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Abstract. The submodular flow problem includes such problems as ordinary network flow, dijoin,
edge-connectivity orientation and others. We present a cost-scaling algorithm for submodular
flow problems. The algorithm applies to these problems in general; we also examine its efficiency
for the dijoin and edge-connectivity orientation problems. A minimum-cost dijoin is found in time
O(min{m!/?,n2/3}nmlog (nN)), where n, m and N denote the number of vertices, number of edges
and largest magnitude of an integral edge cost. The previous best-known bound is O(n*m) if fast
matrix multiplication is not used. A k-edge-connected orientation is found in time O(kn?®(vVkn +
k*log(n/k))). A minimum-cost k-edge-connected orientation is found in the above time bound for
dijoins when k£ = O(1) (and a more complicated bound for general k). The scaling algorithm uses
a transformation that eliminates vertex weights in edge-capacitated graphs. It also incorporates a
scheme to limit the growth in the size of intermediate solutions, using a dual minimum-cost network

flow problem.
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1. Introduction

Submodular flow is among the most general integer linear programs having a polynomial-time
algorithm [e.g., S]. A number of polynomial-time submodular flow algorithms have been presented
[see Fu, FT, and their references]. This paper gives an efficient cost-scaling algorithm for 0-1
submodular flow. The algorithm is presented for arbitrary 0-1 flow problems. Its efficiency is
illustrated for two of the most well-known such problems.

Our algorithm generalizes a large number of cost-scaling algorithms [e.g., GoT, GaT89, GX].
A difficulty is that the size of the intermediate solutions can grow, thereby degrading performance,
even if the final solution is small. This does not occur in previous algorithms, e.g., in minimum-cost
matching [GaT89] a matching always has O(n) edges. We introduce av “potential compression” step
to cut back growth in the size of the solution. Nonetheless the phenomenon of growing solutions
prevents us from achieving the best efficiency a naive observer might hope for.

We state our results for ‘speciﬁc flow problems. In this paper n, m and N denote the number
of vertices, number of edges and largest magnitude of an edge cost for a given graph. When N is
used the edge costs are assumed to be integral.

In a digraph, a dijoin is a set of edges whose contraction gives a strongly-connected graph.
In the minimum-cost dijoin problem we are given a digraph with edge costs, and we seek a dijoin
of smallest possible cost. This problem contains minimum-cost bipartite matching as a special
case. The Lucchesi-Younger Theorem gives a minimax characterization of the solution [GLS].
Polynomial-time algorithms are in [L, K, F81]; the most efficient algorithm is the implementation
of Frank’s algorithm given in [Ga93a] running in time O(min{n’m,nM(n)}). Here M(n) is the time
to multiply » X n matrices and M(n) = O(n?-3) [CW]. Our cost-scaling algorithm achieves time
O(min{m'/2,n?/3}nmlog (nN)). Under the assumption of similarity log N = O(logn) [Ga85] this
improves the first bound of [Ga93a}; it is at most a factor n-® more than the second bound, without
using fast matrix multiplication. In fact our algorithms do not use sophisticated data structures and
should perform well in practice. Note the similarity assumption holds for the minimum-cardinality
dijoin problem (N = 1) where all the results listed above are the best known.

The feedback arc set problem is NP-complete in general but for planar graphs it amounts to the
dijoin problem. Our algorithm solves the planar feedback arc set problem in time O(n%/? log (nN)).
Under similarity this improves the bound of O(n?) of [Ga93a].

An orientation of an undirected graph assigns a direction to each edge. The (k-edge-connected)
orientation problem is to orient the edges of a given undirected graph to make it k-edge-connected,

if possible. Nash-Williams gives a minimax characterization of graphs that can be so oriented [NW].
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In the minimum-cost k-edge-connected orientation problem each orientation of an edge has a cost
and we wish to minimize the total cost. These problems were solved in polynomial time by Frank
[F82]. The most efficient implementation of the minimum-cost orientation algorithm is in [Ga93a),
achieving time O(min{kn®m,kn(kmlog(n?/m) + M(n))}). We improve the bound for finding a
minimum-cost orientation as follows. For k = O(1) the time to find a minimum-cost orientation
is the same as the above bound for dijoin. For general k£ (by definition k¥ < n) the time to find
a minimum-cost orientation is O((min{(kn)?/3nm, nm3/2 + m?logn} + k3n?log(n/k))log(nN))
(without fast matrix multiplication).

A feasible 0-1 submodular flow can be found by executing one scale of our algorithm. This
improves the time for the connectivity orientation problem (i.e., find a k-edge-connected orientation)
to O(kn*(vVkn +k? log (n/k))). Frank [F84] gives a polynomial-time algorithm for finding a feasible
submodular flow (for 0-1 and arbitrary flow problems).

The cost-scaling algorithm incorporates two ideas that may be of independent interest. First,
it is necessary to analyze cuts in graphs having edge capacities and vertex weights. We give a
transformation to eliminate vertex weights in such graphs. This generalizes Picard’s algorithm for
finding a maximum-profit closed set in a graph [P, C]. Second, we show that the growth problem
mentioned above can be formulated as the dual of a minimum-cost flow problem. This leads to our
efficient potential compression algorithm.

We mention some other work related to our scaling algorithm. Cunningham and Frank give a
polynomial-time algorithm for arbitrary submodular flows based on cost-scaling [CF]. The algorithm
is not oriented toward 0-1 flow or efficiency on the above problems. Efficient submodular flow
algorithms for large-capacity problems, using capacity-scaling and other ideas related to this paper,
are discussed in [Ga93b].

We present the cost-scaling algorithm in a top-down fashion, using the following organization.
Section 2 reviews the submodular flow problem and Frank’s algorithm, and gives our main scaling
algorithm. Section 3 analyzes this main algorithm to determine its fundamental parameters. Section
4 presents the potential compression algorithm. Section 5 gives the details of a search in the scaling
algorithm. It is based on the notion of a “swap,” generalizing the matroid intersection algorithm
of [GX]. Section 6 gives the transformation to eliminate vertex weights, and applies it to supply
the final details of the algorithm. Section 7 summarizes the scaling algorithm and gives the overall
timing analysis. Section 8 shows how the feasibility problem can be solved by executing one scale
of the algorithm.

Throughout the paper the connectivity-orientation problem is used to illustrate the discussion.
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It requires the full generality of our ideas. The dijoin algorithm admits some slight simplifications
from the general algorithm (these two problems are discussed at the end of Section 2).

This section closes with notation and definitions. R is the set of real numbers, R, the non-
negative reals, Z the integers. For a set 9, S denotes its complement when the universe is clear.
For a function f: 5 — R and any set T C S, f(T) denotes >_{f(t) | t € T}. For example for two
functions d,z : E — R, dz(E) denotes ) _{d(e)z(e) | e € E}.

In a digraph G = (V,E), an edge uv enters a set § C V if v is in § but u is not; this edge
leaves S. pg(S) denotes the number of edges entering S. For a “capacity” function ¢ : E — R;,
pc(S) denotes the total capacity of edges entering §. We abbreviate pg or p, to p if the graph
or capacity function is clear. §(5) denotes the number of edges leaving §. The same conventions
apply to § as p.

In a digraph if 4 is a set of edges then A® denotes the set of reversals of these edges. Similarly
for GR and e® for a graph G and edge e, respectively.

Let G = (V, E) have capacity function ¢ and a function f : E — Ry with f < c¢. The residual
graph of f in G has edges E U E® with any e € E U EF having capacity c(e) — f(e) + f(eF) (if
e ¢ E then assume f(e) = c¢(e) = 0). For instance if f is a 0-1 flow then the residual graph of
J in G is formed by starting with G and reversing the edges with flow. We form residual graphs
from functions f that do not necessarily obey the flow conservation law; also f may be defined on
a graph containing G. ’

Consider a finite universe §. Two subsets X, Y are intersecting fXNY, X-YandY - X
are all nonempty. If in addition X UY # S then X and Y are crossing. F C 25 is an intersecting
(crossing) familyif XNY, X UY € F whenever X,Y € F and X and Y are intersecting (crossing)
[Fu, GLS]. A real-valued function f on subsets of § is submodular if for two sets X,Y C 8,
FX)+f(Y) > f(XNY)+ f(XUY); f is modularif equality always holds. p and é are submodular.
f is submodular on intersecting (crossing) pairs if the above inequality holds when X and Y are

intersecting (crossing) sets.

2. Scaling submodular flows

This section presents the Main Routine of our submodular flow algorithm, which scales the
costs. It begins by reviewing the submodular flow problem. Our algorithm incorporates ideas from
scaling algorithms [e.g., GaT89] together with a combination of Frank’s submodular flow algorithms
[F82] and [F84] (this is crucial for efficiency).

Consider a digraph G = (V, E) with functions d (the profit function), £ and u (the bound
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Junctions) having domain E and range R, R U {-o00} and R U {+o0} respectively. In addition
there is a crossing family F defined on V and a function b : ¥ — R submodular on crossing pairs
of F. The (general) submodular flow problem is to find a flow function z : E — R solving this

linear program:

maximize dz(E) subject to
pe(S) — 6:(5) < b(S) for each § € F (1)
{(e) < z(e) < u(e) foreache € E

Recall our notational convention that implies dz(E) denotes Y {d(e)z(e) | e € E}. If b,£ and u are
integer-valued then z can be chosen to be integer-valued [EG].

In the 0-1 submodular flow problem as defined in [F82], d is nonnegative, b is integral, £ is
identically 0 and wu is identically 1. Thus z can be chosen as 0-1 valued. Frank shows the 0-1
problem is equivalent to the general problem [F82]. An edge e € E with z(e) = 1 is called a 1-edge;
similarly for a 0-edge. We restrict the discussion to 0-1 submodular flow unless we explicitly refer
to general submodular flow.

As in ordinary network flow, it is convenient to work on the residual graph. Let & be a 0-1
valued function and let RG be the residual graph of = (i.e., RG contains e if z(e) = 0 and e if

z(e) = 1). It is useful to observe that the constraints of (1) are equivalent to
pc(8) = b(S) < pra(S) for each S € F. (2)

This follows since pra(S) = pc(S) — po(S) + 62(5). A residual edge is an edge of RG. Extend the
profit function d to the residual edges by setting d(e) to its given value if e € E (i.e., z(e) = 0) and
to —d(eR) if e® € E (i.e., z(e®) = 1). Thus pushing a unit of flow in a residual edge e increases
the profit by d(e). ‘

The connectivity-orientation problem corresponds to the following submodular flow problem.
The given undirected graph is first made into a digraph G, by orienting every edge in the direction
of larger cost. The profit of an edge equals the decrease in cost if it is reoriented. A flow value z(e)
is 1 iff e is to be reoriented. Let RG be the residual graph of z. The flow constraints express the
fact that RG is k-edge connected, i.e., prg(S) > k for each set S # §,V. F is the family of sets
S #0,V and b = pg — k. Clearly (2) amounts to the desired constraint, k& < Prc(S).

We make our algorithm more efficient using the notion of a witness graph W for a submodular

flow, defined as a subgraph of G' such that changing the flow on any set of edges not in W gives
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a feasible flow. G itself is a witness graph but there is often a sparser witness. For example in
connectivity orientation, a witness graph consists of 2 complete k-intersections for the residual
graph RG [E, Ga91]. (It is not necessary for the reader to recall the notion of k-intersections. The
k-intersections have O(kn) edges total, and so fulfill the role of being a sparse subgraph.) In the
dijoin problem a witness graph is a spanning tree of the 0-edges. For a general 0-1 flow problem a
witness graph corresponds to a subgraph of RG that satisfies (2). When the witness graph W is
fixed, a witness edge belongs to W while a nonwitness edge does not.

Frank [F82] introduces the following important notions. Any (arbitrary) function p: V — R
is called a potential function. A set S € F is c-tight if its inequality in (1) (or equivalently (2))
holds with equality. For example in cbnnectivity orientation a c-tight set S has prg(S) = k. For
any v € V the set P(v) C V is defined as the intersection of V and all c-tight sets containing v. A
Jumping edge is a directed edge uv where u € V and v € P(u). A jumping edge need not be in E.

The scaling algorithm assumes that the profit function d takes on nonnegative integral values.
It works in a number of “scales”, each scale finding an approximate optimum flow, the last such
flow being optimum. We define approximate optimum by relaxing Frank’s optimality conditions as
follows (see [GoT, GaT89]). For a feasible 0-1 flow z, let RG be its residual graph. A -optimum

flow consists of a feasible 0-1 flow z, plus a potential function p, such that

d(uv) < p(v) — p(u) + 1 for each residual edge uv, (3a)
p(u) < p(v) for each jumping edge uv. (3b)

Dropping the 41 term in (3a) (and keeping (3b) unchanged) gives conditions equivalent to those
presented in [FF82] that guarantee a flow is optimum. An edge uv of G is satisfied if its corresponding
residual edge satisfies Frank’s optimality condition; otherwise uv is violated. The +1 term allows
the scaling algorithm to achieve increased efficiency (by linking cost to path length, see [GaT89]).

