain generalization curves seen earlier, the graph is closely patterned after the graph shown in figure 4.27,
the trend being reversed. This similarity can simply be explained by the fact that when Py, the probability
that a member of X is a generalization, and Pg, the probability that a non-member of X is a generalization,
are small, the discrimination measure d close to log(Px/Pg) As was the case with generalization power,
discrimination power, for a given testing error criterion €, is not much different across various training error
criteria . Figure 4.30 shows discrimination measures when training and testing error criteria ¢ and ¢, vary, for
virtual generalizations. Again, and for the same reason, the graph is closely patterned after the corresponding
graph shown in figure 4.28, the trend being reversed. Discrimination power, for a given testing error criterion
€¢, varies more across various training error criteria ¢, and it is critical here since the discrimination values are
around 2. :

The choice of a value of 0.4 for testing and training error criteria in our main experiments seems to be

78

—rr r T . T
— Training Error Criterion = 0.2

[e Training Error Criterion = 0.3 A Used in experiments
- Training Error Criterion = 0.4
" o Training Error Criterion = 0.5

Virtual Generalizations: Discrimination Factor d

3 4
Testing Error Criterion (10X)

Figure 4.30: Virtual Generalizations: Discrimination factor d for various values of training and testing
epsilon

close to an optimal choice: we assured a discrimination measure above 2 (a reasonable value in most human
performance psychological experiments) while maximizing the number of virtual generalizations. As the graph
shows, a training and/or testing error criterion of 0.5, while improving generalization and virtual generalization
ability, would not have yielded satisfactory discrimination.

4.11 Discussion

The experiments conducted in this chapter suggest that a connectionist network of the most generic nature
is capable of learning to extract, from a small number of compositional representations coding instances of
a combinatorial domain, the systematic regularity of such a domain. Such extraction leads to generative
behavior, as exponential growth of both true and virtual generalizations is observed when the complexity of
the domain increases.

4.12 Experimental parameters

We review, in this section, relevant parameters pertaining to the simulations reported in this chapter.

In all experiments, the momentum was 0.9 and the error criterion ¢ was 0.4 both for training and for testing
of virtual generalizations, unless it was explicitly stated. The learning rate was 0.01 for training and 0.2 for
virtual generalization learning, except for n = 2 where the training learning rate was 0.005.

The vectors representing members of the sets X;’s were random binary vectors of length 8. H, the number
of hidden units, was linearly increased as n increased according to H = 5n, resulting in a constant compression
factor of 8:5 from input to hidden units. Initial weights were generated pseudo-randomly, with equal probability
in the interval [-0.5, 0.5].

Patterns in the training set were presented to the network in a random order during an epoch, and weights
were updated after each pattern. Because gradient descent suffers from the problem of local minima, some
training sets could not be learned in a reasonable time. When that happened we simply started the experiment
over. When the error for all examples of the training sets reached 0, we trained again for 10 epochs to ensure
stability. (Since weights are changed after each pattern presentation, a total error of 0 at the end of one epoch
does not guarantee that the next will still contain error-free patterns.)

All networks were standard three-layer feed-forward back-propagation networks, with bias on all hidden

79

Table 4.2: Experimental parameters

| Figure | X: A [X: n | X: Constraint | X: H | X: p | Epochs |
4.2 26 4 English 20 100 255
4.3 26 4 English 20 100 255
4.4 26 4 English 20 100 555
4.5 26 Varies | none Varies {5n) | 50 119-486
4.7 Varies | 4 none 20 50 164-259
4.9 Varies | 4 none 20 50 164-259
4.10 26 4 none 10 Varies | 15-1256
4.12 Varies | Varies | none Varies Varies | 15-1256
4.13 26 Varies | nomne Varies (5n) | 50 119-486
4.14 Varies | 4 none i 20 50 164-259
4.15 Varies | 4 none 20 50 164-259
4.16 26 4 none 10 Varies | 15-1256
4.17 Varies | Varies | none Varies Varies | 15-1256
4.18 26 3 none 15 100 264-385
4.19 4 6 none 30 50 25-41
4.20 4 6 none 30 50 25-41
4.21 4 6 none 30 50 25-41
4.22 4 6 none 30 50 25-41
4.23 4 6 none 30 50 25-41
4.24 4 6 none 30 50 20-29
4.25 4 6 none 30 50 20-29
4.26 Varies | 4 none 20 50 *
4.27 Varies | 4 none 20 50 *
4.28 Varies | 4 none 20 50 *
4.30 Varies | 4 none 20 50 *
4.29 Varies | 4 none 20 50 *

and output units. Computer simulations were performed with the back propagation simulator of (McClelland
and Rumelhart, 1988), where source code modifications allowed generation of the relevant measures.

Table 4.2 summarizes relevant parameters for our simulations. We only show minima and maxima for the
number of epochs during training displayed in the rightmost column.

80

Chapter 5

Distributed representations

5.1 Introduction

The connectionist representations that were used in all experiments reported in the last chapter were dis-
tributed: For a given network, an input unit participated in the coding of many different members of the
domain being learned. For a given structured concept of the domain being learned, however, the tensor prod-
uct representation scheme used coded each constituent of the member on a dedicated pool of units. Using
the terminology of chapter 2, then, the representations used were semi-distributed: While the constituents,
the fillers 2; € X;, were represented in a distributed manner, the roles these constituents played within the
structured member of the domain they belonged to were represented locally.

It could be argued that the performance, in terms of systematicity and generativity, of the networks
presented earlier was precisely due to our use of local role representations. Since all constituents with a given
role were coded on a unique and distinct pool of units, one could indeed conjecture that the networks learned
to independently associate each constituent with itself, without any consideration for the others, and it could
do so solely because the role representations were local. Such independent associations would require that the
networks have learned to dedicate pools of hidden units for each constituent. The weights of the networks,
then, would exhibit a vertical decomposition: For a given constituent, connections from its dedicated pool of
hidden units to other constituents would be null.

It is important to note at this point that such learning, if it is the kind of learning that occurred, is far
from trivial 1. It requires the discovery of the statistical regularity of the training sets by the networks which,
because of the full connectivity between two layers, are insensitive to permutations of input units as far as
learning and performance are concerned. 'These networks are thus “unaware” of the dedication of pools of
units to constituents of a given role that is induced by the particular distributed representation used, and have
to learn it.

Rephrasing the above using the connectionist construction of concepts theory terminology, such learning
would require that the networks have constructed a perfect cognitive map, (set of weights in this case) elimi-
nating the perspective dependence of the patterns of the training set. That is, the network weights would have
learned to process each pattern of the training set as a particular instance of an n-letter sequence, instead of
a perspective dependent random collection of bits devoid of any regularity.

Such a conclusion, that the performance obtained depended on the use of local tole representations, will
not follow, however, as we will show in the next section that the networks could not have possibly exactly
auto-associated each letter individually. We will, furthermore, make the point that for all the networks using
semi-distributed representations that we have used, there exists an equivalent network using fully-distributed
representations that would perform in exactly the same way. The use of local role representations, thus, was
not crucial for our experiments, as long as the weights of such an equivalent network can be learned. In the
last part of this chapter we will report on experiments suggesting that this is the case, as we will observe
that some networks using fully distributed representations can learn to perform as well as networks using
semi-distributed representations.

!The next chapter will report on experiments where the networks learn this.

81

Figure 5.1: Example of a network architecture which would allow for the independent auto-association of
individual letters of two-letter sequences, where each letter would be coded over 5 units.

5.2 Vertical decomposition

Let us suppose that our networks have recognized that the training patterns (“strings”) are all composed of n
subpatterns (“letters”) that are representations of members of the independent sets X;’s, and that they have
learned to auto-associate, for each training pattern, each subpattern of a given set X; independently of the
subpatterns of the other sets. Figure 5.1 shows a network architecture which would accomplish this for n =
2, if 5 units were used to code each letter in 2-letter sequences.

One could infer, then, the following two propositions:

1. The networks will necessarily perform perfectly on all untrained patterns of the domain, as long as each
“letter”, for each position, was presented at least once during training. This is because the network,
having learned to independently auto-associate every letter for a given position, will correctly associate
any untrained string containing these letters.

2. The networks will necessarily have learned to “dedicate” hidden units for each letter of strings of the
domain, and cross-connections between hidden units dedicated to ome letter and input units coding
another letter will be non existing. If it was not so, the networks, via hidden units responding to two or
more letters, would not auto-associate each letter independently.

3. When the number n of constituents does not evenly divide the number of hidden units used, a network
cannot, possibly, exhibit exact vertical weights decomposition, unless pools of hidden units with variable
sizes are discovered by the networks to auto-associate each constituent at a given location. Since each
constituent plays, in the domain we have chosen, a symmetric role with respect to the symbolic structure
it belongs to, it seems highly unlikely that such a variable size hidden unit spooling could be discovered Z.
It follows, then, that if weights vertical decomposition corresponded to the target mapping, the number
of hidden units used would be crucial for the performance of the networks. But as experiments reported
in chapter 4 have suggested, this is not the case: the relatively weak sensitivity to the number of hidden
units in terms of performance suggests the presence of highly distributed representations on the hidden
layers, rather than local. This observation concurs with the previous arguments according to which exact
weights decomposition could not possibly have occurred.

These two properties were not satisfied in our experiments: No network exhibited perfect performance on
the untrained members of the domain, nor presented vertical decomposition in the weights. Figure 5.2, for
instance, shows the weights developed by one of the networks reported in the previous chapter, with n = 4,
A = 26, p = 50, and H = 20. The error criterion used was € = 0.4. No vertical decomposition, as we can
see, occurs. For comparison, an example of such a decomposition is shown in figure 5.3. Such weights were

21t could be said that some hidden units could spontaneously turn themselves off to allow for even sized pools. This was not
observed, however.

82

Network weights for n=4, A=26, domain

put Layer

2

To Qut

o

_To Hidden Layer

From put Layer

Figure 5.2: The weights of a network having learned the domain with n = 4, 4 = 26, and p = 50, with
20 hidden units. No vertical decomposition is obvious

obtained when the technique of weights eliminations was used during training. A full discussion of this case
appears in in chapter 6.

We could object, here, that since the training set was randomly generated and since each letter, for a
given position, was presented only twice on average, a possible lack of presentation of a letter for a given
position might be responsible for the absence of vertical decomposition. Figure 5.4 addresses this objection,
as it shows the weights developed by a network learning the domain with n = 4, 4 = 6, and H = 20.
All letters, at a given possible position, appeared in the training set. The error criterion used was ¢ = 0.4.
Again, no vertical decomposition can be observed. We could still make the point that, since a loose training
error criterion € of 0.4 was used, and since out networks never achieve perfect generalization performance,
training stopped before the weights could possibly show any vertical decomposition. Furthermore, it could
be argued that the only way a network could possibly perfectly generalize to all untrained members of the

83

Network weights for n=4, A=15, domain

23
S
S

To Output Layer

To Hidden Layer

From Input Layer

Figure 5.3: Example of a network exhibiting vertical weights decomposition, in the case n =4 and 4 = 15.

domain would be to discover weights exhibiting “perfect” weight decomposition, thus exactly implementing a
symbolic system. This could well be true, although figure 5.5, which shows the weights of the same network
used in the previous figure, although this time a strict error criterion € = 0.05 is used, displays weights that
are surprisingly similarly unstructured. ® The error criterion used was the smallest possible one which allowed

3 A simple glance at the weights of the network can assure us of the absence of weights decomposition, but cannot convince us
that an approximation of such a decomposition has not been computed, even if the weights do not seem to present any structure:
Weights at a given layer corresponding to a vertically decomposed solution could be transformed by a matrix approximating
the identity matrix in such a way that the resulting solution would not be far from & vertically decomposed solution, and yet
look completely unstructured. Our observations, confirmed by others ((Sirat, 1990), (McMillan, 1991)) have been that weights
exhibiting structure are almost never seen. Statistical techniques as those used in chapter 7, however, can allow to entangle a
possibly hidden structure.

84

Network weights for n=4, A=6, domain

To Hidden Layer

Figure 5.4: The weights of a network having learned all patterns, with an error criterion ¢ = 0.1, of a domain
withn = 4, A = 6, and H = 20. The error criterion used was ¢ = 0.4 No vertical decomposition, again,

is observed

learning of the 50 patterns of the training set. Figure 5.6, however, shows the weights of a network having
learned all 16 patterns of a domain corresponding to n = 4, and 4 = 2, with an equally strict error criterion ¢
of 0.05. For this trivial problem, then, vertical decomposition, although far from Perfect, now clearly appears.

In another experiment, we constrained a network to perform weight vertical decomposition, by dividing
the set of hidden units into n groups of units, connecting each group with a unique pool of input and output
units coding letters for a given position. The architecture of such a network, presented previously in figure 5.1,
is shown again here for clarity in figure 5.7, for n = 2. With such an architecture, we first tried to replicate an
experiment performed in chapter 4, where the domain used corresponded to n = 2 and A4 = 26. The hidden
layer had 10 units, and was thus divided in 2 groups of 5 units. The training set of size 50 was semi-randomly
chosen, since we imposed the constraint that each of the 26 letters had to appear at least once in each position.
This constraint was satisfied by successively and randomly generating training sets, and keeping the first one
for which each letter of the alphabet appeared at least once for any of the two positions.

85

Network weights for n=4, A=6, domain

er

tput La

To Ou
v

er

To .I'Iidden l_,a

From Input Layer

Figure 5.5: The weights of a network 50 patterns, with an error criterion € = 0.01, of a domain with n = 4,

A = 6,and H = 20. There seems to be a “hint” of vertical decomposition.

It turned out that such a training set could not be learned by the “severed” metwork: 5 hidden units
were not enough for proper auto-association of 26 different letters. The equivalent “full” networks, thus,
needed extra units to learn the training set. When A was reduced from 26 to 20, the training set could
be auto-associated to criterion and the network, trivially, generalized perfectly on all 400 members of the
domain. Figure 5.8 shows such perfect performance, and compares the number of generalizations and virtual
generalizations obtained with the “severed” network and an equivalent “full” network, for the same training
and testing conditions. Figure 5.9 shows the vertically decomposed weights of the constrained network.

86

Network weights for n=4, A=2, domain

To Hidden Layer

From Input Layer

Figure 5.6: The weights of a network having learned all patterns, with an error criterion ¢ = 0.05, of a domain
withn = 4, 4 = 2,and H = 20. Vertical decomposition is better seen and seems to be approximated

87

Figure 5.7: Severed network architecture

400 T T .
o Iesting set siza N
- p
C Virtual Memories]
N]
" Generalizations]
200 3
1o0f 3
o L]

0 Severed Network Old Network

Figure 5.8: Comparison of the number of virtual generalizations and generalizations obtained with a “severed”
network constrained for weights decompositions, and a full network, for a domain with n = 2, 4 = 20, H = 10
and p = 40, where all letters at a given position appeared in the training set. The constrained network
generalizes perfectly on all patterns of the domain.

88

Weights for severed network

Figure 5.9: The vertically decomposed weights of a network having learned the domain with n

and p = 40, with 10 hidden units.

To Output Layer

&

2

E 2
From Hidden Lay

er

To H?ddpn La

& &

From Input.Layer .'

89

2, A

20,

5.3 Semi-distributed and fully-distributed representations

There are a number of reasons why distributed representations are important within the connectionist paradigm.
First, because they allow units to participate in the coding of many representations, they allow for fewer units
and increased parallelism. Second, networks using them are much more resistant to local damage, a property
which is characteristic of a wide range of cognitive processes. Finally, distributed representations can be, as
was mentioned in chapter 1 and formulated by Van Gelder (1990), non-concatenative representations, and

they can be non-isomorphic to the kind of concatenative representations used in symbolic systems.

