A Parallel Program Tuning Environment
Gary J. Nutt

CU-CS-664-93  August 1993

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE



A Parallel Program

Tuning Environment
Gary J. Nutt
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430
(303) 492-7581
(303) 492-2844 (FAX)

nutt@cs.colorado.edu

CU-CS-664-93 August 1993

&

University of Colorado at Boulder
Technical Report CU-CS-664-93

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309






ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.






A Parallel Program
Tuning Environment!

Gary J. Nutt
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430
(303) 492-7581
(303) 492-2844 (FAX)
nutt@cs.colorado.edu

August 1993

Abstract

Programming shared memory parallel machines introduces a new dimension to an already com-
plex problem, namely the challenge of managing parallel execution effectively. In this paper, we
describe a tool environment to assist the parallel application programmer in tuning a parallel pro-
gram once it has been implemented. Many of the tools are based on interactive visual presentations,
although they rely on a spectrum of underlying support and analysis tools. The value of this work
is perceived to be the incorporation of a broad spectrum of tuning tools within a consistent envi-
ronment that provides fundamental measurement services. The basis of all of the tools is a flexible
facility for generating abstract causal traces of the program’s execution, and which allows the ab-
stract trace to be bound to a particular execution architecture as either a specific causal trace or a
specific timestamped trace. In this paper we describe the general architecture of the system, and
then briefly characterize components within the environment.

tAn abbreviated version of this paper appears in the Proceedings of the 1998 International Conference on Parallel
Processing



1 Introduction

Designing and implementing effective parallel programs is proving to be a difficult task. The difficulties
result not only from the development of effective algorithms that take advantage of data placement
and computing cycles, but also from the number of variables in the underlying computing platform.
An efficient program must have an effective algorithm that matches the platform configuration. While
contemporary abstract machines {¢.g., the hardware, operating system, and runtime system) provide
access to a relatively uniform set of facilities, the performance characteristics of the implementations
of the facilities must generally also be known by the application programmer. For example, the pro-
grammer may be able to construct a more efficient matrix multiplication implementation if he knows
the size of the cache memory in a shared memory system than if he is oblivious to its size.

Thus the parallel application programmer must be able to observe almost arbitrary performance
characteristics of the execution of his program from a number of different perspectives as determined
by his specific needs at any time. This suggests that performance tools to support parallel application
development must either be defined explicitly for each application domain (or worse, for each program-
mer), or that the tools must be comprehensive, flexible, and configurable to support specific domains
and programmers. The distinction is essentially one of expert systems versus toolkits.

Our experience with individual tools also strongly supports the utility of visualization when address-
ing parallelism. Irregular concurrency is difficult to comprehend because it inherently has a “thread”
for each part of the operation; the observer must be able to synthesize the collective actions of the
“threads”, e.g., by finding an intellectual lever for abstracting away the details so that one can see
the more general pattern of behavior. We have found that this kind of knowledge sometimes requires
that the designer be able to obtain a qualitative understanding of the behavior of the program before
focusing on the quantitative details. For example, animation introduces a new dimension to the per-
ception of the performance of a program — the resulting observations tend to be qualitative rather than
quantitative. While the animation is useful for identifying general troublespots in the computation,
it is less useful for determining the specific cause. We rely on visualization to gain a qualitative un-
derstanding of performance and on traditional measures for observing the performance of the program
quantitatively.

A paralle]l program tuning environment is most useful if it provides a comprehensive set of perfor-
mance tools which provide a broad (but complementary and consistent) set of views of the execution.
Like all other tools, the tuning tools must be easy for the application programmer to use. This is the
goal of the tuning environment described in this paper.

The parallel program tuning environment framework supports either expert systems or toolkits,
and tools for both qualtitative (visual) and quantitative observations of the performance for shared
memory machines. We have been building components for several years, and we are now integrating
them into a consistent environment that could be used to design expert system performance tools or
tailored environments from generic toolkits. In this paper we first provide a high level description of
the parallel program tuning environment, then we briefly describe some of the tools; we also attempt
to identify key issues on which we have focused (and continue to focus) in our research efforts.

