Memory Allocation Costs

in Large C and C++ Programs
David Detlefs and Al Dosser
Systems Research Center
Digital Equipment Corporation
130 Lytton Avenue
Palo Alto, CA 94301

Benjamin Zorn
Department of Computer Science
Campus Box #430

University of Colorado, Boulder 80309-0430
CU-CS-665-93 August 1993

&

University of Colorado at Boulder

Technical Report CU-CS-665-93
Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

Copyright (©) 1993 by
David Detlefs and Al Dosser
Systems Research Center
Digital Equipment Corporation
130 Lytton Avenue
Palo Alto, CA 94301

Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

Memory Allocation Costs in Large C and C++ Programs*

David Detlefs, Al Dosser
Systems Research Center
Digital Equipment Corporation
130 Lytton Avenue
Palo Alto, CA 94301

Benjamin Zorn
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

August 1993

Abstract

Dynamic storage allocation is an important part of a large class of computer programs written
in C and C++. High-performance algorithms for dynamic storage allocation have been, and will
continue to be, of considerable interest. This paper presents detailed measurements of the cost of
dynamic storage allocation in 11 diverse C and C++ programs using five very different dynamic
storage allocation implementations, including a conservative garbage collection algorithm. Four of
the allocator implementations measured are publicly-available on the Internet. A number of the
programs used in these measurements are also available on the Internet to facilitate further research
in dynamic storage allocation. Finally, the data presented in this paper is an abbreviated version of
more extensive statistics that are also publically-available on the Internet.

1 Introduction

Dynamic storage allocation (DSA) is an important part of many C and C++ programs, including lan-
guage interpreters, simulators, CAD tools, and interactive applications. Many different algorithms for
dynamic storage allocation have been designed, implemented, and compared. In the past, implementa-
tion comparisons have most often been based on synthetic allocation behavior patterns, where object
lifetime, size, and interarrival time are taken from probability distributions (e.g., Reference 5, 10, and
11). Recently, Zorn and Grunwald have shown that the use of synthetic behavior patterns may not lead
to an accurate estimation of the performance of a particular algorithm [16].

The existence of instruction-level profiling tools [1, 6] has made it possible to count the number of
instructions required by various allocation algorithms in large, allocation-intensive programs directly. In
this paper, we present a large number of detailed measurements of the performance of five very different
dynamic storage allocation implementations in 11 large, allocation-intensive C and C++ programs. The
results of this paper extend and complement the C-program measurements of Zorn [15]. The purpose
of this paper is to make additional detailed measurements available to a broad audience. For greater
details about the implementations measured and the measurement methods used, the reader is referred
to other papers.

*This material is based upon work supported by the National Science Foundation under Grant No. CCR-9121269 and
by a Digital Equipment Corporation External Research Grant.

One of the DSA implementations measured is a publicly-available conservative garbage collector for
C and C++ (BW 2.6+4Ms,IP) [2]. Our measurements show that this collector is competitive in both
CPU time and memory usage with existing commercial-quality malloc/free allocators. Furthermore, this
allocator can be used to replace the operating system calls to malloc/free without any modifications to the
program source code and is compatible with both C and C++ programs. We conclude that conservative
garbage collection is a competitive alternative to malloc/free implementations and programmers should
keep this technology in mind when building allocation-intensive programs.

2 Programs

The programs we measured were drawn from a wide-variety of application areas and were written in
C and C++. Table 1 summarizes the programs the we measured. Table 2 illustrates the allocation
behavior of the programs measured. In these and all subsequent tables, the programs are ordered by
approximate size in lines of source code.

Many of the programs measured are publicly available, while others are proprietary. To allow other
researchers to reproduce our results, we have made these specific versions of a number of our test
programs available on the Internet. The programs PERL, GHOST, MAKE, EsPrEsso, PTc, GAWK,
and CFRAC are available via anonymous FTP from the machine ftp.cs.colorado.eduin the directory
pub/cs/misc/malloc-benchmarks. A README file in that directory describes how these benchmarks
were used to gather the statistics presented. Furthermore, each benchmark includes a number of test
inputs, including the ones used in this paper. These programs have been used in a variety of dynamic
storage allocation studies (e.g., References 8, 9, and 15).