We also use a second notion of approximate optimum. A p-optimum flow [GaT88] consists of
a feasible 0-1 flow = plus a potential function p such that (3b) holds and (3a) is replaced by the
following condition. Define the violation of a residual edge uv to be v(uv) = max{d(uv) — p(v) +
p(u), 0}. (Thus (3a) amounts to v(uv) < 1.) The last condition for a pu-optimum flow is that the
total violation ) {v(e) | e € RG} is O(u).

As in [F84], the scaling algorithm enlarges G to a new graph SFG, by adding new vertices s
and t and certain new edges vs, tv. The new graph allows the final flow of one scale to be used as
the starting point for finding the flow of the next scale. This involves pushing flow on the edges

to s and from t. The edges incident to s and ¢ have no given profit value, and s and ¢ have no
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potential. We say that a flow  on SFG that satisﬁes (1), plus a potential function p, is 1-optimum
if it satisfies (3), with (3a) restricted to residual edges of G (no jumping edges are incident to s
or t). Each scale maintains a 1-optimum flow on SFG. The goal of a scale is to void the edges
incident to s and ¢.

The reader should realize that the family F need not be crossing after we enlarge the ground
set from V fo V U {s,t}. To circumvent this difficulty Frank shows that the given flow problem
(1) is equivalent to an induced problem. This is a submodular flow problem whose family F is
intersecting and whose constraint function b is submodular on intersecting pairs of F; F C F and
the original flow problem defines the same polyhedron as the induced problem [F82, F84]. The
flow problem on SFG is defined by using the induced problem, considering F to be an intersecting
family on the ground set V' U {s,t}. (This approach is needed even for connéctivity orientation.
We cannot take the family of sets in the original LP (1) to be intersecting, because of difficulties
with V' as a constraint set.) A set S € F is i-tight if its inequality in the induced problem holds
with equality. This notion is used in Sections 4-5. A c-tight set is clearly i-tight, but not vice
versa. (“c-tight” and “i-tight” refer to the crossing and intersecting problems, respectively. [F82]
uses “strict” instead of “tight.”)

Our scaling algorithm can be used in one of two modes, depending on whether or not “potential
compression” is used. Compression speeds up the algorithm on some flow problems. But sometimes
the simpler algorithm without compression achieves the desired efficiency. Furthermore in our
current implementation compression can increase the space requirement. Thus we describe the
algorithm both with and without compression. The compression operation keeps the flow closely
related to a witness graph.

Now we present the the Main Routine of the scaling algorithm. It is given a 0-1 submodular
flow problem having a nonnegative integral profit function. In addition it is given a feasible flow z.
The Main Routine returns with z a maximum profit flow.

The Main Routine works by scaling the profit function. It starts by computing a new profit
d(e) for each edge e, equal to m + 1 times the given profit. Consider each value d(e) to be a binary
number byb; ...b; of k = |log(m + 1)N| + 1 bits. The routine maintains a variable d(e) for each
edge e equal to its profit in the current scale. The routine initializes each d(e) to 0, each potential
value p(v) to 0, and z to the given feasible flow. The algorithm with compression changes every
nonwitness edge of z into a 1-edge. Then the Main Routine repeats the following three steps, for

index S going from 1 to k:



Double Step. For each v € V set p(v) « 2p(v). For each e € E set d(e) «— 2d(e)+ (bit bs of d(e)).
Initialize graph SFG to graph G with isolated vertices s,t. For each edge uv € E that is now
violated (for z and the new profit function d) do the following;:

if 2(uv) = 0 then add edges tu and vs to SFG, set z(tu) = z(uv) = z(vs) = 1;

if z(uv) = 1 then add edges tv and us to SFG, set z(tv) = z(us) = 1, z(uv) = 0.

Void Step. Call the Voiding Procedure with the 1-optimum flow z,p on SFG (every edge of G is

satisfied in this flow). It returns a 1-optimum flow z,p on G.

Compress Step. (Executed for the algorithm with compression.) Compress the potential function
(using the procedure of Section 4). This makes the flow u-optimum, with every nonwitness edge a

satisfied 1-edge. ' i

To motivate the Compress Step observe that any submodular flow problem has an optimum
flow where every nonwitness edge is a 1-edge. Compression achieves a similar property.

We now show that the Main Routine is correct in the following sense. Corollary 3.1 proves
that a l-optimum or p-optimum flow for the profit function d is actually optimum for the given
profit function. Section 5 shows the Voiding Procedure operates as described, and Section 4 does
the same for the compression procedure. Assuming these results, we need only show that at the
start of each Void Step z,p is a 1-optimum flow on §FG with every edge of G satisfied.

To do this observe that the initialization of the Main Routine makes z,p a l-optimum flow
with every edge satisfied. We claim, inductively, that the Double Step gives a 1-optimum flow on
SFG with every edge of G satisfied. In proof note that the changes to  have no effect on the
left-hand side of inequalities (1). Thus the new flow is feasible, the sets P(v) do not change and
(3b) is preserved.

Each iteration of the Main Routine is called a scale. There are O(log(nN)) scales. Each scale
ends with a 1-optimum flow (in the algorithm without compression) or a p-optimum flow (in the
algorithm with compression) for the current cost function d. We note one more property related
to efficiency: In the algorithm with compression, SFG has at most u edges incident to s. In proof
observe that any satisfied 1-edge scales up to a satisfied 1-edge (since a satisfied residual edge uv
has 2d(uv) < 2p(v) — 2p(u), and if vu is a 1-edge the scaled-up residual cost of uv is at most the
left-hand side). This implies that in the Double Step immediately after scaling up, only witness
edges of z are violated. Thus < p edges incident to s are added.

Now we briefly give the ideas of the Voiding Procedure, to introduce terminology and state

some important properties. The procedure works like other mincost flow algorithms, by repeatedly
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changing the potential function and augmenting the flow. An augmenting path is a directed path
from s to t, consisting of residual edges of SFG and jumping edges, each of which satisfies its
constraint of (3) with equality (edges incident to s or ¢ have no constraint). (An augmenting path
actually satisfies properties in addition to these. The complete definition is given in Section 5.)
Given an augmenting path P from s to ¢, we augment the flow by changing the 0-edges of P to
1-edges and the 1-edges to 0-edges. Analogous to [F82] an augmenting path without shortcuts gives
a new 1-optimum flow. Our algorithm uses a different criteria to get valid augmenting paths, the
notion of topological numbers introduced in [GX]. But we also require that an augmenting path
does not contain two consecutive jumping edges.

The Voiding Procedure finds augmenting paths “in batches,” like the matching algorithm of
Hopcroft and Karp [HK] and other cost-scaling algorithms. The algorithm is organized as a number
of searches; each search is actually a depth-first search that finds a maximal sequence of augmenting
paths and augments the flow along each one. The procedure stops when all edges incident to s and
t are void.

The time-consuming part of our algorithm is computing the jumping edges. They must be
recomputed after every augment since they depend on the flow. [Ga93a] provides an efficient oracle
for jumping edges. It first constructs a representation of all c-tight sets. It can then be repeatedly
called to return, for any given vertex v, all the jumping edges directed from .

The scaling algorithm uses the oracle as follows. After every augment the oracle computes the
representation of c-tight sets for the new flow. In the course of a search the oracle is called once for
every vertex, plus once for every jumping edge on an augmenting path. This regime is the basis of
the efficiency of the algorithm.

The time for the algorithm is estimated as follows. There are O(log (nN)) scales. Define these

parameters:

o = the number of augmenting paths in a scale;
A = the total length of all augmenting paths in a scale;
o = the number of searches in a scale;

p = the greatest number of edges in a witness graph.

Note that we have already shown that in the algorithm with compression, @ < u. We shall see
that the scaling algorithm without compression achieves @ = O(m), A = O(mlogm), ¢ = O(y/m).
The scaling algorithm with compression is oriented toward problems that have a small witness

graph. For example p < 2kn for connectivity orientation and u < n for dijoins. The algorithm
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with compression achieves a = O(p), A = O(u\/n), 0 = O(u2/3) (the previous bounds on A and
o still hold). In one scale the oracle representation is constructed o times. The oracle is called a
total of O(no + A) times.

We close this section with remarks on the dijoin and orientation problems. As mentioned in
Section 1, minimum-cost perfect bipartite matching is a special case of the minimum-cost dijoin
problem. In proof consider a bipartite graph G with node sets X and Y, edges E and real-valued
edge costs of magnitude at most N. As usual n is the total number of vertices. Construct digraph
G' by increasing all edge costs by nN + 1, adding a set of edges of cost n’N from X to Y to
make G' Hamiltonian, and directing all edges from X to Y. A minimum-cost dijoin on G’ is a
minimum-cost perfect matching on G (if one exists). (Note that contracting a perfect matching on
G' makes the Hamiltonian cycle into a connected Eulerian digraph, hence strongly connected.)

The dijoin problem is a special case of the orientation problem. In proof a dijoin problem on
a digraph G with edge costs ¢ is equivalent to the orientation problem where k = 1, the undirected
- graph contains two copies of uv for each directed edge uv of G, and the cost of orientation uv (vu)
is 0 (c(uv)).

Finally note that the Main Routine of the scaling algorithm must be called with a feasible flow.
For the dijoin problem we must provide a dijoin of the given digraph G. This is simple since any
spanning tree of G' (with edge diréctions ignored) is a dijoin (contracting a spanning tree makes G
strongly-connected). For connectivity orientation we must provide a k-edge-connected orientation

of the given undirected graph. This is done using the procedure of Section 8.

3. p-optimum flows

This section presents the properties of 1-optimum and p-optimum flows. It determines the
values of the basic parameters A and o.

For uniformity when the algorithm does not use compression we use G as the trivial witness
graph and take g = m. Thus whether or not compression is used, the flow obtained at the end of
a scale is y-optimum, there are O(u) 0-edges and @ < u. We note that the arguments presented
here simplify in the special case of 1-optimum flows. Also recall that parameter p bounds the size
of a witness graph for a submodular flow on the given graph G. In general u does not bound the
size of a witness graph for a flow on SFG. Indeed we do not know good bounds for witness graphs
of such flows.

We observe that [F82] assumes the given profit function d is nonnegative. The only need for

this assumption is to ensure that any feasible flow can be used to initialize the algorithm. Our
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analysis can introduce negative values of d. But we can still rely on the properties of flows proved
in [F82].

In this section we commit some slight abuses of notation: We often identify a flow z with its
set of 1-edges, e.g., for flows  and 2z, z @ z' denotes symmetric difference of the 1-edges of the
flows. Also the symbol ¢ is repeatedly used to denote a constant. Different occurrences of ¢ can
denote different constants.

We first bound the accuracy of a y-optimum flow.

Lemma 3.1. Let = be a y-optimum flow for a possibly negative profit function d, and let v be the

violation function. Then any feasible flow ' has dz'(E) < dz(E) + v(z @ z').

Proof. Define 0- and 1-edges using the flow . Let v (v1) be the total violation of all 0-edges
(1-edges). Let ug (u1) be the total violation of all 0-edges (1-edges) in z'. Define a profit function
d* : E — Z by setting d*(e) = d(e) — v(e) if e is a 0-edge, d*(e) = d(e) + v(e) if e is a 1-edge.
Thus any residual edge e is satisfied with respect to d* and p, so z is an optimum flow for d*
[F82]. This implies da'(E) — uo + w3 = d*z'(E) < d*z(E) = dz(E) + vy Rearranging gives
dz'(E) < dz(E) + vy — uy + uo which amounts to the desired inequality. L

The lemma justifies the number of scales in the Main Routine.

Corollary 3.1. Let « be y-optimum for the profit function Dd, where D is an integer > m. Then

z is an optimum flow for d.

Proof. The violation of E is < 4 < m. Thus Ddz'(E) < Ddz(E)+m < D(dz(E)+1). Cancelling,
da'(E) < dz(E) 4+ 1. Now integrality shows dz'(E) < dz(E). n

The rest of the section concentrates on the Voiding Procedure. It assumes some basic properties
of this procedure, which we now state. The properties are similar to other scaling algorithms [e.g.,
GaT89]; they are are proved at the end of Section 5. ‘

We use the following notation. Fix any time during the Voiding Procedure. Let z,p be the
current flow and potential, with d the profit function. Let zg, py be the 1-optimum flow at the start
of the Voiding Procedure. Let z_, p_ be the y-optimum flow at the end of the previous scale, with
d_ the profit function. (During the first scale, z_,p_ is the flow constructed in the initialization
of the Main Routine.) The Voiding Procedure maintains a 1-optimum flow, so z,p is a 1-optimum

flow. The Double Step of the Main Routine shows any vertex v has po(v) = 2p_(v).
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Define the multiset S of vertices currently joined to s by a 1-edge. Thus |S| is the number of
augmenting paths that remain to be found in the Voiding Procedure. Similarly define the multiset
T as the vertices currently having a 1-edge from ¢. Clearly |S| = |T|.

