Using Workflow in Contemporary
IS Applications

Gary J. Nutt

CU-CS-663-93 August 1993

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

USING WORKFLOW
IN CONTEMPORARY
IS APPLICATIONS

Gary J. Nutt¥

CU-CS-663-93 August, 1993

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, CO 80309-0430

+ The author’s telephone number is (303) 492-7581 and his electronic mail address is nutt@cs.colorado.edu. This work was supported by
Najah Naffah, Bull S. A., Imaging and Office Solutions, 7 rue Ampére, 91343 Massy, France.

ABSTRACT

Using Workflow in Contemporary IS Applications

Contemporary businesses are facing a crisis in reorganizing their operation to manage
their information processing needs. The evolution toward distributed systems has forced
businesses to abandon centralized information system, and to try to adapt heterogeneous
distributed systems to their extant information processing needs. Most existing informa-
tion processing procedures inherently depend on centralized architectures, so the evolu-
tion is forcing the business to reorganize the fundamental way that it handles its informa-
tion; this has come to be known as business process reengineering. Open systems have
previously been identified as a key business and technology area to address business pro-
cess reengineering; in this paper we describe how workflow technology can also be used
as an important aspect of the solution for documenting, analyzing, and programming
reengineered systems. ‘

Using Workflow Page 1

1. INTRODUCTION

Today’s businesses face a major crisis in handling their information: traditional management information
systems have been built using a mainframe machine that is controlled by large application programs
working in concert with a local database. It has long been known that such configurations do not scale,
and now the combined explosion of information and the hardware technology evolution have nearly elim-
inated pure mainframe computing. Multivendor distributed systems have replaced centralized comput-
ing, causing open systems to be identified as a key business and technology to address reorganization.
Distributed systems, in turn have introduced the need for technology that will allow a group of users with
their own workstations (or PCs) to collaborate on a single information processing job; software that sup-
ports this type of computing environment is generally referred to as groupware [9). In this paper we
describe how a particular class of groupware applications (workflow) can be used as a part of the solution
for addressing the business process reengineering (BPR) problem.

BPR arises as a direct result of the hardware evolution: as centralized mainframe computing has been
replaced by networks of client and server machines, the information processing procedures used by the
business are no longer well matched to the computing environment. The distributed system can imple-
ment the same functionality as the centralized systems, but the business typically fails to take advantage
of the full power and flexibility inherent in the distributed system when they use the original business pro-
cedures. As the information processing needs increase (in the face of an ever increasing pressure to be
cost effective), businesses must make better use of the distributed hardware; this suggests that they must
redesign the fundamental ways in which they manage information — BPR.

Open systems technology is relevant because of its focus on ways to allow hardware and software sys-
tems produced by competing vendors to be integrated into a single configuration [22,27]. Workflow pro-
vides a simplified programming environment for implementing business procedures in a distributed com-
puting environment.

1.1. What is Workflow?

Fundamentally, workflow is a technique for describing how a "procedure" can be accomplished by
decomposing it into a set of discrete steps, then showing how information flows among them. The pur-
pose of the procedure can vary from manufacturing processes to information management strategies.
Variants of workflow have been used in many different disciplines to describe how procedures are
intended to behave: PERT charts are a relative of workflow that describe how manufacturing and
engineering processes can be organized to build a product. Queueing networks model workflow through
a system of service providers in terms of service and interarrival times [15]. Flowcharts are another vari-
ant that describe how a sequential program should execute to process information.

A workflow language is a mechanism by which the steps are explicitly identified and the description of
how work flows among the various steps is defined. The nature of the language for expressing the
workflow approach depends on how the workflow specification is intended to be used:

(1) The language may be used exclusively to document a procedure so that it can be understood by
everyone that has an interest in that procedure; this is a typical use of PERT charts.

(2) It may be used to specify the procedure’s behavior under different loading conditions with varying
service rates, allowing one to predict the performance of the procedure; this is how queueing net-
works are used.

(3) The language may be used to precisely define a set of actions that must be conducted for the pro-
cedure to work; this is typical of a flowchart-based visual programming language (and state
diagrams).

Page 2 Using Workflow

Thus workflow representations range from informal, descriptive representations to. formal, prescriptive
representations.

PERT Charts. The primary purpose for a PERT chart is to pictorially represent the steps in a complex
process, and to identify dependencies among the steps. PERT charts focus on the global pattern
of when (in the process) tasks are to be accomplished, not on the details of any step. This general
information about the procedure is easily interpreted by humans, even when they do not care
exactly how any step is accomplished. (If a person is given a PERT chart representation of a pro-
cedure, it is expected that the person would have to determine how the steps are actually per-
formed by consulting some other source.) The PERT chart is intended for human-to-human com-
munication. The macro level view of the procedure is the focus of these procedures.

Refined PERT charts include time estimates for the expected length of time each step will take to
execute; by adding this information to the chart, it begins to move from the domain of purely
descriptive models into that of analytic models. After it has been annotated, the PERT chart can
be used to determine a critical path through the chart that identifies which steps must be executed
at the earliest possible time for the overall procedure to have the earliest completion time. That
is, the descriptive model is sometimes refined into a simple analytic model.

Queueing Networks. Queueing networks are explicitly intended to analyze the performance of pro-
cedures and systems. The steps in the procedure represent generalized servers in the system, and
the flow of jobs among the servers is analogous to the flow of work among steps. The details of
steps do not define how a server accomplishes work, but rather, represent how long the server is

-expected to process a job as specified by a probability distribution function.

Flowchart Programming Languages. A flowchart is also a set of steps with an interrelationship among
the steps that describe the order in which they must be executed to process specific work. The
flowchart can be evolved into a computer program by refining each step until it is a prescriptive
set of commands that can be understood by a computer, e.g., a basic block of source code. The
final step specifications must be far more detailed, with less ambiguity and choice about how to
accomplish the individual step, than those that appear in a PERT chart. That is, each step will
ultimately have been refined to be an unambiguous command (e.g., a function routine or basic
block of code) that can be interpreted by a computer. Both the view of the overall structure and
“the detailed view of each step in the structure are important for this use of workflow. However,
since the steps are unambiguous specifications of action, it is not necessary for the overall intent
(the why) of the procedure to be known to an "agent" that executes a step; such uses of workflow
tend to eliminate information that describes the procedures intent or goals as spurious informa-
tion.

Now consider the case where a human is to be delegated work in the context of a workflow pro-
cedure: either the procedure will have to be completely prescriptive — the flow and each step are
completely and unambiguously specified — or it will have to accommodate the human’s need to
understand the context of the work and to be able to easily invoke other tools to obtain a concrete
specification of the work or missing information to accomplish the work. That is, if a human is to
execute individual steps of the workflow program, then the specification is likely to be much dif-
ferent for the human than it would be for the computer; the differences relate to level of detail
(completeness of the step specification) provided, statement of goals and intent of the procedure,
and the support of the human in invoking other tools while attempting to execute the step. This

Using Workflow Page 3

issue has been a major barrier for successful workflow systems, e.g., see [25].

Workflow languages have an underlying formal model that define their syntax and semantics (i.e., their
behavior); Petri nets [18] are one such formal model, and ICNs [6] are another. Uninterpreted modeling
languages focus on describing the flow of work in the model, and ignore the details of processing within a
step. The semantics for more detailed workflow models are represented by an interpreted formal model
such as high level Petri (predicate/transition) nets [12,14] or ICNs with activity interpretations. The
amount and type.of detail specification reflects on how the workflow language will be used.

1.2. Contemporary IS Requirements

IS systems are rapidly moving from centralized mainframe computing to heterogeneous distributed sys-
tem, particularly using client-server computational paradigms. Today’s client-server software is built so
that application-specific parts of the program are executed on a client machine while application-
independent parts are implemented in a remote server machine. For example, a server may implement a
database while clients implement applications that produce reports from the database. Clients and servers
intercommunicate using various levels of network protocols. '

The proliferation of distributed systems technology is a severe blow to IS organizations that only have
expertise in programming centralized mainframes. The first barrier for these organizations to overcome
relates to assimilation of distributed systems technology so they can build effective distributed applica-
tions and groupware.