3 Allocators

The allocators we measured are summarized in Table 3. Other recent papers comparing the performance
of various aspects of dynamic storage allocation also describe these algorithms, and we refer the interested
reader to these papers. Specifically, G+4, GNU’, and QF all described in more detail by Grunwald et
al [9]. The Berkeley Unix 4.2 BSD allocator, of which ULTRIX is a derivative, is also described in that
paper. The BW 2.6+Ms,IP allocator is described in detail by Boehm and Weiser [2] and summarized
by Zorn [15]. Black-listing, an enhancement present in Version 2.6 of the collector, is also described by
Boehm [3].

4 Results

The results presented were gathered using a variety of measurement tools on a DECstation 5000/240
with 112 megabytes of memory. Instruction counts were all gathered by instrumenting the programs with
Larus’ QPT tool [1, 12], which presents per-procedure instuction counts with an output format similar to
that of gprof [7]. Program execution time was measured using the Unix C-shell built-in time command.
The measurement of each program’s live data was gathered using a modified version of malloc/free, and
allocator maximum heap sizes were measured using a modified version of the Unix sbrk system call.

In all of the tables presented, we indicate both the absolute performance of each allocator and also
the relative performance of each allocator compared to the ULTRIX allocator. The ULTRIX allocator
was chosen as the baseline for comparison because it is a commercially-implemented allocator distributed
with a widely-used operating system.

The measurements we present concern the CPU overhead (in terms of total execution time and time
spent in allocation routines) and memory usage of the various combinations of allocators and programs.
Tables 4 and 5 show how many instructions, on average, each program/allocator required to perform the
malloc and free operations, respectively. These two tables should be used only for comparing the explicit
malloc/free implementations, as substantial allocation overhead in the BW 2.6-+Ms,IP sometimes occurs

Program

Lang.

Description

Si1s

SIS, Release 1.1, is a tool for synthesis of synchronous and asynchronous circuits.
It includes a number of capabilities such as state minimization and optimization.
The input used in the run was (seq/mcnc91/fsm_blif). was the full simplification of
an exclusive-lazy-and circuit. !!

GEODESY

C++

Geodesy, version 1.2, is a programming language debugger. The input to this
program is a C++ compiler front end. The operations performed include setting
breakpoints, examining the stack, and continuing.

Ip

Ct++

Ild, version 1.2, is an incremental loader. The input to the program involved incre-
mentally loading 16 saved versions of a set of 26 object files.

PERL

Perl 4.10, is a publicly-available report extraction and printing language commonly
used on UNIX systems. The input scripts sorted the contents of a file and formated
the words in a dictionary into filled paragraphs.

XFIiG

Xfig, version 2.1.1, is an interactive drawing program. The test case used included
the creation of a large number of circles and splines that were duplicated, resized,
and reshaped.

GHOST

GhostScript, version 2.1, is a publicly available interpreter for the PostScript page-
description language. The input files were a variety of small and large files, including
a 126-page user manual. This execution of GhostScript did not run as an interactive
application as it is often used, but instead was executed with the NODISPLAY
option that simply forces the interpretation of the Postscript(without displaying
the results).

MAKE

GNU make, version 3.62 is a version of the common ‘make’ utility used on UNIX.
The input set was the makefile of another large application.

EsPrESSsO

Espresso, version 2.3, is a logic optimization program. The input file is an example
provided with the release code.

Prc

PTC, version 2.3, is a Pascal to C translator. The input file was a 19,500 line Pascal
program (mf2psv.p) that is part of the TEX release.

GAWK

GNU Awk, version 2.11, is a publicly available interpreter for the AWK report and
extraction language. The input script formated words in a dictionary.

CFRAC

A program to factor large integers using the continued fraction method. The inputs
are products of two large primes.

Table 1: General information about the test programs.