The Voiding Procedure searches for augmenting paths from all edges sv, v € S, simultaneously.
It repeatedly increases potentials p(v) for certain vertices v, always increasing the vertices v that

remain in § by the same amount. The potential of a vertex in T is not changed. At any time define
A = the total increase in p(v) since the start of the Voiding Procedure, for any v remaining ip S.
We need one more property of the Voiding Procedure: Each search increases A and decreases |S|.
Lemma 3.2. At any time during the Voiding Procedure |S|A < ey + |z- — z|.

Proof. The argument is similar to [GoT] and other scaling algorithms [e.g., GaT89] comparing the
flows z,p and z_, p_. Recall that z_ is a flow on the given graph G = (V, E) while z is a flow on
the enlarged graph SFG with added edges {vs | v € S} U {tv | v € T}. We can consider z_ to be
a flow on SFG. To make the desired comparison we extend the profit and potential functions to
SFG, as follows. Let SFE denote the set of edges of SF'G. Let p*, d* be the potential and profit
functions p, d or p_, d_. Extend the functions to SFG by the relations
p*(s) =p*(t) =0, d*(vs)=—-p*(v) forve S, d*(tv)=p*(v)forveT.

Note that this introduces possibly negative values for the profit function. Also the violation of any
edge vs or tv is 0.

We prove two inequalities:

dz_(E) < de(E) - p(S) + p(T) + cu + |o_ — al, (4a)

dz(E) = po(S) + po(T) < dz_(E) + cp. (4b)

First observe that inequalities (4) imply the lemma: If v € § then p(v) = po(v) + A, and if v € T

then p(v) = po(v). Thus combining the inequalities of (4) gives |S|A < cu + |z— — 2| as desired.
To prove (4a), note that ,p (as extended above) is a 1-optimum flow on SFG. Let v be the

violation function for z. Lemma 3.1 implies dz_(SFE) < dz(SFE) + v(z_- & z). Equivalently

dz.(E) < de(E) — p(8) + p(T) + v(z

Bz
Since z is 1-optimum and z_ has O(u) 0-edges,
v(z-@z)=v(z_—z)+v(z—2_) < |z- — 2|+ cp.

11



Combining the last two inequalities gives (4a).
Next we prove (4b). z_, p_ (as extended above) is a p-optimum flow on SFG. Let v_ be the
violation function for z_. Lemma 3.1 implies d_2(SFE) < d_z_(SFE)+ v_(z_- & ). Thus
d_z(E)—p_(S)+p-(T)<d-z_(E)+v_(2- ® ).
Since d is nonnegative and it results from scaling up d_,
de(E)—dz_(E)<2d_2z(F)—2d_z_(E)+ |z —z_|.
Combining the last two inequalities and using the relations po(v) = 2p_(v) and v_(z- & z), |z —

z_| < cp gives (4b). .

Next we estimate A\. The argument extends that of [GaT89]. It is convenient to work with
a related quantity: Define k; to be the number of residual edges in augmenting paths in the first
J augmenting paths. Each jumping edge except the last in an augmenting path is followed by a
residual edge. Thus the first j augmenting paths have length < 2; + j, and A < 2k, + a.

For an integer j, let the jth augmenting path of a scale be found when A = Aj;.
Lemma 3.3. For any j, k; < cu + Efﬂ A;.

Proof. Define the “profit-length” di(e) of a residual edge e to be d(e) — 1 (d(e) is the residual
profit). We estimate the profit-length of the first j augmenting paths.

Assume z,p is the flow immediately after the jth augmenting path is found. Recall the sets
S and T are defined for z, i.e., after the jth augment. Define Sy and Ty similarly for the flow z.
(Thus |Sp| is the number of augmenting paths found in the scale.)

Consider an augmenting path P from a to b, where @ € Sp,b € Typ. FEach residual edge
uv € P has dl(uv) = d(uv) -1 = p(v) — p(u). Each jumping edge uv € P has p(v) = p(u). Thus
di(P) = p(b) — p(a). If P is found when the dual adjustment is A then dI(P) = po(b) — po(a) — A.

The total profit-length of the first j augmenting paths equals both dz(E) — dzo(E) — ; and
po(To = T) = po(So — §) — g:l A;. Thus

Kj = dz(E) — dzo(E) + po(So — §) = po(To = T) + Y_ Au.

i=1

The Double Step of the Main Routine derives flow z¢ from z_ by saturating 0-edges with
d(uv) > p(v) — p(u) + 1 and voiding 1-edges with d(uv) < p(v) — p(u) — 1. Thus dzo(E) >
~de—(E)+ po(So) — po(Tp). This implies

kj < de(E) — dz_(E) - po(S) + po(T) + z A;.

=1
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Combining this with (4b) gives k; < cp + Zf._.l A; as desired. i

Corollary 3.2. At any time during the Voiding Procedure |S|A < em. @ < m. 0 < ¢y/m.
A = O(mlogm).

Proof. The first part follows from Lemma 3.2 since |- — z| < m. The bound on « follows from
the Double Step.

To bound o, the first part implies that either |S] or A is < y/cm. As mentioned, each search
increases A and decreases |S|. This gives the desired bound for o.

To bound A, Lemma 3.3 implies that A < ep+2 Y ; A;. The first part shows A; < em/(a+
1—1),s0 Y iy A; = O(mlogm). This gives the desired bound for A. i

The rest of this section derives bounds like the corollary using parameter p rather than m. We
first claim
SlAs <ent 3 A (5)
i=1
In proof, applying Lemma 3.2 immediately before the (j + 1)-st augment shows |S|A;41 < ep +
|z_ — z|. Write |z_ — | < |z_ — xo| + |20 — z|. We have |2_ — 29| < @ < p. Also |29 — z| < Kj
since an edge of g — 2 occurs as a l-edge in an augmenting path. Combining these inequalities
implies |S|Aj+1 < epp + kj. Now Lemma 3.3 implies (5).
Define these quantities for any integer k£ > 0:
ay = the number of augmenting paths found when A = k;
sk =p— Yo
Ly = cu+ Zg ia;.
sy is the value | S| after all augments for A = k are done. (The scale starts with |S| = @ < p.)
The sequence ends when s, = 0. (5) applied when j is the largest index having A; < k becomes

sk(k + 1) < €. Rearranging gives

k

ph+1-0) < S (k414 0ai (6)
1=0

Now consider all sequences aj, that satisfy (6), allowing ax to take on nonnegative real values.
Fix a particular sequence aj (and its associated values s and £x) by the relations a; = 0 for k < ¢,
ar = sk-1/(2k+ 1) for k > c¢. Summing the relations (2¢ + 1)a; = s;—y for ¢ < ¢ < k shows that
the fixed values aj satisfy (6) with equality for any &k > c.

13



We claim that among nonnegative sequences a}, satisfying (6), the fixed sequence a; maximizes
both s; and £; + ks for every index k. To prove this consider any aj satisfying (6). Let h be
the smallest index with a}, # as. It is easy to see that a}, > aj. Decrease a}, by (a}, — ap) and
increase a}, .| by the same amount. This gives another sequence satisfying (6), since the right-hand
side of (6) increases for k > h. The value s} increases for k = h and is unchanged otherwise; the
value £ + ks), increases for k£ > h and is unchanged otherwise. Since the new value a), equals ay,

repeating this procedure proves the claim.

We show that for k > ¢ -1,

k
1
Sk =p 1:1(1— 2i+1) and £ = (k + 1)sg.

The first relation follows since s,—y = p and for k > ¢, 8§ = Sg—1 — ax = sx-1(1 —1/(2k+1)). The
second relation follows from the inequality preceding (6): k

Next we show for k > ¢ — 1,

sk < ad and ¢; < cp\/E.

vk
In proof note that H?__]f;clﬂ(l —1/i) = 2¢/(2k + 1). The product is > H::Cl(l —1/(2i + 1))?, so
Hfz_cl(l —1/(2i+1)) < ¢/vk. This implies the bound on si. The bound on £ follows immediately.

Corollary 3.3. a < p. 0 = O(u?/?). A = O(min{u/n, u2/3>(nm)1/3}).

Proof. The bound on a was proved in Section 2.

To bound o observe that for k = u2/3, s, < cu?/3. This implies that the scaling algorithm
alwa,ys has either A < p?/3 or |§| < eu?/3. As mentioned above, each search increases A and
decreases |5|. This gives the desired bound.
| To bound A first take j as the largest index with A; < n. Then &; < £, + ns,. For larger
values of j the total augmenting path length is at most ns,. Now £, + ns, < cu./n implies the
first desired bound, A = O(u/n). |

For the second bound on A set k = (nm/p)?/3 and take j as the largest index with A; < k.
Then k; < £k + ks = cuvk = cp?/3(nm)/3, Corollary 3.2 shows that for larger values of j the

total augmenting path length is at most enm/k = cu?/3(nm)'/3. This gives the desired bound.
|
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4. Potential compression

This section describes the postprocessing that is done at the end of a scale for some submodular
flow problems. It calculates a better potential function to ensure a good starting point for the next
scale. Specifically potential compression converts the last 1-optimum flow found in a scale into a
p-optimum flow where every nonwitness edge is a satisfied 1-edge.

Throughout this section we fix a submodular flow on G, and its witness graph W. A witness
residual edge is a residual edge (for the submodular flow) whose corresponding edge of G belongs
to W (e.g., a residual edge e with e® a 1-edge in W). Similarly for nonwitness residual edge.

We achieve the goal of potential compression in two steps: The first (and main) step modifies
the potential function, achieving properties stated in Lemma 4.2. The second step makes every
nonwitness edge a 1-edge and achieves the desired goal.

All results of this section except Lemma 4.8 hold for an arbitrary submodular flow problem.
Lemma 4.8 shows our postprocessing algorithm achieves the desired goal for the connectivity ori-
entation problem. Our results might need to be elaborated to achieve the goal for a different
submodular flow problem (although we know of no such problem, and furthermore connectivity
‘orientation requires the full generality of our results).

A natural approach to get a y-optimum flow ié to complement the flow in nonwitness edges that
are violated. This achieves total violation O(u) and gives a feasible flow. However complementing
is not valid: Complementing can destroy a c-tight set, thus enlarging a P(v) set, thus breaching
condition (3b). Our more involved approach models the problem as the dual of a minimum-cost
circulation problem.

We begin with a crucial property.
Lemma 4.1. A nonwitness residual edge e has e® a jumping edge.

Proof. The witness edges ensure that (2) holds. Thus if a nonwitness residual edge uv enters a set

S, (2) holds with strict inequality (for that §). This implies u € P(v). L

In the dijoin problem, any edge e of G is a jumping edge (but not conversely). This slightly
simplifies the compression algorithm. No such simplification occurs for connectivity orientation.

The first consequence of the lemma is that a nonwitness 0-edge uv has d(uv) € {0,1} and
p(v) € {p(u), p(u) —1}. In proof the lemma and (3b) imply p(u) > p(v). Furthermore 0 < d(uv) <
p(v) — p(u) + 1 implies p(v) > p(u) — 1 and d(uv) < 1.
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We solve the potential compression problem by adding a quantity ¢(v) to each potential p(v)
(so the new potential function is p + ¢). The function ¢ is found as the optimal price function for
a minimum-cost circulation problem.