2 Background

There is a widely held belief that the paucity of software tools is a substantial barrier to the use of
parallel machines to solve general problems in science, e.g., see [27]. Researchers that address this area
tend to base their approach around traces of the programs execution that can be analyzed after the
subject program has executed; the tool is built to support post mortem analysis (see Figure 1(a)). The



Instrumented
Subject

Program
Y
A 4
Trace Trace
Y
Trace T
Tool Flow Grag#t race Trace-Driver
Interpreter Analyzer Simulatio
Y J
Analysis Graph Performancs Analysis Simulation
Report Animation | | Visualization Report Report
(a) A Trace Tool (b) A Tracing Environment

Figure 1: Trace Driven Performance Analysis

critical components of the tool are the instrumentation component and the analysis tool itself — some
researchers concentrate on the instrumentation and others on the tool.

Our goal is to provide a tool environment which incorporates common tracing and analysis tools and
which accommodates the development of extended tools. Since we believe that most performance tuning
tools are based on traces, we.incorporate a comprehensive trace collection tool into the environment,
then provide for means for a spectrum of different performance analysis tools to use the common tracing
facility (see Figure 1(b)). Our tracing facility — the PEET parallel execution evaluation testbed — does
not depend on the existence of the target computing platfrom, but rather it executes in a uniprocessor
abstract execution environment that can be bound to a family of specific shared memory multiprocessor
execution environments. Varous tools can (and have) been built to use the bound traces to drive other
simulations and to analyze the performance of the program on the hypothetical computing environment.
This allows us to obtain visual feedback on the performance from a control flow perspective, a resource
utilization perspective, and from a customized perspective.

The tuning environment has been influenced by a wide spectrum of research, ranging from multipro-
cessor trace collection, to trace analysis and simulation, to performance visualization. In the remainder
of this section we relate our work with some of the other work in the literature.

2.1 Using Traces

Traces have been used to study computer performance for over two decades, e.g., see [32]. In some
cases traces have been used to represent the load due to real programs (as opposed to hypothetical
loads generated by synthetic programs and mixes). In other studies, the trace is analyzed to obtain an
understanding of various characteristics of the program and computer that produced the trace.

In the 1970s, traces were most heavily used for evaluating the performance of paging algorithms,
e.g., see [31]. Now traces have again become an important tool for studying the behavior of cache



systems in shared memory multiprocessors e.g., see [1, 22, 35, 6, 8, 14, 30]. A set of subtle, new
problems are introduced when one attempts to use traces to represent the load provided by a parallel
program [5] (we summarize below).

Trace Variations Based on Utilization. A trace can represent a highly detailed list of event
occurences such as memory references. The execution of a simulation can significantly change the
order in which events occur in the global trace when the trace is used to drive a different execution
architecture from the one on which the trace was gathered. Holliday and Ellis have addressed this
problem by identifying address change points where the memory trace on an extrapolated architecture
may differ from the given trace because of different actions at address affecting points with respect to
the address change points [20].

Nondeterminacy. An important aspect of shared memory multiprocessors is that programs written
for the hardware are often nondetermistic — sometimes inadvertently. This occurs whenever independent
(logically concurrent) blocks of computation read and write a common block of memory (the problem
studied by Holliday and Ellis is a variant of this problem — the nondeterminacy may result from races
to address affecting points). There is also nondeterminacy in resource competition managed by the
hardware and the operating system. For example, if N processes are blocked on a spinlock when another
process releases it, the selection of the next process to obtain the lock is usually nondeterministic (it
depends upon the cache coherence policy among other things). '

How can one talk about “the” trace of a nondeterministic program and execution architecture?
Often, the analyses that use a particular trace assume that it is representative of related traces, and
that the behavior implied by the representative trace is acceptable. Emrath, Ghosh and Padua describe
a set of tools used to detect nondeterminacy in the execution of a program [28]; while the work does
not relate directly to traces, the results and the tools are related to the tools we use. Netzer and
Miller have considered the relationship of nondeterminacy and race conditions, and has shown that the
computational complexity of detecting such problems is NP-complete [24]; Eckert has addressed the
complexity of managing classes of nondeterministic computation in generating or migrating traces [7].

Execution dilation. Tracing depends on instrumentation, and software instrumentation techniques
introduce overhead — called execution dilation in the tracing literature. While most trace studies go
to considerable effort to reduce the execution dilation, Koldinger et al. [9] argue that any dilation
can cause the trace to be an invalid representation of the behavior of the parallel program, essentially
because of the potential change in the order of event occurences whereever races may occur (cf. Holliday
and Ellis and the discussion of nondeterminacy above).

