Dynamic Change within Workflow Systems
Clarence A. Ellis and Karim Keddara

CU-CS-667-93 August 1993

@]}Univemity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Dynamic Change within Workflow Systems

Clarence A. Ellis
Karim Keddara
Department of Computer Science
University of Colorado
Boulder, CO 80309-0430
e-mail: {skip,karim}@cs.colorado.edu

Keywords: Wokflow Systems, Information Control Nets, Dynamic Change.

1 Abstract:

This paper is concerned with dynamic change in workflow systems. Workflow systems, many of which have
been recently introduced onto the marketplace, are computer based groupware systems which help organiza-
tons to specify, analyze, manage, and execute their procedural work steps. Within this domain, one of the
problems which is severely in need of study and solution is the dynamic structural change problem that fre-
quently occurs in practice. Since organizations are continually evolving, there is frequently a need for struc-
tural change of procedures, such as adding or deleting a step of the procedure, or changing the orderin which
steps of a procedure are executed. One option is to flush the system, so that no work is in progress, and then
make the structural changes. This option is inconvenient, resource wasteful, and in some environments,
infeasible. Another option that we explore in this paper is to perform the structural changes dynamically,
while the system is in execution. How can the system assist in verifying that these (sometimes very complex)
dynamic changes maintain correctness?. This paper, in the context of the ICN (Information Control Net)
model of workflow, defines and addresses this dynamic change problem. We note that dynamic change is a
large and pervasive issue which surfaces within groupware, as well as within software engineering, manufac-
turing, and numerous other domains; thus, its solution may be of interest to many disciplines. Several catego-
ries of change are identified within which ICN analysis can be helpful. As a normal form for change, we
define “synthetic cut-over change,” and show that use of our synthesized change graph guarantees correct-
ness. We conclude the paper by summarizing results obtained, noting limitations encountered, and mention-
ing some future research directions.

2 Introduction:

Contemporary organizations employ a vast array of computing technology to support their information pro-
cessing needs. There are many successful computing tools designed as personal information aids (word pro-
cessors, spreadsheets, etc.) but fewer tools designed for collaborating groups of people. These latter tools are
called groupware. Groupware is defined as “systems that support groups engaged in a common task or goal,
and that provide an interface to a shared environment.” [Ellis91] The potential benefits and pitfalls of group-
ware have been discussed in conferences, tutorials, and journals concerned with the new area of computer
supported cooperative work (CSCW) [Grudin88, Poltrock91]. As opposed to much of the previous genera-
tion of office information systems, this literature addresses the inherently interdisciplinary nature of group-
ware. To successfully implement groupware in an organization requires well grounded technological

development, with careful attention paid to the social and organizational environment into which the technol-
ogy is being embedded.

Many groupware products have recently been introduced to the market [Dyson92]. A few of these products
capture knowledge of the organizational activity that they are assisting, but the vast majority do not. For
example, a group document editor knows nothing about the organizational purpose of the document being
edited. Organizationally aware groupware can potentially lead to significantly more powerful and useful sys-
tems. One class of organizationally aware groupware is workflow.

Workflow systems are designed to assist groups of people in carrying out work procedures, and contain orga-
nizational knowledge of where work flows in the default case. Workflow is defined as “systems that help
organizations to specify, execute, monitor, and coordinate the flow of work items within a distributed office
environment.” [Bull92] The system contains two basic components: the first component is the workflow -
model, which enables administrators and analysts to define procedures and activities, analyze and simulate
them, and assign them to people. Most workflow products have no model, so this component is called the
“specification module”; usage of this module is typically completed before the flow of work tasks actually
begins. Our research explores the hypothesis that a model of coordination is a useful entity in all phases of
the workflow cycle. In section 4, we present the Information Control Net (ICN) as our workflow model. It
allows us to precisely and mathematically define notions of correctness and dynamic change.

The second component is the workflow execution module (the workflow system) consisting of the execution
interface seen by end users and the execution environment which assists in coordinating and performing the
procedures and activities. It enables the units of work to flow from one user’s workstation to another as the
steps of a procedure are completed. Some of these steps may be executed in parallel; some executed automat-
ically by the computer system. The execution interface is utilized for all manual steps, and typically presents
forms on the electronic desktop of appropriate workers (users.) The user fills in forms with the assistance of
the computer system. Various databases and servers may be accessed in a programmed or ad hoc fashion dur-
ing the processing of a work step. In section 2, this second component of workflow is further explained.

How do the first and second components relate? Our research explores the hypothesis that the specification
and execution modules need to be tightly interwoven. This hypothesis is based upon the observation that
change is a way of life in most organizational and personal settings. Those organizations in the modem busi-
ness world which refuse to change are headed toward rapid obsolescence because they cannot compete.
Organizations must frequently make structural changes such as:

- adding a new employee,
- adjusting for a new tax law,
- filling in for a manager on vacation

In order to make structural changes as above within a workflow system context, it is typically and unfortu-
nately necessary to suspend or abort the work in progress within the execution module, and start up the spec-
ification module to make the changes to the specification. Then after the change, the specification module is
terminated, and once again, the execution module is started. This is an inefficient, and ineffective procedure
because many organizations find it very unproductive, and sometimes impossible, to shut down all activity in
order to make changes. From pharmaceutical factories to software engineering houses, this is a nagging
problem - the bigger the organization, the more complex are the procedures, and the more painful the change
process. Today, organizations usually do not solve this problem, they cope, evade, or “muddle through.”
Using the ICN definition and example presented in section 4, we show, in section 5, a simple example of
dynamic structural change, and a typical correctness problem that can occur when dynamic structural change
is attempted. Section 5 also presents the mathematical arguments and theorem of correctness.