Instr. Total Total Average Max. Max. Allocation

Program | Lines of | Exec. Objects Bytes Size Objects | Bytes Rate

Source | (x10%) | (x10%) (x10%) (bytes) | (x10%) | (x10%) | (Kbytes/sec)
S1s 172000 | 64794.1 63395 | 15797173 249.2 48.5 | 1932.2 4120.8
GEODESY 82500 2648.1 2517 42152 16.7 113.8 | 3880.6 324.3
Itp 36000 381.3 33 24829 752.4 2.1 | 1278.7 220.3
PERL 34500 1091.0 1604 34089 21.3 2.3 116.4 714.2
XFIG 30500 52.4 25 1852 72.7 19.8 | 11293 372.1
GHOST 29500 1196.5 924 89782 97.2 26.5 | 2129.0 1861.7
MAKE 21000 53.7 23 539 23.0 10.4 208.1 282.5
ESPRESSO 15500 2400.0 1675 107062 63.9 4.4 280.1 1497.1
Prc 9500 353.9 103 2386 23.2 102.7 | 2385.8 202.4
GAWK 8500 957.3 1704 67559 39.6 1.6 41.0 2050.1
CFRAC 6000 202.5 522 8001 15.3 1.5 21.4 1145.9

Table 2: Performance information about the memory allocation behavior for each of the test programs.
Instr. Exec. shows the total instructions executed by the program using the ULTRIX allocator. Total
Bytes and Total Objects refer to the total bytes and objects allocated by each program. Average Size
shows the average size of the objects allocated. Maximum Bytes and Maximum Objects show the
maximum number of bytes and objects, respectively, that were allocated by each program at any one
time.

in the realloc routine, which is not presented. Also note the BW 2.6+wMms,IP allocator requires only two
instructions per free because we have intentionally caused frees for this allocator to have no effect. In fact,
the Beohm-Weiser collector does support explicit programmer frees, but we disabled them to observe
the performance of the collection algorithm.

Table 6 shows the average number of instructions per object allocated that each program/allocator
spent doing storage allocation. This table shows the total instructions in malloc, free, realloc, and any
related routines, divided by the total number of objects allocated. This table should be used to compare
the per-object overhead of all the allocators, including BW 2.6-+4+Ms,1P.

Each program spends a certain number of instructions outside storage allocation routines doing
program-specific work. This number, the “Application Instructions,” remains constant across all the al-
locators used. Let us call the instructions spend doing storage allocation the “Allocation Instructions.”
Table 7 shows what fraction the Allocation Instructions are of the Application instructions. This per-
centage provides a good measure for comparing the relative CPU overhead of the different allocators.
As is clear from the table, the ULTRIX and G-+ algorithms have the best performance while the BW
2.6+4Ms,IP collector has the worst performance overall.

Table 8 shows the absolute and relative execution times of the different program/allocator combina-
tions. This data was collected from a single run of each program/allocator and thus some variation in
execution time, that has not been measured, would be expected. However, our experience with recol-
lecting these results indicates that the variation observed between different runs with the same input is
not a significant fraction of the total execution time.

Table 9 shows the maximum size of the heap for each program/allocator, as measured by calls to the
Unix operating system sbrk system call. To measure this value, an instrumented version of sbrk that
maintained a high-water mark was used. As is clear from the table, GNU', G+, and QF are all quite
space efficient, while ULTRIX and especially BW 2.6-+Ms,IP require more space.

Finally, Table 10 shows maximum amount of fragmentation that occurred in each program/allocator
combination. In this case, fragmentation was measured as the ratio between the maximum heap size
(as shown in Table 9) and the maximum bytes that were alive in each program at any time (shown in

Table 2).

ULTRIX
ULTRIX is a variant of the malloc implementation, written by Chris Kingsley,
supplied with the Berkeley 4.2 Unix release. It is not publicly-available, but comes
with the DEC Ultrix operating system.

BW 2.64mMs,IP
This is version 2.6 of the Boehm-Demers-Weiser conservative garbage collector.
Boehm et al decribed a number of related versions of this collector [2, 4, 3].
For the measurements collected, the definitions of MERGE_SIZES (Ms) and
ALLINTERIOR_POINTERS (IP) were enabled. The most recent version of the
collector is version 3.2.