2.2 Performance Visualization

We have been influenced by the success of Paragraph [16], and others as tools for tuning a parallel
program e.g., see [2, 34]. Heath has illustrated that even modest development efforts at building
such a tool can have tremendous impact on the domain programmer, provided that the tool has been
designed by /for the programmer rather than in a vacuum [15]. Therefore, the perspective from which
we study performance visualization is the domain programmer’s perspective (as opposed to the system
perspective).

Performance Visualization Toolkits Because of the need for the visualization tools to be cus-
tomized to the needs of the domain programmer, there is a trend toward providing a toolkit from
which the programmer can construct their own performance visualization, e.g., see [17]. There is little



doubt that some variant to this approach will ultimately have to be part of any effective performance
visualization system. The parallel program tuning environment is intended to support such efforts.

Visualization and Tracing Malony et al. have done considerable work in areas related to trace
analysis and visualization [19]. There work had addressed to problem of presenting the results of trace
analysis to the programmer.

Control and Data Flow Graphs Our own past work has focused on representing performance
characteristics of a parallel program in terms of control flow and data and message flow [25, 11, 4].
There are many other studies that emphasize this graph-oriented view for visualizing the program’s
behavior, e.g., see [33], particularly for animation of the behavior.

3 The Parallel Program Tuning Environment Framework

The goal of our parallel program tuning environment (ppte) is to allow application programmers to
tune an application for a shared memory multiprocessor on various configurations of the machine using
only a uniprocessor system for the study. Further, the ppte should enable the application programmer
to view the performance from a very broad range of perspectives, including quantitative and qualitative
views, visual and numeric reports, metric-based and flow graph views, etc.

The ppte presumes the existence of a parallel program written using a sequential programming
language with a parallel programming package (e.g., C programs that use a threads package), a spec-
ification for the target execution architecture (i.e., combination of hardware, operating system, and
runtime system), and a uniprocessor with a similar operating system and a processor that executes
the target instruction set. ! An instrumented version of the program is traced on the uniprocessor,
producing a trace with abstract events; the resulting trace is bound to a specific execution architecture,
then is used to drive various tuning tools in the ppte. ‘

A causal event trace lists the sequence of certain events in the order in which they occurred on
the instrumented specimen; the precise nature of the events is determined by the nature of the instru-
mentation. A timestamped event trace incorporates the causal order, and also adds the virtual time
at which each event occurred during the execution. Causal traces can be used to define the load due
to the program for some model of the execution architecture; timestamped traces are most useful for
direct analysis, since they already incorporate the resultant performance behavior. Both causal and
timestamped traces are used in the ppte. ‘

Figure 3 is a block diagram of the components in the parallel program tuning environment. The
environment includes tools to instrument the target program, to execute it to produce an abstract
causal trace, to bind the trace to a causal or timestamped trace, and to provide a wide set of views of
the performance of the program on a specified execution architecture.

The SPAE trace generator for parallel programs [5, 12] is based on Larus’s AE tracing facility [18];
AE is used to collect trace data from sequential C programs while SPAE uses the same mechanism
to collect abstract trace data from parallel programs written in C and using the C threads library.
SPAE automatically instruments the target program so that it will issue normal events such as memory
references, and abstract events relating to concurrent operation, e.g., that the program is spawning a
new thread, that it is attempting to obtain a lock, etc. The instrumented program can be executed
serially on a uniprocessor, causing normal events and abstract events to be saved as an abstract causal
trace. The AE technique separates information that can be determined about the trace at compile

!We have implemented our ppte for the C/C threads tools but have also used it on Fortran/Parmacs programs by
using a Fortran-to-C conversion package, and by mapping Parmacs calls to C threads calls.



C threads
Source

PEET

Instrumented

Executablg
Program

Runtime

Y A\ 4

< Uniprocessor)

Y

EXGFUtion Simulation
Architecture Report
Spec
4
<= = - - - - 1

Architecture
Simulator

s/
Scheduler
Lock Mgr

A

Basic
Blocks

‘V
( Model )
Generator

PN
Model

TDPN

TDPN
Display

A
Abstract 'I
Causal Trace Binder
Trace
Specific
Causal
Trace
] [
‘V
PN Markin Timin General
Generator Simulator Simulator
PN Specific
Marking Timed
Trace
( ProVis )
4 A 4
ProVis Simulation
Display Report

Figure 2: The PEET Tracing Facility




time from information that can only be obtained at runtime; the figure illustrates this by indicating
that part of the abstract causal trace is derived directly from the SPAE compiler and part of it from
the execution of the program — see Subsection 4.1 for more details.