Recall the following definitions of the minimum-cost circulation problem and its dual. For
a digraph G = (V, E) with functions ¢ and « having domain F and range R and R U {400}
respectively, the minimum-cost circulation problem is to find a flow function f : £ — R solving

this LP:

minimize ¢f(E) subject to
ds(v) —ps(v) =0 foreach v e V
0 < f(e) < u(e) foreache€ E

An uncapacitated edge e has infinite capacity, u(e) = oo. The dual LP involves dual variables

q:V — R (the price function) and U : E — R. It is this LP:

maximize —ul/ (FE) subject to
q(u) — ¢(v) — U(uv) < c(uv) for each uv € E
U(e) >0 for eache € E

Now we describe the graph C'G for the circulation problem. C'G has vertices V; its edges are

the jumping edges and the residual edges, with the following costs and capacities:

uv a jumping edge: c(uv) = p(v) — p(u); u(uv) = oo
uv a nonwitness residual edge: c(uv) = max{p(v) — p(u),—1}; u(uv) = oo

uv a witness residual edge: c¢(uv) = p(v) — p(u) — d(uv); u(uv) =1

A jumping edge has nonnegative cost in CG. A nonwitness edge costs —1 if p(u) > p(v) and
0 otherwise, since Lemma 4.1 and (3b) imply p(u) > p(v). A witness edge costs —1 if it is violated
and has nonnegative cost otherwise, by (3a). (The term d(uv) in the definition of the cost refers to
the residual profit of uv.) We shall use the phrases “nonwitness edge of CG” and “uncapacitated
edge of CG.” The former means a nonwitness residual edge, and the latter means a nonwitness
edge or a jumping edge (the reader will not be confused by the fact that a jumping edge is not a

witness edge).
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Lemma 4.2. Consider a given l-optimum submodular flow with potential function changed to
P+ g, where g is a feasible price function for the circulation problem on CG. Then (3b) holds, all
nonwitness 1-edges are satisfied and all nonwitness 0-edges uv have p(u) + ¢(¢) = p(v) + ¢(v). The

total violation of all witness edges and the dual objective value have nonpositive sum.

Proof. In the dual problem the constraint for a jumping edge uv is g(u) — g(v) < p(v) — p(u). This
amounts to (3b).

The constraint for a nonwitness edge uv is ¢(u) — ¢(v) < max{p(v) — p(u),—1}. The right-
hand side is < 0 in general, and = —1 if uv corresponds to a violated 1-edge (for the latter,
equality in (3a) implies 0 > d(uv) = p(v) — p(u) + 1). Now combining with (3a) gives d(uv) <
p(v) + q(v) — (p(u) + q(u)) if uv is originally satisfied or if it corresponds to a violated 1-edge.

If wv is a nonwitness O-edge then as noted after Lemma 4.1, p(v) € {p(u), p(u) — 1}. For
both values the above dual constraint becomes g(u) — ¢(v) < p(v) — p(u). Since the jumping edge
constraint for vu is g(v) — g(u) < p(u) — p(v), equality holds as desired.

Finally the constraint for a witness edge uv is g(u) — ¢(v) — U(uv) < p(v) — p(u) — d(uv).
Rearranging, d(uv) — (p(v) + ¢(v)) + (p(u) + ¢(v)) < U(uv). This and nonnegativity of U imply
violation v(uv) < U(uv). i

We shall see that the lemma implies all nonwitness 0-edges become satisfied 1-edges in the
second step of the postprocessing. So the lemma implies that a feasible price function with dual
objective > —2u solves our potential compression problem. Thus we can achieve our goal by
showing that a minimum-cost circulation on C'G exists and costs > —2u. Most of the rest of this
section is devoted to this.

First observe that a minimum-cost circulation exists: Any uncapacitated edge uv of CG has
c(uv) > p(v) — p(v). Thus any uncapacitated cycle has nonnegative cost.

Choose a minimum-cost circulation f so it minimizes the total flow through nonwitness edges
f{e | e a nonwitness edge}; furthermore subject to that constraint, it minimizes the number of
edges with positive flow.

We first show the number of edges with positive flow is limited.

Lemma 4.3. Let G be an arbitrary directed network where a minimum-cost flow /circulation exists.
Then there is a minimum-cost flow such that no undirected cycle of uncapacitated edges has positive

flow in all its edges.
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Proof. An uncapacitated edge with positive flow has residual capacity in both directions. Thus an
undirected cycle of such edges gives two oppositely oriented directed cycles in the residual graph.

Each cycle must have residual cost 0. Pushing more flow along one of the cycles voids an edge.

In our context the proof shows that no undirected cycle of uncapacitated edges has positive
flow in all its edges.

Now we give the plan for the rest of the proof. Consider the orientation problem. We will
prove that any nonwitness edge has < k units of flow. Since the lemma shows < n — 1 such edges
have flow, the uncapacitated edges cost > —kn. The witness edges cost > —u (since they have
capacity 1 and cost > —1). This shows the minimum cost is > —kn — u > —(3/2)u as desired.

Define digraph R, a subgraph of the residual graph for circulation f: R contains all jumping

edges, plus the reverse of any uncapacitated edge with positive flow.
Lemma 4.4. A directed cycle in R consists of jumping edges or their reversals.

Proof. The residual cost of an edge uv in R is at most p(v) — p(u). (If uv is a reversed flow edge
then the definition of C'G shows c(vu) > p(u)—p(v), so —¢(vu) < p(v)—p(u).) Thus a directed cycle
C in R has nonpositive residual cost, so it must cost 0. If C contains the reverse of a nonwitness

edge then pushing flow along the C violates the choice of f. i

We recall from [F82] that S C V is i-tight if it is the intersection of V' with zero or more c-tight
sets. In fact [F82, Lemma 12] shows S is i-tight set iff S is the union of zero or more disjoint sets
H, each of whose complements H is c-tight. Call H a hole of . (In connectivity orientation, the
holes of an i-tight set are disjoint sets H having §gg(H) = k.) The union and intersection of two
intérsecting i-tight sets is i-tight; similarly the union and intersection of two crossing c-tight sets is
c-tight [F82, Lemma 2].

For any vertex z, let X be the set of all vertices reachable from z in R.

Lemma 4.5. X is i-tight.

Proof. Obviously P(z) C X. Inductively assume some set X' C X is i-tight, and let uv be an
edge of R leaving X'. It suffices to show that X' U P(v) is i-tight. Any edge uv of R has » € P(u)

or u € P(v). For our edge v € P(v). Thus X’ and P(v) are intersecting i-tight sets, and their

union is i-tight. i

18



Lemma 4.6. Let Z be an i-tight set. No jumping edge or nonwitness edge joins two distinct holes

of Z.

Proof. Let H be a hole of Z. H U Z is i-tight. Thus any v € H has P(u) C H U Z (by the
definition of P(u)). This means no jumping edge goes from H to another hole. A nonwitness edge

joins the ends of a jumping edge (Lemma 4.1). L

Recall that a circulation can be partitioned into simple cycles of flow; call this the flow de-
composition. For vertices z, y, define X as above, and let Y be the hole of X containing y (if it

exists).

Lemma 4.7. Let zy be a nonwitness edge in a cycle C of the flow decomposition. Then Y exists

and some witness edge of C leaves Y.

Proof. To prove the hole Y exists it suffices to show y ¢ X. If on the contrary y € X, then the
reverse flow edge yx completes a cycle in R, contradicting Lemma 4.4.

Let uv be the first edge on C after y that leaves Y. It suffices to show that uv is not an
uncapacitated edge. Assume it is uncapacitated, i.e., a jumping edge or a nonwitness edge. Lemma

4.6 shows v € X. But since vu is in R we get u € X, a contradiction. .
Now we complete the analysis of potential compression for connectivity orientation.

Lemma 4.8. For a connectivity orientation problem, a minimum-cost circulation on CG costs

> —2u.

Proof. The preceding discussion shows we need only prove that a nonwitness edge zy has f(zy) <
k. Suppose the contrary. Lemma 4.7 shows > k witness edges leave y’s hole Y. This contradicts

the fact that Y is c-tight, i.e., pRc;(?) = k. L

We turn to the second step of potential compression. It changes all nonwitness 0-edges into
1-edges. To verify this change is correct, first note it gives a valid submodular flow. Second a new
1-edge uv is satisfied, since its residual edge has d(uv) < 0 = p(v) + ¢(v) — (p(u) + ¢(v)) (by Lemma
4.2). Finally we must check (3b) (recall from the start of this section that in general this change
does not preverve (3b)). The proof is by induction, changing one 0-edge uv at a time, using the

following result.
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Lemma 4.9. Consider an arbitrary submodular flow, with uv a 0-edge, p(u) = p(v) and u € P(v).
Making uv a 1-edge preserves (3b).

Proof. Making uv a 1-edge has the same effect on the submodular flow constraints (1) as adding
edges sv and ut and pushing 1 unit of flow on each. As defined in Section 5, the latter operation is
called executing the swap v,u, and the hypothesis shows v, u is an eligible swap. Now Lemma 5.2

shows (3b) is preserved. i

We close the section with an efficient implementation of the potential compression algorithm.
For any v € V define u(v) = kmax{prg(v), rg(v)}. There is a minimum-cost circulation on
CG such that the flow through any vertex v is at most u(v). In proof, we can always replace a
unit of flow in two jumping edges vw and wz by a unit of flow in the jumping edge vz, without
changing the cost. (The jumping edges are transitive.) Doing this as many times as possible leaves
a circulation where each v has every jumping edge directed from v void, or every jumping edge
directed to v void. The desired bound on the flow through v follows since we can assume any
nonjumping edge of CG has < k units of flow.

We reformulate the circulation problem as a degree-constrained subgraph problem (equiva-
lently, a capacitated transportation problem) on a bipartite multigraph BG, as follows. For each

v € V, BG has vertices v™,v", each with degree-constraint u(v) + 1. BG has these edges:

v=ot for each v € V, multiplicity u(v) + 2, cost 0;
vtw™ for each jumping edge vw of CG, multiplicity u(v) + 1, cost ¢(vw);
vtw™ for each nonwitness edge vw of CG, multiplicity k + 1, cost ¢(vw);

vtw™ for each witness edge vw of CG, multiplicity 1, cost ¢(vw).

A degree-constrained subgraph of BG is a subgraph where the degree of any vertex equals its degree
constraint. A minimum-cost circulation on C'G corresponds to a minimum-cost degree-constrained
subgraph D of BG. Recall that if D is an optimum degree-constrained subgraph and y is an

optimum price function, then

y(v) + y(w) < (vw) for each edge vw ¢ D,
cn

71(1)\ + ’M( ) 2 C 21 for each edge 20

N\ ) Lo vw

In the optimum subgraph D corresponding to the flow described above, for each v € V there is

a copy of edge v"v* in D and another copy not in D. Thus y(v™) = —y(v*). Now it is easy to
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check that the price function ¢(v) = y(vt) is an optimum price function on CG (e.g., it satisfies

the complementary slackness conditions).

Theorem 4.1. A 1l-optimum flow on G can be converted into a u-optimum flow with every non-

witness edge a satisfied 1-edge, in time O(vkm n? logn).

Proof. We solve the degree-constrained subgraph problem using the cost-scaling algorithm of
[GaT89]. On a graph with n vertices, m edges, total degree-constraints U, and integral
edge costs of magnitude at most N, the algorithm finds a minimum-cost subgraph in time
O((VUm + UlogU)log(nN)) [GaT89, Theorem 3.2]; it finds an optimum price function y in
additional time O(m) [GaT89, Corollary 2.2].

We make one change to reduce the factor log(nN) in the time bound to logn. The given
algorithm uses log(n/N) scales. It suffices to reduce this number to logn. The purpose of the first
log N scales is to get a 1-optimum solution to the degree-constrained subgraph problem using the
given cost function. Set D to the subgraph with containing u(v) + 1 copies of edge v~v* for each
v € V;set y(v™) = y(vt) = 0 for each v € V. Since all given costs are > —1, this is a 1-optimum

solution for the given costs. Thus the algorithm need only use logn scales.

BG has O(n) vertices, O(n?) edges, and total degree-constraints U = O(km). We conclude
that the potential compression problem is solved in time O((vVkmn? 4+ kmlogn)logn). Since
m > kn, Vkmn? > kn?% > kmlogn. L]

Note that the algorithm uses O(n?) space, because of jumping edges.

5. Augmenting

This section presents the two algorithms that implement a search, combining them in the
Voiding Procedure. Unlike [FF82] we organize the notion of augmenting paths around the concept
of a swap, generalizing [GX]. Section 5.1 discusses the properties of swaps and augmenting paths.
Section 5.2 gives the Augmenting Procedure, which finds augmenting paths and augments the flow.
Section 5.3 gives gives the Potential-changing Procedure, which adjusts potentials to create an

augmenting path. Finally Section 5.4 combines these two procedufes to get the Voiding Procedure.
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5.1. Swaps and augmenting paths

Fix a submodular flow on SFG. If uv is a jumping edge , i.e., v € P(u), then we call u,v
a swap and we ezecute swap u,v by adding edges su and vt to SFG and pushing 1 unit of flow
on each edge. Executing a swap gives a feasible flow. In proof observe that if § is a set whose
constraint (1) fails after the swap, then before the swap S is a c-tight set containing u but not v.
But v € P(u) implies there is no such set.

In the following discussion suppose we execute a swap u, v. Define the sets P(-) before executing

the swap and sets P'(-) after.