Contact Person: Hans Boehm (Hans Boehm.PARC@xerox.com)
FTP Site: anonymousQarisia.xerox.com:/pub/russell/gc.tar.Z

Gnu'
GNU' is variant hybrid first-fit/segregated algorithm written by Mike Haertel (ver-
sion dated 930716). It is an ancestor/sibling of the malloc used in GNU libc, but
is smaller and faster than the GNU version.
Contact person: Mike Haertel (mike@cs.uoregon.edu)
FTP Site: anonymous@ftp.cs.uoregon.edu:pub/mike/malloc.tar.z

G++
G++ is an enhancement of the first-fit roving pointer algorithm using bins of dif-
ferent sizes. It is distributed with the GNU C++ library, libg++ (through version
2.4.5) and also available separately.
Contact Person : Doug Lea (d1@oswego.edu)
FTP Site: anonymous@g.oswego.edu:/pub/misc/malloc.c

QF

QF is an implementation of Weinstock and Wulf’s fast segregated-storage algorithm
based on an array of freelists[14, 13]. Like the GNU’ algorithm, QF is a hybrid al-
gorithm that allocates small and large objects in different ways. Large objects are
handled by a general algorithm (in this case, G++).

Contact Person: Dirk Grunwald (grunwald@cs.colorado.edu)
FTP Site: anonymous@ftp.cs.colorado.edu:pub/cs/misc/qf.c

Table 3: General information about the allocators. All the allocators except BW 2.6+4Ms,IP are
described in more detail in [9].

ULTRIX BW 2.6+Ms,IP Gny’ G++ QF
Program (instr/malloc) (instr/malloc) (instr/malloc) (instr/malloc) (instr/malloc)
ABsoL | RELAT | ABSoL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT
S1s 60 1.00 489 8.15 101 1.68 84 1.40 192 3.20
GEODESY 46 1.00 179 3.89 81 1.76 53 1.15 29 0.63
Ip 57 1.00 3544 62.18 92 1.61 99 1.74 76 1.33
PERL 46 1.00 207 4.50 82 1.78 44 0.96 37 0.80
XFIG 59 1.00 543 9.20 105 1.78 62 1.05 89 1.51
GHOST 56 1.00 614 10.96 101 1.80 71 1.27 74 1.32
MAKE 48 1.00 296 6.17 91 1.90 74 1.54 43 0.90
ESPRESSO 50 1.00 208 4.16 90 1.80 77 1.54 40 0.80
Prc 55 1.00 456 8.29 101 1.84 66 1.20 47 0.85
GAWK 49 1.00 83 1.69 84 1.71 54 1.10 39 0.80
CFrrAC 47 1.00 106 2.26 86 1.83 30 0.64 33 0.70
| AVERAGE | 52| 1.00] 611] 11.04 | 92 | L.77] 65 | 1.24 64 1.17
Table 4: Absolute and Relative Instructions per Call to Malloc. RELAT is relative to ULTRIX = 1.
ULTRIX BW 2.6+Ms,1P Gnu’ G++ QrF
Program (instr/free) (instr/free) (instr/free) (instr/free) (instr/free)
ABsoL | RELAT | ABSoL | RELAT | ABSoL | RELAT | ABSOL | RELAT | ABSOL | RELAT
S1s 18 1.00 2 0.11 71 3.94 8 0.44 53 2.94
GEODESY 18 1.00 2 0.11 66 3.67 8 0.44 25 1.39
Itp 18 1.00 2 0.11 74 4.11 8 0.44 42 2.33
PERL 18 1.00 2 0.11 82 4.56 8 0.44 31 1.72
XFIG 18 1.00 2 0.11 71 3.94 8 0.44 39 2.17
GHOST 18 1.00 2 0.11 88 4.89 8 0.44 56 3.11
MAKE 18 1.00 2 0.11 83 4.61 8 0.44 28 1.56
EsSPRESSO 18 1.00 2 0.11 84 4.67 8 0.44 32 1.78
Prc 18 1.00 2 0.11 113 6.28 8 0.44 90 5.00
GAWK 18 1.00 2 0.11 81 4.50 8 0.44 32 1.78
CFRrRAC 18 1.00 2 0.11 83 4.61 8 0.44 26 1.44
| AVERAGE | 18| 1.00 | 2 0.11 | 81| 4.53] 8] 044 41 2.29

Table 5: Absolute

and Relative Instructions per Call to

Free. RELAT is relative to ULTRIX = 1.