The abstract causal trace is a sequential causal trace from the uniprocessor execution, with abstract
events inserted whenever logically concurrent operations were encountered. The abstract causal trace
could be bound to a specific causal trace by simulating the behavior of a particular parallel execution
architecture on each abstract event, translating its effect into a set of paraliel event iraces. Notice that
this simulation essentially performs two tasks: it converts abstract events into specific events, then
establishes an order on these events with the specific events that exist in the abstract causal trace.
After such a simulation, there will be as many specific causal traces as there were processors in the
target execution architecture, and no specific causal trace will contain any abstract events.

Translation from abstract to specific causal traces implies that the ¢race binder in the figure sim-
ulates the behavior of the runtime thread systems on the target execution architecture, i.e., the trace
binder simulates the thread scheduler, lock contention, barriers, and condition variables. In the figure
we indicate this by showing how the PEET performance testbed uses SPAE traces to bind abstract traces
to specific traces, i.e., PEET is itself an environment for using the trace data produced by spAE. The
trace binder reads the abstract trace, identifies abstract events, then invokes the scheduler/lock man-
ager simulation to have it model the activity. The scheduler may be simulate the architecture itself,
or it may invoke a more detailed architectural simulation, e.g., one that models cache behavior. When
the behavior for an event has been defined, it is fed back to the trace binder. (This technique is defined
in more detail in Subsection 4.2.) (PEET also employes feedback between the trace binder and the C
threads runtime system to literally replace the C threads scheduler and lock management implemen-
tations by the simulated scheduler and lock manager in the trace binder. This allows (requires) PEET
to gather traces on the fly by directing the execution of the program.) This requires that the program
be executed each time it is analyzed, but eliminates the need for storing massive trace files.

Specific causal traces are used to drive three classes of performance visualization tools: timestamped
trace analyzers, trace-driven flow graph animator/interpreters, and arbitrary high level trace-driven
simulations,

A specific timestamped trace can be derived from the specific causal trace by a trace-driven sim-
ulation that introduces resource utilization metrics. The simulator uses the causal trace to define the
load on the target system, then simulates resource utilization of the resulting execution architecture;
e.g., a cache simulator would introduce delays related to cache misses and the implied data movement
in the memory hierarchy. The resulting timestamped trace is a serialized audit trail'of the performance
of the program that can be analyzed to present the performance data using numeric reports or perfor-
mance visualization tools. Notice that the simulator not only introduces time to the trace, it also filters
event occurrences so that only the appropriate events are passed to the presentation tools. ProVis —
a prototype tool for performance visualization [3] — is one example of such a tool. We elaborate on
performance visualization frontends in Subsection 4.3.

It is sometimes difficult to infer characteristics of the flow of control from conventional performance
visualization displays. Instead, a flow graph or precedence graph model may be a more useful view
of the parallel program’s execution. Petri nets (and Petri net variants) are often used to represent
control flow aspects of a parallel program, e.g., see [29, 23]. The tuning environment uses the Olympus
systems [11, 25] to provide a visualization tool based on trace-driven Petri nets. Causal traces are
used to provide additional constraints on the flow of tokens in a timed Petri net; this results in a view
that illustrates the parallelism inherent in the parallel program correlated with the execution of parallel
segments constrained by available resources. Subsection 4.4 provides more discussion of this part of the
tuning environment, including the tool for generating parallel Petri net representations of the target
program,



Performance visualization tools and Petri net models may not provide precisely the view that
the analyst needs to tune the program; the final class of visualization tools uses specific simulators
to produce performance reports for specific aspects of the program and platform. In this case, the
causal trace provides a load (as in the case of the generic timing simulator used for the performance
visualization toolset), but the simulator and its performance reports are arbitrary. Subsection 4.5
relates more information about this class of tools.

The underlying assumption in the design of the ppte is that the tool designer cannot aiways predict
the appropriate view of performance data that will be of the most use to the application programmer.
The ppte provides a framework for gathering essential performance data on a uniprocessor, then pro-
cessing that data with the tools that are most useful to the programmer. It is essential that these tools
be easily invoked, so that there are few barriers to their use; that is part of the challenge in building a
useful tuning environment. Qur approach has focused on providing a useful set of built-in tools rather
than in providing a mechanism for customizing tools. However, we believe that the environment is a
prerequisite to such visulization toolkits; we will continue our investigation in parallel program tuning
with such toolkits once the environment is sufficiently easy to use.