5.3.1 Equivalent Networks

The distributed representations that were used in all previously reported experiments were semi-distributed,
since the role representations used were local. This choice of semi-distributed representations, however, should
not be crucial, since there exists, for each network computing any function of semi-distributed representations,
an equivalent network that computes the same function and uses fully-distributed representations. We show
the existence of such equivalent networks in the remainder of this section.

If R, is a distributed tensor product representational scheme mapping the p members C of X to their
respective connectionist representations R;(C) = Dy, then, denoting the set of constituents representations,
or fillers, used Fy = {fi}i=1,...n and the set of roles representation used Ry = {ry;}i=1,... n,

VCeX, Ri(C) = Dy = Y figm,
izl

If Ry is another distributed tensor product representational scheme coding members of X, using the same
fillers but different roles of the set Ry = {rz;}i=1,.. n, then,

VCEX, Ry(C) = Dy = Y fi®m,
i=1

If the role vectors in both R; and R, are linearly independent, and they span the same vector space, then
there exists an invertible linear transformation A that maps each vector 71; of Ry to each vector ry; = M(r1;)
of R,. It follows, then, that:

VCEX, Ry(C) = Dy = Y fi®m,
i=1

=Y fi®M(r,)
i=1

R»(C) is linear in ¥.7., f; ® r1,. It thus follows that there exists a matrix M such that

Ra(C) = M(Z fi®@r)

= M(R.(C))

90

Linear output units ~ (R1)

(Matrix M -1

Thresholding units (R2)

Thresholding layer

Output units

Original second layer of network

Hidden units

Original first layer of network

Linear units R2)

(Matrix M)

Input units R1)

Figure 5.10: Architecture of a network associating patterns represented by a distributed tensor product
scheme R3, and computing the same boolean function as a previous network where patterns where represented
by a tensor product scheme R; .The thresholding layer is made of one-to-one connections.

Similarly, since M is invertible, (it can be show that the inverse transformation from R;(C) to R3(C) is indeed
M,

VC € X, Ri(C)=M"(R,(C))

The two linear transformations M and M ~! can be implemented by two networks of linear units, where
each activation function is the identity function and the weights w;; on connections from a unit ¢ to a unit
J, for each network, are equal to the elements M;; and M,-;1 of the matrices associated with M and M1,
respectively.

Since we used linearly independent (in the examples of chapter 4, in fact, orthonormal)roles , it follows
that for any network we have used, there exists an equivalent network, using fully distributed representations
(where the roles are linearly independent) * and computing exactly the same boolean function: If R is the
original semi-distributed tensor product representational scheme used, and Ry is a fully distributed tensor
product representational scheme, then an equivalent network can be constructed by:

e Connecting to the input layer of the previous network the output of the linear network computing M.

o Connecting to the output layer of the previous network a row of linear threshold units thresholding at
0.5.

e Connecting to the outputs of these linear threshold units the input units of the network computing M =1,

The architecture of such equivalent networks is shown in figure 5.10.
It is important to note that when fully distributed representations are used, the original representations
of the constituents of X corresponding to the symbolic letters are not “concatenated” on the units used to

4Since each constituent plays a symmetric role with respect to the symbolic structure it belongs too, it makes sense to impose
this constraint. It should be noted that, in general, the roles played by various constituents of a symbolic structure are not
necessarily identical. This is not a problem for tensor product representations, as long as the roles are known. In most cases,
however, we might not even now what the roles are and how they are related. This is one of the drawbacks of the tensor product
scheme which, although it allows sub-symbolic representations, does rely on a priori symbolic descriptions of knowledge.

91

code the symbolic structure, but are spread out on all units, as the tensor product operation adds each repre-
sentation of all constituents together. Vertical weight decomposition is not, then, possible. With distributed
representations, in fact, it is not even possible, in general, to recover the representations of the constituents
from the representation of the structure they belong too. With the RAAM representational scheme, for ex-
ample, each connectionist representation of a symbolic structure, which is obtained at the hidden layer of a
non-linear network auto-associating constituents of that structure, admits an unbinding procedure that is not
exact: Such an unbinding procedure, that consists in presenting the hidden pattern of activity to the second
layer of the network, will not reproduce, exactly, the original constituents of the structure.

In the case of tensor product representations, the condition of linearly independency for roles does allow for
the exact recovery of the representations of any constituent of a member of X, however. This has been proved
by Smolensky (1987b), who has shown that recovering a filler f; from D comsists in taking the inner product
of D with a vector u;, where u; is the unique vector of the axis orthogonal to the hyperplane spanned by all

vectors of role vectors save r;, such that r;.u; = 1. For such a vector u;, the following equality, therefore,
holds:

iP
O fier)w=f (5.1)
izl
A summary of this proof is presented in appendix B at the end of this thesis.

5.3.2 Learning with fully-distributed representations

We have seen that for each network used in the previous experiments, there exists a network using fully
distributed representations that would perform in exactly the same way. It does not necessarily follow,
however, that such networks could learn to perform equivalently. In other words, it is not obvious at all
that a network such as the one shown in figure 5.10 could, when presented with the training patterns used in
the original network, learn to modify its original random weights in such a way that it could learn the required
original mapping.

We investigated if such learning was possible in a number of preliminary experiments. A five layer network
was first used, whose architecture was similar to the network architecture pictured in figure 5.10, with the
exception that no layer of thresholding units was used. A number of experiments were performed with the
- domain characterized by » = 2, and A = 26, using a randomly chosen training set of p = 50 patterns, using
the'same representations for letter constituents that were used in the experiments reported in chapter 4. Since
each letter constituent in a member of X does not play a privileged role within the structure it belongs to, we
chose role vectors that accorded as much importance to one constituent as to the other.

In a first set of experiments, the two role vectors chosen were orthogonal:

i

(1,1)
(1;"1)

L]
T2

1

The size of the hidden non-linear layer of the network used, was, as befére, H = 10 in this case.

In a second set of experiments, the following two non orthogonal, but linearly independent, role vectors
were used:

(1,2,1,0)
(0,1,2,1)

1
T2

In this case, then, the representations of the constituents of a member of the domain X overlap in a “graded”
way within the representation of the member, with the representation of the first member being centered on

92

Linear output units

XXCXXXA

Sigmoidal units

XXX XA

Sigmoidal units

Input units

Figure 5.11: Five layer network

the first half of the input units and the representation of the second member being centered on the second
half. Since such a member needed 32 units to be coded, the size of the hidden non-linear layer for the networks
used was H = 20.

Finally, a third set of experiments were performed with the following two role vectors, similar to the two
previous ones but involving less variance:

™1 =

~3
N
{
—~ o~
O =
-
-
-
N

The size of the non-linear hidden layers used was also H = 20.

In all three cases, the networks used were unable to learn to criterion (e = 0.4) the patterns of training set.
Various learning rates were used, but in all cases the gradient descent learning algorithm did not converge.
The networks, in fact, could not learn the training sets when local role representations were used.

There could be a number of explanations for the learning failure of these networks. First, the topology of
the energy landscape, when additional layers with different activations functions are introduced, is arguably
significantly more complex, in terms of local minima, than the topology of the energy landscape corresponding
to a simple three layer feed-forward network. If anything, more weights are being used.

Second, the use of a linear activation function can induce, for the weights on the connections to linear
units, large weight changes, since it does not squash a very small, or very large, weighted sum of activities
of a given unit. A small learning rate, therefore, needs to be used if the learning trajectory in the energy
landscape is not to oscillate. Such a learning rate might not, however, be adequate to ensure large enough
weights changes for weights on connectionist to non-linear units. 3

Since using two adjacent layers of linear units does not add any more computational power than using only
one layer, ® (it might help for learning, although in most cases it probably generates more local minima in the
energy landscape than anything else), a 4 layer feed-forward back-propagation was then used, consisting of a
standard 3 layer feed-forward back-propagation network augmented by an additional layer of linear units at
the output, as shown in figure 5.11.

The networks, this time, were able to learn the training sets, at great cost however: Over 2000 epochs
were needed on average, with the same learning parameters as were used in the corresponding experiments
described in chapter 4, where between 50 and 150 epochs were needed. Furthermore, the numbers of gener-
alizations found were, on average, smaller by two orders of magnitude than the numbers found in previous
corresponding experiments using local representations, and no virtual generalizations were found. Using local

5 A possible remedy would be to use different learning rates for different layers. Or insure that the same amount of weight
change is always performed, by modifying weights by a constant amount in the direction minimizing error.

8 The two layers can be compressed into one layer computing the product of the two linear transformation implemented by
each layer.

93

role representations, an attempt at quantitatively replicating results previously obtained also failed. In this
case, the same possible explanations presented earlier in the case of five layer networks can be made.

Instead of continuing experiments with the rather specialized and arguably unrealistic and non-viable
networks used in this section, we decided to directly use three layer feed-forward back-propagation networks
to show that the use of fully-distributed representations would not decrease the performance observed when
semi-distributed representations were used.

5.4 Auto-association with fully-distributed representations

5.4.1 Discussion

There are a number of side-effects, however, associated with the approach that consists in directly presenting
a three layer feed-forward back-propagation network with fully-distributed patterns.

First, depending on the kind of representation used for the roles, the activities of patterns representing
a member of X will not necessarily fall in the range [0, 1], nor necessarily in the range [-1,1], when fully-
distributed representations are used. In the case of sequences of two letters, for instance, the fully-distributed
representation of “AB” with

o=
i
~~
o
=
Nt

and the distributed representations for positional roles

1 = (1 3 1)
T2 = (i T 1)
will yield the fully-distributed representation
AB = (1,1,1,2,1,1,-1,0)

Neither the standard sigmoid activation function nor the hyperbolic tangent function

1 et — 7%
— tanh -
1 + e * an (x) e? 4 e~ %

s(z) =

can therefore be used any more.

If we are to use the sigmoid, this side-effect can simply be alleviated by successively performing, for a given

pattern, a translation on all activations to have them greater than or equal to 0, and a normalization to have

their values in the range [0,1]. A more systematic variant of this approach would be to perform the same

translation, and the same normalization by a constant factor, for all patterns of The domain. The space of
patterns, in this case, would thus be transformed by the following mapping

P + max,ep maxii; P (-pi)C

M:Pw M(P) = e
P + maxpep |[maxyep maxi; " (~pi)l|eC

where C is the vector with all elements equal to 1, D is the space of all representations p of members of X,
and p;, ¢ = 1, ..., dim(p) are the coordinates of p.

94

If this is done the transformed patterns might not, of course, be binary anymore. For the example case of
the pattern “AB”, for instance, a translation of 1 and a normalization will yield the representation

AB = (3 1, 3 09

Wity
Wiy
(=)
(711N
Wity
o
~

As we saw in chapter 2, we need to ensure, if all patterns are to be correctly auto-associated, that the error
criterion ¢ is chosen such that for any two (distinct) patterns P, and P, of D,

1Pl = [|1Paf] > e (5.2)

This can, unfortunately, lead to rather small values for e. It should be mentioned that, for quantitative
and qualitative comparisons with networks using semi-distributed representations, the constraint imposed by
equation 5.2 can be ignored. As was stated in chapter 2, the networks cannot, then, be considered as proper
auto-assocliators, but are recognizers of members of the domain, as long as satisfying discrimination from
non-members of the domain is obtained. Experiments performed with such recognizers will be reported later
in this chapter. ‘

5.5 Results

In this section, we present experiments comparing performance of networks learning the domain X with n
= 2, A = 20 and p = 40, when semi-distributed and fully distributed representations are used. A smaller
alphabet size and training set size, relative to corresponding experiments reported in chapter 4, was chosen
to allow for easier learning and better generalization. The network used was, as before, a standard 3-layer
back-propagation network. Each filler representing a letter was a 16-bit random binary vector (instead of 8 in
all our previous experiments), and the roles were the orthogonal vectors (1,1) and (1,-1). Each corresponding
vector was translated and normalized as described in the previous section. Since all possible activation values
for vectors of the domain were 0, 1/3,2/3 and 1, the choice of ¢ = 0.16 was enough to guarantee discrimination
of vectors of the domain. The network, with 32 input units, 32 output units and 28 hidden units, was chosen
with a small compression ratio, an increased number of hidden units facilitating learning.

Figure 5.12 compares the number of virtual generalizations and generalizations obtained with fully-distributed
and semi-distributed representations. To perform the experiments corresponding to the latter, we made sure
that, to ensure proper comparison, the semi-distributed representations we used had the same distribution of
activities, in the same range, as the fully-distributed ones: as results shown in figure 5.13 shows (these will be
discussed later), performance is quite sensitive to such a distribution.

We can see that the use of fully-distributed representations enhances performance, as a median number
of 109 generalizations are obtained, versus 21 when semi-distributed representations are used. The pattern
for virtual generalizations suggests that almost as many patterns that are generalized with fully-distributed
representations are “only” virtual generalizations when semi-distributed representations are used. That 1s,
they can be learned with no interference but not generalized.

Discriminations measures were performed for the networks reported above, with random patterns with
activations values in the set 0, 1/3, 2/3. It is important to mention that the particular choice of the role
vectors (1,1) and (1,-1) introduces a particular constraint on the form of the representations: The first half of
the input units will have values between 0.0 and 2/3 while the second half will have values between 1 /3 and
1. Tt could be that the network generalized so well on this sole constraint. We checked that this was not the
case by performing our discrimination measures with random vectors obeying that constraint. It turned out
that none of the 360 random vectors, in each of the five repetitions of the two experiments, was either a true
or virtual generalization. A conservative lower bound for discrimination, with fully distributed representation,
can be estimated by assuming that we had seen 1 true or virtual generalization in each experiment. The value
of this lower bound is about d = 4.9.

Figure 5.13 compares the number of virtual generalizations and generalizations for different activity distri-
butions, and shows how performance is modulated by such distributions. The first two sets of bars, from the

95

Error criterion = 0.16

200 T T

: i Virtual Generglizations

L Generatizations p
150 -
100~ —

SO ~
0
0 Distributed Semi—local

Figure 5.12: Comparison of the number of virtual generalizations and generalizations obtained with fully-
distributed representations and semi-local representations, with » = 2, 4 = 20 and p = 40.

400 T T T T
L B virtual Generalizations i
: Generaolizations
200
[}

Distributed S-D Equiv. distribution S~0 1/3-2/3 §-0 0-1

Figure 5.13: Comparison of the number of virtual generalizations and generalizations obtained with semi-
local representations, with various distributions of activities.

left, indicate performance corresponding to the use of fully-distributed representations and semi-distributed
representations with the same distribution of activities. The next set indicates performance for semi-distributed
representations where the two role vectors were (0, 1) and (1,0) and patterns were translated and scaled so
that their activities would fall in the set 1/3, 2/3. The last set of bars indicates performance when the role
vectors are (0,1) and (0,1) and no translation nor scaling is performed.

We see that scaling can increase performance by almost an order of magnitude.

96

\

@ 1,1y

.
_:,@1--

.....

(LT LET Cpn

L
[
1
'

Figure 5.14: Comparison of the uses of the Euclidean norm L, and the norm Lo

5.6 Recognition with fully-distributed representations

As was mentioned earlier, when the constraint on the error criterion ¢ is ignored, the networks used are
not proper auto-associators, but are simply recognizers of members of the domain. To merit this label the
networks, of course, need to adequately discriminate between members and non-members of the domain.

In the experiments reported in this section, we will use the standard Euclidean norm Ly, instead of the
previous norm L., as the use of the latter is not justified anymore and as the Euclidean norm 7 generally
allows easier learning and better generalization with the back-propagation gradient descent algorithm (2.4.4).