An enterprise can no longer obtain all of the software and hardware that it requires to solve its informa-
tion processing needs from a single vendor. As mentioned earlier, this has led to the need for open sys-
tems, i.e., distributed systems designed to accommodate components supplied by many vendors. This has
caused a revolution in the way computing equipment is acquired, and a secondary revolution in the way
that IS organizations operate within their enterprise.

Distributed systems have created an even more severe crisis relating to the organization of information in
the enterprise; the information age was born and reached a level of maturity under the centralized com-
puting paradigm. It is now necessary for the enterprise to completely reevaluate how information is
managed and used in the operation of its business. Those enterprises that ignore the problem will be left
with archaic technology that will not allow them to compete; those that face the problem must derive an
entirely new enterprise information architecture. The ramifications are that enterprises must now have a
better understanding of information technology than was ever necessary in centralized mainframe situa-
tions, and they must also have better tools for designing and analyzing the enterprise architecture and
computer systems that implement that architecture. The programming personnel must move to a new
technology level to design and build contemporary distributed systems. Workflow is one of only a few
tools that explicitly address distributed systems and business process reengineering.

The BPR problem in contemporary corporations cannot be completely addressed by technology, since
many of the main issues are related to corporate culture, organizational theory, and so on [13,29]. Asin
our earlier paper on office information systems [7], we focus on the technology as it is influenced by these
other factors.

2. REPRESENTING PROCEDURES

Organizations operate on a set of basic principles and procedures. In some organizations there are exten-
sive procedure manuals that describe how operations can be accomplished within the enterprise. Other
organizations do not bother to write procedure manuals since it is difficult to express the procedures in a
manner that can be understood by all of the employees. Secondly, the procedures tend to change as the

Page 4 Using Workflow

corporation gains knowledge about the procedures or as the operation of the business evolves. The prob-
lem is severely aggravated by business process reengineering. Third, the specification may be too
prescriptive for human office workers to follow and still be effective.

Thus representing procedures is an important application for commercial workflow products. A good
workflow system can provide a dynamic means for documenting the steps and their interrelationships for
many procedures in the enterprise. (Not all work can be represented well with workflow; the work steps
that cannot be represented may actually be more principles than procedures.) The workflow specification
can be quite detailed if the enterprise intends that there be little deviation in the way that the procedure is
to be executed (e.g., if the procedure must satisfy government regulations); conversely, it can be quite
vague if the details of the steps are unknown a priori, or if the details of step implementation are really
unimportant with respect to the overall organization. The level of representation reflects the concern of
the procedure designer with how procedures are to be carried out in the enterprise.

The existence of computer technology can substantially change the way one represents office procedures.
With the extensive realtime graphics facilities available, it is now possible to provide a broad spectrum of
means to represent office procedures, e.g., see [8,19]. Electronic representations have the advantage of
being easily edited, updated, and distributed. This has always been a severe limitation of paper procedure
manuals. Second, electronic representations can be interactive, allowing the user to navigate through the
procedure specification using CAl-like technology. Third, electronic representations can incorporate ani-
mation facilities to provide more complete representations than are possible on paper. Fourth, electronic
representations can incorporate multimedia, allowing the procedure to be described using text, graphics,
images, and audio media. Thus, we view electronic descriptive workflow systems as an important aspect
of workflow applications, albeit technically trivial compared to the other applications.

2.1. Descriptive Workflow Models

A workflow model that focuses on documenting and describing processes must provide facilities for iden-
tifying each step in the procedure, then showing how the execution of different steps are related. The
model will be produced by humans (using computer tools) to communicate ideas to other humans. There-
fore the modeling language and support tools are required to be flexible and concise in term of their abil-
ity to describe a procedure without being concerned with detailed descriptions of steps.

We have mentioned PERT charts as one language for describing procedures. In this section we introduce
the Information Control Net (ICN) workflow model for describing applications.1 (We first provide a
skeletal definition that is sufficient for ICNs to describe procedures, then we elaborate on the definition in
subsequent sections so that it can be used for analysis and programming.)

The steps in a procedure are called activities in an ICN, Control nodes are added to the language to
specify that work may flow to (from) alternate activities when a predecessor activity has been executed —
called disjunctive (exclusive OR) logic. ICNs also allow control flow to divide so that two or more
activities can be executed concurrently (or in any order) — called conjunctive (AND) output control flow.
Conjunctive input control flow is used to show that an activity can only be executed when all of its prede-
cessor activities have completed — called AND input control. Pictorially, activities are represented by
large, open circles, OR logic by small, open circles, and AND logic by small, filled circles. In Figure 1(a)
we use an arc from activity A to activity B to indicate that activity A must complete before activity B can
start, i.e., the work flows from activity A to activity B. Figures 1(b) and (c) illustrate disjunctive (OR)
logic: in (b), the work will flow from activity A through control node B to either C or D, but not to both.

1. The description of ICNs that we provide in this paper is a substantial revision of the one presented in [6] or [7].

Using Workflow Page 5

In (c) work from either A or B will flow through C to activity D. AND logic is illustrated in Figures 1(d)
and (e): in (d), work flows from A to both C and D; in (e) activity D can only execute after work has
flowed from both A and B via C. Ellis, et al., conducted extensive field studies using different variants of
workflow models before selecting the particular model primitive shown in the figure [S]. It is interesting
to note that these same operators are used o represent various patterns of control flow in parallel pro-
gramming languages and systems, e.g., see Estrin, et al.’s GMB model [11].

The uninterpreted control flow can represent execution by showing how work flows through the net. This
is accomplished by representing units of work as tokens that flow through the ICN graph, i.e., the net
represents the steps and the flow rules, while a token can be placed on a node to represent that work is
being done at that node. When the token passes through an AND node with multiple output arcs, the
token is cloned and replicas are placed on each output arc; when a token is present on each input arc of an
AND node with multiple input arcs, the node will fire, placing one token on its output arc. Thus token
flow explicitly defines the way that work flows through the uninterpreted control flow net. In workflow
terminology, the token is called a workcase.

The empirical experience with ICNs also suggested that the representation powers of the model could be
much greater if the uninterpreted control flow net also represented how activities read and write various
data repositories in the system. Let a square represent a data repository with an arc from a data repository
to (from) a control node representing that the activity may read (write) data from (to) the data repository.

@ A (A) B
! N
® . c
®
(a)) » (©)
@\ ©
&

©) (©

Figure 1: ICN Activities

Page 6 Using Workflow

In Figure 2, activity A writes information to repository E and activity D reads information from E.

2.2, Example: Purchasing Procedure

A typical purchasing procedure is for a person who needs a part to write a purchase requisition (PR) to
cause the part to be ordered. If the person’s supervisor approves of the purchase, then the PR is sent to
the purchasing department so that a vendor can be selected and the part ordered using a purchase order
(PO). On receiving the PO, the vendor supplies the part, packaged with a shipping list; the part is
delivered to the purchaser’s receiving department where the shipping list is compared with the shipment
contents to verify that all parts on the order were received. The shipping department will deliver the part
to the person that ordered it and notify the accounts payable department that it should pay the invoice for
the part. Meanwhile, the vendor’s accounts receivable department will have prepared an invoice and sent
it to the purchaser’s accounts payable department. When the purchaser’s accounts payable department
has received an invoice for a part and notification from the shipping department that the part was
received, then it will issue payment to the vendor.

Figure 3 is an uninterpreted ICN to describe the purchasing procedure. Notice that even though there is
no detailed explanation of any of the steps (activities and control nodes), the model represents how work
flows through these two organizations (the purchasing organization and the vendor organization) to
represent a business process. We use the uninterpreted ICN to represent parts of the external vendor
environment as well as the procedure itself, since it is part of the description for how the purchasing pro-
cedure should work. We do not address exceptions in the descriptive model since the description is only
the intended operation (handling "intended exceptions" can be added to the description if desired).