4 The Tools

The ppte provides different views of the computation by supporting different tools driven by a common
specific causal trace and other information regarding the structure of the program. The PEET portion
of the environment produces a specific causal trace for a target execution architecture; the trace can
then be filtered again to influence the control flow model view of the computation, filtered by a timing
simulator to produce a specific timed trace, or passed to an arbitrary trace-driven simulator. In this
section we elaborate on these components of the tuning environment.

4.1 PEET and SPAE

The Parallel Execution Evaluation Testbed (PEET) includes the Symbolic Program Abstract Execution
(SPAE) tool to generate abstract causal traces, and various other tools to simulate execution architec-
tures and to bind abstract causal traces into specific traces.

As mentioned earlier, SPAE is based on Larus’s AE tracing facility; the goal of AE is to efficiently
collect detailed trace data on the execution of a sequential program [18]. The targeted efficiency is in
the time overhead (dilation) due to instrumentation and in the space required to save the resulting
trace.

The AE technique is to modify the compiler so that it statically analyzes the target program to
detect which parts of its behavior are invariant to different executions, and which parts depend on
information that is only known at runtime. The invariant parts are saved as abstract code in a schema
file and the compiler emits instrumented object code to collect and write events relating to the variant
part of the program when it is executed. On execution, the program produces an ae.out file containing
the trace information from the variant parts of the program. The information in the ae.out file and
the information in the schema file are combined by translating the schema into a C program that
incorporates statements to read information from ae.out at appropriate times; the specific trace is then
generated by executing the C version of the schema file on the ae.out file.

AE provides tools that allow arbitrary events to be introduced in the ae.out file. SPAE takes
advantage of this feature to recognize events related to parallel activity and to cause arbitrary events
to be written to ae.out — in particular, SPAE instruments the C threads library so that when any
library routine is called, it emits the appropriate abstract event(s) to ae.out. Second, SPAE keeps track
of execution contexts based on calls to the C threads library; whenever a new thread is created, then



the instrumented library code emits an abstract event to identify that occurence. Similar abstract
events are emitted whenever a thread call might cause a context switch or a thread to be destroyed.
The result is that whenever an uninstrumented program would create or change a context, it does so by
calling the thread library; in the instrumented version the thread library has been changed to generate
an abstract event to that effect in the trace. Next, the trace information is processed dynamically by
the trace binder. The trace binder buffers contexts as it prefers, since it can cause the execution to
advance in the uniprocessor instrumented execution by scheduling a particular thread to execute, i.e.,
the thread call results in action by the trace binder (possibly backed up by architectural simulation)
to schedule the thread. Within PEET, the C thread implemenatation is effectively the trace binder,
scheduler/lock manager, and architecture simulator.

Issues
1. Time and space efficiency
2. Is it possible to generate robust abstract causal traces
3. Are abstract causal traces unique for each program

4. How much dependency should there be on the architecture simulator

4.2 Binding the Abstract trace

The trace binder is a specialized implementation of the thread library to support feedback execution.
As explained in the previous subsection, the execution on the uniprocessor is a single process that
supports many threads (to represent the parallelism in the subject application). PEET begins execution
by starting the subject program and the trace binder, with the abstract causal trace piped into the
trace binder. When the subject intends to create a thread, it calls the thread fork library routine; this
causes an abstract event to be written to the abstract causal trace. The trace binder detects the fork
abstract event and creates a new context to represent the thread; the subject continues executing the
original thread. The computation will only switch execution to another thread as the result of some
thread library call; each such call (e.g., lock) results in the generation of an abstract event that causes
the trace binder to multiplex across contexts.

How does the trace binder choose the new thread context to execute? It will have built a ready list of
threads that are competing for the processor, so it must select from those threads; this is accomplished
by running the scheduler/lock manager module. This module can be a stochastic implementation, or
it can be a full thread library implementation.

In some cases the scheduler/lock manager can only determine which thread to schedule next on
the basis of the behavior of the underlying execution architecture. Again, a simulator can select the
thread through a stochastic mechanism or by running a architecture simulator. In the PEET study
Grunwald and Farber have built different architecture simulators to study cache memory designs for
shared memory processors (without using the rest of the ppte) [10]. Grunwald has also built his

architecture simulation package so that it can easily interact with the SPAE abstract trace facilities
[13].