ULTRIX BW 2.6+Ms,1P GnU’ G++ QF

Program (instr/object) (instr/object) (instr/object) (instr/object) (instr/object)
ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT
S1s 78 1.00 655 8.40 172 2.21 92 1.18 246 3.15
GEODESY 63 1.00 194 3.08 144 2.29 61 0.97 53 0.84
ILp 74 1.00 3806 51.43 161 2.18 107 1.45 115 1.55
PERL 64 1.00 229 3.58 163 2.55 52 0.81 68 1.06
XriG 63 1.00 671 10.65 119 1.89 64 1.02 97 1.54
GHOST 73 1.00 670 9.18 187 2.56 79 1.08 129 1.77
MAKE 58 1.00 319 5.50 137 2.36 78 1.34 59 1.02
EsPRrRESSO 68 1.00 318 4.68 174 2.56 85 1.25 72 1.06
Ptc 55 1.00 485 8.82 101 1.84 66 1.20 47 0.85
GAWK 67 1.00 349 5.21 165 2.46 62 0.93 71 1.06
CFRAC 65 1.00 110 1.69 169 2.60 38 0.58 59 0.91
| AVERAGE | 66 | 1.00] 710] 10.20| 154 | 2.32] 71| 1.07] 92 1.35

Table 6: Absolute and Relative Instructions per Object Allocated. RELAT is relative to ULTRIX = 1.

7

ULTRIX BW 2.64Ms,IP GNU G++ QF

Program | (% exec. time) (% exec. time) (% exec. time) (% exec. time) (% exec. time)
ABsoL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT

S1s 8.2 1.00 69.3 8.45 18.2 2.22 9.8 1.20 26.0 3.17
GEODESY 6.4 1.00 19.6 3.06 14.5 2.27 6.1 0.95 5.3 0.83
ILp 0.6 1.00 37.1 61.83 1.6 2.67 0.9 1.50 0.9 1.50
PERL 9.4 1.00 33.7 3.59 26.1 2.78 7.5 0.80 10.8 1.15
XriG 3.2 1.00 34.5 10.78 6.6 2.06 3.5 1.09 4.9 1.53
GHOST 6.0 1.00 54.8 9.13 15.3 2.55 6.5 1.08 10.5 1.75
MAKE 2.6 1.00 14.3 5.50 6.2 2.38 3.5 1.35 2.6 1.00
ESPRESSO 5.0 1.00 23.2 4.64 12.8 2.56 6.2 1.24 5.3 1.06
Ptc 1.6 1.00 14.3 8.94 3.0 1.88 1.9 1.19 1.4 0.87
GAWK 13.6 1.00 65.5 4.82 33.6 2.47 11.9 0.88 14.5 1.07
CFRAC 20.1 1.00 34.1 1.70 52.3 2.60 11.7 0.58 18.3 0.91
| AVERAGE | 697 | 1.00] 36.40] 11.13| 1729] 240| 6.32| 1.08] 9.14] 135

Table 7: Percent Storage Allocation Instr/Application Instr. RELAT is relative to ULTRIX = 1.

7

ULTRIX BW 2.6+4wMs,1P GNU G++ QF

Program (seconds) (seconds) (seconds) (seconds) (seconds)
ABsoL | RELAT | ABSoL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT
S1s 3833.5 1.00 | 5867.3 1.53 | 3932.0 1.03 | 3692.1 0.96 | 4581.2 1.20
GEODESY 516.1 1.00 520.8 1.01 518.2 1.00 504.3 0.98 494.1 0.96
ILp 74.2 1.00 75.6 1.02 76.1 1.03 75.3 1.01 75.9 1.02
PERL 47.7 1.00 60.3 1.26 50.1 1.05 49.8 1.04 44.3 0.93
XFiG 7.0 1.00 6.7 0.96 7.1 1.02 7.3 1.05 7.3 1.04
GHOST 48.2 1.00 69.8 1.45 57.0 1.18 48.2 1.00 50.2 1.04
MAKE 1.9 1.00 2.1 1.11 2.0 1.03 1.8 0.92 2.0 1.07
ESPRESSO 71.5 1.00 82.1 1.15 74.0 1.03 72.6 1.02 72.5 1.01
Ptc 11.8 1.00 13.3 1.13 12.3 1.04 13.2 1.12 11.9 1.01
GAWK 33.0 1.00 51.9 1.57 32.1 0.98 31.2 0.95 27.6 0.84
CFRAC 7.3 1.00 8.3 1.13 8.7 1.19 6.6 0.90 7.0 0.95
AVERAGE | 423] 1.00] 614 1.21 434 [1.05 | 409 1.00 489 1.01