As shown in figure 5.14, the use of the Euclidian norm now constrains an auto-associated output pattern
to lie in a hypersphere of radius € centered on the input pattern, instead of a hypercube centered on the input
pattern and of side lengths 2e. ‘

In figure 5.15, the numbers of generalizations and virtual generalizations obtained with networks learning
the domain with n = 2 and A = 26 using both semi-distributed and fully distributed representations are
compared. The role vectors used were the orthogonal vectors

i

1,1
(1,1)

™
T2

i

in the case of fully distributed representations, and the previously used orthonormal unit vectors of R; in the
case of semi-distributed representations. The experiments were conducted in the same conditions described in
chapter 4, with p = 50 and H = 10.

The average number of generalizations is estimated at about 500. Such a number, then, yields a generaliza-
tion performance of about 75%. The number of generalizations obtained with semi-distributed representations
is much smaller, estimated at about 80 on average. Figure 5.16 shows the corresponding discrimination mea-
sures, which were performed in the same way as in the last experiments, with random patterns having discrete
random values equal to the possible values of patterns of the training set, with the particular constraint that
the first half of the input units had activation values between 0.0 and 2 /3 while the second half had activation
values between 1/3 and 1. We see that the discrimination of the networks using fully-distributed represen-
tations is high, with an estimated value above d = 6, for generalizations, compared to a value of about 1.2

"It should be mentioned that the argument concerning the existence of equivalent networks computing the same function with
semi-distributed representations and fully-distributed representations fails when the Euclidian norm is used for error criteria,
unless roles used for both experiments are orthonormal. In this case, the transformation matrices corresponding to M and M !
are rotation matrices that preserve the norm of the vectors they transform, and the layer of linear threshold units (figure 5.10,
which is only appropriate for the Lo, norm, is not needed.

97

Error criterion = 0.5

800 T T

L Virtuol Generalizations & J

Generalizations

r Testing set size]
600 -
400 -
200 b -

[}
0 Distributed Semi-locat

Figure 5.15: Comparison of the number of generalizations and virtual generalizations obtained with fully-
distributed representations and semi-local representations, for a recognizer learning the domain with an error
criterion for both training and testing was 0.5

Discrimination measures

8 T T
8% Fully Distributed

i Semi~distributed §

L J
[-
4 —
2 -
[}

[« Virtual Generalizations Generalizations

Figure 5.16: Discrimination measures virtual generalizations and generalizations obtained with fully-
distributed representations and semi-local representations, for a recognizer. Error criterion for both training
and testing was 1

for networks using semi-distributed representations. No virtual generalization was found in the set of 676
random patterns tested. A conservative lower bound on the discrimination power for virtual generalizations,
assuming we had found one such virtual generalization in each of the five experiments, yields a value of about
7.5, compared to an estimated value of about 2 for networks using semi-distributed representations.

Since discrimination was high in these experiments, we repeated them using a looser error criterion e of
1.0. We see, in figure 5.17, that the networks generalize very well, as the median number of generalizations
(training patterns are excluded) has a value of 623, out of 626 possible generalizations. In two experiments,
the networks generalized on 100% of the testing set. In the worse case, 614 generalizations were obtained.

98

Error criterion = 1
800 T T

8 Virtuol Generalizotions
Generalizations

0 Distributed Semi-local

Figure 5.17: Comparison of the number of virtual generalizations and generalizations obtained with fully-
distributed representations and semi-local representations, for a recognizer learning patterns of the domain
with an error criterion for both training and testing of 1.0

Discrimination measures

8 T T

b 4

888 Fully distributed

6 Semi~Distributed T
4= -
2}~ -
o]

0 Yirtual Generalizations Generalizations

Figure 5.18: Discrimination measures for virtual generalizations and generalizations obtained with fully-
distributed representations and semi-local representations, for a recognizer. The error criterion for both
training and testing was 1.0

This number corresponds generalization on 98% of the testing set. For all cases, the few patterns that were
not generalized were virtual generalizations.

Figure 5.18 shows corresponding discriminations measures. We see that, while it is lower than in the
previous experiments, it is still just above 2 for generalizations obtained with fully distributed representations,
while it is just below 1 for networks using semi-distributed representations.

99

Table 5.1: Some Experimental parameters for simulations performed in chapter 4

Figure | X :n | X : A | Error criterion € | p |

5.2 2 26 0.4 50
5.4 4 6 0.4 50
5.5 4 6 0.05 4 50
5.6 2 0.05 4 16
5.9 2 26 0.4 20
5.10 2 26 0.4 50
5.11 2 26 0.4 50
5.12 2 20 0.16 40
5.13 2 20 0.16 40
5.15 2 26 1.0 (L, norm) | 50
5.18 2 26 0.5 (L, norm) | 50

5.7 Conclusion

The experiments reported in this chapter suggest that the use of fully distributed representations does not
decrease performance and in some cases can improve it. This suggests, then, that the use of semi-distributed
representations were not crucial in the experiments reported in chapter 4, a point which was theoretically
predicted in the earlier part of the chapter.

5.8 Experimental parameters

In all experiments reported in this chapter and unless explicitly stated, the learning rate used was 0.1 and
the momentum was 0.9. Simulations were, as for simulations reported in chapter 3, performed with the
PDP simulation package of (McClelland and Rumelhart, 1988), except for simulations involving additional
layers of linear units where the simulator PlaNet (Miyata, 1990) was used. Weights were displayed using
CONNEZX, a graphics package developed by (Mozer, 1990). Table 5.1 summarizes relevant parameters used
in the simulations.

100

Chapter 6

From context dependence to
independence

6.1 Perspective independence

The main experiments reported in chapter 4 have shown that high systematic performance, as exemplified
by massive true and virtual generalization, and generative performance, as shown by the explosive growth
of true and virtual generalization when the combinatorial complexity of the domain increases, is obtained
with the simple and highly combinatorial domain studied. As was mentioned in section 4.7, the numbers
reported were quite small, however, compared to the potential numbers which could have been obtained had
the networks perfectly learned the domain. And while results were dramatically improved when the alphabet
size was reduced, (a ratio of over 50% generalization, and a combined ratio of true and virtual generalization
of over 90% was obtained, with training set sizes making 4% of the domain with an alphabet size of 8), perfect
generalization was still not obtained.

This can be explained by the fact that the networks, when learning patterns of the training set, have
not been learning to independently auto-associate each letter with itself, with complete disregard to the
other letters of the pattern composing its context. Using the terminology introduced by the connectionist
construction of concepts theory, it can be said that they have not moved from perspective dependence to
perfect perspective independence~ but most certainly to a position in between. The cognitive map formation
associated with learning thus occurred, as true and virtual generalization was high, but was not completed to
the point where the weights learned to treat the patterns of the domain as the pure combination of sub-patterns,
each corresponding to the letters composing the symbolic structures. If such a scenario had happened, the
weights developed would have exhibited vertical decomposition. In that case the resulting networks would
have been equivalent to the combination of individual auto-associator networks which would have each learned
to auto-associate each letter of the alphabet with itself.

In this chapter, we report on experiments where the networks’ weights learn such a vertical decomposition.
Perfect perspective independence is thus obtained, and generalization is 100%.

6.2 Weights elimination

The notion of minimum length description was briefly mentioned in chapter 3 when measures of complexity
were studied. Introduced by Rissanen (1989), such a concept is used to formalize the old idea according to
which the simplest explanation or model accounting for a phenomenon is always the best (“Occam’s razor”).
This notion is used in the technique of weights elimination, ((Rumelhart, 1988) (Chauvin, 1990) (Weigend et
al., 1990) (Weigend et al., 1991)) where an extra cost aimed at reducing the complexity of a back-propagation
network and thus improving generalization performance, by decreasing the number of its weights, is added to
the standard error cost function. The cost function on which gradient descent is made is thus, when weight
elimination is performed:

101

0.8

0.6

0.4

Complexity cost

02

LA I S Bt SO R S S S B B R B B B B

0.0
-6

E:ZEP-!-,\ZI

Sl T 6 1)
w3 (.
patterns weights

The first term of equation 6.1 corresponds to the standard sum of squared errors. The second term, the
complexity term, is a function of all the weights of the network, and its minimization induces a reduction
in the magnitude of the weights, as the contribution by a given weight to that function is close to 1 for
large weights, and close to 0 for small weights. The cut-off point between large and small is controlled by
the parameter wg, which controls the width of the curve, while the parameter A controls the ratio of the
complexity cost to the total cost function to be minimized. Figure6.l shows the complexity term , with A =
1 and wg = 1.

6.3 Experiment with the Cartesian product domain

A number of preliminary experiments were conducted to determine the values of the parameters A and wg,
as well as the learning rate, momentum, and size of the hidden layer. While Weigend et al. (1991) use an
adaptive technique to adjust A, ! our preliminary experiments suggested that better weights elimination was
carried out with a fixed value of A. The algorithm was also modified in that weights were thresholded during
learning: Any weight whose value fell in the range [~wen, +wsn], where the threshold w, was determined by
preliminary experiments, was set to 0 (it was still allowed to be modified after this) .

The alphabet size chosen was 15. The training sets used were of size 30n, and it was ensured, in the
random generating process, that each letter would be seen at least twice (on average, a letter was seen 2n
times). Section 6.6 at the end of this chapter summarizes the values of experimental parameters used.

6.3.1 Performance results

Figure 6.2 shows the number of generalizations estimated, for networks learning the domain with n varying
from 1 to 6, 4 = 15.

For n = 2,3, the networks were tested on the entire domain. For n = 4, 5 and 6, it was tested on 1,000
randomly generated patterns. Since all 1,000 patterns generalized correctly in the case n = 4, we estimate
that the generalization ratio was 100%. (As the next section will show, the network implemented vertical

1n (Weigend et al., 1991), networks are first trained with A = 0. Once the error criterion is reached, A is very slightly
increased, unless the standard error grows, in which case X is decreased, slightly if the long term error average is still decreasing,
more dramatically if it is also growing.

102

1010

T T T T Ty
108— //0 .
L 4
— Generglizations
o 6 -
c 10
L
B
B P g
B
v
5 10tk -
[+
102 }= .
100 Las 1 NPT I | PP !

Length of string

Figure 6.2: Exponential growth of generalizations for networks trained with weight elimination on sets of
size 50, with A = 26, as n varies from 2 to 6.

decomposition. Letters were thus individually auto-associated, and a test on 1,000 patterns is enough to
ensure that any pattern is correctly auto-associated). We estimate about 95% generalization for n = 5, and
90% for n = 6. The dotted line, hardly visible, is the curve y = 152, corresponding to perfect generalization.

6.3.2 Weight decomposition

Figure 6.3 shows the weights developed by the network learning the domain with n = 2. Vertical decomposition
is observed, as each row of the lower matrix, corresponding to a hidden unit, contains non-zero weights on
either the first 8 elements corresponding to the first group of 8 units coding the first letter of the pattern, or
the second 8 consecutive elements corresponding to the second 8 units coding the second letter of the pattern.
The same property is observed on the columns of the upper matrix.

Figure 6.4 shows the weights developed by the network learning the domain with n = 4. r

Weight decomposition, again, can be observed. Since n = 4, a given hidden unit will respond to one in four
groups of 8 input input units (or output units) coding an individual letter in a string of the domain. Figure
6.5 shows the weights developed by the network learning the domain with n = 6.

Vertical decomposition, again, is obtained, although it is not perfect, as a few hidden units map to more
that one of the six pools of input or output units coding a given letter in the strings of the domain.

103

Network weights for n=2, A=15, domain

i«":»:
From

To Hidden L.

Figure 6.3: Systematicity through vertical weight decomposition, for a network with n =2 and 4 = 15. Only
the weights of the network connected to units involved in the coding of several letters at the same position
are non-zero. Context independency is thus achieved.

104

s
o

2 u.%
5%

o

s

R
e o

Shne
R
R L
s S e

3:;«?_‘:;}"'1_-*;::’.\:} AR
R

S %
s
i
S

er

%
L4

3

ot

S

To Output La

i

= SR

I 3 R
s e 25

o

%

28

3
i

255

s

“S‘f 3

S

R

SR SR
b o
i R

o
S

To Hidden La

Figure 6.4: Systematicity through vertical weights decomposition, for a network with n =4 and 4 = 15.

105

Network weights for n=4, A=6, domain

B e
RN :
S
e s e N
RN y,;iﬁv;z;:-.gxﬁtgﬁ“.}!-'b R
R S RO S
e S

N
ERRRRRE
7'5,}:._.\

AT
R

X s
R 5‘]
Rt SRR
R S

353

R
iy

S
25
=

o

R

aas
S

R

%3
%%

P

e
.

To Oul
o
e

e
:‘g@ﬁ
20

i >
N
i

0

S

2
: S

e
%

s
’-35‘?% s

o

i

% G ,ﬁ
R R 2
; G 3 g 5 S v:mu@‘z}
SR i Z~:=§l:-:¢:-:-.~:$’g";"$?::§' ,”‘., S

From Hidden Layer
rosimsosoon
R

SRR
e
DS
G

o

o

e R
S s
S

Gz

e
s vf%{{-
e
st
S R
s
S ?
e

—
Pl

«
o
%

%

3

s
o "’s

SR %
D B Pl S
ep s s AR SO
E3 7 G
g 7 A

S
SR
e

i
S 5
R 3

S
e
5 R,

e
%

M
i
e

s e R
posses s %:.«:?,,x;' SR
.

From Input Layer

Figure 6.5: Systematicity through vertical weights decomposition, for a network with n =6 and A = 15. The
decomposition is close to perfect.

106

dprime measgureg

I TTVURTTEVE FURUUURTT

dprime measures
Litid

LR AR AR AR AR L R R AR RS LR R R RN ER AR R

N
[
>
w
o
~

Length of string

Figure 6.6: Discrimination measures d’ for the networks of figure 6.2.

6.3.3 Discrimination results

To measure how the networks learned to discriminate between members and non members of the domain, the
d’ measure was used, instead of the previously used d measure which was infinitely high when the network
generalized on all members of the domain.

Figure 6.6 shows the values of d' for the various experiments, which are significantly high.

This measures correspond to the discrimination ratios listed in table 6.1.

6.4 Experiments with English words

In this section we report on the harder problem of extracting the semi-combinatorial structure of sets of
written English words. The domains studied consisted of the sets of English words of length n, n = 3, ..., 6
2. Networks were trained on an arbitrarily chosen subset of 100 words, with weight elimination, for 10,000
epochs. The testing criterion ¢ was chosen to be small (0.2) as higher discrimination was obtained this way.

6.4.1 Performance results
Figure 6.7 shows the number of generalizations obtained, as n varies from 3 to 6. Performance is high, as more
than 90% of the testing set generalizes if n is greater than 3.

6.4.2 Discrimination results

Figure 6.8 shows d values measuring how the networks have learned to discriminate between the set of English
n-letter words and the set of n-letter strings.

Discrimination is surprisingly high, as values greater than 5 are obtained for networks learning the domains
with n greater than 3.

6.5 Concluding remarks

The experiments reported in section 6.3 involving the Cartesian product of sets, are a very simple yet good
example, we believe, of what the formation of a cognitive map, implemented via a move from perspective

2The words used were those found in the “spell” dictionary available on Unix systems.

107

Table 8.1: Ratios of probability of generalizations for members of X and random binary patterns

{ n [2 137 4576 |
| Discrimination ratio | 5.3 | 9.8 [27.8 [83.3 | 333 |
4000 [T
e Domain size h
— Generalizations
3
-% 2000 -1
& |
Olas o Lottt bt A | ST AR bt 1 i
2 3 4 bl 6 7

Length of word

Figure 6.7: The number of generalizations obtained for networks trained on subsets size 100 of English
n-letter words, as n varies from 3 to 6.

dependence to perspective independence, can amount to. The statistical regularity of the training sets allows
the networks to rely on their combinatorics, and thus view them and process them in a systematic way.