Issues

1. Representativeness of the specific trace when there is nondeterminacy

2. Effect of nondeterminacy in the execution architecture



3. Effect of nondeterminacy in the program
4. Correctness of execution architecture model (timing aspect)

5. Tools for constructing architectural simulations

4.3 The Performance Metric View

This part of the ppte is concerned with ways that arbitrary analysis tools can be made to produce
different views of the program behavior, illustrating the results numerically or visually from a specific
causal trace produced by PEET. The ppte currently provides no specific facilities for constructing
analysis tools, although we have prototyped various performance observation tools within the ppte.

Performance tools should be able to report the behavior of a program on a specific execution
architecture (or closely related execution architectures) in terms that are familiar and useful to the
programmer. Examples of such tools are those that report CPU utilization, synchronization, send-
receive behavior, process architecture, working set characteristics (e.g., relating to caching and to
paging), and input-output behavior.

The factors that influence parallel program performance are complex, ranging from algorithm se-
lection and implementation, to programming language and runtime system, to the operating system,
to the hardware architecture. We distinguish among performance issues that are strongly related to
each of these aspects of the total system environment, and will attempt to study factors specific to
each. For example, one might consider the problem of modifying an existing sequential program to
be a parallel program on a specific execution architecture; or that of tuning a parallel program for a
specific execution architecture configuration (number of processors, cache size, etc.).

We take the position that it is unlikely that we will be able to design a set of specific tools a priori,
that will be useful to a wide range of domain programmers. Thus, we direct our efforts at supporting
meta tools [17] which the domain programmer can use to construct specific tools for observing the
performance of a particular parallel program on a particular execution architecture.

The extension to our current tool prototyping effort is to develop a meta tool that can be used by a
domain programmer to instantiate and configure a set of tools specific to his program. Our preliminary
experience with these tools in our ppte is limited to the ProVis prototype [3], where the specific causal
trace is translated into a specific timed trace using a variant of the architecture simulator. (In our
prototyping efforts, the architecture simulator and the trace binder were modified to introduce time so
that the trace binder actually produced specific timed traces directly.) In the future we expect to use
McWhirter’s visual frontend generation package to rapidly build tools that provide different views of
the performance data [21]. This implies that the meta tool may influence the specific configuration of
SPAE as well as the number and nature of the visualizers.

Issues :
1. What are reasonable performance views based on cognitive issues
2. The design of application programmer toolkits

3. Languages for programming the tools

4.4 The Control Flow View of Performance

Control flow graphs are also a useful representation of a program’s performance, e.g., representing the
best parallelism that could be obtained with an unbounded number of processors e.g., see [4]. In the



case of Petri net control flow models, one can obtain traces containing events to drive the execution
— dictate the flow of tokens — of the Petri net for the instrumented configuration. Fach path that a
token traverses through the Petri net represents the control flow of a sequential unit of computation;
thus the dynamic behavior of the Petri net model represents the behavior of an execution architecture
for the particular program.

We have also built a control flow interpreter that operates within our ppte by adapting our Olympus
modeling system [11, 25, 26]

We can outline the general tasks in the approach as follows (and represented pictorially in Figure
3). Suppose that we wish to study the behavior of a parallel program written in C using a threads
library (suitable for processing by SPAE.

1. Use the sPAE compiler to translate the program into object code modules with embedded instru-
mentation. SPAE also identifies basic blocks of computation in the program.

2. The instrumented program is executed on a uniprocessor configuration with an instruction set
corresponding to the target execution architecture to generate a trace of the logical parallelism
among the basic blocks.

3. Each basic block is mapped into a Petri net place; edges and transitions are added to reflect the
control flow among basic blocks, generating a Petri net model of the program. (If the degree of
parallelism is determined at runtime, then part of the trace data is used to determine the degree
of parallelism in the model.)

4. The trace data is correlated with basic blocks and is translated into a history of markings in the
Petri net.

5. Use Olympus to generate a tailored version of the model such that places and transitions remain
consistent with those identified in the trace.

6. The markings of transition firings drive the Petri net simulation model.

Issues

—

. Automatically generating a flow graph model from the subject program
2. Melding trace data with token flow with timing data

3. Transformations on the flow graph and transformations on traces

4

. Generating the maximally parallel graph from the trace

4.5 High Level Trace Driven Simulation

Contemporary shared memory multiprocessor simulation studies tend to focus on the design of the
memory hierarchy and the movement of date within the hierarchy, as that is a key element of the
performance. However, trace-driven simulation has also traditionally been used to study higher level
issues, particularly for system configuration studies. In this case, the fine details of the trace are not so
important as the more gross measures of resource utilization requirements of realistic programs. The
trace(s) define the number and type of threads that are competing for the CPU, the amount of CPU
processing required by each thread, message traffic, etc.