Lemma 5.1. P'(v) = P(u). P'(u) C P(u). For any vertex w, v ¢ P(w) implies P'(w) = P(w)
and v € P(w) implies P(w) & P(u) C P'(w) C P(w) U P(u).

Proof. To prove the first two relations note that P(u) is i-tight after the swap, and no subset of
V containing v is i-tight unless it contains u.

Suppose v ¢ P(w). Thus u ¢ P(w) and P(w) is i-tight after the swap. Furthermore no subset
of P(w) becomes i-tight. Thus P'(w) = P(w).

For the rest of the argument suppose v € P(w). Thus P(w) U P(u) is i-tight before the swap.
It remains i-tight after the swap so P'(w) C P(w)U P(u), giving one of the two desired inclusions.

To prove the second inclusion consider the set P'(w) N {u,v}. This set is nonempty since
otherwise P'(w) was i-tight before the swap, so P(w) C P'(w), contradicting the hypothesis on
P(w). The set does not equal {v} since this implies P'(w) is not i-tight after the swap. If the
set equals {u,v} then P’(w) was i-tight before the swap, and it contains both w and u. Thus
P(w) U P(u) C P'(w). This implies P'(w) = P(w) U P(u), giving the second inclusion.

The remaining possibility is that P'(w) N {u,v} = {u}. The second inclusion is equivalent to
the two inclusions P(w) C P'(w)U P(u) and P(u) C P'(w) U P(w). We prove them as follows.

Suppose z is a vertex such that P'(w) and P(z) both contain z and v is in P(2) (note v ¢ P'(w)
by assumption). We prove P'(w) U P(z) is i-tight before the swap. By hypothesis P'(w) and P(z)
are intersecting sets or they nest. Let F be the intersecting family of the induced submodular flow
problem, with b its submodular function. Since the function pz— 6, is modular, the “slack” function
sl = b—pg+ 6, is submodular on intersecting pairs of F. Evaluating sl before the swap is executed,
sl(P'(w)) + sl(P(z)) > sl(P'(w) N P(2)) + sl(P'(w) U P(z)). We show this inequality amounts to
1 > 1: Since P(z) is i-tight, sl(P(z)) = 0. Since P'(w) contains u but not v and becomes i-tight
after the swap, sl(P'(w)) = 1. Since z is feasible, sl(P'(w) U P(z)) > 0. Since P'(w) N P(z) is a
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proper subset of P(z), sli(P'(w) N P(z)) > 1. This shows the submodular inequality amounts to
12> 1, so all inequalities hold with equality. In particular sl(P'(w) U P(z)) = 0 as desired.

Applying the previous paragraph to z = u shows P'(w)U P(u) is i-tight. Since this set contains
w, P(w) C P'(w) U P(u), the first desired inclusion. Similarly applying the previous paragraph to
z = w shows P'(w) U P(w) is i-tight. Since this set contains u, P(u) C P'(w) U P(w) as desired.
|

Two more notions are needed to define augmenting paths. Fix a 1-optimum flow on SFG. An
edge is eligible if it is an edge of G with equality in (3), or a residual edge incident to s or . A
topological numbering is a function 7 : V' — Z, such that any eligible edge uv of G has 7(u) > 7(v),
with strict inequality for uv a residual edge. Note that 7 is undefined on vertices s and . An
eligible jumping edge uv is strongly eligible if T(u) = 7(v).

Suppose we have a flow and potential function satisfying (3b), with 7 a topological numbering.

The first part of this result is used in the proof of Lemma 4.9.

Lemma 5.2. Let uv be a jumping edge. If uv is eligible then executing swap u, v keeps (3b) true
for all jumping edges. If uv is strongly eligible then executing swap u,v keeps 7 a topological

numbering.

Proof. For both assertions we consider a néw jumping edge zy. Since P(z) changes Lemma 5.1
shows v € P(z) and y € P(u).

The first part follows since p(y) > p(u) = p(v) > p(z).

For the second part, if zy is eligible then p(z) = p(y), equality holds throughout the previous
inequality and so uy and zv are eligible jumping edges (or self-loops). Thus 7(y) < 7(u) = 7(v) <
7(z). "

An augmenting path P is a directed path from s to ¢ consisting of eligible edges with each
jumping edge strongly eligible; in addition no two jumping edges are consecutive. (The last re-
quirement is for simplicity: The algorithm finds paths with this property, but Lemma 5.3 holds
even with consecutive jumping edges.) Recall that we augment the flow by changing the 0-edges of

P to 1-edges and the 1-edges to 0-edges.

Let P be an augmenting path for a 1-optimum flow with a topological numbering.
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Lemma 5.3. Augmenting P gives a 1-optimum flow with a topological numbering.

Proof. First suppose P has no jumping edges. The augment reverses the edges of P in RG. Thus
pRG is unchanged and the new flow satisfies (2). Similarly the c-tight sets do not change, so the
jumping edges do not change and (3b) still holds. The reverse of an edge on P satisfies (3a) with
strict inequality. Thus (3a) continues to hold and no new residual edge is eligible. This also implies
that 7 remains valid.

In the general case let P = sa...uvw...bt where uv is the first jumping edge of P. Let
us execute the augment by adding edges su, sv, ut,vt to SFG and augmenting three paths: first
sa...ut, then suvt and finally svw...bt. Augmenting these three paths has the same effect as
augmenting P (flow in the newly added edges cancels out). The previous paragraph shows the first
augment gives a flow as desired, with the same jumping edges as before. Augmenting the path suwvt
amounts to executing swap u,v. Lemma 5.2 shows the flow remains as desired.

We can prove the last augment is valid by induction, if we can show that any jumping edge
zy of the third path remains valid after the swap u,v. Since uv is a jumping edge vw is residual
and 7(v) > 7(w) > 7(x). Now the definition of r implies that either v ¢ P(z) or p(v) > p(z).
If v ¢ P(x) then Lemma 5.1 shows P(z) is not changed by the swap. Suppose v € P(z). Then
p(u) = p(v) > p(z) = p(y). Thus y € P(z) — P(u) and Lemma 5.1 shows y € P'(z). R

5.2. The Augmenting Procedure

The Augmenting Procedure finds augmenting paths, using depth-first search. For each v €
it either voids edge vs or increases p(v).

The Augmenting Procedure uses these data structures: Path P, which is grown to an augment-
ing path, is a list of vertices managed as a stack. T' denotes the largest topological number. Each
vertex u has an associated set of vertices J(u).

The Augmenting Procedure examines each residual edge sa (¢ € §). For each such a it
initializes path P to s,a and all sets J(u) to §. Then it executes the following steps, until either
the Dead-end Step or the Complete Step stops. (In the first case no augmenting path containing
a exists; in the second case the flow gets augmented.) The Augmenting Procedure continues by
examining the next edge sa (if no augmenting path containing a exists, edges parallel to sa are

skipped). The Augmenting Procedure halts when all residual edges from s have been examined.
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Scan Step. Let wu be the last edge in P. Select an edge uv according to (i) below if possible else

according to (ii):

(i) Let uv be an eligible residual edge.
(ii) If wu is a residual edge, let uv be an eligible jumping edge with v ¢ J(u) and 7(v) as large

as possible.

If edge uv exists then add v to the end of P, and go to the Complete Step if v = ¢t (P is an
augmenting path) else go to the Scan Step. If no edge uv exists then go to the Dead-end Step.

Dead-end Step. (wu is the last edge of P.) Delete u from P. If wu is a jumping edge then add
u to J(w) and go to the Scan Step. Otherwise (wu is a residual edge) set T «— T + 1, and for
z € {u} UJ(u), set p(z) « p(z)+ 1 and 7(z) « T; then stop if P = s (no augmenting path

containing a exists) else go to the Scan Step.

Complete Step. For each jumping edge uv of P, for z € {u} U J(u), set 7(z) « 7(v). Augment the
flow along P. Stop. L

To prove the procedure correct we start with five facts (a)—(e). These facts assume that
the procedure maintains a 1-optimum flow with a topological numbering. In an execution of the
Augmenting Procedure a vertex z dies (and becomes dead) when its potential p(z) is increased in
the Dead-end Step.

(a) Path P never contains two consecutive jumping edges. This follows from rules (i)-(ii).

(b) At any time the sets {u}U J(u), u € P, are disjoint. In proof, if uv ranges over all jumping
edges in P then the intervals [7(v),7(u)] are disjoint (by (a) and the definition of 7). Rule (ii)
shows 7({u} U J(u)) C [r(v), 7(u)]. (b) follows.

(c) An eligible edge zy with y dead has = dead. To prove this statement suppose it holds at the
start of a search. When a vertex dies no eligible edge is directed to it. Thus no dead vertex is added
to P during this search. The Complete Step does not create an eligible jumping edge directed to
a dead vertex. (The proof of Lemma 5.2 shows a swap uv that creates an eligible jumping edge zy
has uy eligible. In the algorithm u is not dead, so y is not dead.) Thus the statement holds at the
end of the search.

(d) A vertex z dies at most once. To prove this note that when z € {u} U J(u) dies it is not

in any other such set (by (b)). Furthermore a dead vertex is never added to P, by (c).
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(e) If z is in a set J(u) and has not died, then no eligible residual edge is directed from z. This
was true when 2 was added to J(u) in the Dead-end Step, by the Scan Step. It remains true until
p(z) increases, i.e., z dies.

Now we prove the procedure is correct.

Lemma 5.4. The Augmenting Procedure maintains a 1-optimum flow with a topological number-
ing. It halts with any residual edge sa leading to a dead vertex a. It augments at least one path if

on entry there is an st-path of eligible edges.

Proof. We prove the first part of the lemma by induction on the number of steps executed. There
is nothing to prove for a Scan Step.

Consider a Dead-end Step. We can assume wu is a residual edge. Fact (e) shows no eligible
residual edge is directed from any vertex of J(u). The same holds for . This implies no eligible
jumping or residual edge leaves {u} U J(u). Thus increasing p(z), z € {u} U J(u) maintains (3)
on edges directed from . It maintains (3) on edges directed to z, and in fact no eligible edge now
enters {u} UJ(u). So assigning the topological number T is valid. We conclude the Dead-end Step
works as desired.

Consider a Complete Step. After 7 is changed every jumping edge in P is strongly eligible.
Thus P is a valid augmenting path if the new 7 is a topological numbering.

The Complete Step does not increase any value 7(z) (see (b)) Thus we need only check 7 on
an eligible edge zy with € {u} U J(u). Fact (e) shows that for z € J(u), zy is not residual, i.e.,
zy is an eligible jumping edge; this holds for # = u too. Thus uy is an eligible jumping edge (or a
self-loop). Rule (ii) implies that after 7 is changed 7(y) < 7(v) = 7(z). So 7 is valid.

Now Lemma 5.3 shows that augmenting gives a 1-optimum flow and a topological numbering.

For the second part of the lemma note that the Augmenting Procedure eventually halts, since
a vertex added to P dies unless the flow gets augmented. The outer loop of the procedure ensures
that when it halts only dead vertices are adjacent to s.

For the last part of the lemma, let sa...bt be a path of eligible edges on entry to the procedure.
We claim that the flow gets augmented before a dies. If uv, v # t, is an eligible edge on entry to
the procedure and at some point u is dead, then v is also dead (else uv would violate (3)). Thus if

v
a is dead, so is b, But the first time b gets added to P the flow gets au

12

bt. |

Now we estimate the time for the Augmenting Procedure. Recall from Section 2 that the
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oracle is used to compute jumping edges. The representation for the oracle is constructed after
every augment. Section 6 gives the details of constructing the representa,tioh efficiently. The
following analysis concentrates on calls to the oracle. Recall that calling the oracle for a given
vertex v returns all jumping edges directed from v.

When the Augmenting Procedure adds a residual edge uv to P, the oracle is called for all
jumping edges vz directed from v. Those edges vz that are eligible are placed in a list sorted by
decreasing 7(z). Rule (ii) finds the next eligible jumping edge by scanning this list.

The following result accounts for all time spent by the Augmenting Procedure except the time
to construct the oracle representation (this is discussed in Lemmas 6.2-3). Assume the Augmenting
Procedure is always called with T' < n (this will be verified in the Voiding Procedure in Section
5.4). Furthermore assume an oracle call uses time Q(n) (the time bound is O(m) for connectivity

orientation).

Lemma 5.5. In one scale the Augmenting Procedure uses time O(om + an) plus the time for

O(on + X) oracle calls.

Proof. To bound the number of oracle calls, suppose the oracle is called when a residual edge uv
is added to P. Eventually either vertex v dies or an augmenting path containing edge uv is found.
The former occurs at most on times, since a vertex dies only once per search. The latter occurs
< A times.