If we wanted to describe certain aspects of the process in more detail (without being "too prescriptive"),
we could use a nested uninterpreted ICN to do so; e.g., Figure 4 represents a more detailed description of
how to "select vendor." The vendor selection procedure may require that the purchasing agent talk to the
purchaser to see if substitutions are acceptable. Then the purchasing agent selects a vendor and begins
negotiation with him; this may be iterated on if negotiations between the purchasing agent and the vendor
do not result in an agreement. Once agreement is reached, the vendor may actually begin preparing the
part for shipment before receiving the PO, i.e., the PO number has not yet been issued. Even so, the work
will flow to the next activity that will result in the preparation of the PO.

How can such models assist in business process reengineering or other procedure automation? The
workflow model provides a concise, symbolic representation of the steps/activities that must be taken for

Figure 2: ICN Data Repositories

Using Workflow

QG—O

part not ordered

/JR prepare PR
+*

~

ed2
approved?® .

PR

Page 7

select vendor

issue PO

\
\
N
_______)8 5 receive part

receive order PO
_______ e e - - -
A)
\
\
\
\
\
in stock custom
\
\
\
\
in warehetse Y
\
\
\
shipping list
T S >
ship part
invoice
S T At >
send invoi NN &
N N
N
payment A
—————— ==
payment received

Figure 3: Descriptive ICN of a Purchasing Procedure

C> use part

Page 8

vendor DB

verbal order

N

'®) verbal OK?

Using Workflow

A_\P‘

assxmﬂate details
(talk to purchaser)

select vendor candidate

negotiate

order

Figure 4: Nested ICN to Select a Vendor

the part to be ordered. Suppose that the policy of the purchaser’s company is that verbal orders are not
acceptable because the purchasing agent may not be able to get a PO issued prior to the time that the part
is received in the receiving department? Or that if the vendor does not require a PO, then the purchaser
will not issue one? The descriptive model can be used to allow or disallow each of these cases, depend-
ing if it is an important part of the policy being described by the ICN.

2.3. Actors and Roles

Basic ICNs model office work, independent of the assignment of the work to positions or individuals
(including computers) in an organization. They do not explicitly take resource utilization into account;
rather, the analyst is expected to model specific resources as they effect the procedure. This can be
accomplished by explicitly describing when a specific agent executes an activity. A consequence of this

Using Workflow Page 9

approach is that tokens may represent both workcases and agents (called actors in the workflow litera-
ture). While the approach is representationally complete, it has three significant negative aspects: it com-
plicates the expression of the office procedure, second it makes it difficult to assign a single actor to mul-
tiple roles, and third it does not provide any obvious mechanism to represent actor scheduling/preemption
(to multiplex across pending work). In ancther paper we discuss more formally how actors and their roles
can be added to basic ICNs to produce extended ICNs [23]. In this paper, we use only an informal
description of the concepts.

Actors may be people or computers, and their roles identify a set of activities that the actor is capable of
performing in sequence (i.e, an actor represents one "processing entity," so it can only do one thing at a
time). In extended ICNs, tokens represent only transactions (workcases) while all processmg agents are
represented with the role and actor constructs.

The role identifies a particular type of processing, e.g., a purchasing agent, but it does not identify the per-
son or computer that can/will execute the role; that is done by explicitly scheduling an actor to a role for a
workcase. Thus the model must associate (map) actors with roles, meaning that any actor is capable of
playing the role to which it is associated. When a workcase needs to be processed, then an actor that is
capable of playing the role is assigned to the workcase while it is in the activities associated with that
role. It is also possible that any given human actor can hold many different roles (time multiplexing
across those roles), such as purchasing agent, supervisor, employee, etc.; so this mapping is a many-to-
many mapping.

Now we can provide a more elaborate description of the purchasing process by associating roles with the
basic ICN activities (Figure 5). The purchaser role does many activities, including "prepare PR" and "use
part", while the purchasing agent role is responsible for the activities "select vendor" and "issue PO".
This added descriptive information allows one to provide more detail to the model without providing the
details of the individual activities. It would also be possible to identify actors in the figure, but that would
typically be of interest when the model is be analyzed or executed.

2.4. Descriptive Workflow Tools

A workflow tool that is to be used to support descriptive applications should have a formal underlying
model, since it defines the conditions under which activities (or steps) are enabled for execution. Com-
puter tools that support this application domain should include a graphics editor that has an ability to
check models for syntactic correctness. (Such checks can be built into the editor itself, or provided as
adjunct tools that can be invoke as required — each approach has its strong and weak points.) It must be
easy and natural for business analysts to prepare and edit the models so they can quickly build and com-
pare alternative business processes.

There are several tools that can be used to create and edit graphs; an important feature that distinguishes
tools is the existence of the underlying formal model, including its applicability to the application
domain. Tool differentiation often relates the quality and versatility of the user interface; as the products
become more familiar to users, there will be increasing demand for CAI technology to support explora-
tion.

3. ANALYSIS

Once workflow models are supported by computers, an obvious extension is for the system to also per-
form various analyses; therefore most computer supported workflow systems are also analytic workflow
systems.

Page 10 Using Workflow

prepare PR

~

.. D R P P T P T P P P T P TS S P PP P TP TIPS
. H
. N
. N
i .
.
. .
.
°
. . M

approved? - IR :
 part not ordered R
N I B e oo »
z 3 s
’ P
rd ® .
4 FE
4 .
. [
4 H .
select vendor I
receive order
C} ------ 1 issue PO : :
In stock / \o‘,{tc\)m :
N arehelise
shipping list s ARSI :i
Y A S : 5 receive part P i
i ship part : : I H
| 5 .
send invoi High :
: C> use part
: payment received E NP cvreenreenne i

Figure 5: Actors and Roles in the Purchasing Procedure

The technical part of the BPR problem is heavily dependent on analysis tools. As the enterprise architect
considers different alternatives, he needs to be able to describe the architecture in relatively precise terms,
then to experiment with the model to understand its behavior under different loading conditions. Perhaps
the simplest form of analytic support is to animate the token/workcase flow through the model; such a

Using Workflow Page 11

tool does not necessarily provide quantitative measures of the performance, but it can give the analyst a
valuable qualitative understanding of how the system will react to different loading conditions. For
example, if the flow of the work through the system is subject to bottlenecks, then experimentation with
the animation will often illuminate these areas with very little experimentation. Animation has become a
fundamental "first cut" analysis tool for complex systems.

Qualitative observations of the performance of the system require more information in the model, more
experimentation with the model, and more sophisticated support from the system. In some cases, the
workflow system can be analyzed like a queueing network; this may result in closed form mathematical
expressions to define performance measures. However, as the model grows in complexity, the time to
analyze the model may grow rapidly, or it may simply become intractable, e.g., see [26]. We do not
explore this approach in this paper, since the results from such analysis also typically require a strong
background in statistics and mathematics before they are useful; it would be unusual for workflow
designers to have this type of background. Instead, we focus our attention on qualitative analysis based
on simulation.

Like animation, simulation requires that the model be interpreted. However, in simulation, the qualitative
results are presented as post execution reports. Therefore, model interpretation need not be done in scaled
realtime (in fact, scaled realtime is usually an annoyance when one wants the qualitative reports on sys-
tem performance, e.g., see [24]). Such reports will normally address throughput, turnaround/response
time, availability, and resource utilization. In a workflow model, resources are represented by actors, so
the resource utilization statistics must correspond to the way actors do their work (within the role frame-
work) under varying workcase loading conditions. The load on the system is workcases, so part of the
reports will be related to characteristics of how quickly workcases get processed, how much delay they
encounter at various scheduling points, etc. It is also worth noting that a workflow system probably can-
not "automatically" produce the desired performance reports without some specification of which
resources are of interest with respect to workcase flow; this suggests that the workflow system incor-
porates facilities for selective report generation (this concern is common in performance measurement
domains, e.g., see [3]).

