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Using Chaos to Broaden the Capture Range of a
Phase-Locked Loop

Elizabeth Bradley

Abstract — Chaos is common in physical systems, but control engineers have, until
very recently, deemed it undesirable and gone to great lengths to avoid it. Such
tactics can 1‘epresen'1; a needless sacrifice in performance — chaos has a variety of
useful properties that can significantly enhance engineering designs. In particular,
phase-space trajectories on a chaotic attractor densely cover a set of non-zero mea-
sure, making all points in that set reachable from any initial condition in its basin
of attraction. Moreover, the size, shape, and position of the attractor are affected
by changes in system parameters, following certain highly characteristic patterns.
These properties have been used, in simulations, to broaden the capture range of
the common phase-locked loop circuit. An external modulating input is used to
throw the unlocked loop into a chaotic regime that overlaps the original capture
range. The chaos-inducing modulation is then turned off, allowing the loop’s origi-
nal dynamics to capture the signal. This technique is not limited to this system or
even to this branch of engineering; it applies, modulo a few constraints and limi-
tations, to any system that exhibits chaotic behavior and that is subject to design

requiiements.
1 Introduction

Chaos in phase-locked loops has been recognized and studied for at least a decade. In the late
1970s and early 1980s, researchers investigating chaos in physical systems recognized that, be-
cause of isomorphisms in the equations, phase-locked loops could be used to effectively simulate
the behavior of driven pendula[7] and Josephson junctions[1], systems that are impractical to
explore in situ because of difficulties with low speeds or temperatures. Interest in this topic
followed in the circuits community several years later[10, 12]. Many other chaotic electronic
systems have been discussed in the literature since then, ranging from the venerable Van del
Pol oscillator[17] to the well-known Chua’s circuit family[28], and culminating in this special

issue of the Transactions on Circuits and Systems.



vgr(t) — PD F(s) VCo vo(1)

‘ Figure 1: Phase-locked loop block diagram. PD = phase detector, F(s) = low-pass filter, and
VCO = voltage-controlled oscillator

More recently, research on chaos in the phase-locked loop has extended beyond analysis to
synthesis and actual practical uses of the chaotic behavior. Novel communication schemes[13]
based on the phenomenon of synchronized chaos[11, 23] have been used to ensure the security
of information transmission. Design improvements in the circuit itsell are another practical
application. Preliminary results[3, 5] indicate that chaos induced via an external modulating
input can increase the capture range of the circuit. This paper refines and expands upon these

preliminary results.

The next section sketches the mathematics and theory of operation of the phase-locked
loop, with the specific goal of smoothly blending modern nonlinear dynamics and the classic
electrical engineer’s interpretation of the circuit. Section 3 explains the mechanics of using
chaos to broaden the capture range of the circuit. Section 4 explores these ideas and techniques
using numerical experiments. Results, caveats, broader implications, and future directions are

summarized in the conclusion.

2 Theory and Mathematics of the Phase-Locked Loop

The basic block diagram of the phase-locked loop is shown in figure 1. The phase detector (PD)
compares the input reference signal vg(t) = Vg sin wgt and the output v,(t) = V, sin(wet+¢) of
the circuit’s internal voltage-controlled oscillator or VCO. The phase difference between the two
signals is measured, filtered, and used to drive the VCO’s frequency towards wgr. The low-pass
filter F'(s) removes noise?éwrforms loop compensation, and discriminates against unwanted
harmonics of the input, to which, in its absence, the loop can lock. Once the circuit is locked
to a signal, changes in frequency can be tracked over a lock range Awy, that is centered on

the free-running frequency wg of the VCO. Initial lock can be acquired over a smaller capture



range Awc, also centered on wg.

Most previous implementations of chaotic analog phase-locked loops have employed either
mixers or sample-and-hold (S&H) circuits as phase detectors. A simple mixer, multiplying two
signals Vg sinwgt and V, sin(w,t + @), produces the sum and difference frequencies wg £ w,. If
the loop is in lock (wg = w,), the sum term — the second harmonic at 2wgr — is filtered out
by the low-pass filter and the output of the PD is Z%&Kpd cos ¢, where Kpq is the gain of the
phase detector. The mathematics of the sample-and-hold phase detector are more complex. If
the reference input is sampled at the VCO’s frequency, the output of the S&H contains a term
proportional to sin ¢, together with all of the harmonics of the sampling frequency w,. The
hold time of the S&H is 27 over the sampling frequency, so the evenly spaced zeroes on its sins

frequency response occur at the harmonics of w,, thereby removing all but the sin ¢ term from

the PD’s output.