Next we show that the jumping edges vz directed from v can be sorted by 7(z) in time O(n)
(and so this time can be charged to the oracle call). The value T never exceeds 2n (since a vertex
dies when T is incremented). Thus we can use a bucket sort with 2n buckets.

A residual edge uv that is scanned in rule (i) eventually becomes ineligible (either v dies or
an augment reverses the edge and makes it ineligible). The time for rule (ii) amounts to O(1) per

jump stored in a list. Thus it is easy to see that the remaining time is O(em + an). i

5.3. The Potential-changing Procedure

The Potential-changing Procedure is called with a 1-optimum flow and topological numbering.
It changes potentials so there is an st-path of eligible edges, keeping the flow 1-optimum with a
topological numbering,.

The main data structure is a search tree 7 rooted at s. 7 consists of eligible edges directed away
from s; any vertex except ¢ can be in 7. On entry, and on exit, T equals the largest topological

number. The Grow Step assigns new topological numbers in nondecreasing order. During the
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procedure T is the value of the last topological number 7(v) that was assigned. Another variable
Ty records original values 7(v).
The procedure initializes 7 to the root s, sets Ty to co and increases T by n. Then it executes

the following steps until the Finish Step returns.

Grow Step. (Note that if uv is a residual edge or an eligible edge, the condition uv leaves 7 U {t}
is equivalent to uv leaves 7 and v # t.) Let uv be an eligible edge leaving 7 U {t}, with largest
value 7(v). Add uv to T. If 7(v) < Tp then set Tp « 7(v), T « T — 1. Set 7(v) « T. If an eligible
edge leaves 7 U {t} then go to the Grow Step. If no residual or jumping edge leaves 7 U {t} then
go to the Finish Step.

Change Step. Compute
6 = min{p(v) — p(u) + 1 — d(uv) | uv a residual edge leaving 7 U {t}}
U {p(v) — p(u) | uv a jumping edge leaving 7 U {t}}.
For each v € T — {s} increase p(v) by §. Set Ty «— oo and go to the Grow Step.

Finish Step. For each v € T — {s} increase p(v) by 1. Make all topological numbers between 1 and
n by changing all occurrences of the ith largest value 7(v) to i. Set T to the largest topological

number. Return. |

Note that the first execution of the Grow Step adds all vertices adjacent to s into 7 (since
any edge sa is eligible). Although the Finish Step changes topological numbers, any two values
7(u) and 7(v) compare the same before and after the step (“compare the same” means any relation

7(u) = 7(v), 7(u) < 7(v), 7(u) > 7(v) is unchanged). Now we prove the procedure is correct.

Lemma 5.6. The Potential-changing Procedure returns a 1-optimum flow with a topological num-

bering, having an st-path of eligible edges.

Proof. The argument has three parts. The first is to show tha’t‘ on exit the desired st-path of eligible
edges exists, or equivalently, some eligible edge joins a vertex of 7 to t. The latter follows easily
by noting the procedure (ignoring topological numbers) amounts to a search of Frank’s algorithm
[F82]. For completeness we give an argument based on first principles (also implicit in [F82]).

Let the submodular flow LP (1) refer to the linear program for the induced family. Use F and
b to denote the set family and submodular function, respectively, of the induced problem. A set

S € F is i-tight iff equality holds in (1).
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Any § € F partitioned into disjoint sets S, ¢ = 1,...,k has >, b(S;) > —8c(S). In proof,
recall we assume that the given submodular flow problem is feasible. If y denotes a feasible flow
(on G) then for each 4, b(S;) > py(Si) — 6,(S:). Adding these inequalities and cancelling gives
S5 6(S53) 2 py(8) - 8,(8) = ~66(S).

Let S be the set of all vertices in 7 — {s} when the procedure returns. As usual z denotes
the current submodular flow (on SFG). Since no jumping edge leaves S, S is the union of i-tight
sets P(v), v € §. Thus S is the disjoint union of i-tight sets §;. Similar to above this implies
> 6(8i) = p2(S) — 65(S). Since no residual edge leaves S U {s,t} and some edges to s have flow,
8:(8) > 6c(S). Thus po(S) > >, b(Si) + 6c(S). Now the previous paragraph implies po(S5) > 0.
Since no residual edge leaves S U {s,t} we conclude some residual edge goes from 5 to t, as desired.
This completes the first part of the proof.

The second part, that the final flow ibs 1-optimum, is simple. Note that increasing the potentials
by 1in the Finish Step keeps the flow 1-optimum. This follows since no eligible edge leaves 7 U {t}.

The last part of the proof is to show that the procedure ends with 7 a valid topological
numbering. Let 7o be the numbering on entry to the procedure. Call all vertices that enter 7
during the same execution of the Grow Step (i.e., without an intervening execution of the Change
Step) a growth. Let uv be an edge that is eligible at the end of the procedure. We check that 7 is
valid on uv.

If neither u nor v enter 7 then wv is eligible before the procedure. Thus the validity of 7
implies that of 7. So assume at least one of u,v enters 7. Consider three cases. Suppose u enters
7 in a growth before v. (Thus v enters 7 after the growth for u or v never enters 7.) Since T is
nonincreasing, it is easy to see this implies 7(u) > 7(v). Thus 7 is valid.

Suppose u and v enter 7 during the same growth. The validity of 79 implies that Ty is
nonincreasing during a growth. Thus 7(u) and 7(v) compare the same as 7o(u) and 7g(v). The
suppésition implies that edge uv is eligible even when the procedure starts. Thus the validity of 7o
on uv implies that of 7.

Finally suppose that v enters 7 in a growth before u. Then p(v) is increased by a positive
quantity (by some é > 0 in the Change Step or by 1 in the Finish Step) before « enters 7. This

makes edge uv ineligible. i

Now we give an efficient implementation of this procedure. Each vertex v ¢ 7 U{t} maintains a
value §(v) equal to the minimum of the terms in the definition of § corresponding to edges directed

to v. When a vertex u enters 7, each residual edge uv with v ¢ 7 U {t} is used to update §(v). In
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addition the oracle is called to find all jumping edges uv, and these edges are also used to update
values §(v).

As in Lemma 5.5 assume an oracle call uses time (n).
Lemma 5.7. The Potential-changing Procedure uses time O(m) plus the time for n oracle calls.

Proof. It is easy to see that one iteration uses time O(n) to compute §, update p and find the next
edge to add to 7. The time spent scanning residual edges is O(m), and the time for jumping edges

amounts to n oracle calls. In the Finish Step the topological numbers are sorted using a bucket

sort in time O(n). n

5.4. The Voiding Procedure

Now we combine the two procedures for a search into the Voiding Procedure. It works by
repeatedly finding an augmenting path and augmenting the flow, until all edges directed to s are
void.

Recall from Section 2 the Voiding Procedure is called with a 1-optimum flow z,p on SFG, with
no residual edge of G eligible. It must return a 1-optimum flow on SFG. The Voiding Procedure
initializes the topological numbering 7 to the zero function and T (the largest topological number)

to 0. Then it repeats the following steps until the Done Step returns the desired flow.

Done Step. If no residual edge from s remains then return the 1-optimum flow z,p on G.

Adjust Step. Execute the Potential-changing Procedure. It adjusts potentials so there is an st-path

of eligible edges, keeping the flow 1-optimum with topological numbering 7.

Augment Step. Execute the Augmenting Procedure. It repeatedly augments the flow, and returns
a l-optimum flow with topological numbering 7, and the potential of any vertex a still on a residual

edge sa increased by 1. L]

An iteration of the Voiding Procedure is called a search in previous sections. Lemmas 5.4
and 5.6 show the Augmenting and Potential-changing Procedures work as described. Lemma 5.4
implies that each search does at least one augment. Thus the Voiding Procedure eventually returns
the desired 1-optimum flow on G.

Now we verify the properties of the Voiding Procedure assumed in Section 3. Each search
increases the potential of a vertex in S by the same amount: The increase is 1 in the Augmenting

Procedure (Lemma 5.4) and some nonnegative amount in the Potential-changing Procedure (as

30



noted after the procedure, each vertex of S enters 7 in the first execution of the Grow Step). No
potential of a vertex v € T is changed: In the Augmenting Procedure v can die only after all
residual edges vt are deleted. In the Potential-changing Procedure v doesn’t enter 7 by definition.

Finally each search increases A and decreases |S|, by Lemma 5.4.

6. Vertex-weighted cuts

This section discusses cuts of networks with edge capacities and vertex weights. Section 6.1
shows how to eliminate vertex weights when the total weight is 0. Section 6.2 applies this principle
to maintaining the jumping edge oracle in the scaling algorithm. This completes the statement of

the scaling algorithm.

6.1. The transformation

Consider a digraph G with nonnegative real-valued edge capacities. In addition each vertex
v has a real-valued weight w(v) (positive, negative or zero). The (vertez-)weighted capacity of a
set T'C V is p(T) + w(T) (in this section p with no subscript takes capacities into account). A
minimum weighted cut is a set of vertices T # §,V having minimum weighted capacity. In this
section A denotes this minimum weighted capacity. ’

The well-known algorithm of Picard [P,C] finds a minimum weighted cut when all capacities
are infinite and more importantly, T' can be any set including @ or V. This makes the problem
easier. However this condition fails in the applications to submodular flow. We first sketch Picard’s
approach and indicate how it fails for our problem.

Let P (N) be the set of all vertices with positive (negative) weight. Construct F'G (the “flow
graph”) by starting with the given graph G, adding a vertex s with edges sv, v € P, of capacity
w(v), and a vertex t with edges vt, v € N, of capacity —w(v). An s,t-cut in FG is a set of vertices
T U {t}, with (ordinary) capacity p(T) + w(PNT) - w(N —=T) = p(T) + w(T) — w(N).

In FG any T # 0,V has capacity > A — w(N); the capacity of § is —w(N) and that of V is
w(T) — w(N) = w(P). Picard’s problem is solved by finding a minimum s,#-cut on FFG. When
A > 0 (e.g., in submodular flow problems) this cut provides no useful information.

Our solution is as follows: Let f be a maximum flow from s to ¢ in FG. Let EG (the “equivalent

edge-capacitated graph”) be the residual graph of f in G.

Theorem 6.1. Let G be a digraph with nonnegative edge capacities, arbitrary vertex weights,
w(V)=0and A > 0. For any T C V the weighted capacity of T in G equals its ordinary capacity
in EG.
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Proof. In FG an s,t-mincut has value w(P) = —w(N). Thus f saturates every edge incident
to s or t. Let g be the flow f restricted to graph G. Flow conservation for f implies the net
flow out of T is 0, i.e., §,(T) = py(T) + w(T). Let ¢ be the capacity function on G. Then
pEG(T) = pe—g(T) + 64(T) = pe(T) + w(T') as desired. .

6.2. Maintaining the oracle

This section discusses how to efficiently maintain the oracle for jumping edges in our scaling
algorithm.

Assume the given submodular function b is defined on all sets § # @,V and satisfies b(5) <
p(S). This assumption is not unreasonable since the right-hand side is a trivial upper bound on the
flow into S. (For instance in the orientation problem the assumption holds since it is the inequality
p(5) =k < p(85).)

Suppose we have an oracle that computes the jumping edges for any feasible flow on G. We
can apply the oracle to compute the jumping edges for the current flow in the scé,ling algorithm
even though this flow is on SF'G. We proceed as follows.

For a given flow z on SFG define the weight of a vertex v as z({vs}) —z({tv}). Feasibility of z
amounts to the condition that for any § # 0,V p(S)=6-(5)—w(S) < b(S). Let RG be the residual
graph of z on graph G. The previous inequality is equivalent to p(S) — b(S) < pra(S) + w(S).
By assumption the left-hand side is nonnegative, so Theorem 6.1 shows there is an equivalent

edge-capacitated graph EG. We use the oracle on EG.

Lemma 6.1. Consider a 0-1 submodular flow problem with p(5) > b(5) for all S # 0,V. An
oracle that computes jumping edges for any feasible flow on G can be used to compute the jumping

edges in the scaling algorithm by applying it to EG.

Proof. The jumping edges for EG are derived from the sets .S where equality holds in the inequality
p(S) = b(S) < prc(S). These are the same sets that determine the jumping edges for z. B

As an example, in the orientation problem we can compute the jumping edges by applying
the oracle for minimum cuts of [Ga93a] on graph EG. In general the hypothesis of the lemma can
be enforced by increasing the multiplicity of each edge appropriately (as in [F84)] assume an upper
bound on b is known). In this case we assume the oracle can compute jumping edges for feasible

flows on such enlarged graphs.
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The rest of this section elaborates on how the lemma is applied in the scaling algorithm.
The approach is presented for an arbitrary submodular flow problem, although it is designed to
be efficient for the orientation problem. We break the task into two procedures, maintaining the
equivalent graph EG and maintaining a graph OG for the jumping edge oracle (OG, defined below,
is derived from EG). These procedures are executed after every augment (since an augment changes
EG).