3.1. Analytic Workflow Models

The uninterpreted ICN model can be refined so that it is a model suitable for analysis. To accomplish
this, one must add interpretations to the executable entities in the model to represent their individual per-
formance characteristics. The complete workflow model will use these individual performance charac-
teristics (e.g., a description of the amount of time a particular activity takes to execute on a particular type
of workcase with a particular actor) to determine the overall performance characteristics of the model,
then report the observations as specified by the analyst.

Roughly speaking, the performance behavior of a node (activity, control node, or data repository) is
represented by specifying how long it should take for the activity to execute whenever the model seman-
tics require execution. The simplest such characterization is to use an average execution time; the simu-
lator moves tokens representing workcases from activity to activity as determined by the topography of
the network, leaving the token on the node for a simulated time corresponding to the execution time char-
acterization. The aggregate behavior of the system — actor utilization and workcase flow characteristics
— is represented by the way tokens move through the graph model.

The model can have more sophisticated interpretations than mean value estimates of the execution time,
including probability distribution functions, function subprograms, and verbal descriptions. If the model
is to be used for simulation analysis of the system, the interpretation will normally be either a probability
distribution function or a function subprogram.

Page 12 Using Workflow

Probability Distribution Functions. First, suppose that the interpretation is a probability distribution
function: then the model can be used to represent a range and frequency of execution times for
the activity, depending on the type of distribution used. For example, if the activity interpretation
is a uniform distribution between 30 and 70, then any value between 30 and 70 is equally likely
to be the execution time for any given execution of the activity; the first time the node executes, it
might take 43 time units, and the next time it might take 67 time units. A simulator will typically
support constant distributions, uniform distributions, normal distributions, negative exponential
distributions, and erlang distributions; while understanding the properties of these various distri-
butions requires that the analyst have a background in statistics, most analysts can make good use
of the constant, uniform, normal ("bell-shaped") and negative exponential ("poisson") distribu-
tions to represent various patterns of execution time (most of these distributions are recognizable
as standard shaped histograms or bar charts).

If we reconsider the purchasing example (Figure 5), then we might say that in the model, the time
to prepare a PR is a constant time of 15 time units, the time to approve the PR is a uniform distri-
bution between 10 and 100 (meaning that any particular workcase may require any number of
time units between 10 and 100 with each number equally likely to be used), the time to select a
vendor might be from a normal distribution with a mean value of 40 and a standard deviation of 5
(meaning that most of the executions will require between 35 and 45 time units, with decreasing
numbers of executions occurring for smaller or larger values), etc.

These models are the basic fabric of queueing networks, thus a workflow model with probability
distribution function node interpretations is essentially the same as a queueing network.

Function Subprogram Interpretations. Next suppose that the interpretation is allowed to be a software
functions that returns a computed time. For generalization, let us assume that the function rou-
tine is passed data representing the workcase attributes when it is executed. For example suppose
we have a C data structure of the form:

typedef struct {
u_short input_token;
u_int num_inputs;
caddr_t *data;

} USER_INPUT,;

where the input_token represents a token identification, num_inputs represents an arc number
from whence the token came (in the case that the node has OR logic and multiple input arcs), and
data is a byte array containing the attributes associated with the token (workcase). Then the pro-
cedure can be written to read the characteristics of the workcase form the data array, and to com-
pute the time to execute that workcase on the given activity. For example, the node interpretation
may be of the form:

Using Workflow Page 13

int activity_interp(USER_INPUT ptr)

{

// Parse the byte stream to get attributes
parse(attr, ptr);

// Compute the execution time
time = some function of the attributes;
return(time);

Now the workflow simulator system moves tokens from activity-to-activity according to the logic
rules specified by the graph, and calls the appropriate node interpretations (with the workcase
description encoded in the input parameters) to determine the execution time. Thus one could
easily write a function procedure to sample a histogram, or to compute an execution time based
on arbitrary properties of the workcase (so this capability can easily implement the probability
distribution function capability).

Workflow models such as the ICN model must incorporate a node to represent decisions, e.g., the
"Approve?" node in Figure 5. How should the simulator choose which route the workcase should follow?
The simplest solution is to attach probabilities to each output arc (such that the sum of the probabilities
add to 100%). In the example one might say that the PR is approved 75% of the time and disapproved
25% of the time. Now, the simulator selects an output edge on which to route the workcase by sampling
a uniform distribution between 1 and 100; if the sample is 25 or less, then it routes the workcase to the
disapproved activity, otherwise it routes the workcase to the approved activity.

These stochastic models are easy to construct, but fail when the decision depends on the details of the
workcase (since the arc selection is random). Again, the model can use function subprograms to select
the outcome of decision nodes just as they were used to determine the execution time based on attributes
of the workcase. In this case, the function routine is passed a pointer to the workcase, but it returns an arc
label rather than an execution time:

int activity_out_arc(USER_INPUT ptr)

{

// Parse the byte stream to get attributes
parse(attr, ptr);

// Select the arc
arc_number = some function of the attributes;
return(arc_number);

The simulator calls the activity_out_arc routine, obtains an arc identifier, then routes the workcases as
specified.

Thus the activity_out_arc function for the "Approved?" node might obtain the cost attribute of the
workcase representing the part being ordered, and decide not to order the part based on the current budget
and the requester’s job function (role).

An analytic model may also simulate the behavior of a data repository node. In the ICN model, the data
repository may or may not be referenced by the activity interpretation, depending on the activity and
workcase details, so the data repository interpretation is explicitly called from the activity interpretation

Page 14 Using Workflow

as desired. If an activity interpretation calls the repository_access function to read/write a repository,
then the access is simulated by an analyst-defined routine for the repository.

For example, suppose that the "Select vendor" activity interpretation had the following schema:

int select_vendor_interp(USER_INPUT ptr)
{
// Parse the byte stream to get attributes
parse(attr, ptr);
// Compute the execution time
if(attr.amount < 100)
time = uniform(5, 15);

else
{
time = normal(50, 6) + repository_access(PR_ARC_NUMBER, ptr.data)
b
return(time);

In this interpretation, if the "amount" attribute of the workcase is less than 100, then the time is selected
from a uniform distribution between 5 and 15, but if the amount is greater or equal to 100, the
repository_access routine (also supplied by the analyst), is called to compute an execution time which is
added to the sample from the normal distribution with a mean of 50 and a standard deviation of 6.

3.2. Analytic Workflow Tools

Analytic workflow tools are substantially more complex than descriptive workflow tools, since they must
contain much of the functionality of the latter and additional analysis tools. Most tools are capable of
animating and simulating workflow via a point-and-select interface, although the integrity of the underly-
ing models is often suspect. Many systems provide the capability to specify probability distribution func-
tion interpretations, but far fewer allow the analyst to write function subprograms to define the behavior
of a node or an output arc selector.

The Quinault ICN system [20] supported probability distribution function node interpretations for ICNs
and the Olympus ICN system [21] supports both probability distribution function and C compatible func-
tion node interpretations for simulating workflow. These systems use basic ICNs to provide animation
and simulation of the workflow (i.e., they do not model actors and roles).

Reporting facilities are an important aspect of the analytic tool; it must not generate too many reports on
built-in parts of the model, since performance behavior of many parts of the model may be meaningless
or out of the scope of interest of the analyst. We are unaware of any system (product or prototype) that
has a general reporting mechanism, although Olympus provides some primitive customization tools.

As in descriptive workflow systems, the human-computer interface will be critical for initial acceptance.
As the systems become better understood by the user, the modeling functionality will begin to dominate
the tools success (since that is where the value of such a product ultimately lies).

4, PRESCRIBING A WORK PROCEDURE

We have explained how workflow addresses business process reengineering design with its representation
and analysis aspects. Prescriptive workflow models are most concerned with implementing a groupware

Using Workflow Page 15

system so that it conforms to the system that was designed and analyzed, and so that it takes advantage of
distributed systems environments; i.e., a workflow system is also a tool to assist the programmer in
designing and constructing distributed applications.