The capture and lock ranges depend in a complicated way on global nonlinear properties of
the loop, such as cutoff frequencies and saturation thresholds. When the loop is far from lock
and linearization fails, descriptions in the literature are vague and analysis becomes ad hoc
and/or numerical: “a general expression for loop capture range is not available as the system
is highly nonlinear[26].” The exact form of the calculations depends on the dynamics of each
of the blocks in figure 1. In practice, the width of the lock range is usually determined by
the hard limits of the VCO, but Awy, can be further narrowed by signal amplitude reductions
anywhere in the forward path of the loop: low amplitudes on the reference input Vg or VCO
output V,, low filter cutoff frequency, or a slow or range-limited phase detector. The capture
range Awe is always smaller than the lock range and is generally determined by the cutoff
frequency wrpp of the low-pass filter, which is typically set just below the second harmonic of
the lowest wg to which the loop is expected to lock. The reasoning behind this choice is that if
any harmonic of any anticipated reference frequency can pass unattenuated through the filter,
the loop can lock to that ﬂérmonic instead of to the reference frequency itself!. To understand
the effects of wLpF‘on Awg, consider an unlocked loop, where the PD is measuring the phase
difference between two unequal-frequency sinusoids. When the frequency of this time-varying
phase difference — the (wg — w,) term in the PD’s output — is above the filter’s rolloff, the
feedback loop is effectively broken and none bf the correcting signal can be applied to the
VCO. Lock and capture range mechanics and dynamics are discussed in more detail later in

this section.
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Figure 2: Phase-locked loop characteristics: the shaded point is the equilibrium state of the loop
when it is locked to an input frequency w; that is somewhat higher than the center frequency
of the VCO. If this frequency changes, the equilibrium state moves along the diagonal line until
it reaches the VCO’s limits and the loop loses lock

When the loop is locked to an input near the VCO’s free-running frequency wge, the output
of the phase detector is small. As the reference frequency wgr moves away from wg, the VCO’s
input — and hence the PD’s output — must change for the VCO to track and for the loop to
retain lock. This sets up a constant phase offset ¢ between the input and output signals. In

equilibrium, the voltage induced across Rs by the output current of the PD:

Vo VR

Irg = Kpq cos a (1)

is the DC voltage necessary to drive the VCO’s output to wg:
'8 y p

vo(t) = V,sin(wrt + ¢a) (2)
with
WR —WwWe = Iﬁ’vcoyggﬁlfpd Ccos d)A (3)

These calculations assume unity gain through the loop filter, an accurate approximation if
the loop is locked and the phase detector’s output is pure DC. The amplitude V, of the VCO
output voltage is also assumed to be constant, independent of w,. A diagram of the behavior
described by these three equations is shown on figure 2. The axes of the plot are VCO input
voltage and phase detector output current. The shaded point represents the system state when
the loop is locked to some input frequency wy; as wy changes slowly, the point moves along the

solid diagonal line whose slope is K. If wy were equal to wg, the shaded point would be at
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Figure 3: Transient response of a locked loop to an input frequency step that remains within
the capture range

the origin. When the frequency difference wp — wg exceeds the output range of the VCO —
the dashed lines on the figure — the loop loses lock. This range is generally, as discussed in
the previous paragraph, a function of the specifications in the VCO’s data sheets; it is affected
by the supply voltage limits, the dynamic range of the output stage, etc. The dotted capture

range limits are narrower, governed by the filter’s cutoff frequency via the mechanism described

e

on page 3.

Figure 2 is only valid for slow variations around a locked state. Figure 3 shows a time-
domain plot of the transient set off by a step change in wg — one that does not cause the input
to exceed the capture range. The circuit settles to the new equilibrium state via a growing-
amplitude (and shrinking frequency) series of cusps. Figure 4 shows, on the same axes as
figure 2, the steady-state behavior when wg is outside the capture range. The frequency of
the time-varying phase difference between input and output far exceeds wrpp and so the VCO
input voltage is zero and w, = wg. The phase difference oscillates at wr — wg; the horizontal
amplitude of the signal is related only to the constants K4, Vg, and V,. If wg is lowered to the
edge of the capture range, the situation becomes much more complex. The difference frequency
wR — wg is no longer completely attenuated by the filter, so the VCO input is non-zero, but not
large enough to push w, all the way to wg, even though the latter is theoretically within the
VCO’s range. The PD’s output is swinging far enough, but the filter is breaking the loop. The
frequency shortfall propagates back through the phase detector, causing its output to oscillate,

which in turn varies the VCO input voltage (since the frequency is now below wrpr).
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Figure 4: Evolution of the system state when the input frequency exceeds the capture range:
lwp — wg| > ]égﬂi] wg is the free-running frequency of the VCO

vg(t)
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Figure 5: Phase modulator block diagram

A strict interpretation of the dotted-line definition of the capture range on figure 2is actually
somewhat misleading, because the VCO input voltage is really only proportional to & when
wp is inside the capture range. Qutside this range, the state cannot exceed the dotted limits,
which is exactly the range it must reach to attain lock. Note that the effects of the filter are felt
directly and indirectly on both phase space axes because of the phase shift it introduces above
wrpp. If the loop is to lock to a signal outside Aw¢, the VCO input voltage must be forced

outside the dotted boundaries. Effecting this requires adding a control input to the circuit.

Figure 5 shows a specialized phase-locked loop circuit with a sample-and-hold PD and an
extra input into the filter, which acts as the control input alluded to in the previous paragraph.
Electrical engineers traditionally use this circuit to modulate the output phase according to a
varying voltage vg(t). Thi,s circuit has uses in other fields as well: it is identical to the one
used in [1] and [7] to simulate, respectively, the Josephson junction and the driven pendulum.
The next few pages cover the derivation of the equations and describe the correspondences
between the different physical systems that they model. These equations will be the basis for

the discussion and experiments presented in the rest of this paper.
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Figure 6: Details of loop compensation and filtering

Figure 6 shows the general form of the operational amplifier circuit used in [1, 7] to perform
loop compensation, low-pass filtering, and the addition of the modulating input. F(s) is a

simple one-pole low-pass with the transfer function:

Iy ) 1

WLPF

F(s) = (4)

In practice, R~ Rg = Rg, so Fy =~ 1.