The equivalent graph EG is easily derived from a maximum flow in FG. Constructing this
flow from scratch can be too time-consuming (this is the case in the orientation problem). Our
approach is to maintain a maximum flow on FG. Note how the flow graph FG changes in an
augment: F'G is derived from the current submodular flow z, which defines the residual graph RG
and the vertex weights (see the discussion preceding Lemma 6.1). Suppose the scaling algorithm
augments along an augmenting path AP = sv...wt (in SFG). Let J be the set of all jumping
edges of AP. The edges of AP — J receive the opposite orientation in RG and FG. The weight of
vertex v decreases by 1, so its capacity as a source in F'G decreases by 1. Similarly for the sink w
in F@.

Suppose we are given the flow graph F'G for the current submodular flow, along with a max-
imum flow on F'G. The flow maintenance algorithm works in two steps. The first step constructs
the desired maximum flow on the new graph F'G with edges J® added. The second step voids the
edges JB. The details are as follows.

The first step traverses the augmenting path AP from v to w, maintaining the invariant that
the current vertex z has a deficit of 1 unit of flow (i.e., 1 extra unit leaves z). Initially there is a
deficit of 1 unit at v. In general if AP traverses an edge zy ¢ J then FG currently contains the
edge zy. Update F'G by replacing zy by yz; also push 1 unit of flow along yz (this may cancel a
unit of flow in the deleted edge zy). If AP traverses zy € J then add yz to F'G and pushing 1 unit
of flow along it. Eventually we reach w and stop. The result is a maximum flow f on FG + JF;
here F'G is the flow graph for the new submodular flow.

The second step of the flow maintenance algorithm cancels the flow in J as follows. Let R be
the residual graph for FG + J® and flow f, with the edges J deleted (each jumping edge is an edge
of the residual graph). Let S be the set of all heads of edges of J and T the set of all tails (where
an edge is directed from tail to head). Let f* be a maximum flow on FG. It is easy to check that
f*—fis aflow from § to T in R of value | S| (here each vertex of S has capacity 1 as a source and
similarly for T').

The algorithm finds a maximum flow g from § to T in R. Then f + g is the desired maximum
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flow on FG.
For efficiency find the maximum flow g using the Ford-Fulkerson algorithm. Recall the param-

eter A (Section 2).
Lemma 6.2. The equivalent graph EG can be maintained in total time O(mA). "

The second step of our procedure is to construct the representation of EG for the jumping
edge oracle. We give an efficient representation construction algorithm. (This algorithm is needed
in the orientation problem only for certain values of k. It is not needed for the dijoin problem or
for most cases in the dense graph bound.)

For the orientation problem the oracle of [Ga93a)] is based on the witness subgraph, i.e., a
subgraph consisting of 2 complete k-intersections, partitioned into 2k spanning trees. In general
assume that the oracle representation is based on a graph OG (the “oracle graph”) constructed
from EG. Assume further that the oracle graph has these properties: The residual graph of any
feasible flow has a corresponding oracle graph; an oracle graph is the residual graph of a feasible
flow; a graph is an oracle graph if it satisfies certain properties that do not depend on the rest of
the residual graph. (These properties are obvious for the orientation problem. In the orientation
problem OG must be maintained, along with its partition.)

The first step of the flow maintenance algorithm does not change FG (or OG). In proof let
zy be an edge of AP — J. The augment places edge yz in RG. In FG yz gets 1 unit of flow. If zy
originally had no flow then ¢y remains in EG. If zy originally had 1 unit of flow then yz remains
in EG.

The algorithm for the second step of the maintenance algorithm uses the following operation.
Consider a digraph G = (V, E) and a (directed) cycle C consisting of edges that may or may not
be in E. To add-and-flip C into G means to replace E by E — C UCR. If G is the residual
graph of a feasible flow then adding-and-flipping a cycle preserves this property. This follows since
adding-and-flipping can be viewed as adding edges C — E and then reversing C, and both these
operations preserve (2).

Let OG be the oracle graph before the second step of the flow maintenance algorithm. The
second step finds a maximum flow g from § to T in R. The new graph EG is derived from the
previous one by reversing the edges of g. To update OG, make g a circulation by pushing 1 unit of
flow along each edge of J. Add-and-flip (the cycles of) this circulation into OG, obtaining a new
graph OG'. OG' is the residual graph of a feasible flow (and it contains the edges J%). Find the
oracle graph for OG’. (Do this from scratch, rather than updating the oracle graph.)
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It remains to remove any edges of J® from the new oracle graph. We give the details of this
procedure in the context of the orientation problem. To remove an edge j € JE, delete it from OG,
the partitioned oracle graph; find an augmenting path for the partitioned oracle graph, searching
in the rest of EG.

The result is the desired oracle graph OG}; furthermore OG is partitioned into spanning trees.
The final step is to use the partitioned graph OG to build the jumping edge representation of
[Ga93a).

Lemma 6.3. For the orientation problem, the representation of EG for the jumping edge oracle

can be maintained in total time O(ak?nlog(n/k)+ A(m+ knlog(n/k))), assuming alogn = O()).

Proof. A complete k-intersection on a graph of m edges is constructed in time O(kmlog(n?/m))
[Ga91]. If AP contains j jumping edges the number of edges in OG’ is O((k + j)n) (since the flow
g has at most n edges for each jumping edge of AP). One augmenting path is found in time O(m).
These remarks imply the terms of the time bound. Finally note that the jumping edge represen-
tation can be constructed from the partitioned oracle graph OG in time O(mlog(n?/m)) ([Ga93a,

Theorem 8.3]). This contributes total time O(amlog(n?/m)), which is O(Am) by assumption.
]

7. The overall algorithm

This section reviews the entire scaling algorithm. Then it gives the final timing analysis for
connectivity orientation.

The Main Routine (Section 2) scales the profits. It calls the Voiding Procedure (Section
5) to find a 1l-optimum flow on G. This procedure consists of the Augmenting and Potential-
changing Procedures (Section 5). Both of these make use of the oracle for jumping edges, which
is maintained by the procedure of Section 6.2. The Main Routine also executes the potential
compression procedure of Section 4 in the algorithm with compression.

Now we estimate the time for the entire algorithm. The bound for connectivity orientation
is somewhat involved so we first note two special cases. If m > (kn)*/3 then the time to find a
minimum cost k-edge-connected orientation is

O((kn)**nmlog (nN)).
If k£ > n?/3 the time is
O(k*n? log (n/k)log (nN)).
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This last bound seems to be the best achievable using our approach, since it equals the time to

compute the oracle representation kn times on a graph of O(kn) edges.

Theorem 7.1. A minimum-cost dijoin can be found in time
O(min{n?/3,\/m}nmlog(nN)).
A minimum-cost k-edge-connected orientation can be found in time

O((min{(kn)?3nm, nm®?* + m?logn} + k*n®log (n/k))log (nN)).

Proof. First note that the orientation bound implies the dijoin bound. In fact for £ = O(1) the
orientation bound simplifies to the dijoin bound. To see this note that if the second term of the
minimization is smaller then (kn)*2nm > nm3/? so (kn)?/®* > \/m. For k = O(1) this implies
m = O(n*/3). In this case the second term simplifies to nm>/2.

Next note that for connectivity-orientation the Main Routine is called with a k-edge-connected
orientation. This orientation is found using the procedure of Section 8. The time for this, given in
Theorem 8.2, is easily seen to be dominated by our desired bound.

To prove the connectivity-orientation bound we estimate the time for one scale. We first
summarize the contributions to the time. Corollary 3.2 shows the parameter values for the algorithm
(with or without compression) are

a=0(m), o = 0(vym), A = O(mlogm).
Corollary 3.3 shows the parameter values for the algorithm with compression are
a = 0(kn), o = O((kn)¥?), X = O(nk*Pm'/?),
An oracle call for connectivity orientation uses time O(m) [Ga93a]. Thus Lemmas 5.5 and 5.7
(with the trivial observation an < Am) show the Augmenting and Potential-changing Procedures
use time
O(onm + Am).
Lemmas 6.2-3 show the time to construct all oracle representations is
O(ak’nlog(n/k) + X(m + knlog(n/k))).
Note that the hypothesis of Lemma 6.3 holds, i.e., the parameter values above satisfy alogn = O(A)
(for the second set of values, m > kn implies A = nk*3m/3 > kn?/3 > knlogn = alogn).
Theorem 4.1 shows potential compression uses time
O(Vkmn®logn).
In what follows, for convenience we use some inequalities that hold for sufficiently large n, e.g.,

n'/3 > logn.
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We first show that when compression is used the time is O((kn)2/3nm + k3n?log (n/k)). Using
the parameter values for the algorithm with compression this bound corresponds to O(onm +
ak?nlog(n/k)). It suffices to check that the term onm dominates the remaining terms given above
for the time. We compute the ratio between onm and each of these terms, making use of the

relation m > kn:

onm _ ﬁ /3
Am \m ’

onm 3 m2/3 (n/E)L/3
Anklog(n/k)  nl/3klog(n/k) = log(n/k)’
onm K23 /m S K23 /n

Vkmn? logn - Vknl/3logn ~ nl/3logn

Since the last term on each line is at least 1, all ratios are at least 1, and the numerator onm
dominates the denominator as desired.

Next we show the time bound O(nm®/% + m?logn + k*n?log(n/k)). Together with the first
bound this implies the time bound of the theorem. To achieve this bound we use compression if
m < k*log?(n/k).

The analysis uses the first set of parameter values; in addition let @’ = kn. The desired bound
corresponds to O(onm + Am + o'k*nlog (n/k)). We first claim the last term in the time for oracle

representations, Anklog(n/k), is dominated by our time bound. In proof note these ratios:

onm _ vm
Anklog(n/k)  klogmlog(n/k)’

o'k*nlog(n/k)  kn
Anklog(n/k) =~ mlogm '

If m > k? log*n then the first ratio is at least one; if m < k% log*n then mlogm < k?log®n < k?n
so the second ratio is at least one.

Next we justify the term a’k?nlog(n/k) in the desired bound. If compression is used then this
term corresponds to the first term in the time for oracle representations. If compression is not used
then ak?nlog(n/k) is the first term in the time for oracle representations, but it is dominated by

our time bound since m > k*log%(n/k) implies

onm _ ym 51
ak?nlog(n/k) ~ kZlog(n/k) =
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Last we show that the time for compression is dominated by our time bound. If compression

is used then k%/2log®/4(n/k) > m®/®, so

o'k’nlog(n/k) _ k°/%log(n/k) S m1/8
Vkmn2logn =~ +/mlogn log1/4(n/k)logn °

Thus the ratio is at least 1 as desired. n

We conclude by proving the claim before the theorem, that the time is O((kn)*/nmlog(nN))
if m> (kn)4/ 3. The inequality implies that the minimum in the time bound equals the first term.
Furthermore the last term of the time bound, k3n?log(n/k), is dominated by the first term, since
the inequality implies

(kn)*Pnm m n/k

B2 log(n/k) — (kn)/3R log (n]k) = Tog(n/k) °

8. Feasibility

This section presents efficient algorithms for finding a feasible submodular flow. First it sum-
marizes Frank’s two-step feasibility algorithm [F84]. Section 8.1 discusses the second step, reducing
it to ordinary network flow for many general submodular flow problems. Section 8.2 implements the
first step efficiently using our scaling algorithm. It also gives our feasibility result for connectivity
orientation.

Frank’s algorithm finds a feasible solution to a general submodular flow problem (1) as follows

[F84)]. Choose any function z : E — R satisfying £ < 2 < u.

Step 1. Find a vertex weight function w : ¥V — R such that w(V) = 0 and any § € F satisfies
px(5) = 82(5) — w(5) < H(S).

Step 2. Reduce w to the zero function, preserving the last inequality and the bounds on z. B
The result is a feasible flow z. If b and the initial z are integral then w and the final z are integral.

8.1. Finding a flow

Step 2 is a submodular flow problem in general. However in many cases it simplifies to an
ordinary network flow problem, as we now show.

We discuss feasibility for the general submodular flow problem (1) in this special case: Assume

the given submodular function b is defined on all sets § C V except possibly ,V and satisfies

38



b(S) < pu(§) — 6,(5). As in Section 6.2 this assumption is not unreasonable since the right-hand
side is a trivial upper bound on the flow into S.