Dynamic Change within Workflow Systems ' 2

By combining the first and second components of workflow, the model is constantly available and change
can potentially occur dynamically if the correctness and consistency problems of dynamic change can be
solved. Thus, even with these components combined, we do not know how to smoothly and correctly handle
the myriad of changes which are constantly happening. Although there is considerable literature addressing
workflow, office modelling, and business re-engineering, the problem of dynamic structural change has not
been generally addressed and solved. In section 3, we discuss related work in the literature and in research
labs.The conclusion is that in large organizations around the world, dynamic change is an ad-hoc and risky
event. :

The history of workflow application in corporate America has been mixed; more systems have silently died
than been successful [Bair81]. It is found that organizations succeed only if people creatively violate, aug-
ment, or circumvent the standard office procedures when appropriate. People tend to work through goals
rather than through procedures [Li90]. Opportunity exists for a leap forward in productivity, effectiveness,
and satisfaction when workflow systems successfully incorporate and utilize knowledge of goals, constraints,
and the social and organizational context into which they are embedded. The authors are associated with an
ongoing research project, the Collaboration Technology Research Group, at the University of Colorado,
which is actively researching systems and models to enhance workflow in these directions. Today, these
types of workflow systems are only a vision of the future. Structured procedural work frequently has unstruc-
tured components. The mechanisms to help people do their necessary problem solving and exception han-
dling are not available in today’s workflow systems. The research reported in this paper is concemed with
dynamic change; an issue which must be addressed for this vision to become a reality.

2.1 Workflow Concepts and Architecture:

2.1.1 Definition (Workflow):

A workflow system is an application level program which helps to define, execute, coordinate and monitor
the flow of work within organizations or workgroups.

In order to do this, a workflow system must contain a computerized representation of the structure of the
work procedures and activities.

Many types of office work can be described as structured recurring tasks (called procedures) whose basic
work items (called activities) must be performed by various people (called actors) in a certain sequence. The
power of workflow systems lies in their computerized representation of these procedures, and activities. This
section of the paper describes the basic terminology and capability of workflow; much more power and util-
ity is possible once this procedural representation is available within the computer system.

A particular workflow application is created by specifyirig to the workflow system a set of procedures and

activities which are performed within an organization or workgroup. This is the first step toward computer-
ized workflow; the goal is to enhance the efficiency and effectiveness of the office work.

2.1.2 Definition (Procedure):

A procedure is a predefined set of work steps, and partial ordering of these steps. A work step consists of a
header (identification, precedence, etc.) and body (the actual work to be done.)

Dynamic Change within Workflow Systems 3

Examples include the “order processing procedure” within an engineering company, and the “claims pro-
cessing procedure” within an insurance company. Both of these are relatively standardized and structured,
and each can be described by a sequence of steps. Workflow also attempts to assist in less structured work
tasks. Different steps of a procedure may be executed by different people or different groups of people. In
some cases several steps of a procedure may be executed at the same time or in any order. In general, we
therefore define a procedure to be a partially ordered set of steps rather than a totally ordered set. We also
define workflow procedures in such a way that loops are allowed. Procedures typically have attributes, such
as name and responsible person, associated with them.

2.1.3 Definition (Activity):

An activity is the body of a work step of a procedure. An activity is either a compound activity, containing
another procedure, or an elementary activity.

An elementary activity is a basic unit of work which must be a sequential set of primitive actions executed by
a single actor. Alternatively, an elementary activity may be a non-procedural entity (goal node) whose inter-
nal we do not model within our structure. An activity is a reusable unit of work, so one activity may be the
body of several work steps. For example, if “order entry” and “credit check” are procedures, then the activity
“send out letter” may be an activity in both of these procedures. In this case, these are two distinct steps, but
only one activity. An activity instance associated with the body of a particular work step is called a work step
activity.

Activities typically have attributes such as description and mode associated with them. An activity has one of
three modes. Some work step activities may be automatically executed (automatic mode,) some completely
manual (manual mode), and some may require the interaction of people and computers (mixed mode). For
example, if the procedure is “order equipment” then there may be work steps of:

1. order entry
2. credit check
3. billing

4. shipping

This level of detail of description is typically adequate for an engineering manager, but is not enough detail
for an order administrator. The order administrator would like to look inside of the work step called order
entry, and see a procedure that requires logging data and filling out of a form. Thus, the body of this step is
itself a procedure with work steps of:

1.1. log name and arrival time
1.2. fill out the order form
1.3. send out acknowledgment letter

Furthermore, step 1.2 of filling out the order form may itself consist of work steps to fill out the various sec-
tions of the form. This example shows that it can be useful to nest procedures within procedures. Thus, a
work step body has been defined to possibly contain a procedure. Work steps typically have attributes, such
as unique identifier and executor, associated with them.

By definition, a workflow system contains a computerized representation of the structure of procedures and
activities. This also implies that there is a means for someone (perhaps a system administrator) to specify and
input descriptions of procedures, activities, and redwings into the computer. These specifications are called
scripts. In the next section of this paper, we introduce ICNs as a scripting language.