When the loop is in lock and ¢ = 0, the linearized transfer function (output phase versus

input phase) follows the standard second-order form:

e 1 Q
$i(s)  (?/wha) + (2(/wnat)s + 1
where w2, = %‘i‘é and the damping constant 2¢ = \/ TR 2;3/3‘/ 777~ Lhis linearized
s vcoft p, o

equation is not useful in the global analysis of this nonlinear system; it is presented here only

to define the natural frequency wy,; of the circuit.

The differential equation for the VCO’s input v(t) is:

] U(i) VRVolfpd ’UE(t)
t
Co(t) + 5=+ 2Rs Rg (6)

The third term reflects the sampling at 7,, the VCO’s period. The sampler fires at the zero

sin(wrt, + @) = —

crossings of the output sine wave, so the sampled phase is exactly the true phase difference ¢:
(WrTo + @) = ¢ (7)
Since the VCO converts a voltage to a frequency:

0(t) = K eov(t) (8)



Combining equations (6), (7) and (8) yields:

1 . VeRVoKpa . _ vg(t)
A vco ¢ + I('ucoR<b * 2}zS S ¢ B RE‘ (9)

Clear correspondences exist between equation (9) and the equation of motion for a driven,

damped pendulum, with ¢ as the angle of the bob from the vertical:

ml$ + Bl + mgsin ¢ = l(f—) (10)

Wnay 11 the circuit is equivalent to the natural frequency defined for small oscillations by gravity
(g) and the length of the pendulum bob (1):

KooK pd VeV,
nat = — A 11
Wnat 2RsC (11)

The modulating voltage vg(t) plays the role of the applied torque 7(t). The correspondences

for the critical torque 7..;; and the dampmg ratio 1/Q = ﬁcm are:

Terit = mgl (12)
REVRV, K py
= mrhorpd 1
2Rs (13)
2
1/Q = g (14)
Qmﬂ
2Rg
= 1
\/Ii'vcolfpdVRVoRZC (15)

The damping ratio is fixed at 1/4 in this paper, as in many of the other studies of this system[6,
7]; this corresponds to a pendulum whose bob loses about two thirds of its amplitude with each
swing. This may be observed on the phase portrait for the undriven damped pendulum in
figure 7(a), plotted on the axes ¢ vs ¢. Part (b) of the figure shows system trajectories from
the same six initial conditions as part (a), but under the influence of a sinusoidal forcing torque
at 1.2 times the critical amplitude and five times the natural frequency of the device. The
phase-locked loop equivalent of this well-known phase portrait has the same axes as figure 2 —
VCO input voltage v(t) versus PD output current [pp(¢) — but with different x-axis scaling,
as Ipp(t) is actually proportional to sin ¢, not ¢. However, the additional constraint imposed
by the filter implies that‘ the state of the unmodulated circuit can only enter the region between

the dotted and dashed lines when a locked input moves out of the capture range.

A similar set of correspondences has been established between the coefficients in equa-
tions (9) and (10) and quantities like the quasiparticle pair current in Josephson junctions; see

[7] for a full description.
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Figure 7: Phase-space trajectories — & plotted against ¢ — of the driven pendulum: (a)
undriven (b) driven at 5 times the device’s natural frequency. The same six initial conditions
were used in both plots. Damping ratio = 1/4 and applied torque = 1.2 times 7.

A schematic of the theoretical effects of a small-amplitude sinusoidal modulation vg(t)
applied to the phase-locked loop of figure 5 is shown in figure 8(a). The modulation moves
the equilibrium point in an ellipse around the ‘locked’ state on the diagonal line of figure 2.
The vertical component of the ellipse is governed by the derivative of the modulating input
vg(t). The horizontal movement occurs as the phase detector reacts to the vg-induced change
in VCO output frequency; it thus reflects Kpq as well. Increases in modulation amplitude cause
the ellipse to expand and deform in response to the various nonlinearities in the circuit (see

part (b) of the figure). [7] demonstrates that bifurcations occur in this progression, causing

VCO input voltage

lock @
range 3

PD output
current

increasing modulation amplitude

@ ®)

Figure 8: Phase portrait of a modulated loop: (a) small modulation (b) the effects of increasing
modulation amplitude '



the period-one limit cycle to mutate into a series of higher-order limit cycles, interspersed in
some ranges with chaotic attractors. When the amplitude of the modulation is large enough,

the edge of the limit cycle touches the dashed lines and the circuit loses lock.