Experiments performed with English words show high performance, too, and unusually high discrimina-
tion. It could be, however, that the networks did not rely on the orthographical regularity of the sets but
simply learned vertical weights decomposition on any letter present in the strings of the training set. High
discrimination measures, in this case, could be explained by the simple fact that some letters were never seen
in the training sample, (the letter “z” in the second position of a 3 letter word, for instance.).

6.6 Experiments parameters

A was 0.0008 for networks learning the domain with n = 2,3 and 4, and 0.0004 for networks learning the
domain with » = 5 and 6. The sizes of the hidden layers were slightly increased from the ones used in the
main experiments reported in chapter 4, to H = 6n, to ease the independent auto-association of individual
letters. The learning rate was 0.1, except for the cases corresponding to n = 5, 6 where it was 0.05. The
momentum was 0.1. Weights were thresholded at 0.01. Training was stopped after 10,000 epochs. The error
criterion for testing was ¢ = 0.4. Input and target patterns had activities of 0.1 and 0.9, the representations
used being the same semi-distributed representations which were described in chapter 2. The same parameters
were used for experiments involving English words. Weight thresholding was not, however, performed in that
case. The testing set criterion ¢; was 0.2.

108

. Discrimination measures d -
»
b L 4
3
3 - -
o
@
€ 3 4
° 4~ -
2 —
[o] I oo oo M . L I
2 3 4 5 [7

Length of string

Figure 6.8: Discrimination measures d for the networks learning the domain consisting of English n-letter
words, as n varies from 3 to 6. The set to be discriminated from is the set of all n-letter strings.

109

110

Chapter 7

Analysis and interpretation

7.1 Overview
In this chapter, a formal analysis in the case of one-layer feed-forward back-propagation networks learning to
auto-associate representations of elements of the combinatorial domain

XN = {(zly T2 yeey 2n) ' z; € X}

introduced earlier is attempted. Such an analysis provides a first step towards understanding how the networks
involved in the experiments reported in chapter 4 develop their weights and their associated competence.
Statistical analyses, in the more general and complex 2-layer case are then performed.

7.2 Analysis in the one-layer case

7.2.1 Formal analysis

Linear networks ! learning the combinatorial domain X, with ||X|| = A, where elements are represented with
purely local representations involving orthogonal role representations are first considered.

Notation
Without loss of generality, the filler vectors (fi, fs, ..., fa) representing each element of X can be chosen as

1 There is a simple property induced by tensor products in the linear case:

V aiaz.zoy.an € X

Y ajaz.z.an € X, V ajaz.y..an €X, V aiar.an € X

then

2142..2.Y..n = Q102....8n + Q142 Y..Gn — G1d2..Gn

For sequences of length 2, for instance, the vector representing ad can be rewritten as the sum of vectors ab + cd - cb. This
property was investigated, but proved to be inconclusive. The related study is presented in appendix C.

111

unit vectors of the canonical orthonormal basis of R4,

Likewise, the role vectors (ry, 73, ..., 7,) representing the position i of an element of X in an n-tuple of X™ can
be chosen as unit vectors of the canonical orthonormal basis of R™,

Let the training set consist of P elements (21,, 225, ..., Znp), L < p < P.

These elements are represented by the n x A dimensional tensor product vectors

n
Zp = _S_ fip @1y
t=1

If (v1, 2, ..., Vaxn) is the canonical orthonormal basis of R™#, then

n

zp = Z Vip+A(i-1)

i=1

Let P={1,...,P}and V={1,...,nA4}, and let W € R™ x R™* be the matrix of weights wj x of a network
having learned, with the delta rule, the P patterns of the training set. (We will show that such a matrix
exists.) Initial weights are assumed, for now, to be null.
The total error E in term of least squares is defined by:

P
2
E = Z (2p — Wey)
p=0
The following equations hold:
E=0

S VpeP, Wz, ==,

n

eVpeP,W Z Vip+A(i-1) = Z Vip+ A(i~1)

i=1 i=1

ey Wiprai-1y) = 1 if ‘Fi| j=ip+ A(i - 1)
= V(j,p) €V XP (1)
21 Wjip+A(i-1) = 0 otherwise

Equation 7.1 indicates that, for a given row of the weight matrix, only those weights that are on connections
leading to units that can be active need be non zero. Since the linear delta rule updates a weight matrix W,y
according to

112

Figure 7.1: The partition induced by the relation R for the set of training patterns {ab, ad, ac, bc, be, bf,
xo, xl, xn, xm, jk, yu, op, wf}.

T
Whew = old — 1 (Woldzp - a:p)zp

for a given pattern z, (assuming Wipitia; = 0, any weight which is on a connection to a unit that is not turned
on by any pattern of the training set will remain null.

To solve equation 7.1, it is helpful to distinguish between the different kinds of relations that patterns
of the training set might have with each other. The following relation of equivalence among patterns, R, is
introduced: Let the letter patterns corresponding to the representation vectors X, be vertices in a graph,
connecting two vertices if an only if one has a letter in common with the other. Let R be the binary relation
defined by, if S; and S; are two members of the training set in X™:

S1 R S3 & 51 is connected to S; via a path in the graph

R is a relation of equivalence, and its equivalence classes partition the training set into connected sub-graphs.
Figure 7.1 shows the graph just defined, and the equivalence classes for a training set of patterns for two
letters: {ab, ad, ac, be, be, bf, xo, xl, xn, xm, jk, yu, op, wi}. For clarity, all arcs between a pattern and
itself are not represented. All patterns in an equivalence class will contribute a number of equations in 7.1
independent of any equations contributed by patterns in another equivalence class, since they will not share
any common letter (common connection) with patterns of another class. It is thus possible to study separately
the solution for each equivalence class. Three kinds of equivalence classes can be distinguished:

(1) The singleton equivalence classes.

In this case, the single pattern in the equivalence class has no letter in common, or shares no common “on”
units, with any other pattern of the training set. The sub-matrix of weight solutions to the subset of equations
making 7.1, defined by those weights, and those only, which connect units coding the letters of the pattern,
is a square matrix of n? weights whose sum, on each row, needs to be 1. An obvious and most symmetrical
solution for the value of each of these weights is 1/n. Figure 7.2 shows that the weights do find this solution,
obtained in a simulation.

113

Figure 7.2: The weights developed by a linear network learning the individual pattern ab.

(2) Equivalent classes where all patterns are connected to all others.

This is the case of the equivalence class formed by {xo, xI, xn, xm } in figure 7.1. There is a simple, most
symmetrical solution to this case, which, in the case of one common letter and g patterns, is the following
matrix:

q 1 1 1
1
1
e 1 —g —g
-¢ 1 -—gq
-g —¢ 1

where the “weights” on the left side of the matrix correspond to the common letter, and the weights of the
right side correspond to the other letters. Such a solution is also found experimentally and depicted by the
weight matrix of figure 7.3, which shows weights developed by a linear network having learned the patterns
{ab, ac, ad}.

(3) Equivalent classes where not all patterns are connected to all others.

This case can in fact be considered as the superposition of the two cases earlier discussed, {except for the
magnitude of the weights) where patterns have common letters. Figure 7.4 shows the weights of a network
having learned the patterns {ab,ac,ad,bc,be,bf}. The weights are a superposition, within a factor, of the
earlier case depicted in figure 7.3 and the case where weights would have been developed with the training
patterns bc, be, bf, as shown in figure 7.5. It is interesting to note that the weights find the most simple and
symmetrical solution, in spite of the asymmetry of the training set introduced by the pattern be.

Figure 7.6 shows the weights developed by a network having learned 40 patterns, with n = 2 and 4 =
16. The clear division in 4 different regions corresponds to the superposition of the three cases distinguished
earlier. The error criterion was € = 0.4. Figure 7.7 shows the weights developed by a network having learned
40 patterns, with n = 4 and A = 18. The weights of a network having learned in the limit, that is, having

114

Truining peiterna: AB, AC, AD

N, i
i S
¢ "*ffwf«,?;&‘?'

o

';'%’.\i"gs'\x

5

et ests

s 25
R :
»5;3,;51-&*@ 5%

R ; EaE
SRR S o
i

S

Figure 7.3: Weights developed when learning the patterns ab, ac, and ad.

Training parterns: AB, AC. AD, BC, BE. BF

i %
L S = . A 2
e S e e
%
-

A e
e e

Gt
Sy
2% %
>

i

Figure 7.4: Weights developed by a network learning the patterns ab, ac, ad, bc, be, bf.

learned all patterns of the domain with a harsh error criterion of 0.0001, are shown in figure 7.8.
The non-linear case

The use of a non-linear activation function, as shown in figure 7.9 which compared weight matrices obtained
with different activation functions, does not change our explanation significantly, a sigmoidal function simply
pushing weights to larger values.

The weight matrix shown on the upper left corner of the figure is the same as the one shown in figure 7.8,
and corresponds to a network which has partially learned with a linear activation function the combinatorial

115

Training puiems: BC. BE, BF

Figure 7.68: Weights developed by a network having learned 40 patterns, with n = 2 and A = 16.

domain with n = 2, 4 = 16 and p = 40.

The weight matrix shown on the upper right corner of the figure corresponds to weights obtained with
the the standard logistic activation function, for the same problem. We observe strong similarities, with large
positive weight values (white squares) being present in both matrices.

The weight matrix shown on the lower left corner of the figure corresponds to weights learned with the
tanh activation function. Proper scaling of these weights, yielding the weight matrix shown on the lower right
corner of the figure, again reveals similarities with the two previous weight matrices.

Non-local representations

When non-local representations are used, as was the case in all the experiments reported in this thesis, a

116

Figure 7.8: The weights of a network having learned all patterns of the domain with a harsh error criterion
of 0.0001.

given unit might participate in the coding of several letters. The same reasoning that has been carried out
can now be made if one considers that the network is learning binary patterns, where each unit codes a one
and only one letter in any position. The submatrices corresponding to the various equivalence classes now
have elements which are not contiguous withing the larger matrix. However, because of the mere statistical
regularity in patterns of the training set, we can expect the network to develop weights exhibiting the same
kind of spatial partitioning as those shown in the last figure, for instance, if and only if the number of patterns
in the training set is large.

117

Figure 7.9: The weights of networks having partially learned the domain with n = 2, A = 16,and p = 40,
for different activation functions. The upper left weights correspond to a linear activation function, the upper
right to the standard logistic, and the lower left to the tanh function. The lower right weights are scaled from
the lower left weights, to show the similarity with for all three activation function used.

118

7.3 Statistical analyses

7.3.1 Introduction

The first part of this chapter gave us some information on how weights could develop in one layer-networks
learning the combinatorial domain we have been concerned with, but fell short of making significant predictions
on how the multi-layer networks reported on in the previous chapters developed their weights. While we have
seen that the technique of weight elimination allows the networks to implement a most simple and visible
vertical decomposition solving the combinatorial problem, networks trained with the standard delta rule
exhibit weights that do not present any apparent structure.

The rest of this chapter is devoted to testing the hypothesis according to which the networks, shy of
exhibiting perfect systematicity and generativity but nonetheless displaying massive true and virtual gener-
alization, fell somewhere in between the following two extremes: One corresponding to pure rote learning of
the training set (complete perspective dependence and absence of a cognitive map) and one corresponding to
perfect vertical weight decomposition (complete perspective independence and formation of a cognitive map).
If this hypothesis is correct, then the hidden units should, in a systematic manner, respond to the presence
or absence of patterns® of subpatterns corresponding to constituents of the strings, rather than respond to
arbitrary subpatterns in the representations of the strings. .

While mathematical analyses of multi-layer feed-forward networks have started to appear (Baldi and
Hornik, 1988) (Goggin et al., Submitted), the simpler approach using statistical techniques was used. Three
of these were used to test our hypothesis: Cluster analysis, principal component analysis, and contribution
analysis.

Cluster analysis

Cluster analysis (e.g (Everitt, 1980)) analyzes sets of vectors and clusters them according to their similar-
ity or closeness in space. This is done by generating a symmetrical matrix of similarity between vectors, where
the element in row ¢ and column j is the distance between the ith vector and the jth vector, and iteratively
merging the two most similar vectors into a cluster. ® FEuclidian distances are usually used as a similarity
measure, in which case the similarity matrix is the matrix of distances between any two vectors. The clusters
are usually represented in a dendogram, where vertical height corresponds to the distance between clusters
being merged.

This technique has proved to be useful in analyzing hidden units activities in connectionist models (Rosen-
berg, 1987) (Elman, 1990) (Servan-Schreiber et al., 1989), although it does have one drawback: it does not
reveal how vectors are similar. Two vectors identical except in one of their element, for instance, might be
far apart if the difference between their corresponding element is very large.

Principal component analysis

Principal component analysis (e.g (McDonald, 1985)) is a statistical technique which attempts to account
for the greatest variance of a set of vectors. New axes, the principal components, are found such that the
greatest variance in the set of vectors lies in the direction of the first principal component, the next greatest
variance lies in the direction of the second principal component, and so on until the smallest variance lies in
the direction of the last component. The principal components are the eigenvectors of the covariance matrix,
and the amount of variance factored in by the eigenvectors are the corresponding eigenvalues. If the matrix
formed by the set of vectors is multiplied by the matrix of eigenvectors (ordered by descending eigenvalues),
the first column of the resulting rotated matrix, which will be referred to as the first rotated variable, displays
the highest separation possible among the points. The second column displays less separation, and so on.
Principal component analysis is thus a method to account for the variance of a large number of variables

2The word here is used with its traditional meaning, as in pattern recognition.

3The smallest element of the matrix is found (the diagonal is ignored), and the two vectors corresponding to that element are
clustered. The two rows and columns in the similarity matrix corresponding to the vectors are merged into one {the largest value
is selected for each dimension), these rows and columns are added in the matrix, while the two rows and columns corresponding
to the two previous vectors are deleted from the matrix. The clustering procedure is iteratively repeated until there is only one
cluster.

119

Table 7.1: True and virtual generalizations, and discrimination measure, for the network analyzed.

Size of the domain 1,296

Size of the training set 50
Generalizations 316 (24.3%)
Virtual generalizations 642 (49.5%)
d measure: generalizations 6.35

d measure: virtual generalization | 6.46

with a smaller number of factors, that number being determined by how many components one takes into
consideration.

Like cluster analysis, this technique has been used in a number of connectionist studies, mostly to analyze
vectors of hidden unit activities (Rosenberg, 1987) (Elman, 1990)).

Contribution analysis

Unlike the two statistical techniques just described, contribution analysis ((Sanger, 1989) (Sanger, 1990))
is specific to neural networks. For a given input pattern presentation, hidden unit, and output unit, the
contribution of the hidden unit is defined as the product of the activity of the hidden unit and the weight from
the hidden unit to the output unit. This definition is slightly modified in that the sign of the contribution is
adjusted to reflect the correctness of the contribution towards pushing the output unit in the right direction.
Contributions in the right direction are thus positive, while contributions in the wrong direction are negative.

Contribution analysis consists in performing principal component analysis on various two-dimensional slices
of the three-dimensional matrix of contribution. A more complete discussion of this method is presented in
section 7.7.

7.3.2 Networks used

The network on which cluster, principal component, and contribution analysis was performed ¢ was a network
having learned the combinatorial domain X with A = 6 and N = 4. The small alphabet size allowed for
significant true and virtual generalization, and a large enough domain consisting of 1,296 elements. The
network was trained on an arbitrarily chosen subset of 50 patterns. The training error criterion was € = 0.4 as
in experiments reported in chapter 4. Table 7.1 displays the relevant information concerning the performance
of the network. Figure 7.10 shows the weights developed by the network, which do not show any obvious
structure.