Dynamic Change within Workflow Systems 4

2.1.4 Definition (Script):

A script is a specification of a procedure, an activity, or an automatic part of a manual activity. The com-
position or building of this script from available building blocks is called scripting.

Once procedures and activities have been defined, the workflow system can assist in the execution of these
procedures. We separate the concept of the static specification of a procedure (the template) from its execu-
tion.

2.1.5 Definition (Job):

A job is the locus of control for a particular execution of a procedure. In some contexts, the job is called a
work case; if a procedure is considered a Petri net, then a job is a token flowing through the net. If the pro-
cedure is an object Class, then a job is an instance.

In our example, if two customers submit two orders for equipment, then these would represent two different
jobs. Each job is a different execution of the procedure. If both jobs are currently being processed by the
order entry department, then the state of each job is the order entry state. Jobs typically have parameters such
as state, initiator, and history associated with them.

Because of the ever changing and sometimes ad hoc nature of the workplace, it is important for workflow
systems to be flexible, and have capabilities to handle exceptions. Many procedures which appear routine
and structured are, in reality, highly variable, requiring problem solving and creative exception handling.
Exception handling is one form of dynamic change; we rigorously define dynamic within a later section of
this paper.

Another workflow concept that helps address these issues is the indirect association of people with activities
via the concept of roles.

2.1.6 Definition (Role):

A role is a named designator for an actor, or a grouping of actors which conveniently acts as the basis for
access control and execution control. The execution of activities is associated with roles rather than end
users.

Thus, instead of naming a person as the executor of a step, we can specify that it is to be executed by one or
more roles. For example, instead of specifying that Michael executes the order entry activity, we can specify
that

1. the order entry activity is executed by the order administrator, and
2. Michael is the order administrator.

There may be a very large number of work steps in which Michael is involved. When Michael goes on vaca-
tion, it is not necessary to find and change all procedures and work steps involving Michael. We simply sub-
stitute Michael’s replacement in the role of order administrator by changing step 2. to

2. Robert is the order administrator.
A role may be associated with a group of actors rather than a single actor. Also, one actor may play many

roles within an organization. If there are many order administrators within our example, then these can be
defined as a group, and it is easy to send information to all order administrators. In this case, an option may

Dynamic Change within Workflow Systems 5

be available to “send to all” or alternatively, “send to any” administrator, and the system might use some
scheduling algorithm to select one. Other flexible scheduling algorithms are possible, including the notifica-
tion of all members of the group that a job is available, and allowing the first responder to handle the job. In
this document, we use the term actor to refer to a person, a group, or an automated agent. For example, the
credit check activity in our example is really executed by the credit department, not by any single person.
And the printing operation is really executed by one of many print servers that might be actors with the role
of “printer”.

2.1.7 Definition (Actor):

An actor is a person, program, or entity that can fulfill roles to execute, to be responsible for, or to be asso
ciated in some way with activities and procedures.

Access attributes or capabilities may be associated with actors and with roles. Other attributes, parameters
and structures can be associated as needed. For example, the role of manager is perhaps only played by
Michael within the order entry department. thus a parameter of the role may be the group within which this
role applies.

In summary, we have briefly presented a definition of workflow together with explanations of the concepts of
procedure, step, activity, job, script, role, and actor.

2.2 Conceptual Architecture:

In the remainder of this section, we present the conceptual architecture of a generic workflow system using
the entity-relationship (E-R) model. the architecture builds upon the general concepts introduced in the pre-
vious subsection. It lays out the workflow system conceptual entities and their relationships.

The entity-relationship model is a high level semantic model using nodes and arcs; this model has proven
useful as an understandable specification model, has been implemented within E-R databases, directly paral-
lels some object oriented concepts, and has a well known direct mapping into a relational database.

In the E-R model, objects of similar structure are collected into entity sets. The associations among entity
sets are represented by named E-R relationships which are either one-to-one, many-to-one, or many-to-many
mapping between the sets. The data structures, employing the E-R model, are usually shown pictorially using
the E-R diagram. An E-R diagram depicting the conceptual architecture of a workflow system is shown in
Figure 1. A labeled rectangle denotes an entity set; a labeled arc connecting rectangles denotes a relationship
between the corresponding entity sets.

In Figure 1, the box labeled procedure denotes an entity set of procedures that may actually be a table of pro-
cedure names and their attributes. Likewise, activity may be a table of activity names and their attributes.
There is an arc connecting these two boxes because there is a relationship called “part-of” between these two
entity sets. Some elements in the activity set are steps of (or parts of) some procedures. This arc is labeled
with the relationship name, and a denotation of M and N indicating that this is a many to many relationship.
Therefore, a procedure can contain many activities, and an activity can be part of more than one procedure.
the arc joining the activity box to itself labeled precedence tells which activities may precede which others.

Since the diagram specifies that this is a many to many relationship the procedure scripting facility supports
the specification of conjunctive and disjunctive precedence relations. For any activity labeled conjunctive,
any specification of immediate successors denotes activities which all directly follow the completion of the
given activity; specification of immediate predecessors denotes activities which must all complete before the

Dynamic Change within Workflow Systems 6

given activity can begin. some activities will be labeled disjunctive. OR-out from some activity means that
out of the many immediate successor activities, we select only one to actually execute. Similarly, OR-in
means that only one of the activities which immediately precede the given activity must complete before it
can begin. thus, any partial ordering of activities using sequencing, and these AND/OR constructs can be
specified and supported using workflow.