Note that equation (9) incorporates the filter dynamics, and so is valid both inside and
outside the capture range, as long as the assumptions made in its derivation are not violated.
Significant delays in the loop are the most likely and far-reaching cause of failure. A sampling
phase detector would not, in the face of delays, produce a clean sin ¢ signal because the periodic
zeroes on its frequency response would be different from the true harmonics of the sampling
frequency. Equation (7) would then fail and the model — equation (9) — would be invalid.
A simple mixer, because of the speed of its constituent transistors, would suffer less from this
problem. Equation (8) is valid throughout the VCO range, which is assumed to be equivalent
to the lock range. At higher frequencies, second-order effects such as op amp slew rate can
also cause problems. If any of the assumptions in this paragraph are violated, the resulting
unmodeled nonlinearities may cause the behavior of the physical system to differ wildly from

the dynamics of equation (9) This issue is discussed further in section 5.

3 Exploiting Chaos
3.1 Theory

The basic idea behind exploiting chaos to change the reachability characteristics of a system is
to add a control input and use it to force the trajectories of the augmented system to travel on
a chaotic attractor that touches the desired phase-space objective — in this case, the phase-
locked loop’s capture range. This amounts to finding an input topology and control signal
magnitude that, on the axes of figure 2, push the trajectory out of the filter-limited range and
up to the voltage and phase levels necessary for the circuit to acquire lock. More precisely, the
control objective is the point on the diagonal line that corresponds to the desired locked state
and the control input is injected into the modulating input of the phase modulator’s filter.
Other alternatives exist; for example, one could use a voltage-controlled resistor or capacitor
to change the forward path gain or the VCO’s center frequency. These tactics may be viewed
as causing changes in equation coefficients, whereas vg(t) adds a term to the right-hand side

of the equation, changing the topology of the circuit and the dimension of the system.
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When the objective is A‘féached, the chaos-inducing input is turned off and the circuit’s orig-
inal dynamics lock on to the signal. Since chaotic attractors are covered densely by trajectories
that start in their basins, any such initial condition will eventually evolve to within € of every
point on the enclosed attractor, regardless of the size of €. Creating a chaotic attractor that
overlaps the capture range thus amounts to making that range reachable from any starting
condition in its basin. If that basin contains points that are outside the capture range, this
constitutes an effective broadening of Awc. Note that, because it relies upon the circuit’s
inherent locking dynamics, this particular technique cannot extend the capture range beyond

the original lock range.

Though chaos’s characteristic attractor denseness can be relied upon to bring the trajectory
to the objective, the time taken to do so is effectively nondeterministic. This is a consequence of
the extreme sensitivity of these systems to small perturbations, and is an important drawback of

2. small perturbations

this method. Because of the property elucidated in the shadowing lemma
do not alter the geomeﬁrig éfructure of the attractor, but they can affect the order in which its
loops are traced out. Thus, one can only make stochastic statements, based on ratios of the
area of the capture range to the total area of the attractor, about the acquisition time. This
implies that chaotically-improved capture range is ineffective when the application requires that
lock be achieved, without fail, inside a particular time window. Solutions to this problem —
active targeting of a specific point on the attractor, exploiting sensitive dependence on initial
conditions for control leverage and the cross-sectional eigenstructure on a chaotic attractor for

controllability — have been addressed in [5, 24], but practical problems preclude the use of

such techniques here®. These issues are currently under investigation in the author’s group.

3.2 Practice

To broaden the capture range out to the original lock range limits, one must find, for every
expected input frequency wpi that is outside the capture range and inside the lock range, a
specific modulating frequlﬁlcy wgp and amplitude Vgq that, acting in conjunction with wgy,
cause the system to become chaotic and the attractor to overlap the equilibrium point (v1, %)
on the diagonal line of figure 2 that a circuit locked to wgry would exhibit. When wg; is
detected at the reference input, an external controller modulates the loop at Vg sinwgit and
monitors the state until it nears (vy, ;). The external modulation is then turned off, allowing

the circuit’s original dynamics to capture and track the input. Note that the frequency of the

11



level-shifting, externally induced chaotic component must be below wppp for it to have any

effect.

On first examination, this would appear to be a complex task, requiring extensive pre-
exploration and record-keeping to account for every frequency in the range. However, a chaotic
attractor deforms smoothly between bifurcations, so a careful choice of the modulating param-
eters often suffices for a range of input frequencies. In fact, for some sets of loop parameters, a
single set of modulating parameters (Vg., wg.) takes care of the entire range between Aw¢g and
Awr,. In this case, control would be simple: one would simply turn on the external modulation
whenever the loop failed to lock by its natural dynamics. Another potential problem is phase
step due to loop delay: even if the VCO frequency is identical to wpy and the phase difference
is the appropriate ¢, the PD may not react quickly enough, throwing the loop back out of
lock when the controller turns off the external modulation. Some sort of anticipatory control

— extrapolation based on derivatives, etc — would easily solve this problem.

Pinding Vg; and wgy requires recognition of chaotic attractors and determination of which
points they cover. The first of these two tasks presents practical problems; it is often difficult
to prove that a system is chaotic. Such proofs involve formal mathematical conditions like
Smale’s “horseshoes”[25] and are impractical with experimental data. A common criterion[15]
for diagnosis of chaos in a physical system is the presence of a broad-band power spectrum; other
criteria are positive Lyapunov exponents[27], fractal structure[18] in the attractor, positive

metric entropy[20], etc.