The representational power of workflow suggests that it is also an appropriate basis of a language for end
users to program work within their own computing environment. There is empirical evidence that the
ICN model fits the intuition of office workers when they describe a procedure; the same basic software
development model used by the programmer should also be available to the end user in this context. The
end user programming environment will differ from the programmer’s environment in the nature of the
language for interpretations and the available runtime facilities. End user programming will focus on
integrating personal productivity tools and various forms of simple processing (although there is no rea-
son that the full programming environment not be made available to end users).

Workflow implementations will generally be distributed application programs that support the informa-
tion work of a group of people working on a common task, i.e., they will be to create groupware. (Of
course as end user programming become prolific, parts of the system will be implemented for the use of
an individual person.) Workflow systems encapsulate organizational knowledge in the model by expli-
citly describing the organization’s procedures, and also by capturing the organizational hierarchy in the
model.

It is important that the workflow system evolve through a specific analysis and implementation methodol-
ogy — we believe that the methodology should be so complete that it uses executable specifications that
are derived at analysis time and that evolve into a workflow implementation. (This conforms to many
software engineering environments that use a comprehensive formal model for the requirements
specification, design, and implementation phases of a product life cycle.) End user programming should
be viewed as further refinement of the implementation in a manner that suits individual actors.

4.1. Workflow as a Programming Language

One goal of prescriptive workflow is to enable a group of persons to collaborate on the execution of a pro-
cedure. In establishing a collaborative framework, it is usually necessary for one person to assume
responsibility for the overall goal, and to then organize and delegate work to other actors by defining a set
of steps and the workcase flow among them (there are other social models for group work, but this one is
the most widely used in business).

Workflow characterizes each of the parties involved in the collaborative work as being an actor. In some
cases, a human actor delegates work to a computer actor in the workflow system; in other cases, the
workflow system supports the delegation of work to other human actors. The acts of organization and
delegation imply two distinct aspects: first a description of the work to be done must exist, and second
responsibility for parts of the work must be handed off from one actor to another. The latter aspect sug-
gests that there is a hierarchical authority among the actors, i.e., X cannot delegate work to Y unless X
has the authority to do so.

The delegator is an actor that assigns work to another actor, and the delegate is an actor that is assigned
work through the organizational hierarchy. Thus the delegator is a proactive agent in the system
("client") and the delegate is a reactive agent in the system ("server") for a particular delegation operation,
but these roles may change for another operation.

When work is delegated, the delegate must be given the work in terms that are meaningful and accept-
able. If the delegate actor is a computer, then the activity interpretation will necessarily be specific and
unambiguous. If the delegate is a human, then the degree of prescriptiveness in the activity interpreta-
tions will vary according to the desires of the delegator (at the time the work is organized): highly

Page 16 Using Workflow

prescriptive interpretations imply that the delegator intends the way the work is carried out be tightly con-
strained. Less prescriptive interpretations suggest that the delegator want the activity to be completed,
but does not care how it is actually accomplished; such interpretation must describe the goals, intent,
and/or general instructions to the delegate.

Interpretation languages intended to be executed by computer delegates are classical procedural program-
ming languages,” where the workflow graph determines the order in which the functions are called. The
value of workflow technology in these applications is in constructing the workflow representation of the
procedure by using the activities to modularize the work and the interpretations to specify the detail.

In the context of workflow, the graph and the interpretation languages are used to assist one human in
describing a task to another human, i.e, the language should enable communication between the two
humans, organize various computer tools to specify the task, and assist in its execution — be an instance
of groupware. Croft and his associates have studied this aspect of the problem in detail, e.g. see [2,16];
we are currently modifying our view of ICNs to better address this issue, e.g., see [10].

Any particular workflow procedure may be executed by a combination of human and computer actors —
on an role-by-role basis. Thus, there is a recursive view of workflow in which a procedure may appear in
an enterprise without any workflow context, i.e., it exists as a description/prescription for how some pro-
cedure can be accomplished should anyone decide they want to do that. Within the workflow procedure
there is a specific control flow model to describe the conditions for an activity to be executed; however,
the activity itself may be a nested procedure, definable with an ICN, or as some unit of work that a human
actor will execute. In this paper we take a simplified view, and divide the discussion into parts that
address procedure interpretations intended for computer execution and those for human execution.

4.2. Delegating Work to a Computer (Programming)

A large part of the value of using workflow models for writing distributed applications is that they pro-
vide a simple, visual language for organizing and defining a parallel computation, i.e., the power of this
aspect of workflow is in visual programming, especially using the topdown methodology. Distributed
business applications particularly benefit from workflow technology because of the intuitive use of visual
models to represent concurrency in the information worker’s domain of expertise.

The workflow system can be used for macro level design of procedures, e.g., describing how a PO is pro-
cessed; for defining and implementing mid level computation, e.g., the steps in selecting a vendor to sup-
ply a particular part; and for micro level specifications, e.g., how to organize local information to fill in an
invoice, and for binding work to a schedulable unit of computation (role). Professional programmers do
not necessarily require visual, workflow-based languages to implement applications (although there is
growing evidence that this class of language and analysis systems can be of substantial assistance in pro-
gramming distributed systems [28]. There are several workflow languages, e.g., see [4, 17], although we
continue our discussion of workflow concepts using the ICN language.

4.2.1. The Approach

In Section 3, ICNs were used to define analytic models by providing interpretations for nodes in the
model. Prescriptive applications require more elaborate function subprogram interpretations and a
comprehensive runtime system in which the interpretations can be executed. Rather than have interpreta-
tions return time values used for analysis, interpretations in prescriptive system focus on the computation

2. Workflow models are increasingly being cast as object oriented models in which activities are objects and workcases are represented by
messages; this does not violate any of the assumptions made in this discussion.

Using Workflow Page 17

that can be accomplished within the body of the function subprogram interpretation. As in analytic
models, each activity and each control node can have a nested ICN or a function subprogram interpreta-
tion.

Nested ICNs. Prescriptive workflow applications can become very large programs, particularly as they
represent full implementations of complex business procedures. This suggests the need for some
mechanism to handle scaling and modularization of the model. This follows in part from the
physical limitations of display screens, and in part from software engineering principles on modu-
larization.

Since ICNs allow sequential control flow to appear in the graph or in node interpretations, there is
no canonical form for an ICN; instead, the procedure designer can incorporate as little or as much
disjunctive control flow in the graph/interpretation as taste dictates. However, as the ICN grows
then either or both of the graph and individual interpretations may become arbitrarily large. The
display size will tend to limit the size of the graph, even though the scale of the icons on the
screen and scrolling mechanisms can allow surprisingly large numbers of nodes to be used in a
graph.

Refinement can be implemented using traditional function procedures (within a textual interpreta-
tion), or using a nested ICN for any activity that has a single entry and a single exit arc. Software
engineering methodology suggests that function procedures should not be allowed to grow arbi-
trarily large (some leaders in the field suggest that a function should not contain more lines than
will fit on a single page/display screen). Practice with ICNs suggest that a graph may be allowed
to be larger than a screen, but not arbitrarily large; when a graph reaches some size threshold
(dictated by the user), then nodes in the graph should be refined into nested ICNs such as those
illustrated in Figures 3 and 4. Data are passed into (and received from) the nested ICN as attri-
butes of the workcase tokens when they flow into (and out of) the ICN. This approach is called
visual abstraction.