Other entities shown in Figure1 are job and data.A job, which can be considered to be flowing through a pro-
cedure, has a state at any instant which is denoted by one or more current activities being executed by the
job. The relationship “state-of”” captures this state. This relationship gets updated by the system each time
that a job moves from one activity to another. This is a many to many relationship, so one job may be execut-
ing within several activities in parallel, and one activity may be simultaneously serving several jobs. Similar
considerations hold for the data entity which refers to the application data which is accessed by the various
activities. People are connected into the system directly if they are listed in the “actor” entity set. Thus, peo-
ple are players of roles, and roles are designated as the executors of activities.

Data
M
used- precedence-of
N ,
N
N M N
Job state-of Activity Actor
M, M
playpr-of
art-of
executor-o
M N
NN ! y
Procedure [Role
responsable-of

Figure 1: Workflow Conceptual Architecture

3 Related Work:

There has been considerable work which addresses workflow systems. Some of the beginnings in this area
come from one of the author’s early work on Officetalk / ICNs in the 1970s [Ellis80]. Also, GMD has imple-
mented several versions of Domino [Kriefelts84], a Petri net based prototype office information system.
Usage reports detail numerous problems and reasons for user rejection of the system -- this typifies problems
of current workflow. Other workflow efforts include the Xerox “Collaborative Process Model” [Sarin91],
Polymer at the University of Massachusetts [Croft84], Prominand [Karbe91], Role Interaction Nets

Dynamic Change within Workflow Systems 7

[Rein92], and the WooRKS workflow prototype within the ITHACA ESPRIT project [Ader92]. None of
these systems address the dynamic structural change problem.

Models of workflow have spanned the gamut from very informal to very formal. Informal modelling has
been reported by Wynn and Suchman [Suchman83]. Early work to formalize this was presented in the thesis
of Michael Zisman [Zisman77] where he developed APNs (Augmented Petri Nets) that attached production
rules to specify semantics within Petri Nets. These concepts were implemented in the SCOOP system. The
model UBIK represents an organization by “configurators” which perform actions by sending messages to
each other [DeJong87]. The OFS model represents the flow of forms within an office; within this model, all
messages, documents, letters, etc., are defined to be forms [Tsich82]. Another alternative is to model the
office as a database with transactions. TEMPORA is an integrated architecture for doing business design and
analysis within a database environment [Loucopoulos92].This is a small sampling of the large number of
models which have been used for the modelling of offices and workflow.

Considerable effort has been put into workflow studies. Many of these have transpired in the Information
Systems field and the Organizational Design field within business schools. Examples include Bair's TUMS
[Bair91], Woo’s SACT [Wo090], Hirshheim’s model [Hirshheim85], the Society model {Ho86], Hammer’s
BDL and OAM [Sirbu84], and the OSSAD model [Dumas91]. Several office models have emerged from
concepts of discrete mathematics. These include Petri net based workflow models [Zisman77, Holt88, Li91],
and graph theory based models [Luqi90]. There is also a set of models which have emerged out of the soft-
ware engineering community. These could be classified as extended flowchart/state machine notations
[Harel90], project management models [Kellner91], and process programming models [Osterweil88]. Office
models are reviewed and contrasted in several articles including [Ellis80] and[Bracchig84].

4 Modelling with ICNs:

Our research group at Colorado is (and has been for many years) actively researching the Information Con-
trol Net model (abbreviated ICN) for information systems analysis, simulation, and implementation. The
ICN is a simple, but mathematically rigorous formalism created and designed in the 1970s specifically to
model office procedures [Ellis79]. ICNs are actually a family of models which have evolved to incorporate
control flow, data flow, goals, actors, roles, information repositories, and other resources [Ellis83]. ICNs
have been studied in universities [Dumas91] and applied in industry [Bull92]. They have been shown to be
valuable for procedures, for analysis, and for implementation. Some of the documented analyses of ICNs
include throughput, maximal parallelism, reorganization, and streamlining [Cook80].

4.1 Mathematical Definitions:

The ICN family of models are structured around the fundamental observation that organizations encompass
goals, resources, and constraints. Some organizations are very highly structured, with precisely defined pro-
cedures and rules; others are very loosely constructed with predominantly unstructured activities. Due to the
variety of organizations, and due to the variety of questions that models may be employed to investigate, we
have seen that no one model adequately addresses all aspects. Thus, we derive a family of models by select-
ing different types of resources and different levels of structure to incorporate in any particular member of -
the family. For example, an organizational model which focuses upon informal interpersonal communication
must incorporate the very important resource of people, and the roles that they play in the organization. For
the thrust of this paper, which investigates dynamic structural change of procedures, we use the basic “con-
trol ICN” which models partial orderings of activities and their control structures.

Dynamic Change within Workflow Systems 8

4.1.1 Definition (CICN):

Let A be a finite set of activity names. A Control ICN (CICN for short) over A is a node-labelled graph
specified as a tuple G = < N, lab, start, exit, E > where:

* N is the finite set of nodes.

elab: N = AU {0, 1} is the labeling function (assuming that neither 1 nor 0 is in A). Each node with
a label in A is called an activity node, and a control node otherwise. Each control node with a label 1 is
called an and-node, and or-node otherwise. Notice that two different activity nodes can carry the same
label.

estart is a special activity node called the entry node.
s exit is a special activity node called the exit node.

*E ¢ N x N is the set of edges which verifies the following:

1- For each activity node x distinct from exit there is one and only one node y such that (x,y) € E
(i.e. one outgoing edge).