A recent series of papers on chaos in the phase-locked loop combines several of these criteria.
Endo et al[10, 12] derive the nonlinear ordinary differential equation of a phase-locked loop de-
modulator and apply Mel’nikov’s method, casting the circuit in the form of a slightly-perturbed
Hamiltonian system, to find horseshoes and transverse homoclinic orbits, thus analytically es-
tablishing the presence of chaos. This hypothesis — and the correctness of their ODE model
— is then verified experimentally with broad-band power spectrum measurements taken from
the circuit itself. Similar spectra are used to explore the effects of changes in the modulating

frequency, which cause the behavior to bifurcate between chaos and periodicity.

The experiments that follow, in contrast, rely much more heavily on fractal phase-space
structure as a diagnostic tool. The circuit involved is a phase modulator, rather than a demod-

ulator, and the chaos is treated as a function both of modulating frequency and amplitude, as

12



described at the end of the previous section and pictured in figure 8. The attractor’s overlap
with the capture range is established visually; this task could be accomplished equally well with

electronic sensors and has been automated in a computer program that uses Al-based vision

techniques[5].

It should be emphasized that broad-band spectra and fractal phase-space structure are
approximate working definitions. They are not rigorous indicators of chaos. More precise

definitions are, particularly among mathematicians, the topic of much debate.

4 Experiments

The experiments presented in this section are numerical integrations, performed with an adap-
tive fourth-order Runge-Kutta algorithm, of equation (9). The plots on the figures have the
same axes as figure 2: VCO input voltage versus phase difference. Because of the inherent
27 periodicity on the x-axis, these planar phase portraits are actually unwrapped cylinders, so
apparent trajectory crossings do not violate uniqueness constraints. The damping ratio is fixed

at 1/4 throughout.

Figure 9 verifies the low-modulation-amplitude phase portrait predicted in figure 8. The
frequency is fixed at 0.8 times the natural frequency wpe: — a modulation frequency ratio of
0.8 — and the amplitude is varied across the figure, starting at one tenth the critical value
defined in equation (12) — a modulation amplitude ratio of 0.1 — and ending at a ratio of 1.4.
Parts (a) and (b), both plotted for an amplitude ratio of 0.1, show trajectories from several
different starting points, all of which relax to the limit cycle near the center of the figure,
independent of initial condition, as the input is within the capture range and the modulation
amplitude is small enough to not disturb the dynamics. The trajectories can overshoot the
limit cycle and lodp around inside or outside of it before settling, as in part (b); the precise
form of this transient behavior depends strongly on the initial condition. For starting points
with high VCO voltage — equivalent to pendula with high velocities — the state can go around
the cylinder one or more times in either direction before relaxing to the limit cycle (e.g., the
initial condition marked with an x’ in part (b)). Because of the quotient-space nature of the
portraits, differences of 2nm are immaterial. Parts (c¢) and (d) of the figure show the effects
of raising the modulation frequency. These limit cycles deform and bifurcate with changing

amplitude, as on figure 8(b). In figure 9(c), a complex period-three limit cycle, the output

13
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Figure 9: Phase-locked loop trajectories with modulation: the frequency remains constant and
the amplitude is raised across the figure. The phase difference on the abscissa is plotted modulo
+7; the ordinate is VCO-input voltage. The loop finds the same limit cycle — period-one in
parts (a) and (b), period-three in part (c) and period-two in part (d) — regardless of initial
condition
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modulation is locked to the third subharmonic of wg. The period-two limit cycle of part (d) is
locked to the second subharmonic and is offset vertically. In the pendulum, this corresponds to
a ‘running’ solution: the bob goes once over the top, rocks back and forth once at the bottom,
then repeats. The circuit, with the modulation imposed in (c) and (d), can no longer strictly
be termed a phase modulator, as the output phase is no longer locked to vg(t). However, the
trajectory in part (d) is extremely suggestive: the modulation has caused a vertical offset of
the average position of the operating point, and the frequency of the offset component is a

subharmonic of wg. This is exactly the effect that is used to alter the capture range.

Figure 10 shows a progression of Poincaré sections over the course of a transition from chaos
to order and back to chaos that is induced by variations in wg. This sectioning technique,
wherein trajectories are sampled once per period of the modulating frequency, reduces the
amount of information on the plot while at the same time preserving its structure. This
reduction vastly facilitates the recognition of chaotic attractors; figure 11 shows, for comparison
purposes, roughly one twentieth of the trajectory whose section appears in figure 10(c). The
structure that is readily apparent on the latter is very difficult to recognize in the former. A
Poincaré section of a period-one limit cycle like figure 9(a) is a single? point, like figure 10(b).

The extra three points on the latter are samples of the transient part of the trajectory.

In the exper’iment pictured in figure 10, the amplitude ratio is fixed at 1.2 and the frequency
ratio varies from 0.3 to 0.6. Note the bifurcation from chaos to periodicity that occurs as the
modulation frequency is raised from 0.3 Wnat t0 0.4 What, and the bifurcation from periodicity
back to chaos that occurs between 0.4 wnq; and 0.5 wpei. Between 0.5 wye; and 0.6 wyay,
~ there is no bifurcation and the attractor deforms smoothly. Note, in contrast, the topological
differences between the attractors in parts (a) and (c) of the figure, residual evidence of the

two (or more) intervening bifurcations.