Application programmers are interested in this type of simulation once they have tuned their
program, and are intend to match the program to an idealized system configuration. Such studies are

10



C threads
Source

A\ 4

_[[nstrumented

( CSPAEl, \
ompiler J

A 4

Basic
Blocks

Y

Model Y

™ Binary
Program

4
Runtime
System

Abstract

GeneratorJ*

PN
Model

Y

Olympus

Tailored

Trace

Marking
Generator

~ PN
Marking

> TDS

PN
Model

Figure 3: Trace Driven Petri Net Modeling



typically conducted as a part of system purchasing decisions; they can help determine the number of
processors to configure into the machine, the amount of cache memory, the amount of disk space, the
number and speed of input/output devices, etc.

Issues

1 1 o
L. va7h [<t

e

2. What is the overlap between these tools and the architecture simulation tools?

3. How do these specific causal traces differ from low level traces?

5 Conclusions

The ppte represents the convergence on a particular set of base facilities (PEET) for obtaining trace
data, and on using various parts of PEET to support different trace analyses. PEET is a particularly
valuable part of the ppte because of its ability to produce specific causal traces for multiprocessors
while executing the ppte in a uniprocessor environment The measurement and modeling tools that we
have been developing for many years have been adapted to use PEET specific causal traces, illustrating
how one can define a uniform mechanism for composing diverse performance tools into a single ppte.

We believe that the utility of performance tuning tools will depend heavily on the breadth of views
that can be offered, and the ease with which the tools can be used. The ppte does not provide any
of the tools per se, but it provides the infrastructure for which those tools can be developed with far
less effort than if they were to developed without it. In some cases we have built tools that represent
this philosophy, (Olympus tools, the ProVis tool) while in other cases our position is speculative, but
based on other experiences (high level trace-driven simulators).

Our intent is to continue to use the existing ppte facilities by refining our work in trace-driven
control flow (Petri net) simulation, performance visualization tools and toolkits, and in selective high
level simulation tools. At this point we believe that performance tuning can only take a major step
forward by using a ppte like the one we have built, and then by applying visualization toolkit technology
to the environment.

6 Acknowledgements

The various projects that are parts of the parallel program tuning environment have been built by the
author and many other people. First, PEET is due to work with Tony Sloane, Dirk Grunwald, Dave
Wagner, and Ben Zorn, otherwise known as the Parallel Program Measurement Group. Grunwald and
Phillip Farber built the architectural simulators. Olympus and related tools were built with many
other people over several years, notably Bruce Sanders, John Hauser, Steve Elliott, Adam Beguelin,
Isabelle Demeure, Jeff McWhirter, and Mohammad Amin. ProVis was built by Casey Boyd, Mike
Jones, and Mike Thielen. Various parts of this work have been supported by NSF, U S West Advanced
Technologies, Bull System Automatique, and others.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operating system and multi-
processing workloads. ACM Transactions on Computer Systems, 6(4):393-431, November 1988.

12



[2] Ann H. Hayes, Margaret L. Simmons, and Daniel A. Reed. Workshop Summary Parallel Computer
Systems: Software Performance Tools NSF and Department of Energy, 1991.

[3] Casey Boyd, Mike Jones, Joe Thielen. Visualizing the performance of parallel programs: Inter-
face design using task-centered walkthroughs. Department of Computer Science, University of
Colorado, June 1992.

[4] Isabelle M. Demeure and Gary J. Nutt. Collected papers on visa and paradigm. Technical Report
CU-CS-488-90, University of Colorado, Department of Computer Science, CB 430, August 1990.

[5] Dirk Grunwald, Gary Nutt, Anthony Sloane, David Wagner, William Waite, and Benjamin Zorn.
A testbed for improving the performance of parallel programs and systems. Technical Report
CU-CS-512-91, University of Colorado, Department of Computer Science, CB 430, January 1991.

[6] E. A. Brewer, C. N. Dellarocas, C. N. Colbrook, and W. E. Weihl. Proteus: A high performance
parallel architecture simulator. Technical Report MIT/LCS/TR-516, Massachusetts Institute of
Technology, September 1991.

[7] Zulah Karen F. Eckert. A proposal for phd research in complexity of the trace migration problem
for parallel programs. PhD Dissertation Proposal, December 1992,

[8] Susan Eggers, David Keppel, Eric Koldinger, and Henry Levy. Techniques for efficient inline tracing
on a shared-memory multiprocessor. In Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Boulder, CO, May 1990.