2- For each activity node y distinct from start there is one and only one node x such that (x,y) € E
(i.e. one incoming edge).

3- For every component x of G (node or edge), there exists a path in G, from start to exit, which con-
tains x; that is to say that x is reachable from start and that exit is reachable from x.

Sometimes we will use G as a subscript for N, lab, start, exit and E. Thus Ng will denote N, etc...

4.1.2 Definition (Marked CICN):

Let A be a finite set of activity names. A Marked CICN (M-CICN for short) over A is a system < G, M >
where:

*Gis a CICN over A.

*M: N UE — N is a marking for the graph G which associates an integer specifying the number of
tokens with each node and each edge of G. If x € N E and M (x) # 0 then x is said to be marked
with M(x) tokens. A token is a marker that may cause a node to fire.

In particular, with every CICN G we can associate an initial marking, noted MY, in which only the start node
carrie one token. This marking will be used by default unless otherwise is explicitly stated.

4.1.3 Example (M-CICN):

Frequently ICNs are manipulated in their graphical form. Figure 2-a shows the graphical form for an Infor-
mation Control Net (ICN) depicting a procedure for order processing within a corporation. When a customer
request for goods arrives, the first step is the order entry activity in which an order administrator fills out an
order form. This is graphically depicted by the first (top) ellipse in figure 2-a. The ellipses thus denote activi-
ties. Arcs denote precedence, so for example, the shipping activity must complete before the billing activity
can begin. After order entry is completed, inventory check and compile references activities can proceed
concurrently, indicated by the gray circle labelled “and”. A corresponding second gray circle denotes the
“and join” of activities. After the order evaluation activity, either shipping or rejection processing occurs.

Dynamic Change within Workflow Systems 9

Compile
References

Evaluate
Reference,

Rejection
Processing

Figure 2-a: an ICN for Order Processing Figure 2-b: Its Formal Definition

Dynamic Change within Workflow Systems

Thus, the hollow circle “or”” denotes choice or decision making. There is a corresponding “or join” hollow
circle, so that the archive activity occurs after either the rejection or the billing activity is completed.

Figure 2-b depicts the formal representation of the CICN described earlier. In the graphical representation the
name inside a node represents its (unique) identity, whereas the label beside a node corresponds to its label.
Thus, the CICN of figure 2-b is given by:

e A = {a,b,c,d,e,f,g,’(,y}-
ON = {VO""’VB’a’ B,T],e,@}
sstart = vy, exi[f-'Vg.

*lab = { (vy,x), (o, 1), (B, 1), (M, 0), (8,0), (8,0), (vy,a), (v5,b), (V3:C)’
(V49d) (VS,C) (Vs’f) (V7, g) (VS:Y)}

The black dots represent markings of the components (node or edge) of the CICN; in the case of figure 2-b
the marking M is givenas:M = { ((a,v;), 1), (v5, 1), (©,1)}.

We are now in a position to describe formally the execution of a CICN.

4.1.4 Definition (Execution of M-CICN):

Let < G, M > be a M-CICN, and let x be a node of G. Then:

*X is S-enabled in G under the marking M if:
a- X is an activity node and the incoming edge of x is marked, or
b- x is an and-node and all incoming edges of x are marked, or
c- x is an or-node and one of the incoming edges of x is marked.

*x is T-enabled in G under M if x is marked.

¢if x is S-enabled in G under M then x can Start firing. The S-firing of x will add a token to x and
a- remove one token from the incoming edge of x if x is an activity node, or
b- remove one token from all incoming edges of x if x is an and-node, or
¢- remove one token from one and only one incoming edge X is an or-node. This will be denoted as
M [x)M” where M’ is the newly obtained marking of G.
*if x is T-enabled in G under M then x can Terminate firing. The T-firing of x will remove one token from
x and add a token to: ,
a- the only outgoing edge of x if x is an activity node,
b- every outgoing edge of x if x an and-node,
¢- to one arbitrary but only one outgoing edge of x if x is an or-node. This will be denoted as
M [x)M’ and X is said to be barred.

Dynamic Change within Workflow Systems 11

4.1.5 Definition (Computation in M-CICN):

Let < G, M> be a M-CICN, let My,...,. M, be a sequence of markings of G and let xy,...,.x,bc a scqucnce of
nodes of G (some of which are barred). Then:

* 0 = Mx;M,...x, M, is an occurrence sequence of <GM> iff foreveryi, 1 £i<n, M, lxi>Mi+l
In this case the sequence g = X;...X, is called a firing sequence of <G,M>, and if in addition

X, = exit and the exit node is the only marked component of G under M,, then oG is called a compu-

tation sequence. G is said to be leading from M to M, and noted as M lo)M,

* The language generated by < G, M> is the set defined as follows:
L(G,M) = {d; (o) | 0 is a computation sequence of <G,M>} . where 8 (o) is
obtained by stripping 6 from the barred nodes (execpt the start node) and the control nodes, and apply-
ing lab to the resulting sequence of nodes. In particular L(G) is the language L (G, M® a).

4.1.6 Example:

In the case of the M-CICN < G,M> of figure 2-b, the nodes v3 and © are T-enabled, whereas the node v, is S-

enabled. The firing sequence G = Vl_/;"ﬂ @vsﬁ vzil_; will result in the marking defined as follows:
= {((vi B), 1), (v, 1), ((©,vs), 1) },and 3, (0;) = aeb. Moreover L(G) is given by the

set {xwdey, xwdfgy| w contains one a, and w, is a repetition of the word bc } , here w, is the word
obtained from w by removing all occurences of a in w.