41t should be mentioned that that none of the analytical methodsused is specific to the problem studied, involving combinatorial
domains.

120

in

, doma.

A=6

Network weights for n=4,

I

L,

ohe]

.ruﬁ.m

"

0o

dn Layer

om

SR

10k%"] WOPPIT O,

"From input Laer

1s apparent.

The weights of the network used analyzed. No structure

Figure 7.10

121

7.4 Analysis of the weights

In this section, we report on analyses performed on the weight matrices of the network studied. While
our expectations of observing meaningful vector clusterings was low (there is no reason to believe that such
analyses could reveal anything, even if they were performed in the “best” case, that is in the case of vertically
decomposed weights), they are partially reported here for comparison purposes.

7.4.1 Cluster analysis

Figure 7.11 shows the clustering tree corresponding to the vectors making the rows of the first layer weights
matrix. No pattern seems visible here, expect for least informative fact that the weights seem to be quite
“unclustered”.

Figure 7.12 shows the clustering tree corresponding to the vectors making the columns of the matrix.
Again, there are very few comments that can be made about the tree. The same analysis was performed on
the matrix of weights of the second layer of the network. Such an analysis, again, gave rise to no interpretation.

7.5 Principal component analysis

Principal component analysis was also performed on both the rows and columns of the two weights matrices
of the network studied, but did not lead to any intesting interpretation.

122

w2l

w5

w3

—_— wll

wl3

wl

wl7

w9

b W32

Figure 7.11: Clustering tree for first layer weights. No conclusions can be made.

123

w3

w7

wl2

wd

wl5

w6

wl

w5

w8

w2

wd

wl7

w20

Figure 7.12: Clustering tree for first layer weights (transpose).

124

wil

L W13

7.6 Analysis of the hidden unit activities

Cluster and principal component analysis are used, in this section, to analyze vectors of hidden unit activities.

7.6.1 Cluster analysis

Figure 7.13 shows the clustering tree corresponding to the vectors of hidden unit activities when each pattern
of the training set is presented to the network. The nodes of the tree are labeled by the corresponding pattern.
We observe that the patterns clustering together tend to contain the same sub-strings. The cluster of depth
3 on the lower right corner of the figure, for instance, clusters strings that all have the letter “f” in the first
position, and the subcluster of depth 2 clusters strings that have the subpatter “ff” in the last two positions.

Figure 7.14 shows the clustering tree corresponding to hidden units activities average over all patterns of
the domain, for a given letter at a given position; that is, all vectors of hidden unit activities corresponding
to input patterns of the domain having the same letter in the same position were averaged together. This
averaging method, commonly used when connectionist models are analyzed, does not, however, yield any
interesting result.

125

bbde
n cfec
adaz
__{_—_E adac
cdac
eaac
effd
abea
—L_n

ebcb
_—E efcf
aecd
acce
afce
bdce
eddc
eebc
efce
edfe
ceda
-_-——[:::: ecaa
bcec
—E fcec
T beeb
{ fcef
beff
baad
’_.‘{::E baae
bafe
aaef
acff
adbf
dbef
dabe
_E: e
dcfe
faab
.‘EC eeab
feab

fdbd

—'_E: ffbe

Figure 7.13: Clustering tree of hidden activity patterns corresponding to training input patterns.

126

c2

cl

d2

az

al

dl

e2

c3

b2

bl

f1

el
a3
£3

e D3

L e3

U, X

a4
c4
dé

b4
ed

Figure 7.14: Clustering tree of averaged hidden activity patterns corresponding to all patterns of the domain,
and averaged by letter/position.

127

7.6.2 Principal component analysis

Figure 7.15 shows the result of principal component analysis performed on the vectors of hidden unit activities
corresponding to the patterns of the training set. We observe that the vectors (labeled by their corresponding
input pattern names) are particularly “unclustered”, although vectors corresponding to patierns with similar
substrings do seem to merge together.

Figure 7.16 shows the result of principal component analysis performed on the same averaged vectors of
hidden unit activities which were used earlier for clustering analysis. The figure does not seem to admit any

clear interpretation.

128

cecda
bceb cadb
becec
cfec
feef fcec abea
aaef
dbet cbfa cact
S
g dcte ceee
g beif ecaa
d aCffbbde acce
@ edgtac
dabe
; hafe dbbe cdac ;
t adac
ae cebe adaa
8 faab? echaad
Vi
? fbft efce
! f bfca
2 ae%égb afce bdcc
| feab g
e aec
ot ede eftd eebc
fdff
fefe
fdbd
ffbe
T T T T T T
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 7.15: Principal component analysis (first two rotated variables) of hidden activity patterns corre-

sponding to training input patterns.

First Rotated Variable

129

(2]
at
S
e
c
o] d2
Q e2
R 2
?
? d3
e e4
d c3 . 4M a3
g o 8
r
| a2
a b2 b1
b
1
e
c2
el
f1
T T T T T T T
-05 -0.25 0 0.25 0.5 0.75 1

First Rotated Variable

Figure 7.16: Principal component analysis (first two rotated variables) of all hidden activity patterns corre-
sponding to all patterns of the domain, averaged by letter/position.

130

7.7 Contribution analysis

In this section we report on results obtained with contribution analysis, which will consist in performing
principal component analysis on cross-sections of the three-dimensional array of contributions defined for a
specific input pattern, a specific output unit, and a specific hidden unit.

The two types of cross-sections on which principal component analysis can be performed, if one is interested
in the behavior of the hidden units, are:

e Cross-sections yielding the set of vectors corresponding to the contributions from all hidden units to
a specific output unit, for each input pattern presentation. In this case, the principal components
correspond to the patterns of hidden units that are responsible for activating the specific output unit,
for each input pattern presentation. The responsibilities at play in this case have been called distributed
hidden-unit responsibilities by Sanger (1990).

o Cross-sections yielding the set of vectors corresponding to the contributions from a given hidden unit to
all output units, for each input pattern presentation. In that case, the principal components correspond
to the patterns of output units that the hidden unit is responsible for. The responsibilities at play in
this case have been called local hidden-unit responsibilities.

If the network is implementing a loose vertical weight decomposition, the first approach should reveal it:
the set of hidden units most responsible for activating an output unit corresponding to a letter in a given
position should be most responsible for all (or most) input patterns containing that letter in the same position
and any other in the other positions.

7.7.1 Distributed hidden-unit responsibilities

Figure 7.17 shows the results of distributed hidden-unit analysis for the first output unit, participating in the
coding of letters in the first position of the strings. The upper graph shows the values of the first rotated
variable corresponding to each input pattern of the training set presentation. (The vertical axis does not
correspond to any quantity, and points are equally spaced for clarity). We observe a clear vertical division
between those patterns of the training set representing strings starting with an “a”, “b”, “e” or “f” for which
output unit is active, and those starting with a “c” or “d”, for which output unit 1 is inactive (The axes can,
and have been here, be rotated in such a way that a negative value corresponds to correctness).

The graph at the bottom of the figure shows the principal component vector, and therefore yields the
pattern of hidden units that are responsible for the output unit being turned on. The pattern is rather
distributed.

Figure 7.18 shows similar results for the third output unit, participating in the coding of letters also in the
first position. A clear vertical division, again, depending on the first letter of the strings corresponding to the
patterns of the training set, is observed.

131

by »
feabfee {
o
fcef fcec
faald"
aa eftd
efct efce
eeab eebg dfe
ecaa SddC e,
e%Cbeaac
defe
é!btt))debef
cfec abe
. cee
cdac cene
becx:da
cadb,
bfcab cact
bt dec L
cec
bceb o
g8
baad
afce ecd
g
agff ~ 20ad
acce
abe
ade
T T T T
-5 -2.5 0 2.5
First Rotated variable
0.4 :
0.2 . :
o i A r ‘ : .
02 PR e
lll!lll!l!l!ill|lf|ll

h1 h2 h3 h4 h5 h6 h7 h8 h9 hi0 h11 h12 h13 h14 h15h16 h17 h18 h19 h20 bias

Figure 7.17: Result of contribution analysis for the first output unit: the points correspond to the first
rotated variable corresponding to each input pattern presentation. The first principal component is shown at
the bottom of the figure.

132

?%? ffbe
(=3
feab
ol
: Lo fcec
: : fbft
efd | : faab
efce efcf : :
eéebc :
eea edfe
e“'jdﬁecaa\ :
caac ebeh
E
ef
age
cfec
Ceegebe
cdac
ccda
b cbia
Cacdacf
25
beec beft
bceb
o e :
: baaeiil‘.’1 : :
€ : : : alcs
: : : aec
: : : adbf
: : : adaa adac
acaféce
abea
aaef
T T T T T
-5 -2.5 0 25 5
First Rotated variable
0.2 .. +
0 : . . . : i . - : :
0.2 I
0.4 -]
-0.6 - :
L T T e U s O R (NN SO AN (RN RN (N S B S

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15h16 h17 h18 h19 h20 bias

Figure 7.18: Result of contribution analysis for third output unit: Values of the first rotated variable for
each input pattern presentation.

133

Most of the graphs corresponding to each output unit were similar to the two displayed here. Given an
output unit, the pattern of hidden units most responsible for that unit were the patterns corresponding to
all (or most) input patterns having in the letter position corresponding to the output unit a letter with the
corresponding bit on.

Table 7.2 summarizes contribution information, by displaying in a regular expression form the input pat-
terns corresponding to the pattern of hidden units most responsible for a given output unit >. The double
lines divide the output units in four groups corresponding to constituents of the strings.

We observe what corresponds to a “loose” vertical weight decomposition, where most but not all letters
are auto-associated individually regardless of their context, as the input patterns corresponding to hidden
unit patterns responsible for an output unit in a given constituent slot have a letter in that given slot. When
the table is produced for a similar network trained with weight eliminations (table 7.3 shows hidden unit
patterns for one of the networks discussed in section 6.3, where n=4 and 4 = 15), we observe that all letters
are auto-associated individually regardless of their context. This analysis thus confirms that, although a first
glance at the weights revealed no structure nor trace of vertical decomposition, the network did perform an
approximate of such a decomposition.

7.7.2 Local hidden unit responsibilities

Contribution analysis concerning local hidden unit responsibilities was also performed, but was less informative.
The interested reader is referred to section D.2 of appendix D for the corresponding study.

8 A table providing the complete listing for the first 20 output units can be found in section D.1 of appendix D. All related
tables were produced automatically by the contribution analysis software package developed by (Sanger, 1990).

134

Table 7.2: Table of hidden unit patterns.

| Output unit | Hidden unit | Pattern presentation

1 h3 c*** (8/8) d*** (4/4)

2 h8 h5 e*c* (3/3)

3 hi2 %% (10/10) a*** (9/9) d*** (4/4)

4 h6 h2 a*** (9/9) c*** (8/8) d*** (4/4)

5 h13 hl4 h4 b7 b**c (2/2) *ce* (3/4)

6 h8 h1 hi8 hi5 *** (10/10) £*** (10/10) d*** (4/4)

7 hi2 ho hil hi6 h6 h2 a*** (9/9) c*** (8/8)

8 h5 e*** (10/10) c*** (8/8) d*** (4/4)

9 h16 hd *c** (10/10) *d** (9/9)

10 h8 h5 h9 *fc* (4/4) e*c* (3/3) **c* (8/9) b*** (5/9)

11 h18 h3 h2 h20 “ce* (4/4) *c*f (3/3) *c** (3/10) *b** (5/7)

12 h5 h9 h8 *e** (8/8) *£** (1/7) *b** (1/7)

13 h7 h16 h6 hi0 *35% (9/9) *e*e (3]3) *e** (1/8)

14 h7 h10 ho *3%F (9/9) *e** (8/8) T (1/7)

15 hl h19 *c** (10/10) *a** (9/9)

16 hi7 h5 *a** (9/9) ** (7/7) *b** (1/7)

17 hil hi3 h12 h8 **c¥ (0/9) **d* (4/4)

18 his *da* (3/3)

19 k5 hi9 his %, (2/6)

20 hi3 hil **a% (10/10) **c* (9/9) **d* (4/4)

21 h15 h5 h8 h1 h7 h16 hi2 unaccounted for

22 h7 h19 h15 h3 h18 h5 hll | unaccounted for

hié

23 hi3 **a* (10/10) **c* (9/9)

24 h18 hi9 h2 *Ec* (9/9) **e* (9/9) **d* (4/4)

25 h10 hil *¥%: (10/10) ***d (4/4)

26 hl 1% (4/4) *a*e (3/3) *df* (2/2) £*b* (2/2) b** (2/2)
*xxd (3/4)

27 h20 L (11/11) ***a (6/6) ***d (4/4)

28 hi1 ***c (10/10) ***a (6/6) ***d (4/4)

29 hi3 hid hi8 ho *cec (2/2)

30 hi3 hil h6 his #¥%:(10/10) ***a (6/6) ***b (6/6)

31 hil ¥¥%¢ (10/10) ***a (6/6)

32 h6 h20 ¥R (11/11) ***a (6/6) ***b (6/6)

135

Table 7.3: Table of hidden unit patterns obtained with a network trained with weight elimination.

[Output unit [Hidden unit i Pattern presentation]
1 hi3 b7 7¥¥* (10/10)
2 h7 h*F (12/12)
3 h24 h*** (12/12) a*** (10/10)
4 h7 R¥** (12/12) j*** (10/10)
5 h1 unaccounted for
6 hT h¥F* (12/12)
7 h23 b¥** (9/9) I¥** (9/9) o*** (9/9)
8 h23 unaccounted for
9 hi9 T (12/12)
10 h21 unaccounted for
11 h22 unaccounted for
12 h16 *I** (12/12)
13 h2 *FF (11/11)
14 hi1 unaccounted for
15 h2 *e¥* (13/13)
16 h3 e (11/11)
17 hi ¥ (12/12)
18 h1 ¥*{*(12/12) **h* (9/9) **g* (8/8)
19 hi8 **a* (12/12)
20 hi3 = (12/12)
21 hi **a* (12/12)
22 hi2 h9 % (12/12)
23 h9 FE*(9/9) **d* (T/7) **£* (6/6)
24 hi12 unaccounted for
25 h17 =] (13/13)
26 hé ¥ (13/13) ***g (12/12) **%o (12/12)
27 h20 unaccounted
28 h5 ***f (9/9) ***n (8/8)
29 h8 **xo (12/12)
30 h17 **=5 (13/13) ***0 (12/12)
31 hi7 **%5 (12/12)
32 h16 **%7(13/13)

136

7.8 Conclusion

While cluster and principal component analysis of the hidden units fell short of providing some information
on how the network performed, contribution analysis shed some light, as it showed that a solution close to
independent auto-association of each sub-pattern corresponding to a letter (vertical decomposition), for a
given position, was implemented. The failure of cluster and principal component analysis might not, after all,
be so surprising: Both cluster and principal component analysis use metrics that seem ill-suited at capturing
the kinds of regularities induced by the use of semi-distributed tensor product representations in combinatorial
domains.

Systematicity and generativity are thus obtained, when the networks are not trained with weights elimi-
nation, through approximate weights decomposition.

137

138

Chapter 8

Conclusion

8.1 Recapitulation

The success of connectionism as a sub-symbolic theory of cognition is dependent for a great part, we believe,
in its ability to explain conceptually-based, or symbolic, behavior. The following question has therefore bee
addressed: Since some of the most important and characteristic properties of conceptually-based behavior are
generativity and systematicity, and since such properties arise from the fact that structured representations
are compositionally constructed from lower level ones and can freely be recombined in systematic yet novel
ways, can connectionist models using compositional representations learn to display such properties?