Function Subprogram Interpretations. A node is activated by the presence of one or more tokens
' flowing into the node. Since each token has attributes of the workcase that it represents, the
workflow system must pass the attributes to the textual interpretation. Using the nomenclature
from Section 3, an ICN node interpretation receives an input parameter of type USER_INPUT
holding an encoded form of the token attributes. The interpretation does not return a value via

the function name, so every interpretation (in the Olympus implementation) is of the form:

caddr_t activity_interp(USER_INPUT ptr)

{
// Arbitrary processing

// Olympus return
task_return(u_short arc_number, caddr_t datap, u_int size);

}

3. The single entry/exit restriction is not strictly necessary, but it does simplify our explanation. It effectively restricts nested ICNs to ac-
tivity nodes, suggesting that any nesting for a control node must be synthesized from an activity node.

Page 18 Using Workflow

The special procedure return is a call on the workflow runtime system to pass the output token
attributes back to the workflow system so that they can be reassociated with a token. The
arc_number selects an output arc for nodes with OR logic on the output arcs, causing a token
containing size bytes of data (pointed to by datap) to be written to the arc. If the node has AND
logic, copies of the token are placed on all output branches. Thus the Olympus implementation
combines the node interpretation routine and the output arc selector routine described in the gen-
eral discussion in Section 3.

The runtime environment must provide a variety of facilities to support activity interpretations. Below
we discuss the most important aspects of the runtime environment. The system support includes graph
manipulation and interpretation, workflow entity management, and scheduling. Other facilities are expli-
citly made available to a programmer via an application programming interface.

System Facilities. The runtime system implements the fundamental workflow interpretation algorithms
described throughout this paper, including entity creation/destruction, storage
allocation/deallocation, token movement, calling activity interpretations, system administration,
etc. Many of these details are addressed as engineering problems at the time the runtime system
is designed and built. Scheduling has some implementation-independent aspects.

Actors and roles imply several scheduling mechanisms that can be used to implement a variety of
different scheduling policies as chosen by the enterprise. Mechanisms are defined by the ICN
definition and runtime system, and polices are defined by the particular ICN model. Scheduling
takes place at different granularities with different resources as summarized in Figure 6.

The ICN activity-role relation defines a schedule to assign activities to roles. While one may not
expect that this schedule would change dramatically during execution of the procedure
represented by the ICN, it is nevertheless possible.

The actor-role relation also defines a schedule which assigns actors to roles. It is easy to see
many more circumstances in which the mapping of actors to roles varies with time, e.g., an
employee takes a break so another temporarily assumes his role, or an employee is sick so some

End user/computer

Intra Actor scheduling

Actors

Actor-Role Mapping
Roles

Activity-Role Mapping
ICN Graph

Figure 6: The Scheduling Hierarchy

Using Workflow Page 19

other actor assumes his role(s) in the meantime.

In general, an actor is a sequential machine (a human or a process), therefore it can only execute
one activity at a time. If there are multiple actors, then each of them can be executing an activity
simultaneously so there is a notion of parallelism. If there are are two or more activities enabled
for execution by a single actor, then the actor can only execute one of them at any given moment.
This implies intra actor schedule is under the control of the actor.

The schedules and the marking determine the firing sequence for the ICN. When a
token/workcase, w, enables a node, Ci, then the node is is said to be enabled to fire. However, all
of the schedules provide additional constraints on the firing (execution) of the activity; that is, C
can only be executed on w if it is assigned to a role, if an actor is assigned to the role, and if the
actor chooses to execute the activity from its pending work queue. The workflow system handles
enabling, activity-role scheduling, and actor-role scheduling, but the intra-actor scheduling is
determined by the application and/or user.

The Application Programming Interface (API). The API defines the facilities provided by the
workflow system for the use of the workflow programmer, i.e., it defines the runtime facilities
available to a workflow programmer when he writes node interpretations. The API should sup-
port calls for data access, user interface management, and make provision for access to tools that
are external to the workflow environment. End user programming support may either be a subset
of the API or an entirely different API with a simplified conceptual model, depending on the
design of the specific system.

Data References. ICNs distinguish between data access that is local to an activity and access that is
shared across activities. (Local data access is defined by the programming language semantics in
which the interpretation is written.) If data are to be shared across activities, then they can either
be passed as token attributes (the dataflow approach), or explicitly stored to and retrieved from a
data repository node. The technique for passing data as token attributes is described with the dis-
cussion of function subprogram interpretations. Repository access is accomplished using a gen-
eralization of the repository_access repository interpretation described in Section 3:

repository_access (u_short arc_number, caddr_t datap, u_int size);

In the ICN model, the logical equivalent of a token is received (or passed) from (or to) the data
repository to represent read or write access — if the arc_number is from the activity to the repo-
sitory, then the operation is a write operation, and if the arc is from a repository to an activity the
operation is a read.

The data repository interpretation coincides with the repository_access interface — there must
be a read routine and a write routine that is invoked when an activity interpretation calls
repository_access:

Page 20 Using Workflow

caddr_t repository_interp(USER_INPUT ptr)

{
// Arbitrary processing

// Input return
return();

// Output return
return(caddr_t d_ptr);

}

The repository_interp schema is rudimentary, but defines the semantics that the model enforces
on any data repository interpretation. Realistically, the repository_interp would be a part of the
application programming interface to reference data stored in a globally accessible storage, e.g., a
database.

The following program schema suggests how (in the absence of other support from an API) one
might implement the activity entitled "Select vendor candidate" (from Figure 4):

caddr_t select_vendor_candidate_interp(USER_INPUT ptr)
{

caddr_tr,s;

// Parse the data stream
parse(attr, ptr);
// Build a query for vendors that provide the part
q = malloc(...);
build_query(q, attr.part, ...);
// Encode query
r = malloc(...);
encode(r, q);
// Query the database
s = repository_access(VENDOR_DB, r, sizeof(r));
// Olympus return
task_return(u_short arc_number, caddr_t s, u_int size);

}

The User Interface. Activity interpretations implement fragments of an application program that must
interact with the end user. Therefore, the application programming interface must incorporate a
human-user interaction model and appropriate facilities to implement the model. We do not
address the details of the application programming interface in this paper.

System Administration. The workflow system must be administered to define actors, to establish actor-
role mappings, etc. The details of system administration are implementation-dependent, thus we

do not discuss them in this paper.

Using External Software. A workflow system exists in an IS organization in a general purpose

Using Workflow Page 21

computing environment. Therefore the runtime system must make provision for the application
programs and users to access and use external applications from within the workflow environ-
ment. The model only makes such a provision through activity function procedures; any pro-
cedure is an arbitrary program that may import and use an arbitrary APL

Support for End User Programming. End users will require a simplified activity programming model
to assist them in defining macros, storing keystrokes, or defining other simple methods. They
will initially require facilities to allow them to organize the use of their existing personal produc-
tivity tools, then later require full programming functionality.

For example, an end user may decide to delegate the procedure of filling out his time report,
based on information kept in a personal calendar. Figure 7 is the ICN created by the end user;
part (2) is the overall procedure, and part (b) is a nested ICN refinement of the "Clean up"
activity. Figure 8 provides example interpretations for the activities in the graph; in the example
we we only use the C programming language since we have not postulated any other language in
this report. An implementation may provide a language more suited to end user programming,
e.g., a 4GL language.

4.2.2. Problem Areas

Workflow models have historically had difficulty representing unstructured work in a procedure. This
occurs when there is no detailed specification of the activities (or even among the activities) for some pro-
cedure, i.e., the activity will have to be executed by an actor that can reason from an incomplete
specification — a human. The procedure can be defined in descriptive terms — goals and intent — but
not in prescriptive terms.

Workflow exceptions are a special case of unstructured work; they occur when a workcase is being pro-
cessed under a prescriptive workflow model, but in which the prescription is not complete enough to han-
dle the case presented by the workcase-actor-activity combination. In the worst case, the workflow sys-
tem does not detect that something is wrong, and blindly proceeds erroneously; in another case, a human
actor detects an exception, but the workflow system does not allow the actor to correct the situation.