Table 8: Total Program Execution Time. RELAT is relative to ULTRIX = 1.
ULTRIX BW 2.6+Ms,1P Gnu’ G++ QrF

Program (Kbytes) (Kbytes) (Kbytes) (Kbytes) (Kbytes)
ABsoL | RELAT | ABSoL | RELAT | ABSoL | RELAT | ABSOL | RELAT | ABSOL | RELAT
S1s 3387 1.00 7532 2.22 2363 0.70 2776 0.82 8608 2.54
GEODESY 6487 1.00 7348 1.13 4595 0.71 4928 0.76 4864 0.75
ILp 1800 1.00 3572 1.98 1392 0.77 1520 0.84 1456 0.81
PERL 226 1.00 616 2.73 162 0.72 144 0.64 144 0.64
XFiG 1784 1.00 2436 1.37 1582 0.89 1552 0.87 1576 0.88
GHOST 3541 1.00 5268 1.49 2837 0.80 2632 0.74 2408 0.68
MAKE 390 1.00 584 1.50 306 0.78 328 0.84 336 0.86
ESPRESSO 792 1.00 1188 1.50 340 0.43 320 0.40 408 0.52
Ptc 3438 1.00 3448 1.00 3414 0.99 3360 0.98 3144 0.91
GAWK 79 1.00 352 4.43 83 1.05 64 0.81 64 0.81
CFRAC 64 1.00 504 7.87 64 1.00 48 0.75 64 1.00
| AVERAGE | 1999 [1.00 | 2986 248 | 1558 [0.80 | 1607 | 0.77] 2097 [0.95

Table 9: Maximum Heap Size. RELAT is relative to ULTRIX = 1.

7

ULTRIX BW 2.64Ms,IP GNU G++ QF

Program Frag. Frag. Frag. Frag. Frag.
ABsoL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT | ABSOL | RELAT
S1s 1.79 1.00 3.99 2.22 1.25 0.70 1.47 0.82 4.56 2.54
GEODESY 1.71 1.00 1.94 1.13 1.21 0.71 1.30 0.76 1.28 0.75
Ip 1.44 1.00 2.86 1.98 1.11 0.77 1.22 0.84 1.17 0.81
PERL 1.99 1.00 5.42 2.73 1.42 0.72 1.27 0.64 1.27 0.64
XFIG 1.62 1.00 2.21 1.37 1.43 0.89 1.41 0.87 1.43 0.88
GHOST 1.70 1.00 2.53 1.49 1.36 0.80 1.27 0.74 1.16 0.68
MAKE 1.92 1.00 2.87 1.50 1.51 0.78 1.61 0.84 1.65 0.86
EsPRESSO 2.90 1.00 4.34 1.50 1.24 0.43 1.17 0.40 1.49 0.52
Prc 1.48 1.00 1.48 1.00 1.47 0.99 1.44 0.98 1.35 0.91
GAWK 1.98 1.00 8.80 4.43 2.08 1.05 1.60 0.81 1.60 0.81
CFRAC 3.06 1.00 24.09 7.87 3.06 1.00 2.29 0.75 3.06 1.00
AVERAGE | 1.96 1.00 [550 2.48 1.56 080 | 1.46] 0.77 1.82 0.95

Table 10: Heap Expansion due to Fragmentation. RELAT is relative to ULTRIX = 1.