Since bifurcations are caused by changes in both frequency and amplitude ratios, the infor-
mation about boundaries between regions of order and chaos in this system is often presented
in a two-dimensional parameter-space portrait. Figure 12 shows such a portrait for the phase-
locked loop. This is a metric space (Vg vs. wg) plot; it reflects one hundred 30000-time-unit
integrations of equation (9) and classification of the resultant behavior according to patterns in
the Poincaré sections. Note that only the range below the natural frequency is depicted; above

this region, the circuit is periodic. A second reason for disregarding higher frequencies in this
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Figure 10: Bifurcations and chaos in the phase-locked loop: (a) chaotic behavior at modulation
[requency wg = 0.3wpay (b) periodic behavior at wg = 0.4wnq (¢) chaotic behavior at wg =
0.5wnat (d) chaotic behavior at wg = 0.6wnqs. Same axes as the previous figure. Trajectories
are sampled once per drive period and ¢ is plotted modulo #x. Damping ratio = 1/4 and

modulation amplitude ratio = 1.2
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Figure 11: A small segment of the trajectory that was sampled to produce part (c) of the
previous figure '

am'plitude
ratio
2.0 ccci1c1cCcc
1.8 1 1 CcC1Cl1
1.6 1 ¢ C3 1 C31
1.4 1 ¢cccc31cC
1.2 1 ¢C1 CCCC3
1.0 11 C1 3 C 11
8 111 C2 C11
6 11111111
4 11111111
2 11111111
2 3 4 5 6.7 8.9
frequency ratio

Figure 12: Parameter space portrait of the phase-locked loop. C = chaotic; 1/2/3 = limit cycle
with denoted period
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experiment is the filter: a frequency whose effects on the output are above wrpr cannot affect

the operation of the loop. For a much more detailed version of this plot, see figure 3 of [7].

Though the exact positions of the boundaries on figure 12 depend on wg, the alternating
patterns of those boundaries are a common symptom of dissipative chaotic systems. These
patterns are used here as first-order guidelines in the search for the modulation parameters
Vg; and wg; that give rise to the chaotic attractors that broaden the circuit’s capture range.
Specifically, for each wg;, the search begins with a low-amplitude drive at the natural frequency
and proceeds downwards in frequency. If no encounter with a periodic/chaotic boundary occurs,
the amplitude is raised and the process is repeated. Once a chaotic attractor is found, its‘
intersection with the capture range is determined and the effects of small changes in amplitude
and frequency ratios are assessed (e.g., the attractor in the range explored in figure 10(c)—
(d) moves down and to the left as wg is increased.) If the attractor is close to but does not
intersect the capture range, those local effects are exploited to find parameter values that make
the intersection non-zero. This type of exploration — though with a somewhat different search
pattern — was mechanized and automated by the AI program Perfect Moment[3, 4, 5] that

was mentjoned in the penultimate paragraph of section 3.2.

This exploration and its results are demonstrated in the series of portraits in figure 13. The
bounds and slopes — the horizontal lines that define the capture range and the diagonal line
the represents the locus of locked states — reflect one set of design choices for wrpr, Kvco,
etc. The objective, shown as a small cross on the diagonal line, is outside this capture range.
The experiment consists of finding a chaotic attractor that overlaps this point. The initial
phase of the exploration — the first-cut search for chaotic behavior — is omitted from this
figure; the study of attractor movement near and coverage of the objective is depicted in some
detail. Like figure 10, these plots show Poincaré sections rather than full trajectories; note that
only a rough sampling of points on the attractor gives an adequate idea of its coverage. The
[amplitude ratio, frequency ratio] = [1.6, 0.3] attractor in part (a) does not quite touch the
objective. Raising the frequency ratio moves the attractor down and away from the objective;
see part (b). Raising the amplitude ratio moves the attractor towards and then past the cross;
see parts (¢) and (d). The range between these last two plots — amplitude ratio 1.8 to 2.0
— is then examined in more detail to determine the precise parameter values [1.9, 0.3] that
cause overlap to occur. A magnified view of the section of this attractor that falls near the

objective is shown in figure 14. Note that the intersection of the attractor and the diagonal
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Figure 13: Searching for a chaotic attractor that broadens the capture range: unlike the
previous figures, the x-axis here is proportional to sin¢. The capture range is indicated by
the two horizontal lines. The Poincaré section of the [amplitude ratio, frequency ratio] = [1.6,
0.3] attractor in part (a) does not quite touch the objective — the cross on the diagonal line.
Raising the frequency ratio moves the attractor down and away from the objective; see part (b).
Raising the amplitude ratio moves the attractor towards — part (¢) — and then past (part (d))
the cross. The parameter range between parts (c) and (d) is next examined more closely to
determine the precise values that cause overlap to occur
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Figure 14: The chaotic attractor found as a result of the search: amplitude ratio = 1.9 and
frequency ratio = 0.3. The intersection of this attractor with the diagonal line that represents
the locus of locked states surrounds the objective, making it — and the range of frequencies
that surrounds it — reachable

line is a Cantor set, so the “overlap” may not withstand closer examination. However, solving
this problem would simply require a more exhaustive search of the parameter range because

the chaotic attractor deforms smoothly therein as the amplitude ratio is varied.