4.1.7 Definition (CICN Specification)

A CICN Specification (CICN-Spec for short) is a tuple S = < G,y > where G is a CICN and ¥ is a lan-
guage over the alphabet A, called the correctness criterion of G, suchthat L (G) c .

The language v is considered to be the correctness criterion to be used to check whether a change made in an
ICN is “correct”. The extra requirement means that the implementation meets (in a loose but consistent way)

the specification. The reason we have selected a rather weak requirement (inclusion instead of equality) is to

have more freedom in doing more modifications in ICNs. This requirement also allows us to modify arbi-

trarily an ICN if desired by considering the Universal Spec (i.e y = A").

For the purpose of the present paper, there is no restriction on the class of languages to which the correctness
criterion must belong. Nor there is any assumptions on the means used to specify it; it can be a rational, alge-
braic, or logical expression. This issue will be dealt with in a forthcoming paper where complexity issues are
closely examined.

5 Dynamic Change:

Change to the values of application data items is a normal type of activity that occurs in administrative infor-
mation processing. However, the type of change that we are considering is structural change to the proce-
dures and processes. Dynamic means that the change to the procedure occurs while the procedure is
executing. This type of dynamic structural change is not considered “normal” by most organizations. Static

Dynamic Change within Workflow Systems 12

change, in the ICN context, means that the execution of the procedure is halted, all tokens are removed, and
the change is applied at quiescence. Static correctness means that certain assertions or constraints are not vio-
lated - it implies that we have a set of correctness criteria that hold for all tokens flowing through the ICN
before the change, and also for all tokens that enter the ICN after the change is completed.

Dynamic change correctness is concemed with tokens which enter the net prior to the change and do not exit
the ICN until some time after the change. Anomalous behavior can be exhibited by these tokens even if we
know that the change maintains static correctness. A simple example of this is the change that includes swap-
ping of the billing and shipping activities in the example ICN of figure 2-b. Tokens that are currently within
the shipping node (node v¢) when the swap change occurs never encounter the billing activity (node v+), so

the company never gets paid for the goods that are shipped. Suppose that the correctness criterion is that all
customer orders must pass through shipping and billing in some order. This anomaly occurs although the
ICN before the change is correct, and the ICN after the change is correct.

In this section, we shall introduce all the definitions and terminology to deal with the problem of dynamic
structural change, we will state and prove our main result. Roughly speaking, any ICN change can be turned
into a correct one. The idea is to identify the primary change region in the initial ICN, i.e. the portion of the
ICN where the structural change is taken place, note here that one or many tokens may be in progress in this
region of the graph. The second step is to add this primary change region to the new ICN. Consequently, a
token already in progress in the change region will progress as it is evolving solely in the old ICN, and that a
token outside this change region will finish its progression in the new ICN. Since (by requirement) both ICNs
maintain the correctness criterion, the new change (obtained by duplicating the change region) is correct.

5.1 Mathematical Definitions:

5.1.1 Definition (CICN rewriting):

a CICN rewriting (CICN-R for short) isatuple T = (G, G,, L) where (G, L) and {G,, L) are
CICN specifications.

We are assuming that both CICN's have the same correctness criterion, the main result (to be stated later) still

holds if the correctness criterion is wakened in G,.

5.1.2 Definition (Correctness):

Let T = (G,, G,, L) be a CICN Rewriting, let ¢ be an occurrence sequence of G; such that
Mg, ‘GG)MI' Then T is correct w.rt ¢ iff there exists a (token) mapping ¢: G, — G, such that:

¢ 1. for every activity node x of G; marked under My, there exists an activity node y of G,, with the same
label as x, such that x € ¢ (y) .

*2: for every execution sequence ¢~ of (G,, M, ()) , SGI (C) » 562 (0”) € L. (see 4.1.5 for the
definition of §¢).

Dynamic Change within Workflow Systems 13

Figure 3: Parallelization of activities 1 and 2.

Figure 5: Sequentialization is not always correct.

Dynamic Change within Workflow Systems

In the previous definition, ¢ maps a component of G; (node or edge) to 0, 1, or many components of G,, and

M((9)) (x) = 2 M (y) . Informally speaking, a token in a node y of G, will be mapped to a token
y=0(x)
in every component x (node or edge) of G, such that y € ¢ (x)

5.1.3 Definition (Validity):

aCICN-R T = (G, G,, L) is valid iff for every occurrence sequence & of G;. T is correct w.r.t &

5.2 Examples:
5.2.0.a Parallelization:

Figure 3 shows an example of CICN rewriting which is correct w.r.t. the firing sequence %vl_l;vz leading
to the marking M; where only the node v, has a token. The correctness criterionis L. = {ef, fe}.The

mapping ¢ is represented by dashed lines and is givenby ¢ = { (vs, v,), ((vy, B), v,) }. Afterthe
change is made, the execution will resume in the state given by the marking of G,.

5.2.0.b Swapping:

Figure 4 shows an example of CICN rewriting which is not correct w.r.t. the same firing sequence as before,
assuming we have the same correctness criterion. Any token mapping will violate the correctness criterion.

5.2.0.c Sequentialization:

Using the same correctness criterion as before, we can easily see that the CICN rewriting represented in Fig-
ure 5 is not correct under the marking shown.