The philosophy underlying our methodology was one of simplicity, as the question above was translated to
the following question: If a network is presented with examples of the simplest domain that are combinations
(in the simplest sense) of simple constituents, can the most general and least idiosyncratic network learn
to exhibit generativity and systematicity in the simple task, massively generalizing from a very small set
of examples? The answer to this question was not, we believe, obvious, as generalizations reported in the
connectionist literature were typically much smaller than the number of examples used in training sets. And a
negative one would have seriously threatened any hope that connectionism can be a general theory of coguition.
We hope to have answered it positively, however, by showing that massive generalization can be obtained, as
networks learn to recognize the constituent structure of the structured connectionist representations they are
trained on. The study of generalization, both from a connectionist and a more abstract theoretical perspective,
lead to the concept of virtual generalization, an extension to the notion of generalization that involves very
slight learning and which led us to the problem of interference in learning, a hard problem for connectionist
models as recent research has shown. More pronounced generativity and systematicity was obtained with
virtual generalizations.

The simplicity of the task studied allowed us to interpret the behavior of the networks in an easy way,
especially within the context of Cussins’ connectionist construction of concept theory: To be generative and
systematic, networks need to reduce the perspective dependence of the example they are trained on, which
is due to the non-conceptual nature of their connectionist representations. Internal units, allowing for the
formation of a cognitive map, allow for such a reduction. When weight elimination is performed, such a
reduction can be complete. When it is not, or when the combinatorial complexity of the domain is too high
with respect to the size of the training sets used, such a reduction is incomplete, as results from contribution
analysis suggested. The resulting network implements a solution which can be interpreted as falling in between
the perfect solution equivalent to the implementation of a symbolic system and a solution consisting in pure
rote learning of the training set with disregard for its combinatorial structure. Such a result can be seen
as an answer to the arguments raised in (Fodor and Pylyshyn, 1988) and (Fodor and McLaulghlin, 1990)

claiming that connectionist systems would have to implement a symbolic system to display generativity and
systematicity.

139

8.2 Shortcomings

The limitations of this thesis are numerous. While the simple approach taken allowed a clear interpretation, and
was thus preferable, in our opinion, to a more complex, richer but potentially uninterpretable one consisting for
instance in building a psychologically plausible model for a non-obvious cognitive task involving generativity
and systematicity, it left an number of important questions unanswered: can networks trained on domains
which are not as obviously or as simply combinatorial exhibit the same kind of properties? Can the results
reported in this thesis translate to other types of learning algorithms or network architectures? Experiments
reported on the words domain suggest that the answer to the first question is ves. And the simplicity of the
learning algorithm and architecture used intimate that the answer to the second question is also positive.

Our characterization of combinatorial domains, and what were called structure preserving connectionist
representational schemes, while unearthing a number of important issues, felt short of being complete and
formal.

Within the task studied, a number of limitations can be put forward. The concept of virtual generalization,
and the related problem of interference, was only studied in its simplest form: Only one untrained example
was presented to the networks having learned the domain, and tested for interference. A study of interference,
or lack thereof, produced by multiple untrained pattern could have shed more light on the subject.

8.3 Impact of this thesis on some related issues

8.3.1 The empiricism and nativism debate

Ironically, as a model of human learning, connectionism has tended to go in disagreement with the empiricist
position in the empiricist/nativist debate, as lengthy training regimes (in the sense that a large fraction of
the domain needed to be presented) seemed to be the rule. The results reported in this thesis, however,
suggest that in combinatorial domains, such training regimes are uncalled for. Although we have not provided
evidence that connectionist induction algorithms are stronger than previously available inductive techniques,
we do believe that the results obtained in this thesis suggest that connectionism is more compatible with
an empiricist position on human learning than previous results would suggest—at least within combinatorial
domains.

8.3.2 The learning and processing dualism

Learning (in the sense of synaptic adjustment), and processing (in the sense of activity flow only) have tra-
ditionally been regarded as two distinct aspects of human cognition, usually separated in time. Traditional
memory experiments, for instance, are typically divided into two distinct phase, one of learning and memo-
rizing, and the other of remembering and processing. The very small amount of weight adjustment required
to learn a virtual generalization which would not interfere with previously learned models could suggest that
the learning and processing dualism might not always be the rule, as there is, after all, no reason to believe
that even the simplest processing task might not involve small, rapid, and interference-free relearning (indeed,
instances of synaptic weights adjustments have been found in very short time-frames, e.g. (Edelman, 1987)).

8.4 Future directions

As was mentioned earlier, a study of how multiple patterns learned on top of a network having learned
the domain would interfere would be of interest. Keeping the same architecture, a study of more complex
cognitively related tasks, such as pattern association (in contrast to auto-association) could shed a better
light on more complex instances of systematic or generative cognitive behavior. A further development of the
formal study of combinatorial domains would also be most valuable.

Another enterprise would consist in building a proper memory model, allowing possibly for temporal
processing. The additional time dimension in such processing introduces the possibility for much richer
structure, as domains ranging from regular languages to context-free or context sensitive languages could be
studied.

140

Appendix A

Conditional entropy inequality

An analytical proof of the inequality 3.2, based on (Ross, 1988), is here given.

E4,(42) - E(4,)

= -ZP (a1 Z:P,,1 (a2)log, Pa,(a2) ZP(az)log, P(a3)

==> > Plai,a:)log; P, (a2) + Y {D_ P(a1,a2)}log, P(as)

ay dg a3 ay

P(az)
__ZZP al,az)logzp (@)

21 a3

< log,(e) ZZP as, a,z) Pra)) 1]

a; a3

(since V& > 0, Inz < =z — 1)

= log,(e) ZZPal 21 (a2) }f((3) 1]

ay agz

=log, e ZZP (a)P ZZP (a1,az)]

a; a3 a; a3

141

142

Appendix B

Unbinding

The proof that there exists an unbinding vector u; recovering each filler f; from

P
D; = Zfi 7
i=1

when the role vectors r; are linearly independent, can here be summarized as follows:
If the roles r; are linearly independent, then they form a basis B of the vector space V that they span. The
linear functions r} that form the dual basis B* of the dual space V* of V, have the property:

V(‘L,]) [{1, .. .,P}z,r;(rj) = (5,']'

where § is the Kronecker symbol. If u; is the unique vector of the axis orthogonal to the hyperplane spanned
by all vectors of B save r; such that r;.u; = 1, then

Vee V,ri(2) = z.u;

This is because, if z; are the coordinates of z in B, then

P
HMOELHOPERY
i=1
= r(zjr5)
j=1"
=Z;

= z;(r;.u;) (since riu; = 1)
= (Z z;7;).u; (since u; is orthogonal to all vectors of B save ;)

i=1

= T.U;

143

It follows that:

P
Qo fi@n)w
i=1
P
= ij("'j'ui) = Zfzéxj =fi
j=1 i=1

144

Appendix C

A naive analysis

C.1 Introduction

The task for the network is to learn the combinatorial domain X consisting of sequences aja,..a, where n
defines the length of the sequence, and a; can take any value of the associated alphabet A. The network
is assumed to be linear and the sequences ajaj..a, are mapped to a vector according to the tensor product
representation:

n
aiaz...a, — E a; @ 7r;

i=1

where r;’s are distinct vectors representing the position of a; in the sequence, and a;’s are vectors representing
members of the alphabet A. .

The property mentioned in footnote 7.2.1 of chapter 7 is:

vV ai,az,...an,2,y,€ 4

then !

alaz...ai_lza,-.}.l...aj_lyajH...a,,

= 6102...0;_1TAi411...0, + a132...05 -1YAj41...0n — G1A3...0p

! Simply:

a1G2..2..Y.0n = A102..2..n + @183..Y.Gn — G102..87

145

Any sequence of n letters can thus be decomposed in three sequences. For sequences of length 2, for
instances, the vector representing ad can be rewritten as the sum of vectors ab + c¢d — cb.
With this property, it is possible to derive that, in a linear auto-associative network, if:

o All the vectors a;’s representing members of 4 are orthogonal and normalized,
o All role vectors r; are orthogonal and normalized,

o The training set is learned with the delta rule within an error criterion ¢ and generalizations and virtual
memories are tested with an error criterion 5/2¢,

® a1a3..2..0y, @103..Y..G, and a1az..a, are in the training set

then ajas..z..y..a, is either a true or virtual generalization.

Proof: We here investigate the case for n = 2. If the weight matrix W has already learned the vectors
za;, a;y and aja; to criterion €, then, defining £ = W — I, we have:

Waja; = aja; + Eaja;

Weza; = za; + E':ea,-‘

Wa;y = ajy + Eajy

lleajaill < e

llezas]| < €

lleajyll < e
where || || is the norm on the space of input (or output) vectors.
We have,

2y = za; + a;y — a;a;
Therefore,

Way = Wza; + Wajy — Waja;

146

and
Ezy = Eza; + Eajy — Faja;
If
|Bayll = [Baa; + Basy - Bojadl] < 2¢ (1)

then zy is a generalization. 2

If not, then we show that zy is a virtual generalization. For this, we will show that:
e zy can be learned in one learning trial.
e zy will cause no interference with the previously learned patterns.
The first condition is verified if, after applying the delta learning rule with a learning rate 7, the new matrix
Whew verifies
Whewzy = zy
Now, since

Wnew =W - n (me“xy) zyT)

a learning rate of

verifies (1).
The second condition is verified if the previously learned vectors aza are correctly auto-associated by W, .y, .
If 2y has no letter in common with the aza, then W,., and W will perform identically on aia.
If axa has one letter in common with zy, say y, then:

Wnew ary

ary + Eary — (Eza; + Eajy — Eaja;) E%y—l

I

*Note that [|[Eza; + Bajy - Eaja;l| < 3e

147

(Eza; + Eajy — Eaja;)
2

= ary + FEary —

2Eayy ~ Eza; — Eajy + Eajg
2

= ary +

Since

2Bary — Eza; — Ea;y + FEaja; 5

u 5)

(I1Baryll < €, ||Ezas]| < ¢ ||Eajyll < € ||EBajas)| < €), apy correctly generalizes on Wi,,y.
By symmetry, the same conclusion holds for za.

C.2 Remarks

e A new sequence will not interfere with a previously learned one that has no common letters.

e The term Ezy can furthermore be decomposed in the sum of two terms which depend only on 2 and y,
respectively.

Wey = 2y + Eey

= ¢y + E=zy + By

where

Br=W-1)on

Eo=(W -1)® r

Condition (1) for generalization is ensured by, using now the same error criterion ¢ for testing and
training:

1Bzl + [[Bayll < e

Condition (2) for non-interference is ensured by:

148

2E1a'k + E‘.’y - E’le < ¢
9 =

l

We might be tempted to conjecture that, given the symmetry of the problem, when a letter = is in a
sequence that has been correctly learned by the network, then

Eiz||, i=1,2

is close to e
In that case (1) and (2) hold.

e In the more general case where vectors representing a;’s are neither orthogonal nor normalized, and the
same error criterion is used for training and testing, then condition (2) is:

llarar + cos(aray, zy)”ﬁ‘ﬁ?u(E:ca,- = Eajy + Faja;)]] < € (3)

(2y might interfere with a previously learned pattern that has no letter in common).

Condition (3) will diminish the number of virtual generalizations and generalizations, in a way that solely
depends on the representation used, by a constant, that is, since the same representation is used for all
experiments.

C.3 Verification

Although the conditions for such a property are severe, we tested what effects property (1) might have on the
number of generalizations and virtual generalizations in our model network, which could account in part for
the numbers found experimentally, in the more complex networks.

This was done by calculating the probability that a pattern zy in the testing set has = in common with a pat-
tern za; in the training set, y in common with a pattern a;y in the training set, and that aja; is in the training
set. An estimation of the number of generalizations and virtual generalizations was then possible. This naive
approach, unfortunately but not surprisingly, did not prove to be conclusive, as the true and virtual generaliza-

149

150

Appendix D

Further contribution analysis

D.1 Full table of hidden units patterns

Table D.1 list all input patterns corresponding to the pattern of hidden units most responsible for a given
output (first 20 output units), for the experiment analyzed in section 7.7 of chapter 7.

151

Table D.1: Full table of hidden unit responsibilities

[Output unit | Hidden unit | Pattern presentation

1 h3 dbef dbbe dabe ceee ccda cebe defe cacf cadb cbfa cfec cdac

2 h8 h5 ebcb efcf efce fibe

3 hi2 adac feab faab adaa fcec abea afce aecd fdff fibe fdbd aaef
feef fbff fefe feff adbf acce acff dabe dbef dbbe dcfe

4 h6 h2 acfl cfec anef dcfe cadb dabe ccda adbf adac ceee cacf cdac
dbef abea cbfa dbbe adaa cebe afce acce aecd

5 h13 h14 h4 h7 bdcc beec fcec beeb feab

6 h8 h1 hi8 hi5 effd fibe fdbd fefe eebc fbff eaac efcc feff edfe fdff eddc efcf
eeab fcec faab fcef ecaa feab dbbe dabe dbef ebcb defe

7 h12 h9 h11 h16 h6 h2 | acff aaef adbf adac afce abea adaa aecd cact cfec cadb ccda
acce cbfa ceee cdac cebe

8 hs cebe ceee dabe dbbe cfec efce eebe cacf cbfa effd eaac ebeb
efcf ecaa eeab dbef ceda cdac edfe cadb defe edde

9 hi6 h4 fdbd bdcc fdff edfe eddc adbf beff fcef fcec adac adaa acff
cdac beec beeb ceda ecaa defe acce

10 h8 h5 h9 efef bfca effd afce flbe efcc ebeb fdbd aecd bdce bbde beff
edfe acce bafe

11 hi18 h3 h2 h20 ecaa acfl beff feef ccda feab beeb eeab abea ebeb dbef acce
fbff bbde beec fcec

12 h5 h9 h8 efef effd fibe fbff bfca feff cebe afce eebc dbbe dbef efcc ebeb
cfec fefe ceee aecd cbfa abea eeab bbde feab

13 h7 hi6 hé h10 fdff adac bdcc adaa fdbd cdac adbf eebc fefe eddc feff edfe
feab eeab cebe ceee

14 h7 hi0 h9 fefe cebe ceee fibe feab feff aecd eeab adac eebc fdbd bfca

. fdff bdcc cfec afce adaa adbf cdac edfe effd efcf efcc edde

15 hl hi19 bafe baae baad dabe faab beff aaef eaac fcef acff cacf ecaa
fecee beeb defe beec cadb acce ceda

16 h17 h5 fibe cfec bfca abea efcc eaac faab fbff dbbe dabe bafe cbfa
afce effd aaef bbde dbef baad baae ebcb efef cadb cacf

17 hi11 h1i3 h12 h8 cadb eddc bfca efcc cacf efcf bdce ceda bbde afce ebeb aecd |
acce

18 his adac cdac adaa

19 h5 h19 h18 abea bfca

20 h13 hil ccda bbde cadb bfca eddc cacf bdcc efcc eaac ecaa baae
baad eeab efcf cdac adac faab feab ebcb adaa afce aecd
acce

152

D.2 Local hidden unit responsibilities

Figure D.1 and D.2 are the result of principal component analysis (first two principal components) of con-
tributions, for the first and third hidden units, respectively. The corresponding experiment is described in

section 7.7 of chapter 7.
Table D.2 summarizes contribution information for each hidden unit, by displaying in a regular expression
form the input patterns most responsible for a given hidden unit.

153

h1

ffbe
fetf fefe

feab
fdft tdbd

feef fcec
foft faab
eftd

efct
efcc
eebc eeab
edfe

edde
ecaa

eaac sbch
dcfe

dabe dbbe

ca
f
betf Bdcéc

bbde
bafe baae
baac?