Suppose we are given an initial z and a vertex weight function w as in Step 1. To find a
feasible submodular flow, define the function y = z —£. Let RG be the residual graph 0f y on graph
G with capacity function u — £. The inequality of Step 1 is equivalent to p,(S) — 8,(5) — b(S) <
Pu—t—y(8) + 6,(S) + w(S). By assumption this holds for all § # @,V and the left-hand side is
nonnegative. The right-hand side is the weighted capacity of S in RG. Thus Theorem 6.1 applies.
Let f be the maximum flow on F'G. Form function g by starting with y + f and cancelling flow in

any edge and its reverse.

Theorem 8.1. Consider a submodular flow problem with p,(S) — é,(S) > b(S) for all § # @,V.
The function £ 4 g is a feasible submodular flow constructed in one maximum flow computation

from z and w.

Proof. Let ¢ be the capacity function in RG. The definition of the equivalent graph EG shows
Pu(8) —8e(S)—b(S) < pe—s(S)+65(S), or by rearranging, pu(S) — pc—(8)—6be+7(S) < b(S). Since
Pe—1(8) = pu—t—y(S) + 8,(5) — ps(S) the rearranged inequality simplifies to pyq 1(S) — 6t 7(5) <
b(S). We can replace z + f by £ + g in this last inequality, giving the first desired inequality.

We must check that £+ g obeys the upper bounds (it clearly obeys the lower bounds). For
any e, f(e) < (u—£—y)(e)+ y(ef). If fe) + y(e) > y(eF) cancellation implies the desired upper
bound. If f(e) + y(e) < y(e¥) cancellation voids e, again implying the desired upper bound. B

8.2. Finding vertex weights

Frank implements Step 1 using his discrete separation algorithm [F84]. We present an efficient
implementation of this approach based on our scaling algorithm. The discussion is for 0-1 flow.

We begin with a version of Frank’s construction, specialized for the feasibility problem and
our scaling algorithm. We choose the initial function z as the zero function. Thus the goal is to
find a vertex weight function w : V' — Z such that w(V) = 0 and any S € F satisfies w(.S) < b(9).

Call such a vertex weight function permissible if every v € V has —ég(v) < w(v) < pg(v). A
feasible 0-1 problem has a permissible weight function. Specifically if z is feasible define w(v) =
pz(v) = 6-(v). Obviously w(v) is in the desired range. Furthermore any § € F has w(§) =
pa( ) = 62(S5) < b(5).

We will find a permissible weight function by solving a submodular flow problem. Start

by choosing an arbitrary vertex r. Define two intersecting families on the ground set V — r,
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Ft={S|SeF,r¢ S}and F~ = {§| § € F,r € §}. Define two functions that are submodular
on intersecting pairs of these families, by b+(S) = b(S) for § € F*+ and b=(5) = b(S) for S € F~.
(Throughout this section S denotes V — § for § C V)

Now we define a 0-1 submodular flow problem on a graph BG. Let V=~ = {v~ | v € V} and
similarly for V*. If § C V the notation §~ denotes the corresponding subset of V=, and similarly
for S*. BG has vertex set V= U V*, plus pg(v) copies of edge v~ vt and dg(v) copies of vTv~.
Define an intersecting family ' on the vertices of BG by using the family #* on V* and 7~ on
V. Define a function b’ submodular on intersecting pairs of this family, by using b+ on F*+ and
b~ on F~. '

A permissible weight function gives a feasible flow on BG. In proof make max{w(v),0} edges
v~ vt and max{—w(v),0} edges v+ v~ into 1-edges, and make all other edges into 0-edges. Inequality
(1) for a subset of V= follows using w(§) = —w(S). Conversely a feasible flow 2 on BG gives a
permissible weight function, by setting w(v) = pz(v*) — é;(v*) for v # r and w(r) = —w(V — 7).

Thus our problem is to find a feasible flow on BG. The Vertez-weight Procedure does this by
first enlarging BG to the graph SFG by adding vertices s and ¢, plus 2m copies of edge tr—, plus
for each v € V, pa(v) + ég(v) copies of v*s. Define a flow on SFG by making all edges from V+
to V'~ 0-edges and all other edges 1-edges. Make this a 1-optimum flow on SFG with every edge
of G satisfied, by defining the profit function d to be identically 0 and all potentials to be 0. Then
find the desired flow on BG by executing the Voiding Procedure.

To prove the Vertex-weight Procedure correct we need only show that the initially constructed
flow is feasible. Assume that the original submodular flow problem is feasible (infeasible problems
are discussed after Lemma 8.1). Thus any S € F has —ég(5) < b(S). Thus any ST € F* has
=2 {bc(v) | v € §} < —65(5) < b(S) = ¥'(ST). Similarly any S~ € F~ has — Y {pg(v) | v €
5} < ~pa(8) = ~66(3) < b(3) = ¥(S").

We prove an analog of Corollary 3.2 for the efficiency of this procedure. Note graphs BG and
SFG have O(m) edges.

Lemma 8.1. The Vertex-weight Procedure finds a permissible vertex weight function for a feasible

flow problem. It achieves a < m, o < ey/m, A = O(mlogm).

Proof. The analysis is similar to the analysis of the Voiding Procedure in Section 3. The notation
z,p,d is the same as in Section 3; z_ denotes any feasible flow on BG (instead of the flow at the

end of the previous scale) and p_,zg,po are not used.
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The analog of Lemma 3.2 states that |S|A < em. In proof, Lemma 3.1 implies dz_(E) <
dz(E) — p(S)+ p(T) + v(z- @ z). (The proof is the same as the proof of inequality (4a) in Section
3.) Since d is zero this simplifies to |S|A = p(S) < v(z_ & z) < em.

The analog of Lemma 3.3 is k; = Ele A;. The proof is a simplification of Section 3: The
profit-length of a residual edge is —1, so the profit-length of an augmenting path is the negative
of the number of residual edges. As in Section 3 an augmenting path P found when the dual
adjustment is A has profit-length —A.

Now the desired parameter values follow as in Corollary 3.2. L

We briefly mention infeasible problems. (For connectivity orientation this general discussion is
irrelevant: Infeasibility is detected before we execute our procedure, as indicated at the end of this
section.) The initialization of our procedure requires that each § € F has —85(5) < b(S). This
condition is necessary but not sufficient for feasibility. We assume it can be checked by an oracle.
If the condition holds but the problem is infeasible, the Voiding Procedure detects infeasibility and
can output a witness (see Lemma 5.6, or for more detail [F84]).

The Voiding Procedure is exactly as specified in Section 5. It remains only to modify the
procedure of Section 6.2 for the jumping edge oracle. As in Lemma 6.1 assume pg(S) > b(S) for
all § # 0,V. Let z be the current flow on SFG.

We maintain two oracles, one for vertices in V*+ and the other for V~. The oracle for V't gives
jumping edges with both ends in V*. This is sufficient, since a vertex v € V't has a jumping edge
to a vertex of V'~ iff v is in no c-tight set other than V= U V* iff v has a jumping edge to every
vertex of V™ and V*. Similar remarks hold for V-

We first prove an analog of Lemma 6.1, the jumping edges can be computed from an “equivalent
graph”. Consider V*. The jumping edges directed from vertices in V't are derived from the sets
St € F* where equality holds in the inequality 3 {p.(v) — 8,(v) | v € S”'} < V(ST) (this
inequality is equivalent to (1) for SFG). For convenience identify V+ with V. Define a weight
function on V' by w(v) = 6;(v) — p(v) for v # r and w(r) = —w(V — 7). The above inequalities
are equivalent to pg(5) — b(S) < pa(S) + w(S) for any set S not containing r. For each vertex v
add ésra(v) + pa(v) + 1 copies of edge vr. We will show that any set S cohtaining r has

p(8) + w(8) > pa(S) — b(S).
We have assumed that the right-hand side is nonnegative, so this ensures the hypotheses of Theorem

6.1 hold. Thus there is an equivalent edge-capacitated graph EG for V.
To prove the above inequality, p(5) + w(5) > pa(S) + > {6src(v) + pc(v) | v ¢ S} + w(S) =
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(pc(S)+ 2 {pc(v) | v ¢ SH+ (X {dsrc(v) | v ¢ S}+w(S)). The second term is nonnegative since
any v € V with positive weight contributes > w(v) to it (if v ¢ S then v contributes §spg(v) >
w(v)). For the first term note that feasibility implies 3 {pg(v) | v ¢ S} > 6c(S) > —b(S5), so the
first term is at least pg(.S) — b(S) as desired.

We treat V'~ similarly as follows. Define a weight function by w(v) = pg(v) — 65(v) for v # r
and w(r) = —w(V — r). Inequalities (1) amount to pa(S) — b(S) < pa(S) + w(S) for any set §
containing r. For each vertex v add ésrg(v) + 6g(v) + 1 copies of edge rv. As above it suffices to
show that any set S not containing r has

p(S) + w(§) > pa(S) — b(S).
In proof, p(S) + w(S) > pa(5) + X{b6sra(v) + 8a(v) | v € S} + w(5) = (pa(S) + X{ba(v) | v €
SH + 3 -{bsra(v) | v € S} + w(S)). The second term is nonnegative since any v € S has
dsrG(v) + w(v) > 0. Feasibility implies Y {6q(v) | v € §} > §a(S) > —b(S) so the first term is at
least pg(S) — b(S) as desired.

We maintain the equivalent graphs FG similar to Section 6 by maintaining the flow graph FG
and a maximum flow on it, as follows. Let AP be an augmenting path in SFG. Observe that AP
contains at most one jumping edge from one of the sets Vt, V'~ to the other. Specifically if such
an edge exists we can jump to r~ and complete the augmenting path.

Consider V*. Suppose AP contains a jumping edge uv with u,v € V. The augment decreases
w(u) = 6;(u)— pz(u) by 1; similarly w(v) increases by 1. We update FG (adding an artificial edge)
as follows. First adjust the capacity and flow on edges incident to s or t in F'G (e.g., if w(u) is
positive before the augment, decrease the capacity and flow for su by 1). Then add edge vu to FG
and push 1 unit of flow on it. This gives the desired flow on FG since 1 more unit of flow must
enter u (regardless of the sign of w(u)) and 1 more unit must leave v.

A vertex u € V* can occur in AP in two other ways. AP can begin with residual edges su, uv
for v € V™. The occurrence in the augment has no effect on w(u) or FG. AP can end with residual
edge vu (v € V™ U {s}) and jumping edge ur~. This decreases w(u) by 1 and increases w(r*t) by
1. We process this similar to the previous case.

Now proceed as in Section 6.2: find a maximum flow on the residual graph of the current flow,
with jumping edges deleted; add this flow to the current flow to get the desired flow on FG.

V'~ is handled similarly. Suppose AP contains a jumping edge uv with u,v € V~. The
augment increases w(u) = py(u) — 6-(u) by 1; similarly w(v) decreases by 1 (even if v = 77). As
above adjust the capacity and flow on edges incident to s or ¢t in F'G, add edge uv and push 1 unit

of flow on it. After all jumping edges are processed, find a maximum flow on the residual graph of
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the current flow, with jumping edges deleted; add this flow to the current flow to get the desired
flow on FQG.

The last two displayed inequalities show that in V* (V=) no set (not) containing r is c-tight.
So the jumping edges in EG are the desired jumping edges for V* (V). We apply the oracle to
compute these jumping edges. (Unlike Lemma 6.1 EG need not be the residual graph of a flow.)

After the equivalent graph EG is updated we compute the new oracle graph OG. Although
the procedure of Section 6 can be used, for connectivity orientation it is just as efficient to simply
construct OG from EG starting from scratch.

This completes the description of the feasibility algorithm. Now we apply it to connectivity
orientation. We increase the efficiency using a special propérty of this problem: The witness graph
of a feasible flow can be found efficiently. Specifically Nash-Williams’ theorem [NW] states that an
undirected graph has a k-edge-conne;:ted orientation iff it is 2k-edge-connected (as an undirected
graph). Given an undirected graph G, we begin by finding a subgraph of < 4kn edges that is
2k-edge connected, using the procedure of [Ga91]. (This procedure detects an infeasible problem,

i.e., connectivity less than 2k.) We execute our feasibility algorithm on this subgraph.

Theorem 8.2. A k-edge-connected orientation of an undirected graph can be found, if one exists,

in time O(kn?(vVkn + k?log (n/k))).

Proof. A 2k-edge-connected subgraph is found in time O(m + k*nlog(n/k)) [Ga91]. The time
for the oracle is O(ak®nlog(n/k) + Akn). This follows from Lemmas 6.2-3 and the fact that F'G
contains O(kn) edges (see the definition above). Now the estimate of Theorem 7.1 shows the time
for the feasibility algorithm satisfies the bound of the theorem. The last step is to find the maximum
network flow of Theorem 8.1 corresponding to the vertex weight function. Since the total of all

positive weights is O(kn), the Ford-Fulkerson algorithm finds the desired flow in time O((kn)?).
. : v
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