5.3 Main Result:

We are now ready to state our main result. In essence, it states that for every CICN rewriting, there is an
equivalent one, called synthetic cut-over CICN rewriting, which is valid.

5.3.1 Theorem:

Forevery CICN-R T = (G,, G,, L) there exists a valid CICN-R T = (G,, (~32, L) such that;
o1- T is valid
o). G2 c éz

*3- L(G,) = L(Gy)

1. Algorithm of construction:
The construction of the new ICN rewriting is done as follows:

Dynamic Change within Workflow Systems 15

*1.1Identify the primary change region in Gy. This is a convex subgraph of G, noted R;, induced by

the set A of nodes altered during the rewriting process, such that all its immediate successor nodes are
activity nodes. A subgraph H of G is convex if no path between two nodes of H contains a node outside
H. Note that a possible candidate for R; is the subgraph composed of all possible paths from any node in

A to the predecessor of exit, in this case R has only exit as immediate successor. Let C, be the set of
immediate successor activity nodes of Ry, also called the lower change region. Note that Gy and G,
coincide outside the change graph R, and the new version of Ry, noted R,. In other words, we can
assume that G, is composed of two subgraphs (eventually connected to each other) R,, R,” and that G,

is also composed of two subgraphs (eventually connected to each other) R,, Rl’.
¢ 1.2 Add Ry to G1.

* 1.3 Embed R, into G, using the following procedure:
For every activity node x of L; do:
a. Remove all incoming edges of x in G, and let H the newly obtained CICN.

b. For every node y of Gy, for every node z of G, such that (y,x) is an edge of Gy, and (z,X) was an
edge of Gy, add an or-node to H with y and z as predecessors and x as succeséor. éz is the CICN
obtained after this step of the procedure.éz is composed of the three subgraphs R, R,” and R,.
2. Proof of the correctness of the algorithm:
The correctness of the construction is based upon the following observations:
*2.1 Since Ry is not reachable (i.e isolated) from the start node in Gy, and Gy, G differ only by the pres-
ence of Ry and Ry, we deduce that L (G,) = L ((~}2)

2.2 Clearly G, is included in éz.

'2.5 The (token) mapping of definition 5.1.2 will be the same in all states of execution of G1; ® is not
defined in R; and coincide with the identity inside Ry and R,’. This means that token of G, already in

progress in Ry will remain unchanged in (~}2, and that a token of G in progress outside of Ry will

evolve using the control induced by G, in éz (ie. in Ry or R,”). Whether the correctness criterion is
not violated by the new CICN rewriting is straightforward from the construction described earlier.

Indeed, note that any token of G, outside Ry will progress in G, as if it is evolving solely in Gj, and
therefore the correctness criterion is not violated. Note also that any token inside R;, which will exit Ry

after a finite amount of the time, will continue execution in éz as if it is evolving solely in G,, and
henceforth the correctness criterion is not violated. Finally, note that we should not take into account a
token which will never exit Ry (infinite loops). This is because only computation sequences are consid-
ered in the correctness checking mechanism.

5.3.2 Example:

Figure 6-a shows the CICN rewriting given by the construction for the case of swapping, the mapping dis

represented by dashed lines, and is a partial function. Figure 6-b shows the result of the construction for the
case of sequentialization.

Dynamic Change within Workflow Systems 16

Figure 6: The CICN rewriting obtained by the construction of theorem 5.3.1 for:
a-the swapping
b-the sequentialization

Dynamic Change within Workflow Systems

6 Summary and Conclusions:

This paper has presented the ICN as a model of workflow. We have pinpointed the problem of dynamic struc-
tural change within workflow systems as an important and challenging problem. Building upon the mathe-
matical formalism of ICN, we have presented a set of mathematical definitions which represent the problem
and a general solution which is shown to yield correct results under dynamic change.

There still is a great need to the development of a firmly based theory of ICNs, which will among other
things deal primary with excitability and complexity issues such as:

* Can we decide whether or not a CICN Spec is well-defined, that is that L (G) ¢ L?. For what classes
of CICNs and correctness criterions this problem is decidable?.

¢ Can we decide whether or not a CICN rewriting is correct, valid?.

* Under which conditions a CICN-rewriting is always correct, valid?. For instance, it seems that reducing
parallelism is not always correct, and that increasing parallelism is always valid.

*Can we find a better class of solutions to the problem of structural dynamic changes in CICNs?. Obvi-
ously, the one we have proposed, although correct, is too expensive. Can we take advantage of already
available techniques such as graph grammars?

«Is there a better notion of correctness in terms of computability?

Acknowledgments

We would like to thank Andrzej Ehrenfeucht, Gregorz Rozenberg and the members of the CTRG at the uni-
versity of colorado for many helpful comments and stimulating discussions.

7 Bibliography

Ader, M., Lu, G., “The WooRKS Object Oriented Workflow System,” OOPSLAS2 Exhibition, booth 712-
714, October 19-21, 1992. Developed as part of the ITHACA Research project within the ESPRIT Program.

Bair, J. (Co-editor), "Office Automation Systems: Why Some Work and Others Fail," Stanford University
Conference Proceedings, Stanford University , Center for Information Technology, 1981.

Bair, J. "A Layered Model of Organizations: Communication Processes annd Performance," Journal of Orga-
nizational Computing, (2)1, 1991, pp. 187-203.