I I T
-7.5 -5 -2.5 0
First Rotated variable

01 P Lt
-0.2
-0.3

-0.4

A A
1011121314151617181920212223242526272829303132

P
N —
W —
h.
oy —
o —
~N -
o —
© —

Figure D.1: Principal component analysis (first two principal components) of contributions, for first hidden
unit

154

h3

feff fthe
: fefe
dft feab
fdbd : : fcef
fcec : : €
: : fbif aab
effd o aa
efce : : eic
eebe : : b
: : edfe eea
eddc : :
ecaa : : beb
eaac : : eoe
dbef dcfe
dandPbe
cfec
cee
cdac cebe
ceda
cbfa
cacfC adb
bfcg
dee beft
bcec beeb
b %%de
e paae
baad afce
aecd ot
adac
adda
acft
abea acce
aaef
I T T T T
-2 0 2 4 6
First rotated Variable
0.6 !
0.5 :
0.4 !
0.3
02 L
ORI . Pl
o,'_-"'z.:..,',',:".:.
~0.1 - ’

N T T T Ty S O T T
101112131415161718192021222324252627 2829303132

N —
@ —
S o—
1 —
O —
-
o —
@O —

Figure D.2: Principal component analysis (first two principal components) of contributions, for third hidden
unit.

155

Table D.2: Table of hidden unit responsibilities

Hidden unit I Output Unit Input presentations
hil 72417 4 £*£* (4/4) *aa™ (4/4) **fe (3/4) e*** (5/10)
h2 1 not accounted for
h3 1 **%c (10/10) ***a (6/6) ***d (4/4)
h4 22 23 1 (4/4) *ce* (4/4) **e (4/4) c*** (4/8)
h5 1912 9 e¥c* (3/3) *eb* (2/2) db** (2/2) *£** (5/7)
h6 21 **c* (9/9) **a* (9/10)
7 13 14 16 15 *e** (8/8) ad** (3/3) *d** (7/9)
h8 6 £*£* (4/4) ef** (3/3) fe** (3/3) e**b (2/2) e*** (7/10)
h9 7 a**a (2/2) c*** (2/8)
hio 27 32 *d%c (4/4) *e*e (3/3) ***c (6/10)
hil 28 *d%c (4/4) e**c (4/4) ***a (5/6)
hi2 37 a*** (9/9)
hi3 3 b*%* (9/9) e**c (4/4) e*** (9/10) c*** (5/8)
hid 2085 ¥%F (4/4) *ce* (4/4) b (2/2) b*** (4/9)
his 212429326 **be (4/4) e*f* (2/2) f**e (2/2) **b* (6/7)
his 13 11 12 *a** (9/9) *d** (9/9)
h17 16 *aa* (4/4) *a*e (3/3)
his 11 ¥ce* (4/4)
19524 1113 not accounted for
20611173054 | e**c(4/4) *ce* (4/4) e*a* (3/3) e*c* (3/3)
24 **c* (2/9)
16 a*c* (2/3)
hi9 8 ¥ce* (4/4) b*%e (3/3) a*c* (3/3) b*** (8/9)
19 24 *ce* (4/4)
1415 8 ba** (3/3)
h20 19 ¥ (2/2) c**a (2/2) *°F (4/5) ***a (4/6)
27 32 not accounted for
bias 3 4% (10/10) a*** (9/9) d*** (4/4)

156

Bibliography

(Abu-Mostafa, 1986) Yaser S. Abu-Mostafa. The complexity of information extraction. IEEE Transactions
on Information Theory, I1T-32:513-525, 1986.

(Ackley et al., 1985) D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. A learning algorithm for boltzmann
machines. Cognitive Science, 9:147-169, 1985.

(Ahmad, 1988) Subutai Ahmad. A study of scaling and generalization in neural networks. Technical Re-
port UIUCDCS-R-88-1454, Department of Computer Science, University of Illinois at Urbana-Champaign,
September 1988.

(Almeida, 1987) L.B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Proceedings of the IEEE First International Conference on Neural Networks, San Diego,
pages 609-618. New York: IEEE, 1987.

(Anderson et al., 1977) J.A. Anderson, J.W. Silverstein, S.A. Ritz, and R.S. Jones. Distinctive features,
categorical perception and probability learning: Some applications of a neural model. Psychological Review,
84:413-451, 1977.

(Attneave, 1959) Fred Attneave. Applications of information theory to psychology: A summmary of basic
concepts, methods, and results. New York: Holt, Rinehart and Winston, 1959.

(Baldi and Hornik, 1988) P. Baldi and K. Hornik. Neural networks and principal components analysis: Learn-
ing from examples without local minima. Neural Networks, 2:53-58, 1988.

(Barnes and Underwood, 1959) J.M. Barnes and B.J. Underwood. Fate of first-list associations in transfer
theory. Journal of Exzperimental psychology, 58:97-105, 1959.

(Baum and Haussler, 1989) Eric Baum and David Haussler. What size net gives valid generalization. Neural
Computation, 1:151-160, 1989.

(Blumer et al., 1987) Anselm Blumer, Andrzej Ehrenfeucht, David Hausler, and Manfred K. Warmuth. Learn-
ability and the Vapnik-Chervonenkis dimension. Technical Report UCSC-CRIL-87-20, University of Califor-
nia, Santa Cruz, 1987.

(Brousse and Smolensky, 1989a) Olivier Brousse and Paul Smolensky. Connectionist generalization and in-
cremental learning in conbinatorial domains. In Synergetics of Cognition, H. Haken {Ed.), pages 126-133,
New York, 1989. Springer-Verlag.

(Brousse and Smolensky, 1989b) Olivier Brousse and Paul Smolensky. Virtual memories and massive gener-
alization in connectionist combinatorial learning. In Proceedings of the Eleventh Annual Cognitive Science
Society Conference, pages 26-33, Hillsdale, NJ, 1989. Lawrence Erlbaum Associates.

(Brousse and Smolensky, 1990) Olivier Brousse and Paul Smolensky. Interference and generalization in con-
nectionist networks: Within-domain structure or between-domain correlation? A response. Neural Network

Review, 4:27-29, 1990.
(Brousse, 1991) Olivier Brousse. Generativity and Systematicity in Neural Network Combinatorial Learning.
PhD thesis, University of Colorado, Boulder, 1991.

157

(Carpenter and Grossberg, 1987) G. A. Carpenter and S. Grossberg. Art2: Self organization of stable category
recognition codes for analog input patterns. Applied Optics, 26:4919-4930, 1987.

(Chaitin, 1965) G.J. Chaitin. A theory of program size formally identical to information theory. Journal of
the ACM, 22:329-340, 1965,
(Chalmers, 1990a} David Chalmers. Syntactic transformations on distributed representations. Technical re-

port, Center for research on concepts and cognition, Indiana University, 1990.

(Chalmers, 1690b) David Chalmers. Why Fodor and Pylyshyn were wrong: the simplest refutation. Technical
report, Center for research on concepts and cognition, Indiana University, 1990.

(Chauvin, 1990) Yves Chauvin. Generalization performance of overtrained networks. In Proceedings of the
1990 EURASIP workshop, page 46. Springer, 1990.

(Chomsky, 1968) N. Chomsky. Language and mind. New York: Harcourt, Brace and World, 1968.

(Cover and King, 1978) Thomas M. Cover and Roger C. King. A convergent gambling estimate of the entropy
of English. IEEE Transactions on Information Theory, 1T-24:413-421, 1978.

(Cussins, 1990) Adrian Cussins. The connectionist construction of concepts. In Margaret A. Boden, editor,
Philosophy of artificial intelligence, pages 368-440. 1990.

(Denker et al., 1987) John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, Richard Howard, Lawrence
Jackel, and John Hopfield. Large automatic learning, rule extraction and generalization. Complez Systems,
1:877-822, 1987.

(Derthick, 1986) Mark Derthick. Is distributed connectionism compatible with the physical symbol hypothesis
? In The Eight Conference of the Cognitive Science Society, pages 639-644, Hillsdale, NJ, 1986. Lawrence
Erlbaum Associates.

(Dreyfus and Dreyfus, 1988) H.L. Dreyfus and S.E. Dreyfus. Making a mind versus modeling a brain: Ar-
tificial intelligence back at a branchpoint. In Proceedings of the American Academy of Arts and Sciences,
pages 15-43, Daedalus, P.O. Box 515, Canton, MA 02021, 1988. American Academy of Arts and Sciences.

(Edelman, 1987) Gerald M. Edelman. Neural Darwinism : the theory of neuronal group selection. New York
: Basic Books, 1987.

(Ehrenfeucht, 1991) Andrzej Ehrenfeucht. Personal Communication, 1991.
(Elman, 1990) J.L. Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

(Elman, 1991) Jeffrey L. Elman. Incremental learning, or the importance of starting small. In Proceedings
of the Thirteenth Annual Cognitive Science Society Conference, Hillsdale, NJ , 1991, Lawrence Erlbaum
Associates.

(Estes, 1982) W.K. Estes. Similarity-related channel interactions in visual processing. Journal of Ezperimental
Psychology: Human Perception and Performance, 38:353-382, 1982.

(Estes, 1991) W.K. Estes. Cognitive architectures from the standpont of an experimental psychologist. Annual
Review of Psychology, 42:1-28, 1991.

(Everitt, 1980) Brian Everitt. Cluster analysis. Halsted Press, New York, 1980.

(Fodor and McLaulghlin, 1990) J.A. Fodor and B.P. McLaulghlin. Connectionism and the problem of sys-
tematicity: Why Smolensky’s solution won’t work. Cognition, 35:183-204, 1990.

(Fodor and Pylyshyn, 1988) J.A. Fodor and Z.W. Pylyshyn. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28:3-71, 1988.

(Fodor, 1975) J.A. Fodor. The language of thought. Harvard University Press, 1975.

158

(Fozzard et al., 1989) Rich Fozzard, Lou Ceci, and Gary Bradshaw. Theonet, a connectionist expert system
that actually works. In D. S. Touretzky, editor, Advances in neural information processing systems I, pages
248-255. Morgan Kauffman, San Mateo, 1989.

(Frean, 1990) M. Frean. The Upstart algorithm: A method for constructing and training feedforward neural
networks. Neural Computation, 2:198-209, 1990.

(French, 1991) Robert M. French. Using semi-distributed representations to overcome catastrophic forgetting
in connectionist networks. Technical Report CRCC 51-1991, Center for research on concepts and cognition,
Indiana University, 1991.

(Gardner and Derrida, 1989) E. Gardner and B. Derrida. Three unfinished works on the optimal storage
capacity of networks. Journal of physics A, 22:1983-1994, 1989.

(Garner, 1962) W.R. Garner. Uncertainty and Structure as Psychological Concepts. John Wiley ad Sons, Ine.,
New York, 1962.

(Goggin et al., Submitted) Shelly D.D. Goggin, Karl E. Gustafson, and Kristina M. Johnson. An analysis of
the hidden unit and weights values in nonlinear multilayer neural networks. IEEE Transaction on Neural
Networks, 7, Submitted.

(Grassberger, 1989) Peter Grassberger. Sequences and efficient codes. IEEE Transactions on Information
Theory, 35:669-675, 1989,

(Grossberg, 1976) S. Grossberg. Adaptive pattern classification and universal recoding: I. parralel develop-
ment and coding of neural feature detectors. Biological Cybernetics, 23:121-134, 1976.

(Hanson and Kegl, 1987) J.H. Hanson and J. Kegl. Parsnip: A connectionist network that learns natural
language grammar from exposure to natural language sentences. In The Ninth Conference of the Cognitive
Science Society, pages 106-119, Hillsdale, NJ, 1987. Lawrence Erlbaum Associates.

(Hanson and Pratt, 1989) S.J. Hanson and L. Pratt. A comparison of different biases for minimal network
constructions with back-propagation. In D. S. Touretzky, editor, Advances in neural information processing
systems I, pages 177-185. Morgan Kaufmann, San Mateo, CA, 1989.

(Haussler, 1986) David Haussler. Quantifying inductive bias in concept learning. Technical Report UCSC-
CRL-86-25, University of California, Santa Cruz, 1986.

(Haussler, 1987) David Haussler. Bias, version spaces and Valiant’s learning framework. In The Fourth
International Workshop on Machine Learning, pages 324-336, 95 First Street, Los Altos, CA 94022, 1987.
Morgan Kaufmann Publishers, Inc.

(Hebb, 1949) Donald Hebb. The organization of behavior. Wiley (New York), 1949.

(Hetherington and Seidenberg, 1989) Phil A. Hetherington and Mark S. Seidenberg. Is there catatrophic
interference in connectionist networks? In Proceedings of the Eleventh Annual Cognitive Science Society
Conference, pages 26-33, Hillsdale, NJ, 1989. Lawrence Erlbaum Associates.

(Hinton and Sejnowski, 1986) G.E. Hinton and T.E. Sejnowski. Learning and relearning in boltzmann ma-
chines. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editor, Parallel distributed
processing: Ezplorations in the microstructure of cognition. Volume I: Foundations, chapter 7, pages 282-
317. MIT Press/Bradford Books., 1986.

(Hinton, 1987) G. Hinton. Learning translation invariant recognition in a massivelly parallel network. In
Proceedings of the European conference on parallel architectures and languages. Springer, 1987.

(Hobson and Cheng, 1973) Arthur Hobson and Bin-Kang Cheng. A comparison of the Shannon and Kullback
information measures. Journal of Statistical Physics, 7:301-310, 1973.

(Hofstadter, 1985) D.R. Hofstadter. Waking up from the boolean dream, or subcognition as computation. In
Metamagical schemas, pages 631-665. New York: Basic Books, 1985.

159

(Holland et al., 1986) John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and Paul R. Thagard. Induc-
tion: Processes of inference, learning and discovery. MIT press, Cambridge, MA, 1986.

(Hopfield, 1982) J.J. Hopfield. Neural networks and physical systems with emergent collective computational

properties. In Proceedings of the National Academy of Science, chapter 79, pages 2554-2538. U.S.A., 1982.

(Jordan and Jacob, 1990) M. I. Jordan and R. A. Jacob. Learning to control an unstable system using forward
modeling. In D. S. Touretzky, editor, Advances in neural information processing systems 2, pages 324-331.
Morgan Kaufmann, San Mateo, CA, 1990.

(Kohonen et al., 1981) Teuvo Kohonen, Erkki Oja, and Pekka Lehtio. Storage and processing of information
in distributed associative memory systems. In G.E. Hinton and J.A. Anderson, editors, Parallel Models of
Associative Memory, chapter 4, pages 105-144. Lawrence Erlbaum Associates, 1981.

(Kohonen, 1977) T. Kohonen. Associative memory: A system theoretical approach. Springer-Verlag, New
York, 1977.

(Kohonen, 1984) T. Kohonen. Self-organization and associative memory. Springer-Verlag, New York, 1984.

(Kolmogorov, 1965) A.N. Kolmogorov. Three approaches to the quantitative definition of information. Prob-
lems of Information Transmission, 1:1~11, 1965.

(Kortge, 1990) Chris Kortge. Episodic memory on connectionist networks. In The Twelth Conference of the
Cognitive Science Society, pages 764-771, Hillsdale, NJ, 1990. Lawrence Erlbaum Associates.

(Krogh and Hertz, To appear) Anders Krogh and John A. Hertz. Dynamics of generalization in linear per-
ceptrons. Obtained from the fip internet Neuroprose database on archive.cis.ohio-state.edu, To appear.

(Kukich, 1988) Karen Kukich. Back-propagation topologies for sequence generation. In Proceedings of the
IEEE Second International Conference on Neural Networks, San Diego, pages 308-310. New York: IEEE,
1988.