4.3. Delegating Work to a Human

When a workflow procedure is to be executed by a group of two or more humans, then the workflow
model and runtime system serve the purpose of computer supported cooperative work (CSCW) systems,
i.e., they assist humans in working together. The major distinction between a computer delegate and a
human delegate is the reasoning ability possessed by the human. The computer delegate can only act on
completely prescriptive descriptions of the work, whereas a human can be provided with imprecise ("par-
tially prescriptive") descriptions of the work and still be expected to successfully execute the activity.

Thus the human is able to operate on activity interpretations with a broad range of prescriptive level. At
one extreme, the human can execute the same interpretation that a computer can execute by following the
interpretation without applying any reasoning or judgement to the job. At the other end of the spectrum,
some humans can be told the goal and/or intent of the activity, and they will still be able to successfully
execute the activity. As the interpretation becomes less-and-less prescriptive, the human delegate must
be given more information about the intent of the activity and the human must have increasing amounts
of domain knowledge to reason about the intent and to arrive at a successful execution.

The nature of an acceptable activity interpretation for delegating work depends on an agreement between
the delegator and the delegate. In the absence of computer support, the delegator would tell the delegate

Page 22

Using Workflow

forms)Lget time report form
e
-7 fill name and ID

¢’ Pt

i ’f’

| ’/,

y -7 fill first & last days
A/

TR | &------------ D >
HA\\\ -
Ll S -7
i Mo -

(R ~ ’,—
It AN ‘_,"
i . >0
! \\
|
o
¥ \ “.__V_fill this day’s entry
t
,k\\\
i NN
] AR
1 NN
i \\\
~
: S, O last day?
N NN
\\ \\\
~ SN
~ \\\
A NN clean up
\\ N\
N
\\
~
~
~
~
~
~
~
N
print

Figure 7(a): Time Report Procedure

last

TR

Using Workflow

O

compute total

show draft

Y approved?

exit

Figure 7(b): The "Clean up" Activity

Page 23

Page 24

Using Workflow

caddr_t get_time_report(USER_INPUT p) {
repository_access(READ_FORM, &q, sizeof(TR_FORM));
repository_access(WRITE_TR, &q, sizeof(TR_FORM));
task_return(NIL, NIL, 0);

}

caddr_t name (USER_INPUT p) {
strepy(m, "my name");
strepy(n, "my ID");
repository_access(WRITE_TR, &m, sizeof(m));
repository_access(WRITE_TR, &n, sizeof(n));
task_return(NIL, NIL, 0);

}

caddr_t first_and_last (USER_INPUT p) {
printf("Enter first day of period: ");
sscanf(..., first);
printf("Enter last day of period: ");
sscanf(..., last);
repository_access(WRITE_LAST, &last, sizeof(last));
task_return(NIL, &first, sizeof(first));
}

caddr_t this_day (USER_INPUT p) {
today = (int) p[0];
value = today;
repository_access(READ_CALENDAR, &value, sizeof(value));
repository_access(WRITE_TR, &value, sizeof(value));
today--;
task_return(NIL, &today, sizeof(today));
}

caddr_t is_last_day (USER_INPUT p) {
repository_access(READ_LAST, &last, sizeof(last));
if(p.data == last)
task_return(YES, &today, sizeof(today));
else
task_return(NO, NIL, 0);
}

caddr_t clean_up (USER_INPUT p) {
API_icn(USER_INPUT p, rtn, ...);
task_return(rtn.arc, rtn.data, rtn.size);

}

caddr_t print (USER_INPUT p) {
API_Form_Print(TR, ...);
task_return(NIL, NIL, 0);

Figure 8 (a): A Prescriptive ICN Interpretation

Using Workflow Page 25

caddr_t fill_total (USER_INPUT p) {
total = 0.0;
do
repository_access(READ_TR, &field, sizeof(field));
total = total + field;
until (field == NIL);
task_return(NIL, NIL, 0);
}

caddr_t show_draft (USER_INPUT p) {
API_Display_Form(TR);
sscanf(..., response); // wait until through viewing
task_return(NIL, &response, sizeof(response));

}
caddr_t is_approved (USER_INPUT p) {
if(p.data == "y")
task_return(YES, NIL, 0);
else
task_return(NO, NIL, 0);
}

caddr_t edit (USER_INPUT p) {
API_Form_Edit(TR, ...);
task_return(NIL, NIL, 0);

Figure 8 (b): The "Clean up" Activity

caddr_t TR _read (USER_INPUT p) {
switch(num_input)

case FROM_PRINT: ...
case FROM_SHOW_DRAFT: ...

caddr_t TR _write (USER_INPUT p) {
switch(num_input)

{
case FROM_PRINT: ...
case FROM_SHOW_DRAFT: ...

caddr_t calendar_read (USER_INPUT p)

caddr_t last_read (USER_INPUT p)

caddr_t last_write (USER_INPUT p)

Figure 8 (c): Data Repository Routines

what he is expected to do whenever the activity is to be executed, i.e., there will be a negotiation between
the delegator and the delegate in which an agreement is reached about how work will be delegated (in

Page 26 Using Workflow

some cases, the negotiation is degenerate; the delegate is "trained" to execute a workcase with the
delegator’s standing interpretation). Even in cases where the interpretation prescribes the order in which
steps must occur within the activity, the delegate actor may have to use extensive reasoning based on
organizational knowledge.

The runtime system that supports the computer delegate provides a framework for supporting delegation
to human actors. First, the workflow model establishes a context for the execution of the activity; the
human delegate can usually use this information in reasoning about partially prescriptive interpretations.
Second, the mechanism by which the runtime system delivers the workcase to the a computer delegate
can be used to deliver the workcase information to the human delegate — however the delivery of the
activity interpretation itself will differ in the two cases.

We currently have no concrete specification for the how goals and intent should be conveyed from the
delegator to the delegate.4 We observe that one possible language for expressing a nonprescriptive
activity is to use a nested, descriptive ICN. This has the advantage of specifying workflow in cases where
it matters, and allows the use of abstraction in cases where details do not matter.

Operationally, the user of a partially prescriptive workflow system should expect the computer system to
provide tools to support them in routing/delivering workcases, to provide computer-based procedure
descriptions, and to provide an integrated environment for using a spectrum of personal productivity
tools.

4.4. Prescriptive Workflow Systems

Comprehensive workflow systems are characterized by the presence of a underlying formal model which
can be used to capture knowledge of the organization in the structure of the model; in some cases they
include other organizational knowledge relating to roles and organizational hierarchy among the roles.
(We do not include systems that simply use electronic mail to transmit forms from one user to another;
these products contain no organizational knowledge, but simply provide tools for moving electronic
documents throughout the organization.)

Many products provide some variant of the computer delegate approach (without end user programming),
but we are unaware of any that fully address the human delegate approach. The problem is sometimes
addressed by simply embedding the computer interface within each activity interpretation; while this
makes it possible to deliver workflow products in the absence of key technology, it has the danger of
either forcing the API to essentially capture the essence of the human-computer interface, or of failing to
support consistent interactions across different activities within a procedure or across procedures.

We believe that there are no systems that address the full spectrum of workflow application areas, and
that systems to support prescriptive workflow for computer and human delegates is the area that lags the
others. This is also the area where the descriptive and analytic modeling work can be of the most use, and
where the payoff is the greatest using workflow technology.

5. DEVELOPING A WORKFLOW APPLICATION

A workflow system is explicitly designed to implement a policy for how a group of actors should interact.
The model is defined at description and analysis time, then refined into an implementation as details are
added to the model. One class of workflow systems takes the approach that the model is only descriptive,
and that the operation of the workflow should be handled manually by the actors; an underlying electronic
mail and forms system is sufficient to implement this approach.

4. However, Rick Blumenthal is studying a specific mechanism to assist in human-computer interaction in this context [1].

Using Workflow , Page 27

At the other end of the spectrum lie workflow systems that leave a minimum of flexibility for manual
action to the actor. Such systems provide the most support and adhere most closely to the policies incor-
porated into the model; however, if an exception should occur in these highly prescriptive systems, then
the user may have great difficulty in handling the exception "... because the computer won’t let me do that
...". All activities must be highly prescriptive — even when the delegate does not care how the activity is
completed.