5 Summary

This paper presents detailed measurements of the cost of dynamic storage allocation (DSA) in 11 diverse
C and C++4 programs using five very different dynamic storage allocation implementations, including
a conservative garbage collection algorithm. The measurements include the CPU overhead of storage
allocation and the memory usage of the different allocators. Four of the five DSA implementations
measured are publicly-available on the Internet and we provide Internet sites and the contact persons
who are responsible for those implementations. Likewise, seven of the eleven programs measured are also
available on the Internet, and we provide their location as well. It is our hope that when other researchers
implement new algorithms, they will use the programs, allocators, and techniques used in this paper to
provide comparable measurements of the new algorithm. We see these programs and allocators not as
the final word in allocator benchmarking, but as a first small step along the way.

The data presented in the paper are a subset of data available in a textual form on the Inter-
net. The data are available via anonymous FTP from the machine ftp.cs.colorado.edu in the file
pub/cs/misc/malloc-benchmarks/SIGPLAN-MEASUREMENTS. txt. Further results will be added to this
file as they become available. Please feel free to use this data but we would appreciate your sending one
of us e-mail (zorn@cs.colorado.edu) indicating that you intend to use the data and how you intend to
use it.

6 Acknowledgements

We would like to thank Hans Boehm, Michael Haertel, and Doug Lea for all implementing very efficient
dynamic storage allocation algorithms and making them available to the public. We also thank them
for their comments on drafts of this paper. This material is based upon work supported by the National
Science Foundation under Grant No. CCR-9121269 and by a Digital Equipment Corporation External
Research Grant.

References

[1] Thomas Ball and James R. Larus. Optimally profiling and tracing programs. In Conference Record of the

[10]
[11]
[12]

(13]
[14

[laa

(18]

[16]

Nineteenth ACM Symposium on Principles of Programming Languages, pages 59-70, January 1992.

H. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Software—Practice and
Ezperience, pages 807-820, September 1988.

Han-Juergen Boehm. Space efficient conservative garbage collection. In SIGPLAN’93 Conference on Pro-
gramming Language Design and Implementation, pages 197-206, Albuquerque, June 1993.

Hans Boehm, Alan Demers, and Scott Shenker. Mostly parallel garbage collection. In Proceedings of the
SIGPLAN’92 Conference on Programming Language Design and Implementation, pages 157-164, Toronto,
Canada, June 1991.

G. Bozman, W. Buco, T. P. Daly, and W. H. Tetzlaff. Analysis of free-storage algorithms—revisited. IBM
Systems Journal, 23(1):44-64, 1984.

Digital Equipment Corporation. Uniz Manual Page for pizie, ULTRIX V4.2 (rev 96) edition, September
1991.

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An execution profiler for modular programs.
Software—Practice and Ezperience, 13:671-685, 1983.

Dirk Grunwald and Benjamin Zorn. CusToMALLOG: Efficient synthesized memory allocators. Software—
Practice and Ezperience, To appear.

Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache locality of memory alloca-
tion. In SIGPLAN’93 Conference on Programming Language Design and Implementation, pages 177-186,
Albuquerque, June 1993.

Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming, chapter 2,
pages 435-451. Addison Wesley, Reading, MA, 2nd edition, 1973.

David G. Korn and Kiem-Phong Vo. In search of a better malloc. In Proceedings of the Summer 1985
USENIX Conference, pages 489-506, 1985.

James R. Larus and Thomas Ball. Rewriting executable files to measure program behavior. Technical Report
1083, Computer Sciences Department, University of Wisconsin—-Madison, Madison, WI, March 1992.

Thomas Standish. Data Structures Technigues. Addison-Wesley Publishing Company, 1980.

Charles B. Weinstock and William A. Wulf. Quickfit: An efficient algorithm for heap storage allocation.
ACM SIGPLAN Notices, 23(10):141-144, October 1988.

Benjamin Zorn. The measured cost of conservative garbage collection. Software—Practice and Ezperience,
23(7):733-756, July 1993.

Benjamin Zorn and Dirk Grunwald. Evaluating models of memory allocation. Technical Report CU-CS-
603-92, Department of Computer Science, University of Colorado, Boulder, Boulder, CO, July 1992.

10