(Kullback, 1959) S. Kullback. Information theory and statitics. John Wiley and Souns, Inc., New York, 1959.

(Le Cun et al., 1990) Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D.
Jackel. Handwritten digit recognition with a back-propagation network. In D. S. Touretzky, editor, Advances
in neural information processing systems 2, pages 396-404, San Mateo, 1990. Morgan Kauffman.

(Le Cun, 1985) Yann Le Cun. A learning procedure for asymmetric threshold networks. Proc. Cognitiva,
85:699-704, 1985.

(Legendre et al., 1990a) Géraldine Legendre, Yoshiro Miyata, and Paul Smolensky. Harmonic grammar —a
formal multi-level theory of linguistic well-formedness: Theoretical foundations. In Proceedings of the Twelth
Annual Cognitive Science Society Conference, Hillsdale, NJ, 1990. Lawrence Erlbaum Associates.

(Legendre et al., 1990b) Géraldine Legendre, Yoshiro Miyata, and Paul Smolensky. Harmonic grammar —-a
formal multi-level theory of linguistic well-formedness: An application. In Proceedings of the Twelth Annual
Cognitive Science Society Conference, Hillsdale, NJ, 1990. Lawrence Erlbaum Associates.

(Legendre et al., 1991) Géraldine Legendre, Yoshiro Miyata, and Paul Smolensky. Distributed recursive struc-
ture processing. In J. Moody R.P. Lippman and D. S. Touretzky, editors, Advances in neural information
processing systems 3, pages 591-597. Morgan Kauffman, San Mateo, 1991.

(Lempel and Ziv, 1974) A. Lempel and J. Ziv. On the complexity of finite sequences. IEEF Transactions on
Information Theory, 1T-22:75-81, 1974.

(Leung-Yan Cheong and Cover, 1978) S.K. Leung-Yan Cheong and T.M. Cover. Some equivalences between
Shannon entropy and Kolmogorov complexity. JEEE Transactions on Information Theory, 1T-24:331-338,
1978.

160

(Marchand et al., 1990) M. Marchand, M. Golea, and P. Rujan. A convergence theorem for sequential learning
in two layer perceptrons. Furophysics Letters, 11:487-492, 1990.

(McClelland and Elman, 1986) J.L. McClelland and J.L. Elman. Interactive processes in speech perception:
the TRACE model. In J. L. McClelland, D. E. Rumelhart, J. L., and the PDP Research Group, editor,
Parallel distributed processing: Ezplorations in the microstructure of cognition. Volume 2: Psychological
and Biological Processes, chapter 15, pages 282-317. MIT Press/Bradford Books., 1986.

(McClelland and Rumelhart, 1986) J.L. McClelland and D.E. Rumelhart. A distributed model of human
learning and memory. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editor, Parallel
distributed processing: Ezplorations in the microstructure of cognition. Volume 1: Foundations, chapter 17,
pages 170-215. MIT Press/Bradford Books., 1986.

(McClelland and Rumelhart, 1988) J.L. McClelland and D.E. Rumelhart. Ezplorations in Parallel Distributed
Processing: A handbook of models, programs, and ezercises. MIT Press/Bradford Books, 1988.

(McClelland et al., 1986) J.L. McClelland, D.E. Rumelhart, and the PDP group. Ezplorations in Parallel
Dustributed Processing: Volume 2: Psychological and biological models. MIT Press/Bradford Books, 1986.

(McCloskey and Cohen, 1989) M. McCloskey and N.J. Cohen. Catastrophic interference in connectionist net-
works: The sequential learning problem. In G.H. Bower, editor, The Psychology of learning and motivation,
volume 23. New York: Academic Press, 1989.

(McCullogh and Pitts, 1943) W.S. McCullogh and W. Pitts. A logical calculus of the ideas immanent in the
nervous activity. Bulletin of mathematical biophysics, 5:115-133, 1943,

(McDonald, 1985) Roderick P. McDonald. Factor analysis and related methods. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1985.

(McMillan, 1991) Clayton McMillan. Personal Communication, Computer Science Department, University of
Colorado, Boulder, 1991.

(Medin and Smith, 1984) D.L. Medin and E.E. Smith. Concepts and concept formation. Annual review of
psychology, 35:113-138, 1984,

(Mezard and Nadal, 1989) M. Mezard and J.P. Nadal. Learning in feed-forward layered networks: The tiling
construction algorithm. Journal of Physics A, 22:2191-2204, 1989.

(Michalski, 1983) R.S. Michalski. A theory and methodology of inductive learning. In Machine Learning: An
artificial intelligence approach, pages 83—134. Tioga Press, 1983.

(Minsky and Papert, 1969) M. Minsky and S. Papert. Perceptrons: An introduction to computational geom-
etry. The MIT Press, 1969.

(Mitchell, 1982) T.M. Mitchell. Generalization as search. Artificial intelligence, 18:203-226, 1982.

(Miyata, 1988) Yoshiro Miyata. Organization of action sequences in motor learning. In Proceedings of the
Tenth Annual Cognitive Science Society Conference, Hillsdale, NJ, 1988. Cognitive Science Society, Lawrence
Erlbaum Associates.

(Miyata, 1990) Yoshiro Miyata. A user’s guide to Planet version 5.6, a tool for constructing, running and

looking into a PDP network. Computer Science Department, University of Colorado, Boulder, December
1990.

(Mozer and Smolensky, 1989) Michael C. Mozer and Paul Smolensky. Using relevance to reduce network size
automatically. Connection Science, 1:3-16, 1989.

(Mozer, 1990) Michael C. Mozer. CONNEX: Graphical interface for connectionist networks. Computer Science
Department, University of Colorado, Boulder, 1990.

(Newell, 1980) A. Newell. Physical symbol systems. Cognitive Science, 4:135-183, 1980.

161

(Opper et al., 1990) M. Opper, W. Kinzel, J. Kleinz, and R. Nehl. On the ability of the optimal perceptron
to generalize. Journal of Physics A, 23:1581-L586, 1990.

(Otwell, 1990) Ken Otwell. Incremental back-propagation learning from novelty-based orthogonalization. In
Proceedings of the International Joint Conference on Neural Networks, Washington, D.C, pages 561-564.
New York: IEEE, 1990.

(Parker, 1985) David Parker. Learning logic. Technical Report TR-47, Center for Computational Research
in Enconomics and Management Science, MIT, 1985.

(Pineda, 1987) F.J. Pineda. Generalization of back-propagation to recurrent neural networks. Physical Review
Letters, 59:2229-2232, 1987.

(Pollack, 1988) Jordan Pollack. Recursive auto-associative memory: Devising compositional distributed repre-
sentations. In Proceedings of the Tenth Annual Cognitive Science Society Conference, pages 33-39, Hillsdale,
NJ, 1988. Cognitive Science Society, Lawrence Erlbaum Associates.

(Ratcliff, 1990) Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning
and forgetting functions. Psychological Review, 97:285-308, 1990.

(Rissanen, 1986) Jorma Rissanen. Stochastic complexity. Annals of statistics, 14:1080-1100, 1986.

(Rissanen, 1989) Jorma Rissanen. Stochastic complezity in statistical enquiry. World Scientific Publishing
Company, Singapore, 1989.

(Rosenberg, 1987) Charles R. Rosenberg. Revealing the structure of NETtalk’s internal representations. Tech-
nical report, Cognitive Science Laboratory, Princeton University, Princeton, New Jersey 08542, 1987,

(Rosenblatt, 1958) Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386~408, 1958.

(Rosenblatt, 1962) Frank Rosenblatt. Principles of Neurodynamics. Washington D.C.:Spartan Books, 1962.

(Ross, 1988) Sheldon Ross. A first course in probability (third edition). Macmillan Pubishing Company, New
York, 1988.

(Rumelhart et al., 1986a) D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations
by error propagation. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editor, Parallel
distributed processing: Ezplorations in the microstructure of cognition. Volume 1: Foundations, chapter 8,
pages 318-362. MIT Press/Bradford Books., 1986. /

(Rumelhart et al., 1986b) D.E. Rumelhart, J.L. McClelland, and the PDP group. Eezplorations in Parallel
Distributed Processing: Volume 1: Foundations. MIT Press/Bradford Books, 1986.

(Rumelhart, 1988) David E. Rumelhart. Learning and generalization, 1988.

(Saito and Nakano, 1988) K. Saito and R. Nakano. Medical diagnostic expert system based on a pdp model.
In Proceedings of the IEEE Second International Conference on Neural Networks, San Diego, pages 255-262.
New York: IEEE, 1988.

(Samalam and Schwartz, 1989) V.K. Samalam and D.B. Schwartz. A study of learning and generalization by
exhaustive analysis. Technical Report TM-0224-12-89-401, GTE laboratories, 1989.

(Sanger, 1989) Dennis Sanger. A technique for assigning local reponsibilities to hidden units in neural nets.
Technical Report CU-CS-435-89, Department of Computer Science, University of Colorado at Boulder, 1989.

(Sanger, 1990) Dennis Sanger. Contribution analysis: a technique for Assigning Local Responsabilities to
Hidden Units in Neural Nets. PhD thesis, University of Colorado, Boulder, 1990.

(Sankar and Mammone, 1991) Ananth Sankar and Richard F. Mammone. Optimal pruning of neural tree
networks for improved generalization. In Proceedings of the International Joint Conference on Neural
Networks, Seattle, to appear. New York: IEEE, 1991.

162

(Schwartz et al., 1990) D.B. Schwartz, V.K. Samalam, S.A. Solla, and J.S. Denker. Exhaustive learning.
Neural Computation, 2:374-385, 1990.

(Sejnowski and Rosenberg, 1987) T.J. Sejnowski and C.R. Rosenberg. Parallel networks that learn to pro-
nounce English text. Complez Systems, 1:145-168, 1987.

(Servan-Schreiber et al., 1989) D. Servan-Schreiber, A. Cleeremans, and J.L. McClelland. Encoding sequential
structure in simple recurrent networks. In D. S. Touretzky, editor, Advances in neural information processing
systems 1. Morgan Kaufmann, San Mateo, CA, 1989.

(Shannon, 1948) C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379-422, 1948.

(Shannon, 1951) C. E. Shannon. Prediction and entropy of printed English. The Bell System Technical
Journal, 30:50-64, 1951.

(Sirat and Nadal, 1990) J.-A. Sirat and J.-P Nadal. Neural trees: A new tool for classification. Technical
Report Preprint, Laboratoire d’Electronique Phillips, Limeil-Brevannes, France, 1990.

(Sirat, 1990) J.-A Sirat. Personal Communication, 1990.

(Sloman and Rumelhart, To appear) S.A. Sloman and David E. Rumelhart. Reducing interference in dis-
tributed memories through episodic gating. To appear.

(Smolensky, 1983) Paul Smolensky. Schema selection and stochastic inferece in modular environment. In
Proceedings of the National Conference on Artificial Intelligence, pages 33-39, 95 First Street, Los Altos,
CA 94022, 1983. Morgan Kaufmann Publishers, Inc.

(Smolensky, 1987a) Paul Smolensky. The constituent structure of connectionit mental states: A reply to
Fodor and Pylyshyn. Southern Journal of Philosophy, 1, Supplement:137-163, 1987.

(Smolensky, 1987b) Paul Smolensky. On variable binding and the representation of symbolic structures in
connectionist systems. Technical Report CU-CS-355-87, Department of Computer Science, University of
Colorado at Boulder, 1987.

(Smolensky, 1988) P.Smolensky. On the proper treatment of connectionism. The behavioral and brain sciences,
March 1988.

(Smolensky, 1990) Paul Smolensky. Tensor product variable binding and the representations of symbolic
structures in connectionist networks. Artificial intelligence, 46:159-216, 1990.

(Solomonoff, 1964) R.J. Solomonoff. A formal theory of inductive inference. Information and Control, 7:1-22,
1964.

(Solomonoff, 1978) R.J. Solomonoff. Complexity-based induction systems: Comparisons and convergence
theorems. IEEE Transactions on Information Theory, IT-24:422-432, 1978.

(Sontag, 1990) Eduardo D. Sontag. Feedforward nets for interpolation and classification. 2:374-385, 1990.

(Stanfill and Waltz, 1986) Craig Stanfill and David Waltz. Towards memory-based reasoning. Communica-
tions of the ACM, 29:1213-1228, 1986.

(Staniland, 1966) A.C. Staniland. Patterns of redundancy. Cambridge at the University Press, 1966.

(Thagard and Nisbett, 1982) P. Thagard and R.E. Nisbett. Variability and confirmation. Philosophical stud-
ies, 42:379-394, 1982,

(Tishby et al., 1989) N. Tishby, E. Levin, and S. Solla. Consistent inference of probabilities in layered net-
works: prediction and generalization. In Proceedings of the International Joint Conference on Neural
Networks, Washington, D.C, pages 403-409. New York: IEEE, 1989.

(Valiant, 1984) L.G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.

163

(Van Gelder, 1990) Tim Van Gelder. Compositionality: A connectionist variation on a classical theme. Cog-
nitive Science, 14:355-384, 1990.

(Vapnik and Chervonenkis, 1971) V.N. Vapnik and A. Chervonenkis. On uniform convergence of relative
frequencies of events to their probabilities. Theory Prob. Appl., 16:264-280, 1971.

(Weigend et al., 1990) Andreas S. Weigend, Bernardo A. Huberman, and David E. Rumelhart. Predicting the
future: a connectionist approach. Technical Report Stanford-PDP-90-01, Stanford University, April 1990.

(Weigend et al., 1991) Andreas S. Weigend, David E. Rumelhart, and Bernardo A. Huberman. Generalization
by weight-elimination with application to forecasting. In J. Moody R.P. Lippman and D. S. Touretzky,
editors, Advances in neural information processing systems 3, pages 875-882. Morgan Kauffman, San Mateo,
1991.

(Werbos, 1974) Paul Werbos. Beyond regression: New tools for Prediction and Analysis in the Behavioral
Sctences. PhD thesis, Harvard Universty, 1974.

(Willshaw, 1981) D. Willshaw. Holography, associative memory, and inductive generalization. In G.E. Hinton
and J.A. Anderson, editors, Parallel Models of Associative Memory, chapter 3, pages 83-104. Lawrence
Erlbaum Associates, 1981.

(Wolpert, 1990a) David Wolpert. Construcﬁng a generalizer superior to nettalk via a mathematical theory of
generalization. Neural Networks, 3:445-452, 1990.

Wolpert, 1990b) David Wolpert. A mathematical theory of generalization, part I. Complez Systems, 4:151-
g
200, 1990.

(Wolpert, 1990c) David Wolpert. A mathematical theory of generalization, part II. Complez Systems, 4:201—
249, 1990.

(Young, 1971) F. Young, John. Information theory. London:Butterworth, 1971.

(Yu and Simmons, 1990) Yeong-Ho Yu and Robert F. Simmons. Incremental back-propagation learning from
novelty-based orthogonalization. In Proceedings of the International Joint Conference on Neural Networks,
Washington, D.C. New York: IEEE, 1990.

(Zemel et al., 1990) R. S. Zemel, M. C. Mozer, and G. E. Hinton. Trafic: A model of object recognition
based on transformations of feature instances. In D. S. Touretzky, editor, Advances in neural information
processing systems 2, pages 266-273. Morgan Kaufmann, San Mateo, CA, 1990.

(Ziv and Lempel, 1978) J. Ziv and A. Lempel. Compression of individual sequences via variable-rate encoding.
IEEE Transactions on Information Theory, IT-24:530-536, 1978.

(Zvonkin and Levin, 1970) A.K. Zvonkin and L.A. Levin. The complexity of finite objects and the devel-
opment of the concepts of information and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 25:83-124, 1970.

164