[9] Susan J. Eggers Eric J. Koldinger and Henry M. Levy. On the validity of trace-driven simulation
for multiprocessors. In Proceedings of the 18th Symposium on Computer Architecture, 1991.

[10] P. G. Farber. Analysis of a shared bus multiprocessor memory system using trace driven simulation.
Master’s thesis, University of Colorado, 1991,

[11]) Gary J. Nutt, Adam Beguelin, Isabelle Demeure, Stephen Elliott, Jeff McWhirter, and Bruce
Sanders. Olympus: An interactive simulation system. In 1989 Winter Simulation Conference
Proceedings, pages 601-611, 1989.

[12] Gary Nutt, Dirk Grunwald, Anthony Sloane, David Wagner, and Benjamin Zorn. A testbed for
studying parallel programs and parallel execution architecture. Proceedings of MASCOTS 93,
April 1992.

[13] Dirk Grunwald. Awesime: An object oriented parallel programming and simulation systems.
Technical Report CU-CS-552-91, University of Colorado, Department of Computer Science, CB
430, 1991.

(14] H. Davis, S. Goldschmidt, and J. Hennessy. Multiprocessor simulation and tracing using tango.
In Proceedings of the International Conference on Parallel Processing, 1991.

[15] Michael T. Heath. Performance visualization with paragraph, October 1991.

[16] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel programs.
IEEE Software, 8(5):29-39, September 1991.

[17] James Arthur Kohl and Thomas L. Casavant. Use of paradise: A meta-tool for visualizing parallel
systems. In Proceedings of the Fifth International Parallel Symposium, pages 561-567, May 1991.

13



18]

[19]

[20]

[21]

[22]

[34]

[35]

James R. Larus. Abstract execution: A technique for efficiently tracing programs. Software —
Practice and Ezperience, 20(12):1241-1258, December 1990.

Allen D. Malony, David H. Hammerslag, and David J. Jablonows ki. Traceview: A trace visual-
ization tool. IEEE Software, 8(5):19-28, September 1991.

Mark A. Holliday and Carla S. Ellis. Accuracy of memory reference traces of parallel computations
in trace-driven simulation. Technical Report CS-1990-8, Duke University, Department of Computer
Science, July 1990.

Jeffrey D. McWhirter and Gary J. Nutt. A characterization framework for visual languages. In
Proceedings of the 1992 IEEE Workshop on Visual Languages, pages 246-248, 1992.

C. Mitchell and M. Flynn. The effects of processor architecture on instruction memory traffic.
ACM Transactions on Computer Systems, 8(3):230-250, August 1990.

Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-580, April 1989.

Robert H. B. Netzer and Barton P. Miller. What are race conditions? some issues and formaliza-
tions. ACM Letters on Programming Languages and Systems, 1992. to appear.

Gary J. Nutt. A simulation system architecture for graph models. Advances in Petri Nets 1990,
1990.

Gary J. Nutt. Trace driven simulation of petri nets. Technical Report CU-CS-5xx-91, University
of Colorado, Department of Computer Science, CB 430, December 1991.

Cherri M. Pancake. Where are we headed? Communications of the ACM, 34(11):53-64, November
1991.

Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Detecting nondeterminacy in parallel
programs. IEEE Software, 9(1):69-77, January 1992.

James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc., 1981.

R. Covington, S. Madala, V. Mehta, J. Jump, and R. Sinclair. The rice parallel processing testbed.
In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, May 1988.

R. L. Mattson, J. Gecsei, D. R Slutz, and I. L. Traiger. Evaluation techniques for storage hierar-
chies. IBM Systems Journal, 9(2):78-117, 1970.

S. Sherman and J. C. Browne. Trace driven modeling: Review and overview. In Proceedings of
Symposium on Simulation of Computer Systems, pages 201-207, 1973.

Steven Tanimoto, editor. Proceedings of the 1992 IEEE Workshop on Visual Languages. IEEE,
September 1992.

Ted Lehr, Zary Segall, Dalibor F. Vrsalovic, Eddie Caplan, Alan Chung, and Charles F. Fineman.
Visualizing performance debugging. IEEE Computer, 22(10):38-51, October 1989.

Wen-Hann Wang and Jean-Loup Baer. Efficient trace-driven simulation methods for cache per-
formance analysis. ACM Transactions on Computer Systems, 9(3):222-241, August 1991.

14