This attractor exhibits all the properties and features discussed in section 3. It arises from
the combination of a reference input that is outside the capture range and a control input that
is specifically chosen to cause the system state to move on a chaotic attractor that overlaps
the objective. The amplitude and frequency ratios of this modulating control input can be
used by an external controller to enable the loop to capture this reference frequency. This
type of exploration can be extended to other frequencies as well; note the smooth movement
~of the attractor’s intersection with the diagonal line as the parameters are varied. Finally, this
intersection is a Cantor set, not a point, so one set of parameters can suffice for a range of input
frequencies: all that fall within the extended overlap region. The width and spacing of this
region can also be controlled with the bifurcation parameters, further extending the power of
the fechnique; via a straightforward extension of the exploration/coverage techniques described

here.
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5 Conclusions

This paper proposes and describes a new design technique that uses chaos to selectively make
phase-space points reachable and presents numerical experiments that verify the results. In
the specific example used to demonstrate this technique — the phase-locked loop — a chaotic
attractor is used to broaden the circuit’s capture range. An external modulating input is used
to throw the unlocked loop into a chaotic regime that overlaps the original capture range. The
chaos-inducing modulation is then turned off, allowing the loop’s original dynamics to capture
the signal. This technique is not a universal panacea for control. It cannot make all points
reachable, only those that can be covered by a chaotic attractor for some reasonable control
topology and parameter value. Classic control theory can be viewed as the search for and
stabilization of a fixed point near the objective. Intuitively, it seems obvious that finding an
overlap between a set of non-zero measure (a chaotic attractor) and a single point is easier than

e attempting to superimpose two points — the classic approach®.

Though these results are promising, equation (9) may not be a good model, so definitive
verification can only be drawn from physical experiments. These are in progress in the author’s
research group, using a commercial phase-locked loop IC in order to foster reproducibility.
A variety of assumptions are implicit in the mathematical development of section 2: that
the reference input, modulating input, and VCO output are pure tones at fixed amplitudes,
that the PD is effectively linear in the VCO’s range, and so on. If any of these fail, the
model is inaccurate, which is particularly problematic here because chaos is highly sensitive
to parameters — equation coefficients — as well as to initial conditions. However, the effects
exploited in this paper — bifurcations, densely-covered chaotic attractors that move and change
shape as parameters are varied, etc — are generic and have been amply demonstrated in
physical experiments, both in the phase-locked loop[1, 7, 10, 12] and in a wide variety of other
systems. This demonstrated corroboration of the physical properties upon which this technique

rests strongly suggests that its simulated results will extend smoothly to physical systems.

The underlying novel concept in this paper is that intentional use of chaos to change the
design parameters of an existing system is a powerful — and heretofore neglected — technique.
This thread of research was initiated by work on a computer program, Perfect Moment, that
autonomously explores chaotic dynamic systems and designs controllers that exploit the unique

attributes of chaotic behavior[5]. In the particular example used in this paper, chaos is not
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the only, nor, arguably, even the best way to attain the design goals and force the capture
range to include a particular frequency. In fact, if that frequency were known in advance, one
could simply design the 100/p around it at the outset. Another caveat is the nondeterministic
nature of the acquisition time, discussed on page 11. A more general problem is observability:
this technique can only be used if the system state is either directly or indirectly accessible®.
Despite these drawbacks, this design approach appears to be quite successful. It provides a
possible solution when, for example, a set of design criteria are for the most part easy to meet,
but are vastly complicated by one outlying requirement. Consider aloop that must acquire lock
very quickly, with no overshoot, in a small range of medium frequencies, and that must also
lock to some other, much smaller, frequency, with acquisition time being of little consequence.
In this case, one might design the loop around the first cluster of requirements using standard

techniques, then employ intentionally-induced chaos to bring in the outlying point”.

The method can also be extended, beyond alteration of the global convergence properties
of the system and the reachability of particular objectives, to optimization. Traditional control
avoids chaotic regions; opening up those regions to consideration and use can only improve
the ‘cost’ of the reference trajectory. A direct path through a chaotic region, rather than a
circuitous one around its perimeter, can be faster and shorter. If one axis of the phase space
corresponds, for example, to the fuel consumption of an aircraft, the advantages of a shorter
path are obvious. These effects were also explored in the research on the program Perfect

Moment.

The work presented in this paper ties into the broader field of controlling chaos, which has
developed into a hotbed of theoretical and applied research in the past three or four years[2, 21],
even leading to practical engineering applications. One implemented and tested example is the
stabilization of the unstable periodic orbits embedded within a magnetoelastic ribbon’s chaotic
attractor[8]. Besides the stabilization of these orbits, recent developments in this field have
included the use of chaos’s symptomatic sensitive dependence on initial conditions as control
leverage[4, 24], mentioned-in section 3.1 as a potential solution to the acquisition time problem.
This sensitivity is noﬁ only a source of leverage, but also of exponential magnification of control
errors, so additional control is required to track any chaotic reference trajectory. Nonlinear
dynamics theory gives some qualitative information about the eigenvectors and eigenvalues
on a chaotic attractor, and hence the number of control inputs required to accomplish the

tracking task. For example, a three-dimensional chaotic attractor has one unstable and one
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stable eigenvector in cross section. Stabilizing and point with respect to the cross section thus
requires only one control signal. This feature is used in both [5] and [21] to stabilize the state
once it reaches the control objective, and in the latter to recover from tracking errors along the

path as well.