The middle ground is a workflow system that allows certain aspects of an office procedure to be tightly
specified and other aspects to be loosely specified. Tight specifications are appropriate when the pro-
cedure is designed to ensure that certains procedures are being strictly followed, e.g., due to government
or contractual requirements. Loose specifications are appropriate when the procedure designer does not
want to exactly prescribe how to accomplish some activity, but wants to give each actor an ability to do
the job as they wish.

Workflow methodology is intended to take advantage of the topdown development methodology. It can
be summarized as follows:

) Develop a descriptive model of the procedure. Iterate on the model until the procedure is an
accurate description of the steps and the flow among them, even if the contents of some of the
steps are vague.

2 Annotate the descriptive with performance estimates to derive a simulation model of the pro-
cedure. The estimates for steps that are well-understood can be accurate, while the estimates for
vague steps should use probability distributions with large deviations.

3) Refine activities that are too vague for reasonable predictions by:
o Writing function procedure interpretations
® Defining a nested ICN for the activity
° Identifying goals and intent of the activity
“) Refine activities that are the leaf nodes on the hierarchy into function interpretations.

This technique follows topdown programming style using executable specifications at all stages of the
development. The designer should iterate across steps as required when high level designs are inadequate
for detailed designs that evolve with the development.

6. CONCLUSION

Business process reengineering requires clear thinking, careful analysis, and an agreement among the par-
ticipants; the agreement may be arrived at through any form of negotiation, although we expect that the
organizational hierarchy (who reports to whom) will have a significant effect regarding who are the dele-
gators and the delegate vis-a-vis any particular unit of work. Descriptive and analytic workflow products
are tools explicitly intended to assist in engineering an enterprise architecture. Therefore we see
workflow as potentially being a major product to enable business process reengineering.

Prescriptive workflow models can be derived from descriptive and analytic models (as executable
specifications) using a topdown development methodology. Further, the workflow model is natural for
use in client-server distributed computing environments, As a programming tool, workflow has the
benefit of visual programming for dealing with parallelism and the benefit of an straight-forward mapping
into a distributed hardware system.

Workflow is a fool to assist in cooperative work — not a panacea. Clear thought and a cooperative organ-
ization are essential or any mechanism will fail in building distributed applications to support groups of
information workers.

Page 28 Using Workflow

7. ACKNOWLEDGEMENTS

The author’s understanding of workflow and its usage comes from many years of work with Clarence A.
("Skip") Ellis. This paper was written while the author was visiting Bull S. A., and was supported by
Najah Naffah, Bull S. A., Imaging and Office Solutions, 7 rue Ampére, 91343 Massy, France.

Using Workflow Page 29

8. REFERENCES

1.

[

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

R. Blumenthal, Interactions between Human agents and a Workflow System (tentative title),
University of Colorado, Department of Computer Science, August, 1993.

e s ~ L o ~

C. Broverman and W. B. Croft, “‘Reasoning about Exceptions during Plan Execution Mot
Proceedings of the AAAI-87, 1987.

T. L. Casavant and J. A. Kohl, ‘“The IMPROV Meta-Tool Design Methodology for Visualization
of Parallel Programs’’, Proceedings of MASCOTS ’93, San Diego, CA, January, 1993, 22-27.

E. Dyson, ‘“Workflow’’, Release 1.0, EDventure Holdings, New York, September, 1992.

C. A. Ellis and P. A. Morris, ‘“‘Information Control Nets: A Mathematical Model of Office
Information Flow”’, Performance Evaluation Review 8, 3 (November, 1979).

C. A. Ellis, ‘““Information Control Nets: A Mathematical Model of Office Information Flow”’,
Proceedings of 1979 ACM Conference on Simulation, Measurement and Modeling of Computer
Systems, August, 1979, 225-239.

C. A. Ellis and G. J. Nutt, ““Office Information Systems and Computer Science’’, ACM Computing
Surveys 12, 1 (March 1980), 27-60.

C. A. Ellis and N. Naffah, Design of Office Information Systems, Springer Verlag, Berlin,
Heidelberg, New York, 1987.

C. A. Ellis, S. J. Gibbs and G. L. Rein, ‘“‘Groupware: Some Issues and Experiences’’,
Communications of the ACM 34, 1 (January 1991), 38-58.

C. A. Ellis and G. J. Nutt, ““The Modeling and Analysis of Coordination Systems’’, ACM 1992
Conference on Computer Supported Cooperative Work, Toronto, Canada., November, 1992.

G. Estrin, R. S. Fenchel, R. R. Razouk and M. K. Vernon, ‘“‘SARA (System ARchitects
Apprentice): Modeling, Analysis, and Simulation Support for Design of Concurrent Systems’’,
IEEE Transactions on Software Engineering SE-12, 2 (February, 1986), 293-311.

H. J. Genrich, ‘‘Predicate/Transition Nets”’, in Petri Nets: Control Models and Their Properties,
Advances in Petri Nets 1986, Part 1, W. Brauer, W. Reisig and G. Rozenberg (editor), Lecture
Notes in Computer Science, Springer Verlag, Berlin, Heidelberg, New York, 1987.

C)
=
.
=
C
=
j=
=
(K

V. Gurbaxani and S. Whang, ‘“The Impact of Information Systems on Organizations and Markets”
Communications of the ACM 34, 1 (January, 1991), 59-73.

K. Jensen, Coloured Petri Nets: Basic Concepts, Analyszs Methods and Practical Use, Springer
Verlag, Berlin, Heidelberg, New York, 1992.

E. D. Lazowska, J. Zahorjan, G. S. Graham and K. C. Sevcik, Quantitative System Performance,
Prentice Hall, Inc., Englewood Cliffs, NJ, 1984.

L. S. Lefkowitz and W. B. Croft, ‘‘Planning and Execution of Tasks in Cooperative Work
Environments’’, JEEE Al, 1989,

R. T. Marshak, Workgroup Computing Report, Patricia Seybold Group, May, 1993.

T. Murata, ‘‘Petri Nets: Properties, Analysis and Applications”’, Proceedings of the IEEE 77, 4
(April, 1989), 541-580..

W. M. Newman, Designing Integrated Systems for the Office Environment, McGraw-Hill Book
Company, New York, NY, 1987.

Page 30 Using Workflow

20.

21

22.

23.

24.

25.

26.

27.

28.
29.

G. J. Nutt and P. A. Ricci, ‘“‘Quinault: An Office Environment Simulator’’, IEEE Computer 14, 5
(May 1981), 41-57.

G. J. Nutt, A. Beguelin, I. Demeure, S. Elliott, J. McWhirter and B. Sanders, ‘‘Olympus: An
Interactive Simulation System’’, 1989 Winter Simulation Conference Proceedings, Washington, D.
C., December 1989, 601-611.

G. J. Nutt, Open Systems, Prentice Hall, Englewood Cliffs, NJ, 1992.

G. J. Nutt and C. A. Ellis, ‘‘Adding Actors and Roles to the Basic ICN Model’’, University of
Colorado Department of Computer Science Technical Report in preparation, August, 1993.

C. J. C. Schauble, ‘“A Memory Access Simulator for MIMD Machines’’, University of Colorado,
Department of Computer Science, PhD proposal, April 1989.

L. A. Suchman, ‘‘Office Procedures as Practical Action: Models of Work and System Design’’,
ACM Transactions on Office Information Systems 1, 4 (October, 1983), 320-328.

M. K. Vernon, J. Zahorjan and E. D. Lazowska, ‘‘A Comparison of Performance Petri Nets and
Queueing Network Models’’, Technical Report #669, Computer Sciences Department - University
of Wisconsin, Madison, September 1986.

T. Wheeler, Open Systems Handbook, Bantam Books, New York, NY, 1992,
IEEE Software 8, 5 (September, 1991).
Communications of the ACM 34, 12 (December, 1991).