Bracchi, G. and Pemici, B. "The Design Requirements of Office Systems,” ACM Transactions on Office
Information Systems, 2, 2, April, 1984, pp. 151-170.

Bull Corporation, FlowPath Functional Specification, Bull S. A., Paris, France, September, 1992.

Cook, C., “Office Streamlining Using the ICN Model and Methodology,” Proceedings of the 1980 National
Computer Conference. June, 1980.

Croft, W. B. and Lefkowitz, L. S. "Task Support in an Office System," ACM Trans. Office Information Sys-
tems 2, 3, July, 1984, pp. 197-212. '

Dynamic Change within Workflow Systems 18

De Jong, P. "Structure and Action in Distributed Organizations," Proceedings of ACM COIS'90, April, 1990,
pp. 1-10.

Dumas, P. La Methode OSSAD, Les Editions d’Organization, 1991.
yson, Esther,"Workflow," Release 1.0, EDventure Holdings, New York, September, 1992.

Ellis, C. A., “Information Control Nets: A Mathematical Model of Office Information Flow,” Proceedings of
the 1979 ACM Conference on Simulation, Measurement and Modeling of Computer Systems, August,
1979a, pp. 225-239.

Ellis, C. A. and G. J. Nutt, “Office Information Systems and Computer Science,” ACM Computer Surveys,
Vol. 12, No. 1 (March, 1980), pp. 27-60.

Ellis, C. "Formal and Informal Models of Office Activity" in Proceedings of the IFIP International Computer
Congress, Paris, 1983.

Ellis, C. A,, S. J. Gibbs, and G. L. Rein, “Groupware: Some Issues and Experiences,” Communications of the
ACM, Vol. 34, No. 1 (January, 1991), pp. 38-58.

Grudin, J. “Why CSCW Applications Fail,” Proceedings of the CSCW88 Conference, ACM, pp. 85 - 93.

Harel, D, et. al., “STATEMATE: A Working Environment for the Development of Complex Systems,” in
IEEE Transactions on Software Engineering (16,4) April 1990.

Hirschheim, R. A. Office Automation: A Social and Organizational Perspective, John Wiley and Sons, 1985.

Ho, C., Hong, Y. and Kuo, T. "A Society Model for Office Information Systems," ACM Transactions on
Office Information Systems, 4, 4, April, 1986, pp. 104-131.

Holt, A., “Diplans: A New Language for the Study and Implementation of Coordination,” in ACM Transac-
tions on Office Information Systems (6,2), 1988.

Karbe, B., Ramsperger, N., "Concepts and Implementation of Migrating Office Processes," Verteilte Kun-
stliche Intelligenz und Kooperatives Arbeiten, 4. Internationaler GI-Kongress Wissensbasierte Systeme,
Munchen, Germany, Oct. 1991, pp.136.

Kellner, M., “Software Process Modeling Support for Management Planning and Control,” in Proceeding of
the First International Conference on the Software Process, IEEE Computer Society, Oct. 1991, pp-8-28.

Kreifelts, T., Licht, U., Seuffert, P. and Woetzel, G. "DOMINO: A System for the Specification and Automa-
tion of Cooperative Office Processes," Proc. EUROMICRO'84, edited by Wilson and Myrhaug, 1984, pp. 3-
41.

Li, Jianzhong. AMS: A Declarative Formalism for Hierarchical Representation of Procedural Knowledge,
PhD Thesis, L'Ecole Nationale Superieure des Telecommunications, Paris, France, December, 1990.

Loucopoulos, P, Katsouli, E., “Modelling Business Rules in an Office Environment” in SIGOIS Bulletin,
13,2 (August, 1992).

Luqi “A Graph Model for Software Evolution,” IEEE Transactions on Software Engineering, 16, 8, August
1990.

Dynamic Change within Workflow Systems 19

Osterweil, L., “Automated Support for the Enactment of Rigorously Described Software Processes,” Pro-
ceeding of the Third International Process Programmmg Workshop, 1988, pp.122-125. IEEE Computer
Society Press.

Poltrock, S., Grudin, J., “Tutorial on Computer Supported Cooperative Work and Groupware,” Presented at
ACM SIGCHI Conference on Human Factors in Computing Systems, New Orleans, April 27, 1991.

Rein, G., Organization Design Viewed as a Group Proces Using Coordination Technology, PhD Thesis Dis-
sertation, Department of Information Systems, University of Texas at Austin. May 1992.

Sarin, K. S., Abbott, K. R. and McCarthy, D. R. "A Process Model and System for Supporting Collaborative
Work," ACM COCS'91, pp. 213-224.

Sirbu, M., Schoichet, S., Kunin, J. S., Hammer, M. and Sutherland, J. "OAM: An Office Analysis Methodol-
ogy," Behaviour and Information Technology, 3,1, 1984, pp.25-39.

Suchman, L. A. "Office Procedure as Practical Action: Models of Work and System Design," ACM Transac-
tions on Office Information Systems, 1, 4, October, 1983, pp. 320-328.

Tsichritzis, D., “Forms Management” Communications of the ACM, 25,7 (July 1982), pp. 453-478.

Woo, C. “SACT: A Tool for Automating Semi-Structured Organizational Communication,” Proceedings of
ACM COIS'90,April, 1990, pp.89-98.

Zisman, M. D. Representation, Specification, and Automation of Office Procedures, Ph.D. dissertation,
Wharton School, University of Penn., 1977.

Dynamic Change within Workflow Systems 20