The technique described in this paper applies to any system that exhibits chaotic behavior
and is subject to design requirements. As mentioned above, it cannot make all points reachable,
but it does provide a powerful new tool for a designer’s arsenal. Like any other technique, it has
advantages and drawbacks. All of the latter — and some of the former — stem {rom sensitivity
to parameter and state changes. Designs that derive control leverage from this sensitivity
must also account for exponential error growth, either via additional control, as discussed in
the previous paragraph, or by relying on denseness and the shadowing lemma — two of the

method’s advantages — and living with nondeterministic acquisition times.

Though the tactics described here are emphatically inappropriate for nuclear plants and
other systems where the time to attain control or the consequences of failure are critical,
controlled chaos has a vast array of potential applications, arising in all branches of engineering:
fluid flow[22], chemical reactions[16], robot movement[14], air, space, and ground vehicles[19],
etc. Chaos is ubiquitous and many of its properties are universal; design techniques that
intelligently exploit this physical behavior, rather than avoid it, have the potential to be broadly

applicable as well as extremely powerful.
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YA tradeoff arises here between speed and discrimination: lowering wipr may preclude harmonic locking,
but it also slows the response time of the loop and lenghtens acquisition time.

2This lemma can be informally stated “with high probability, the sample paths of the problem with external
noise follow some orbit of the deterministic system closely[9].”

3The trajectories are so long that exponential divergence maps quantization-error-level noise up to the signal
level, precluding any possibility of control.

*or pair of points, depending on the definition that is used.

®This naive argument neglects the region of control around the target point because its effects are identical
in both cases.

SThis limitation is common, but not universal, in control systems. Observability is a tighter criterion than
controllability; some systems can be controlled using only output feedback and no information about the state.

TAgain, there are other ways to do this: a switched-capacitor network or voltage-controlled resistor could

be used to adapt the bandwidth of the loop filter to the sensed input frequency. Inducing chaos through the
modulating input is simply a new and conceptually different design technique that accomplishes these goals.
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Figure and Table Captions

I'ig. 1. Phase-locked loop block diagram. PD = phase detector, F(s) = low-pass filter, and
VCO = voltage-controlled oscillator.

Fig. 2. Phase-locked loop characteristics: the shaded point is the equilibrium state of the loop
when it is locked to an input frequency wy that is somewhat higher than the center frequency
of the VCO. If this frequency changes, the equilibrium state moves along the diagonal line until
it reaches the VCQO’s limits and the loop loses lock.

Fig. 3. Transient response of a locked loop to an input frequency step that remains within the

capture range.

I'ig. 4. Evolution of the system state when the input frequency exceeds the capture range:
wr — we| > 842, wg is the free-running frequency of the VCO.

Fig. 5. Phase modulator block diagram.
Fig. 6. Details of loop compensation and filtering.

Fig. 7. Phase-space trajectories — ¢ plotted against ¢ — of the driven pendulum: (a) undriven
(b) driven at 5 times the device’s natural frequency. The same six initial conditions were used

in both plots. Damping ratio = 1/4 and applied torque = 1.2 times 7.

Fig. 8. Phase portrait of a modulated loop: (a) small modulation (b) the effects of increasing
modulation amplitude.

Fig. 9. Phase-locked loop trajectories with modulation: the frequency remains constant and
the amplitude is raised across the figure. The phase difference on the abscissa is plotted modulo
+7; the ordinate is VCO input voltage. The loop finds the same limit cycle — period-one in
parts (a) and (b), period-three in part (c¢) and period-two in part (d) — regardless of initial

condition.

Iig. 10. Bifurcations and chaos in the phase-locked loop: (a) chaotic behavior at modulation
frequency wg = 0.3wnqe (b) periodic behavior at wg = 0.4wpq (¢) chaotic behavior at wg =
0.5w,q; (d) chaotic behavior at wg = 0.6wy,q:. Same axes as the previous figure. Trajectories
are sampled once per drive period and ¢ is plotted modulo 7. Damping ratio = 1/4 and

modulation amplitude ratio = 1.2.

Fig. 11. A small segment of the trajectory that was sampled to produce part (c) of the previous

figure.

Iig. 12. Parameter-space portrait of the phase-locked loop: C = chaotic; 1/2/3 = limit cycle
with denoted period.

Iig. 13. Searching for a chaotic attractor that broadens the capture range: unlike the previcixs
figures, the x-axis here is proportional to sin ¢. The capture range is indicated by the two
horizontal lines. The Poincaré section of the [amplitude ratio, frequency ratio] = [1.6, 0.3]
attractor in part (a) does not quite touch the objective — the cross on the diagonal line.
Raising the frequency ratio moves the attractor down and away from the objective; see part (b).
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Raising the amplitude ratio moves the attractor towards — part (c¢) — and then past (part (d))
the cross. The parameter range between parts (¢) and (d) is next examined more closely to

determine the precise values that cause overlap to occur.

Fig. 14. The chaotic attractor found as a result of the search: amplitude ratio = 1.9 and
frequency ratio = 0.3. The intersection of this attractor with the diagonal line that represents
the locus of locked states surrounds the objective, making it — and the range of frequencies

that surrounds it — reachable.
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